1
|
Ravindran S, Rau CD. The multifaceted role of mitochondria in cardiac function: insights and approaches. Cell Commun Signal 2024; 22:525. [PMID: 39472951 PMCID: PMC11523909 DOI: 10.1186/s12964-024-01899-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Accepted: 10/19/2024] [Indexed: 11/02/2024] Open
Abstract
Cardiovascular disease (CVD) remains a global economic burden even in the 21st century with 85% of deaths resulting from heart attacks. Despite efforts in reducing the risk factors, and enhancing pharmacotherapeutic strategies, challenges persist in early identification of disease progression and functional recovery of damaged hearts. Targeting mitochondrial dysfunction, a key player in the pathogenesis of CVD has been less successful due to its role in other coexisting diseases. Additionally, it is the only organelle with an agathokakological function that is a remedy and a poison for the cell. In this review, we describe the origins of cardiac mitochondria and the role of heteroplasmy and mitochondrial subpopulations namely the interfibrillar, subsarcolemmal, perinuclear, and intranuclear mitochondria in maintaining cardiac function and in disease-associated remodeling. The cumulative evidence of mitochondrial retrograde communication with the nucleus is addressed, highlighting the need to study the genotype-phenotype relationships of specific organelle functions with CVD by using approaches like genome-wide association study (GWAS). Finally, we discuss the practicality of computational methods combined with single-cell sequencing technologies to address the challenges of genetic screening in the identification of heteroplasmy and contributory genes towards CVD.
Collapse
Affiliation(s)
- Sriram Ravindran
- Computational Medicine Program, Department of Genetics, and McAllister Heart Institute, University of North Carolina at Chapel Hill, 116 Manning Drive, Chapel Hill, NC-27599, USA
| | - Christoph D Rau
- Computational Medicine Program, Department of Genetics, and McAllister Heart Institute, University of North Carolina at Chapel Hill, 116 Manning Drive, Chapel Hill, NC-27599, USA.
| |
Collapse
|
2
|
Tan BG, Gustafsson CM, Falkenberg M. Mechanisms and regulation of human mitochondrial transcription. Nat Rev Mol Cell Biol 2024; 25:119-132. [PMID: 37783784 DOI: 10.1038/s41580-023-00661-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/21/2023] [Indexed: 10/04/2023]
Abstract
The expression of mitochondrial genes is regulated in response to the metabolic needs of different cell types, but the basic mechanisms underlying this process are still poorly understood. In this Review, we describe how different layers of regulation cooperate to fine tune initiation of both mitochondrial DNA (mtDNA) transcription and replication in human cells. We discuss our current understanding of the molecular mechanisms that drive and regulate transcription initiation from mtDNA promoters, and how the packaging of mtDNA into nucleoids can control the number of mtDNA molecules available for both transcription and replication. Indeed, a unique aspect of the mitochondrial transcription machinery is that it is coupled to mtDNA replication, such that mitochondrial RNA polymerase is additionally required for primer synthesis at mtDNA origins of replication. We discuss how the choice between replication-primer formation and genome-length RNA synthesis is controlled at the main origin of replication (OriH) and how the recent discovery of an additional mitochondrial promoter (LSP2) in humans may change this long-standing model.
Collapse
Affiliation(s)
- Benedict G Tan
- Institute for Mitochondrial Diseases and Ageing, Faculty of Medicine and University Hospital Cologne, Cluster of Excellence Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Cologne, Germany
| | - Claes M Gustafsson
- Department of Medical Biochemistry and Cell Biology, Institute of Biomedicine, University of Gothenburg, Gothenburg, Sweden
| | - Maria Falkenberg
- Department of Medical Biochemistry and Cell Biology, Institute of Biomedicine, University of Gothenburg, Gothenburg, Sweden.
| |
Collapse
|
3
|
Sun J, Chen Y, Wang T, Ali W, Ma Y, Liu Z, Zou H. Role of Mitochondrial Reactive Oxygen Species-Mediated Chaperone-Mediated Autophagy and Lipophagy in Baicalin and N-Acetylcysteine Mitigation of Cadmium-Induced Lipid Accumulation in Liver. Antioxidants (Basel) 2024; 13:115. [PMID: 38247538 PMCID: PMC10812561 DOI: 10.3390/antiox13010115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 01/13/2024] [Accepted: 01/15/2024] [Indexed: 01/23/2024] Open
Abstract
Cadmium (Cd) is a major health concern globally and can accumulate and cause damage in the liver for which there is no approved treatment. Baicalin and N-acetylcysteine (NAC) have been found to have protective effects against a variety of liver injuries, but it is not clear whether their combined use is effective in preventing and treating Cd-induced lipid accumulation. The study found that Cd increased the production of mitochondrial reactive oxygen species (mROS) and elevated the level of chaperone-mediated autophagy (CMA). Interestingly, mROS-mediated CMA exacerbates the Cd-induced inhibition of lipophagy. Baicalin and NAC counteracted inhibition of lipophagy by attenuating Cd-induced CMA, suggesting an interplay between CMA elevation, mitochondrial destruction, and mROS formation. Maintaining the stability of mitochondrial structure and function is essential for alleviating Cd-induced lipid accumulation in the liver. Choline is an essential component of the mitochondrial membrane and is responsible for maintaining its structure and function. Mitochondrial transcriptional factor A (TFAM) is involved in mitochondrial DNA transcriptional activation and replication. Our study revealed that the combination of baicalin and NAC can regulate choline metabolism through TFAM and thereby maintain mitochondrial structure and functionality. In summary, the combination of baicalin and NAC plays a more beneficial role in alleviating Cd-induced lipid accumulation than the drug alone, and the combination of baicalin and NAC can stabilize mitochondrial structure and function and inhibit mROS-mediated CMA through TFAM-choline, thereby promoting lipophagy to alleviate Cd-induced lipid accumulation.
Collapse
Affiliation(s)
- Jian Sun
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China; (J.S.); (Y.C.); (T.W.); (W.A.); (Y.M.); (Z.L.)
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, The Ministry of Education of China, Yangzhou University, Yangzhou 225009, China
| | - Yan Chen
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China; (J.S.); (Y.C.); (T.W.); (W.A.); (Y.M.); (Z.L.)
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, The Ministry of Education of China, Yangzhou University, Yangzhou 225009, China
| | - Tao Wang
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China; (J.S.); (Y.C.); (T.W.); (W.A.); (Y.M.); (Z.L.)
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, The Ministry of Education of China, Yangzhou University, Yangzhou 225009, China
| | - Waseem Ali
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China; (J.S.); (Y.C.); (T.W.); (W.A.); (Y.M.); (Z.L.)
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, The Ministry of Education of China, Yangzhou University, Yangzhou 225009, China
| | - Yonggang Ma
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China; (J.S.); (Y.C.); (T.W.); (W.A.); (Y.M.); (Z.L.)
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, The Ministry of Education of China, Yangzhou University, Yangzhou 225009, China
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, China
| | - Zongping Liu
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China; (J.S.); (Y.C.); (T.W.); (W.A.); (Y.M.); (Z.L.)
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, The Ministry of Education of China, Yangzhou University, Yangzhou 225009, China
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, China
| | - Hui Zou
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China; (J.S.); (Y.C.); (T.W.); (W.A.); (Y.M.); (Z.L.)
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, The Ministry of Education of China, Yangzhou University, Yangzhou 225009, China
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, China
| |
Collapse
|
4
|
Aydemir HB, Korkmaz EM. microRNAs in Syrista parreyssi (Hymenoptera) and Lepisma saccharina (Zygentoma) possibly involved in the mitochondrial function. ARCHIVES OF INSECT BIOCHEMISTRY AND PHYSIOLOGY 2024; 115:e22062. [PMID: 37905458 DOI: 10.1002/arch.22062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 10/06/2023] [Accepted: 10/19/2023] [Indexed: 11/02/2023]
Abstract
Mitochondria are essential organelles for maintaining vital cellular functions, and microRNAs (miRNAs) regulate gene expression posttranscriptionally. miRNAs exhibit tissue and time-specific patterns in mitochondria and specifically mitochondrial miRNAs (mitomiRs) can regulate the mRNA expression both originating from mitochondrial and nuclear transcription which affect mitochondrial metabolic activity and cell homeostasis. In this study, miRNAs of two insect species, Syrista parreyssi (Hymenoptera) and Lepisma saccharina (Zygentoma), were investigated for the first time. The known and possible novel miRNAs were predicted and characterized and their potential effects on mitochondrial transcription were investigated in these insect species using deep sequencing. The previously reported mitomiRs were also investigated and housekeeping miRNAs were characterized. miRNAs that are involved in mitochondrial processes such as apoptosis and signaling and that affect genes encoding the subunits of OXPHOS complexes have been identified in each species. Here, 81 and 161 novel mature miRNA candidates were bioinformatically predicted and 9 and 24 of those were aligned with reference mitogenomes of S. parreyssi and L. saccharina, respectively. As a result of RNAHybrid analysis, 51 and 69 potential targets of miRNAs were found in the mitogenome of S. parreyssi and L. saccharina, respectively. cox1 gene was the most targeted gene and cytB, rrnS, and rrnL genes were highly targeted in both of the species by novel miRNAs, hypothetically. We speculate that these novel miRNAs, originating from or targeting mitochondria, influence on rRNA genes or positively selected mitochondrial protein-coding genes. These findings may provide a new perspective in evaluating miRNAs for maintaining mitochondrial function and transcription.
Collapse
Affiliation(s)
- Habeş Bilal Aydemir
- Department of Molecular Biology and Genetics, Faculty of Science and Letters, Tokat Gaziosmanpaşa University, Tokat, Turkey
| | - Ertan Mahir Korkmaz
- Department of Molecular Biology and Genetics, Faculty of Science, Sivas Cumhuriyet University, Sivas, Turkey
| |
Collapse
|
5
|
Miwa T, Katsuno T, Wei F, Tomizawa K. Mitochondrial alterations in the cochlea of Cdk5rap1-knockout mice with age-related hearing loss. FEBS Open Bio 2023; 13:1365-1374. [PMID: 37258461 PMCID: PMC10315731 DOI: 10.1002/2211-5463.13655] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 05/08/2023] [Accepted: 05/30/2023] [Indexed: 06/02/2023] Open
Abstract
Previous studies have revealed that age-related hearing loss (AHL) in Cdk5 regulatory subunit-associated protein 1 (Cdk5rap1)-knockout mice is associated with pathology in the cochlea. Here, we aimed to identify mitochondrial alterations in the cochlea of Cdk5rap1-knockout mice with AHL. Mitochondria in the spiral ganglion neurons (SGNs) and hair cells (HCs) were normal despite senescence; however, the mitochondria of types I, II, and IV spiral ligament fibrocytes were ballooned, damaged, and ballooned, respectively, in the stria vascularis. Our results suggest that the accumulation of dysfunctional mitochondria in the lateral wall, rather than the loss of HCs and SGNs, leads to the onset of AHL. Our results provide valuable information regarding the underlying mechanisms of AHL and the relationship between aberrant tRNA modification-induced hearing loss and mitochondrial dysfunction.
Collapse
Affiliation(s)
- Toru Miwa
- Department of Otolaryngology‐Head and Neck Surgery, Graduate School of MedicineKyoto UniversityJapan
- Department of Otolaryngology‐Head and Neck SurgeryOsaka Metropolitan UniversityJapan
| | - Tatsuya Katsuno
- Department of Otolaryngology‐Head and Neck SurgeryOsaka Metropolitan UniversityJapan
| | - Fan‐Yan Wei
- Department of Molecular Physiology, Faculty of Life SciencesKumamoto UniversityJapan
- Department of Modomics Biology and Medicine, Institute of Development, Aging and CancerTohoku UniversitySendaiJapan
| | - Kazuhito Tomizawa
- Department of Molecular Physiology, Faculty of Life SciencesKumamoto UniversityJapan
| |
Collapse
|
6
|
Zhu S, Xu N, Han Y, Ye X, Yang L, Zuo J, Liu W. MTERF3 contributes to MPP+-induced mitochondrial dysfunction in SH-SY5Y cells. Acta Biochim Biophys Sin (Shanghai) 2022; 54:1113-1121. [PMID: 35904214 PMCID: PMC9828133 DOI: 10.3724/abbs.2022098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Accepted: 01/18/2022] [Indexed: 11/25/2022] Open
Abstract
Parkinson's disease (PD) is a neurodegenerative disorder causing severe social and economic burdens. The origin of PD has been usually attributed to mitochondrial dysfunction. To this end, mitochondrial transcription regulators become attractive subjects for understanding PD pathogenesis. Previously, we found that the expression of mitochondrial transcription termination factor 3 (MTERF3) was reduced in MPP+-induced mice model of PD. In the present study, we probe the function of MTERF3 and its role in MPP+-induced cellular model of PD. Initially, we observe that MTERF3 expression is also reduced in MPP+-induced cellular model of PD, which can be mainly attributed to the increase of MTERF3 degradation. Next, we examine the effect of MTERF3 knockdown and overexpression on the replication, transcription, and translation of mitochondrial DNA (mtDNA). We show that knockdown and overexpression of MTERF3 have opposite effects on mtDNA transcript level but similar effects on mtDNA expression level, in line with MTERF3's dual roles in mtDNA transcription and translation. In addition, we examine the effect of MTERF3 knockdown and overexpression on mitochondrial function with and without MPP+ treatment, and find that MTERF3 seems to play a generally protective role in MPP+-induced mitochondrial dysfunction. Together, this work suggests a regulatory role of MTERF3 in MPP+-induced cellular model of PD and may provide clues in designing novel therapeutics against PD.
Collapse
Affiliation(s)
| | | | - Yanyan Han
- />Department of Cellular and Genetic MedicineSchool of Basic Medical SciencesFudan UniversityShanghai200032China
| | - Xiaofei Ye
- />Department of Cellular and Genetic MedicineSchool of Basic Medical SciencesFudan UniversityShanghai200032China
| | - Ling Yang
- />Department of Cellular and Genetic MedicineSchool of Basic Medical SciencesFudan UniversityShanghai200032China
| | - Ji Zuo
- />Department of Cellular and Genetic MedicineSchool of Basic Medical SciencesFudan UniversityShanghai200032China
| | - Wen Liu
- />Department of Cellular and Genetic MedicineSchool of Basic Medical SciencesFudan UniversityShanghai200032China
| |
Collapse
|
7
|
Miwa T, Wei FY, Tomizawa K. Cdk5 regulatory subunit-associated protein 1 knockout mice show hearing loss phenotypically similar to age-related hearing loss. Mol Brain 2021; 14:82. [PMID: 34001214 PMCID: PMC8130336 DOI: 10.1186/s13041-021-00791-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Accepted: 05/12/2021] [Indexed: 11/10/2022] Open
Abstract
Mitochondrial dysfunction is associated with aging and age-related hearing loss (AHL). However, the precise mechanisms underlying the pathophysiology of hearing loss remain unclear. Cdk5 regulatory subunit-associated protein 1 (CDK5RAP1) enables efficient intramitochondrial translation by catalyzing the deposition of 2-methylthio modifications on mitochondrial tRNAs. Here we investigated the effect of defective mitochondrial protein translation on hearing and AHL in a Cdk5rap1 deficiency C57BL/6 mouse model. Compared to control C57BL/6 mice, Cdk5rap1-knockout female mice displayed hearing loss phenotypically similar to AHL from an early age. The premature hearing loss in Cdk5rap1-knockout mice was associated with the degeneration of the spiral ligament and reduction of endocochlear potentials following the loss of auditory sensory cells. Furthermore, cultured primary mouse embryonic fibroblasts displayed early onset of cellular senescence associated with high oxidative stress and cell death. These results indicate that the CDK5RAP1 deficiency-induced defective mitochondrial translation might cause early hearing loss through the induction of cellular senescence and cochlear dysfunction in the inner ear. Our results suggest that the accumulation of dysfunctional mitochondria might promote AHL progression. Furthermore, our findings suggest that mitochondrial dysfunction and dysregulated mitochondrial tRNA modifications mechanistically cause AHL. Understanding the mechanisms underlying AHL will guide future clinical investigations and interventions in the attempt to mitigate the consequences of AHL.
Collapse
Affiliation(s)
- Toru Miwa
- Department of Otolaryngology-Head and Neck Surgery, Graduate School of Medicine, Kyoto University, 54 Shogoin Kawahara-cho, Sakyo-ku, Kyoto, 6068507, Japan.
- Department of Otolaryngology-Head and Neck Surgery, Kitano Hospital, Tazuke Kofukai Medical Research Institute, 2-4-20 Ougimaci, Kita-ku, Osaka, 5308480, Japan.
| | - Fan-Yan Wei
- Department of Molecular Physiology, Faculty of Life Sciences, Kumamoto University, 1-1-1- Honjo, Chuo-ku, Kumamoto, 8608556, Japan
- Department of Modomics Biology and Medicine, Institute of Development, Aging and Cancer, Tohoku University, 4-1 Seiryo, Aoba-ku, Sendai, Miyagi, 9808575, Japan
| | - Kazuhito Tomizawa
- Department of Molecular Physiology, Faculty of Life Sciences, Kumamoto University, 1-1-1- Honjo, Chuo-ku, Kumamoto, 8608556, Japan
| |
Collapse
|
8
|
Research Progress in the Molecular Functions of Plant mTERF Proteins. Cells 2021; 10:cells10020205. [PMID: 33494215 PMCID: PMC7909791 DOI: 10.3390/cells10020205] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2020] [Revised: 01/16/2021] [Accepted: 01/18/2021] [Indexed: 12/16/2022] Open
Abstract
Present-day chloroplast and mitochondrial genomes contain only a few dozen genes involved in ATP synthesis, photosynthesis, and gene expression. The proteins encoded by these genes are only a small fraction of the many hundreds of proteins that act in chloroplasts and mitochondria. Hence, the vast majority, including components of organellar gene expression (OGE) machineries, are encoded by nuclear genes, translated into the cytosol and imported to these organelles. Consequently, the expression of nuclear and organellar genomes has to be very precisely coordinated. Furthermore, OGE regulation is crucial to chloroplast and mitochondria biogenesis, and hence, to plant growth and development. Notwithstanding, the molecular mechanisms governing OGE are still poorly understood. Recent results have revealed the increasing importance of nuclear-encoded modular proteins capable of binding nucleic acids and regulating OGE. Mitochondrial transcription termination factor (mTERF) proteins are a good example of this category of OGE regulators. Plant mTERFs are located in chloroplasts and/or mitochondria, and have been characterized mainly from the isolation and analyses of Arabidopsis and maize mutants. These studies have revealed their fundamental roles in different plant development aspects and responses to abiotic stress. Fourteen mTERFs have been hitherto characterized in land plants, albeit to a different extent. These numbers are limited if we consider that 31 and 35 mTERFs have been, respectively, identified in maize and Arabidopsis. Notwithstanding, remarkable progress has been made in recent years to elucidate the molecular mechanisms by which mTERFs regulate OGE. Consequently, it has been experimentally demonstrated that plant mTERFs are required for the transcription termination of chloroplast genes (mTERF6 and mTERF8), transcriptional pausing and the stabilization of chloroplast transcripts (MDA1/mTERF5), intron splicing in chloroplasts (BSM/RUG2/mTERF4 and Zm-mTERF4) and mitochondria (mTERF15 and ZmSMK3) and very recently, also in the assembly of chloroplast ribosomes and translation (mTERF9). This review aims to provide a detailed update of current knowledge about the molecular functions of plant mTERF proteins. It principally focuses on new research that has made an outstanding contribution to unravel the molecular mechanisms by which plant mTERFs regulate the expression of chloroplast and mitochondrial genomes.
Collapse
|
9
|
Ishikawa K, Nakada K. Attempts to understand the mechanisms of mitochondrial diseases: The reverse genetics of mouse models for mitochondrial disease. Biochim Biophys Acta Gen Subj 2020; 1865:129835. [PMID: 33358867 DOI: 10.1016/j.bbagen.2020.129835] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Revised: 08/25/2020] [Accepted: 12/18/2020] [Indexed: 11/16/2022]
Abstract
BACKGROUND Mitochondrial disease is a general term for a disease caused by a decline in mitochondrial function. The pathology of this disease is extremely diverse and complex, and the mechanism of its pathogenesis is still unknown. Using mouse models that develop the disease via the same processes as in humans is the easiest path to understanding the underlying mechanism. However, creating a mouse model is extremely difficult due to the lack of technologies that enable editing of mitochondrial DNA (mtDNA). SCOPE OF REVIEW This paper outlines the complex pathogenesis of mitochondrial disease, and the difficulties in producing relevant mouse models. Then, the paper provides a detailed discussion on several mice created with mutations in mtDNA. The paper also introduces the pathology of mouse models with mutations including knockouts of nuclear genes that directly affect mitochondrial function. MAJOR CONCLUSIONS Several mice with mtDNA mutations and those with nuclear DNA mutations have been established. Although these models help elucidate the pathological mechanism of mitochondrial disease, they lack sufficient diversity to enable a complete understanding. Considering the variety of factors that affect the cause and mechanism of mitochondrial disease, it is necessary to account for this background diversity in mouse models as well. GENERAL SIGNIFICANCE Mouse models are indispensable for understanding the pathological mechanism of mitochondrial disease, as well as for searching new treatments. There is a need for the creation and examination of mouse models with more diverse mutations and altered nuclear backgrounds and breeding environments.
Collapse
Affiliation(s)
- Kaori Ishikawa
- Faculty of Life and Environmental Sciences, University of Tsukuba, 1-1-1, Tennodai, Tsukuba, Ibaraki 305-8572, Japan; Graduate School of Life and Environmental Sciences, University of Tsukuba, 1-1-1, Tennodai, Tsukuba, Ibaraki 305-8572, Japan
| | - Kazuto Nakada
- Faculty of Life and Environmental Sciences, University of Tsukuba, 1-1-1, Tennodai, Tsukuba, Ibaraki 305-8572, Japan; Graduate School of Life and Environmental Sciences, University of Tsukuba, 1-1-1, Tennodai, Tsukuba, Ibaraki 305-8572, Japan.
| |
Collapse
|
10
|
Biochemical adaptations in white adipose tissue following aerobic exercise: from mitochondrial biogenesis to browning. Biochem J 2020; 477:1061-1081. [PMID: 32187350 DOI: 10.1042/bcj20190466] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Revised: 02/24/2020] [Accepted: 02/28/2020] [Indexed: 02/07/2023]
Abstract
Our understanding of white adipose tissue (WAT) biochemistry has evolved over the last few decades and it is now clear that WAT is not simply a site of energy storage, but rather a pliable endocrine organ demonstrating dynamic responsiveness to the effects of aerobic exercise. Similar to its established effects in skeletal muscle, aerobic exercise induces many biochemical adaptations in WAT including mitochondrial biogenesis and browning. While past research has focused on the regulation of these biochemical processes, there has been renewed interest as of late given the potential of harnessing WAT mitochondrial biogenesis and browning to treat obesity and type II diabetes. Unfortunately, despite increasing evidence that innumerable factors, both exercise induced and pharmacological, can elicit these biochemical adaptations in WAT, the underlying mechanisms remain poorly defined. Here, we begin with a historical account of our understanding of WAT exercise biochemistry before presenting detailed evidence in favour of an up-to-date model by which aerobic exercise induces mitochondrial biogenesis and browning in WAT. Specifically, we discuss how aerobic exercise induces increases in WAT lipolysis and re-esterification and how this could be a trigger that activates the cellular energy sensor 5' AMP-activated protein kinase to mediate the induction of mitochondrial biogenesis and browning via the transcriptional co-activator peroxisome proliferator-activated receptor gamma co-activator-1 alpha. While this review primarily focuses on mechanistic results from rodent studies special attention is given to the translation of these results, or lack thereof, to human physiology.
Collapse
|
11
|
Chung KW, Dhillon P, Huang S, Sheng X, Shrestha R, Qiu C, Kaufman BA, Park J, Pei L, Baur J, Palmer M, Susztak K. Mitochondrial Damage and Activation of the STING Pathway Lead to Renal Inflammation and Fibrosis. Cell Metab 2019; 30:784-799.e5. [PMID: 31474566 PMCID: PMC7054893 DOI: 10.1016/j.cmet.2019.08.003] [Citation(s) in RCA: 409] [Impact Index Per Article: 68.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/09/2019] [Revised: 06/18/2019] [Accepted: 08/02/2019] [Indexed: 12/24/2022]
Abstract
Fibrosis is the final common pathway leading to end-stage renal failure. By analyzing the kidneys of patients and animal models with fibrosis, we observed a significant mitochondrial defect, including the loss of the mitochondrial transcription factor A (TFAM) in kidney tubule cells. Here, we generated mice with tubule-specific deletion of TFAM (Ksp-Cre/Tfamflox/flox). While these mice developed severe mitochondrial loss and energetic deficit by 6 weeks of age, kidney fibrosis, immune cell infiltration, and progressive azotemia causing death were only observed around 12 weeks of age. In renal cells of TFAM KO (knockout) mice, aberrant packaging of the mitochondrial DNA (mtDNA) resulted in its cytosolic translocation, activation of the cytosolic cGAS-stimulator of interferon genes (STING) DNA sensing pathway, and thus cytokine expression and immune cell recruitment. Ablation of STING ameliorated kidney fibrosis in mouse models of chronic kidney disease, demonstrating how TFAM sequesters mtDNA to limit the inflammation leading to fibrosis.
Collapse
Affiliation(s)
- Ki Wung Chung
- Renal, Electrolyte, and Hypertension Division, Department of Medicine, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA 19104, USA; Institute for Diabetes, Obesity, and Metabolism, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Poonam Dhillon
- Renal, Electrolyte, and Hypertension Division, Department of Medicine, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA 19104, USA; Institute for Diabetes, Obesity, and Metabolism, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Shizheng Huang
- Renal, Electrolyte, and Hypertension Division, Department of Medicine, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA 19104, USA; Institute for Diabetes, Obesity, and Metabolism, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Xin Sheng
- Renal, Electrolyte, and Hypertension Division, Department of Medicine, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA 19104, USA; Institute for Diabetes, Obesity, and Metabolism, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Rojesh Shrestha
- Renal, Electrolyte, and Hypertension Division, Department of Medicine, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA 19104, USA; Institute for Diabetes, Obesity, and Metabolism, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Chengxiang Qiu
- Renal, Electrolyte, and Hypertension Division, Department of Medicine, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA 19104, USA; Institute for Diabetes, Obesity, and Metabolism, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Brett A Kaufman
- Center for Metabolism and Mitochondrial Medicine, Division of Cardiology, Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA
| | - Jihwan Park
- Renal, Electrolyte, and Hypertension Division, Department of Medicine, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA 19104, USA; Institute for Diabetes, Obesity, and Metabolism, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Liming Pei
- Institute for Diabetes, Obesity, and Metabolism, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA 19104, USA; Center for Mitochondrial and Epigenomic Medicine, Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA; Department of Pathology and Laboratory Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Joseph Baur
- Institute for Diabetes, Obesity, and Metabolism, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA 19104, USA; Department of Physiology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Matthew Palmer
- Department of Pathology and Laboratory Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Katalin Susztak
- Renal, Electrolyte, and Hypertension Division, Department of Medicine, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA 19104, USA; Institute for Diabetes, Obesity, and Metabolism, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA 19104, USA.
| |
Collapse
|
12
|
Sun S, Wu C, Yang C, Chen J, Wang X, Nan Y, Huang Z, Ma L. Prognostic roles of mitochondrial transcription termination factors in non-small cell lung cancer. Oncol Lett 2019; 18:3453-3462. [PMID: 31516563 PMCID: PMC6732965 DOI: 10.3892/ol.2019.10680] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2018] [Accepted: 05/02/2019] [Indexed: 12/13/2022] Open
Abstract
Mitochondrial transcription termination factors (MTERFs) regulate mitochondrial gene transcription and metabolism in numerous types of cells. Previous studies have indicated that MTERFs serve pivotal roles in the pathogenesis of various cancer types. However, the expression and prognostic roles of MTERFs in patients with non-small cell lung cancer (NSCLC) remain elusive. The present study investigated the gene alteration frequency and expression level using Gene Expression Omnibus datasets and reverse transcription-quantitative polymerase chain reaction, and evaluated the prognostic roles of MTERFs in patients with NSCLC using the Kaplan-Meier plotter database. In human lung cancer tissues, it was observed that the mRNA levels of MTERF1, 2, 3 and 4 were positively associated with the copy number of these genes. The mRNA expression levels of MTERF1 and 3 were significantly increased in NSCLC tissues compared with adjacent non-tumor tissues; however, the mRNA expression of MTERF2 was significantly decreased in NSCLC tissues. High mRNA expression levels of MTERF1, 2, 3 and 4 were strongly associated with an improved overall survival rate (OS) in patients with lung adenocarcinoma. Additionally, high mRNA expression levels of MTERF1, 2, 3 and 4 were also strongly associated with an improved OS of patients with NSCLC in the earlier stages of disease (stage I) or patients with negative surgical margins. These results indicate the critical prognostic values of MTERF expression levels in NSCLC. The findings of the present study may be beneficial for understanding the molecular biology mechanism of NSCLC and for generating effective therapeutic approaches for patients with NSCLC.
Collapse
Affiliation(s)
- Shuangyan Sun
- Department of Radiology, Jilin Province Cancer Hospital, Changchun, Jilin 130012, P.R. China
| | - Chunjiao Wu
- Department of Thoracic Oncology, Jilin Province Cancer Hospital, Changchun, Jilin 130012, P.R. China
| | - Changliang Yang
- Department of Thoracic Oncology, Jilin Province Cancer Hospital, Changchun, Jilin 130012, P.R. China
| | - Jian Chen
- Department of Interventional Radiology, Jilin Province Cancer Hospital, Changchun, Jilin 130012, P.R. China
| | - Xiu Wang
- Department of Interventional Radiology, Jilin Province Cancer Hospital, Changchun, Jilin 130012, P.R. China
| | - Yingji Nan
- Department of Radiology, Jilin Province Cancer Hospital, Changchun, Jilin 130012, P.R. China
| | - Zhicheng Huang
- Department of Radiology, Jilin Province Cancer Hospital, Changchun, Jilin 130012, P.R. China
| | - Lixia Ma
- Department of Thoracic Oncology, Jilin Province Cancer Hospital, Changchun, Jilin 130012, P.R. China
| |
Collapse
|
13
|
Wiatrek DM, Candela ME, Sedmík J, Oppelt J, Keegan LP, O'Connell MA. Activation of innate immunity by mitochondrial dsRNA in mouse cells lacking p53 protein. RNA (NEW YORK, N.Y.) 2019; 25:713-726. [PMID: 30894411 PMCID: PMC6521600 DOI: 10.1261/rna.069625.118] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2018] [Accepted: 03/16/2019] [Indexed: 05/27/2023]
Abstract
Viral and cellular double-stranded RNA (dsRNA) is recognized by cytosolic innate immune sensors, including RIG-I-like receptors. Some cytoplasmic dsRNA is commonly present in cells, and one source is mitochondrial dsRNA, which results from bidirectional transcription of mitochondrial DNA (mtDNA). Here we demonstrate that Trp53 mutant mouse embryonic fibroblasts contain immune-stimulating endogenous dsRNA of mitochondrial origin. We show that the immune response induced by this dsRNA is mediated via RIG-I-like receptors and leads to the expression of type I interferon and proinflammatory cytokine genes. The mitochondrial dsRNA is cleaved by RNase L, which cleaves all cellular RNA including mitochondrial mRNAs, increasing activation of RIG-I-like receptors. When mitochondrial transcription is interrupted there is a subsequent decrease in this immune-stimulatory dsRNA. Our results reveal that the role of p53 in innate immunity is even more versatile and complex than previously anticipated. Our study, therefore, sheds new light on the role of endogenous RNA in diseases featuring aberrant immune responses.
Collapse
MESH Headings
- Adaptor Proteins, Signal Transducing
- Adenosine Deaminase/deficiency
- Adenosine Deaminase/genetics
- Adenosine Deaminase/immunology
- Animals
- Carrier Proteins/genetics
- Carrier Proteins/immunology
- DEAD Box Protein 58/genetics
- DEAD Box Protein 58/immunology
- Embryo, Mammalian
- Endoribonucleases/genetics
- Endoribonucleases/immunology
- Fibroblasts/cytology
- Fibroblasts/immunology
- Immunity, Innate/genetics
- Interferon Regulatory Factor-7/genetics
- Interferon Regulatory Factor-7/immunology
- Interferon-Induced Helicase, IFIH1/genetics
- Interferon-Induced Helicase, IFIH1/immunology
- Intracellular Signaling Peptides and Proteins
- Mice
- Mice, Inbred C57BL
- Mice, Knockout
- Proteins/genetics
- Proteins/immunology
- RNA, Double-Stranded/genetics
- RNA, Double-Stranded/immunology
- RNA, Mitochondrial/genetics
- RNA, Mitochondrial/immunology
- RNA-Binding Proteins
- Transcription, Genetic
- Transfection
- Tumor Suppressor Protein p53/deficiency
- Tumor Suppressor Protein p53/genetics
- Tumor Suppressor Protein p53/immunology
Collapse
Affiliation(s)
| | | | - Jiří Sedmík
- CEITEC Masaryk University, 625 00 Brno, Czech Republic
| | - Jan Oppelt
- CEITEC Masaryk University, 625 00 Brno, Czech Republic
- National Centre for Biomolecular Research, Faculty of Science, Masaryk University, 625 00 Brno, Czech Republic
| | - Liam P Keegan
- CEITEC Masaryk University, 625 00 Brno, Czech Republic
| | | |
Collapse
|
14
|
Kemp PR, Griffiths M, Polkey MI. Muscle wasting in the presence of disease, why is it so variable? Biol Rev Camb Philos Soc 2018; 94:1038-1055. [PMID: 30588725 DOI: 10.1111/brv.12489] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2018] [Revised: 11/22/2018] [Accepted: 11/27/2018] [Indexed: 12/16/2022]
Abstract
Skeletal muscle wasting is a common clinical feature of many chronic diseases and also occurs in response to single acute events. The accompanying loss of strength can lead to significant disability, increased care needs and have profound negative effects on quality of life. As muscle is the most abundant source of amino acids in the body, it appears to function as a buffer for fuel and substrates that can be used to repair damage elsewhere and to feed the immune system. In essence, the fundamentals of muscle wasting are simple: less muscle is made than is broken down. However, although well-described mechanisms modulate muscle protein turnover, significant individual differences in the amount of muscle lost in the presence of a given severity of disease complicate the understanding of underlying mechanisms and suggest that individuals have different sensitivities to signals for muscle loss. Furthermore, the rate at which muscle protein is turned over under normal conditions means that clinically significant muscle loss can occur with changes in the rate of protein synthesis and/or breakdown that are too small to be measurable. Consequently, the changes in expression of factors regulating muscle turnover required to cause a decline in muscle mass are small and, except in cases of rapid wasting, there is no consistent pattern of change in the expression of factors that regulate muscle mass. MicroRNAs are fine tuners of cell phenotype and are therefore ideally suited to cause the subtle changes in proteome required to tilt the balance between synthesis and degradation in a way that causes clinically significant wasting. Herein we present a model in which muscle loss as a consequence of disease in non-muscle tissue is modulated by a set of microRNAs, the muscle expression of which is associated with severity of disease in the non-muscle tissue. These microRNAs alter fundamental biological processes including the synthesis of ribosomes and mitochondria leading to reduced protein synthesis and increased protein breakdown, thereby freeing amino acids from the muscle. We argue that the variability in muscle loss observed in the human population arises from at least two sources. The first is from pre-existing or disease-induced variation in the expression of microRNAs controlling the sensitivity of muscle to the atrophic signal and the second is from the expression of microRNAs from imprinted loci (i.e. only expressed from the maternally or paternally inherited allele) and may control the rate of myonuclear recruitment. In the absence of disease, these factors do not correlate with muscle mass, since there is no challenge to the established balance. However, in the presence of such a challenge, these microRNAs determine the rate of decline for a given disease severity. Together these mechanisms provide novel insight into the loss of muscle mass and its variation in the human population. The involvement of imprinted loci also suggests that genes that regulate early development also contribute to the ability of individuals to resist muscle loss in response to disease.
Collapse
Affiliation(s)
- Paul R Kemp
- National Heart & Lung Institute, Imperial College London, South Kensington Campus, London, SW7 2AZ, U.K
| | - Mark Griffiths
- National Heart & Lung Institute, Imperial College London, South Kensington Campus, London, SW7 2AZ, U.K
| | - Michael I Polkey
- National Institute for Health Research Respiratory Biomedical Research Unit, Royal Brompton and Harefield NHS Foundation Trust and Imperial College London, Sydney Street, London SW3 6NP, U.K
| |
Collapse
|
15
|
Theilen NT, Jeremic N, Weber GJ, Tyagi SC. TFAM overexpression diminishes skeletal muscle atrophy after hindlimb suspension in mice. Arch Biochem Biophys 2018; 666:138-147. [PMID: 30553768 DOI: 10.1016/j.abb.2018.12.015] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2018] [Revised: 11/21/2018] [Accepted: 12/11/2018] [Indexed: 12/25/2022]
Abstract
The present study aims to investigate if overexpressing the mitochondrial transcription factor A (TFAM) gene in a transgenic mouse model diminishes soleus and gastrocnemius atrophy occurring during hindlimb suspension (HLS). Additionally, we aim to observe if combining exercise training in TFAM transgenic mice prior to HLS has a synergistic effect in preventing skeletal muscle atrophy. Male C57BL/6J-based transgenic mice (12-14 weeks old) overexpressing TFAM were assigned to a control (T-Control), 7-day HLS (T-HLS), and 2-week exercise training prior to 7-day HLS (T-Ex + HLS) groups. These groups were compared to male C57BL/6J wild-type (WT) mice (12-14 weeks old) assigned to Control, 7-day HLS (HLS), 2-week exercise training prior to 7-day HLS (Ex + HLS), and 2-week exercise training (Ex). Overexpressing TFAM results in a decrease of 8.3% in soleus and 2.6% in gastrocnemius muscle weight to bodyweight ratio after only HLS compared to wild-type mice incurring a loss of 27.1% in soleus and 21.5% in gastrocnemius muscle after HLS. Our data indicates TFAM may play a critical role in protecting skeletal muscle from disuse atrophy and is correlated with increased expression of antioxidants (SOD-2) and potential redox balance. TFAM may be an attractive molecule of interest for potential, future therapeutic development. NEW AND NOTEWORTHY: To the best of our knowledge, this is the first time a TFAM overexpression transgenic mouse model is being used in the analysis of disuse-induced skeletal muscle atrophy. Here we provide evidence of a potential role for TFAM in diminishing skeletal muscle atrophy.
Collapse
Affiliation(s)
| | - Nevena Jeremic
- Department of Physiology, University of Louisville, KY, USA
| | | | - Suresh C Tyagi
- Department of Physiology, University of Louisville, KY, USA
| |
Collapse
|
16
|
Pinti MV, Hathaway QA, Hollander JM. Role of microRNA in metabolic shift during heart failure. Am J Physiol Heart Circ Physiol 2016; 312:H33-H45. [PMID: 27742689 DOI: 10.1152/ajpheart.00341.2016] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/06/2016] [Revised: 10/07/2016] [Accepted: 10/08/2016] [Indexed: 12/16/2022]
Abstract
Heart failure (HF) is an end point resulting from a number of disease states. The prognosis for HF patients is poor with survival rates precipitously low. Energy metabolism is centrally linked to the development of HF, and it involves the proteomic remodeling of numerous pathways, many of which are targeted to the mitochondrion. microRNAs (miRNA) are noncoding RNAs that influence posttranscriptional gene regulation. miRNA have garnered considerable attention for their ability to orchestrate changes to the transcriptome, and ultimately the proteome, during HF. Recently, interest in the role played by miRNA in the regulation of energy metabolism at the mitochondrion has emerged. Cardiac proteome remodeling during HF includes axes impacting hypertrophy, oxidative stress, calcium homeostasis, and metabolic fuel transition. Although it is established that the pathological environment of hypoxia and hemodynamic stress significantly contribute to the HF phenotype, it remains unclear as to the mechanistic underpinnings driving proteome remodeling. The aim of this review is to present evidence highlighting the role played by miRNA in these processes as a means for linking pathological stimuli with proteomic alteration. The differential expression of proteins of substrate transport, glycolysis, β-oxidation, ketone metabolism, the citric acid cycle (CAC), and the electron transport chain (ETC) are paralleled by the differential expression of miRNA species that modulate these processes. Identification of miRNAs that translocate to cardiomyocyte mitochondria (miR-181c, miR-378) influencing the expression of the mitochondrial genome-encoded transcripts as well as suggested import modulators are discussed. Current insights, applications, and challenges of miRNA-based therapeutics are also described.
Collapse
Affiliation(s)
- Mark V Pinti
- Division of Exercise Physiology, West Virginia University School of Medicine, Morgantown, West Virginia; and Mitochondria, Metabolism, and Bioenergentics Working Group, Morgantown, West Virginia
| | - Quincy A Hathaway
- Division of Exercise Physiology, West Virginia University School of Medicine, Morgantown, West Virginia; and Mitochondria, Metabolism, and Bioenergentics Working Group, Morgantown, West Virginia
| | - John M Hollander
- Division of Exercise Physiology, West Virginia University School of Medicine, Morgantown, West Virginia; and Mitochondria, Metabolism, and Bioenergentics Working Group, Morgantown, West Virginia
| |
Collapse
|
17
|
Quesada V. The roles of mitochondrial transcription termination factors (MTERFs) in plants. PHYSIOLOGIA PLANTARUM 2016; 157:389-99. [PMID: 26781919 DOI: 10.1111/ppl.12416] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2015] [Revised: 11/16/2015] [Accepted: 11/24/2015] [Indexed: 05/25/2023]
Abstract
Stress such as salinity, cold, heat or drought affect plant growth and development, and frequently result in diminished productivity. Unlike animals, plants are sedentary organisms that must withstand and cope with environmental stresses. During evolution, plants have developed strategies to successfully adapt to or tolerate such stresses, which might have led to the expansion and functional diversification of gene families. Some new genes may have acquired functions that could differ from those of their animal homologues, e.g. in response to abiotic stress. The mitochondrial transcription termination factor (MTERF) family could be a good example of this. Originally identified and characterized in metazoans, MTERFs regulate transcription, translation and DNA replication in vertebrate mitochondria. Plant genomes harbor a considerably larger number of MTERFs than animals. Nonetheless, only eight plant MTERFs have been characterized, which encode chloroplast or mitochondrial proteins. Mutations in MTERFs alter the expression of organelle genes and impair chloroplast or mitochondria development. This information is transmitted to the nucleus, probably through retrograde signaling, because mterf plants often exhibit changes in nuclear gene expression. This study summarizes the recent findings, mainly from the analysis of mterf mutants, which support an emerging role for plant MTERFs in response to abiotic stress.
Collapse
Affiliation(s)
- Víctor Quesada
- Instituto de Bioingeniería, Universidad Miguel Hernández, Campus de Elche, 03202, Elche, Spain
| |
Collapse
|
18
|
Byrnes J, Hauser K, Norona L, Mejia E, Simmerling C, Garcia-Diaz M. Base Flipping by MTERF1 Can Accommodate Multiple Conformations and Occurs in a Stepwise Fashion. J Mol Biol 2016; 428:2542-2556. [PMID: 26523681 PMCID: PMC4851923 DOI: 10.1016/j.jmb.2015.10.021] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2015] [Revised: 10/14/2015] [Accepted: 10/20/2015] [Indexed: 11/28/2022]
Abstract
Human mitochondrial transcription termination occurs within the leu-tRNA gene and is mediated by the DNA binding protein MTERF1. The crystal structure of MTERF1 bound to the canonical termination sequence reveals a rare base flipping event that involves the eversion of three nucleotides. These nucleotides are stabilized by stacking interactions with three MTERF1 residues, which are essential not only for base flipping but also for termination activity. To further understand the mechanism of base flipping, we examined each of the individual stacking interactions in structural, energetic and functional detail. Individual substitutions of Arg162, Tyr288 and Phe243 have revealed unequal contributions to overall termination activity. Furthermore, our work identifies an important role for Phe322 in the base flipping mechanism and we demonstrate how Phe322 and Phe243 are important for coupling base flipping between the heavy and light strand DNA chains. We propose a stepwise model for the base flipping process that recapitulates our observations. Finally, we show that MTERF1 has the ability to accommodate alternate active conformations. The adaptability of base flipping has implications for MTERF1 function and for the putative function of MTERF1 at alternative binding sites in human mitochondria.
Collapse
Affiliation(s)
- James Byrnes
- Department of Pharmacological Sciences, Stony Brook University, Stony Brook, NY 11794, USA
| | - Kevin Hauser
- Department of Chemistry, Stony Brook University, Stony Brook, NY 11794, USA
| | - Leah Norona
- Department of Pharmacological Sciences, Stony Brook University, Stony Brook, NY 11794, USA
| | - Edison Mejia
- Department of Pharmacological Sciences, Stony Brook University, Stony Brook, NY 11794, USA
| | - Carlos Simmerling
- Department of Chemistry, Stony Brook University, Stony Brook, NY 11794, USA; Laufer Center for Physical and Quantitative Biology, Stony Brook University, Stony Brook, NY 11794, USA
| | - Miguel Garcia-Diaz
- Department of Pharmacological Sciences, Stony Brook University, Stony Brook, NY 11794, USA.
| |
Collapse
|
19
|
Quirós PM, Mottis A, Auwerx J. Mitonuclear communication in homeostasis and stress. Nat Rev Mol Cell Biol 2016; 17:213-26. [PMID: 26956194 DOI: 10.1038/nrm.2016.23] [Citation(s) in RCA: 521] [Impact Index Per Article: 57.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Mitochondria participate in crucial cellular processes such as energy harvesting and intermediate metabolism. Although mitochondria possess their own genome--a vestige of their bacterial origins and endosymbiotic evolution--most mitochondrial proteins are encoded in the nucleus. The expression of the mitochondrial proteome hence requires tight coordination between the two genomes to adapt mitochondrial function to the ever-changing cellular milieu. In this Review, we focus on the pathways that coordinate the communication between mitochondria and the nucleus during homeostasis and mitochondrial stress. These pathways include nucleus-to-mitochondria (anterograde) and mitochondria-to-nucleus (retrograde) communication, mitonuclear feedback signalling and proteostasis regulation, the integrated stress response and non-cell-autonomous communication. We discuss how mitonuclear communication safeguards cellular and organismal fitness and regulates lifespan.
Collapse
Affiliation(s)
- Pedro M Quirós
- Laboratory for Integrative and Systems Physiology, Ecole Polytechnique Fédérale de Lausanne (EPFL), CH-1015, Lausanne, Switzerland
| | - Adrienne Mottis
- Laboratory for Integrative and Systems Physiology, Ecole Polytechnique Fédérale de Lausanne (EPFL), CH-1015, Lausanne, Switzerland
| | - Johan Auwerx
- Laboratory for Integrative and Systems Physiology, Ecole Polytechnique Fédérale de Lausanne (EPFL), CH-1015, Lausanne, Switzerland
| |
Collapse
|
20
|
Lasserre JP, Dautant A, Aiyar RS, Kucharczyk R, Glatigny A, Tribouillard-Tanvier D, Rytka J, Blondel M, Skoczen N, Reynier P, Pitayu L, Rötig A, Delahodde A, Steinmetz LM, Dujardin G, Procaccio V, di Rago JP. Yeast as a system for modeling mitochondrial disease mechanisms and discovering therapies. Dis Model Mech 2016; 8:509-26. [PMID: 26035862 PMCID: PMC4457039 DOI: 10.1242/dmm.020438] [Citation(s) in RCA: 105] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Mitochondrial diseases are severe and largely untreatable. Owing to the many essential processes carried out by mitochondria and the complex cellular systems that support these processes, these diseases are diverse, pleiotropic, and challenging to study. Much of our current understanding of mitochondrial function and dysfunction comes from studies in the baker's yeast Saccharomyces cerevisiae. Because of its good fermenting capacity, S. cerevisiae can survive mutations that inactivate oxidative phosphorylation, has the ability to tolerate the complete loss of mitochondrial DNA (a property referred to as ‘petite-positivity’), and is amenable to mitochondrial and nuclear genome manipulation. These attributes make it an excellent model system for studying and resolving the molecular basis of numerous mitochondrial diseases. Here, we review the invaluable insights this model organism has yielded about diseases caused by mitochondrial dysfunction, which ranges from primary defects in oxidative phosphorylation to metabolic disorders, as well as dysfunctions in maintaining the genome or in the dynamics of mitochondria. Owing to the high level of functional conservation between yeast and human mitochondrial genes, several yeast species have been instrumental in revealing the molecular mechanisms of pathogenic human mitochondrial gene mutations. Importantly, such insights have pointed to potential therapeutic targets, as have genetic and chemical screens using yeast. Summary: In this Review, we discuss the use of budding yeast to understand mitochondrial diseases and help in the search for their treatments.
Collapse
Affiliation(s)
- Jean-Paul Lasserre
- University Bordeaux-CNRS, IBGC, UMR 5095, 1 rue Camille Saint-Saëns, Bordeaux F-33000, France
| | - Alain Dautant
- University Bordeaux-CNRS, IBGC, UMR 5095, 1 rue Camille Saint-Saëns, Bordeaux F-33000, France
| | - Raeka S Aiyar
- European Molecular Biology Laboratory (EMBL), Genome Biology Unit, Meyerhofstrasse 1, Heidelberg 69117, Germany
| | - Roza Kucharczyk
- Department of Genetics, Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Warsaw 02-106, Poland
| | - Annie Glatigny
- Institute for Integrative Biology of the Cell (I2BC), Université Paris-Saclay, CEA, CNRS, Université Paris-Sud, 1 avenue de la terrasse, Gif-sur-Yvette 91198, France
| | - Déborah Tribouillard-Tanvier
- Institut National de la Santé et de la Recherche Médicale UMR1078, Université de Bretagne Occidentale, Faculté de Médecine et des Sciences de la Santé, Etablissement Français du Sang (EFS) Bretagne, CHRU Brest, Hôpital Morvan, Laboratoire de Génétique Moléculaire, Brest F-29200, France
| | - Joanna Rytka
- Department of Genetics, Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Warsaw 02-106, Poland
| | - Marc Blondel
- Institut National de la Santé et de la Recherche Médicale UMR1078, Université de Bretagne Occidentale, Faculté de Médecine et des Sciences de la Santé, Etablissement Français du Sang (EFS) Bretagne, CHRU Brest, Hôpital Morvan, Laboratoire de Génétique Moléculaire, Brest F-29200, France
| | - Natalia Skoczen
- University Bordeaux-CNRS, IBGC, UMR 5095, 1 rue Camille Saint-Saëns, Bordeaux F-33000, France Department of Genetics, Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Warsaw 02-106, Poland
| | - Pascal Reynier
- UMR CNRS 6214-INSERM U1083, Angers 49933, Cedex 9, France Département de Biochimie et Génétique, Centre Hospitalier Universitaire d'Angers, Angers 49933, Cedex 9, France
| | - Laras Pitayu
- Institute for Integrative Biology of the Cell (I2BC), Université Paris-Saclay, CEA, CNRS, Université Paris-Sud, rue Gregor Mendel, Orsay 91405, France
| | - Agnès Rötig
- Inserm U1163, Hôpital Necker-Enfants-Malades, Institut Imagine, Université Paris Descartes-Sorbonne Paris Cité, 149 rue de Sèvres, Paris 75015, France
| | - Agnès Delahodde
- Institute for Integrative Biology of the Cell (I2BC), Université Paris-Saclay, CEA, CNRS, Université Paris-Sud, rue Gregor Mendel, Orsay 91405, France
| | - Lars M Steinmetz
- European Molecular Biology Laboratory (EMBL), Genome Biology Unit, Meyerhofstrasse 1, Heidelberg 69117, Germany Stanford Genome Technology Center, Department of Biochemistry, Stanford University, Palo Alto, CA 94304, USA Department of Genetics, Stanford University School of Medicine, Stanford, CA 94305-5301, USA
| | - Geneviève Dujardin
- Institute for Integrative Biology of the Cell (I2BC), Université Paris-Saclay, CEA, CNRS, Université Paris-Sud, 1 avenue de la terrasse, Gif-sur-Yvette 91198, France
| | - Vincent Procaccio
- UMR CNRS 6214-INSERM U1083, Angers 49933, Cedex 9, France Département de Biochimie et Génétique, Centre Hospitalier Universitaire d'Angers, Angers 49933, Cedex 9, France
| | - Jean-Paul di Rago
- University Bordeaux-CNRS, IBGC, UMR 5095, 1 rue Camille Saint-Saëns, Bordeaux F-33000, France
| |
Collapse
|
21
|
Marková S, Filipi K, Searle JB, Kotlík P. Mapping 3' transcript ends in the bank vole (Clethrionomys glareolus) mitochondrial genome with RNA-Seq. BMC Genomics 2015; 16:870. [PMID: 26503603 PMCID: PMC4624183 DOI: 10.1186/s12864-015-2103-2] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2015] [Accepted: 10/16/2015] [Indexed: 11/17/2022] Open
Abstract
Background Although posttranscriptional modification of mitochondrial (mt) transcripts plays key roles in completion of the coding information and in the expression of mtDNA-encoded genes, there is little experimental evidence on the polyadenylation status and the location of mt gene poly(A) sites for non-human mammals. Results Poly(A)-enriched RNA-Seq reads collected for two wild-caught bank voles (Clethrionomys glareolus) were mapped to the complete mitochondrial genome of that species. Transcript polyadenylation was detected as unmapped adenine residues at the ends of the mapped reads. Where the tRNA punctuation model applied, there was the expected polyadenylation, except for the nad5 transcript, whose polyadenylated 3′ end is at an intergenic sequence/cytochrome b boundary. As in human, two pairs of bank vole genes, nad4l/nad4 and atp8/atp6, are expressed from bicistronic transcripts. TAA stop codons of four bank vole protein-coding genes (nad1, atp6, cox3 and nad4) are incompletely encoded in the DNA and are completed by polyadenylation. This is three genes (nad2, nad3 and cob) less than in human. The bank vole nad2 gene encodes a full stop codon (TAA in one vole and TAG in the other), which is followed by a 2 bp UTR and the gene conforms to the tRNA punctuation model. In contrast, the annotations of the reference mouse and some other rodent mt genomes in GenBank include complete TAG stop codons in both nad1 and nad2, which overlap downstream trnI and trnW, respectively. Thus the RNA-Seq data of bank voles provides a model for stop codons of mt-encoded genes in mammals comparable to humans, but at odds with some of the interpretation based purely on genomic data in mouse and other rodents. Conclusions This work demonstrates how RNA-Seq data were useful to recover mtDNA transcriptome data in a non-model rodent and to shed more light on mammalian mtDNA transcriptome and post-transcriptional modification. Even though gene content and organisation of mtDNA are strongly conserved among mammals, annotations that neglect the transcriptome may be prone to errors in relation to the stop codons.
Collapse
Affiliation(s)
- Silvia Marková
- Laboratory of Molecular Ecology, Institute of Animal Physiology and Genetics, the Czech Academy of Sciences, Rumburská 89, 27721, Liběchov, Czech Republic
| | - Karolína Filipi
- Laboratory of Molecular Ecology, Institute of Animal Physiology and Genetics, the Czech Academy of Sciences, Rumburská 89, 27721, Liběchov, Czech Republic.,Department of Genetics and Microbiology, Faculty of Science, Charles University in Prague, Viničná 5, 12844, Prague 2, Czech Republic
| | - Jeremy B Searle
- Department of Ecology and Evolutionary Biology, Cornell University, Ithaca, NY, 14853, USA
| | - Petr Kotlík
- Laboratory of Molecular Ecology, Institute of Animal Physiology and Genetics, the Czech Academy of Sciences, Rumburská 89, 27721, Liběchov, Czech Republic.
| |
Collapse
|
22
|
Picca A, Lezza AMS. Regulation of mitochondrial biogenesis through TFAM-mitochondrial DNA interactions: Useful insights from aging and calorie restriction studies. Mitochondrion 2015; 25:67-75. [PMID: 26437364 DOI: 10.1016/j.mito.2015.10.001] [Citation(s) in RCA: 205] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2015] [Revised: 09/24/2015] [Accepted: 10/01/2015] [Indexed: 11/24/2022]
Abstract
Mitochondrial biogenesis is regulated to adapt mitochondrial population to cell energy demands. Mitochondrial transcription factor A (TFAM) performs several functions for mtDNA and interactions between TFAM and mtDNA participate to regulation of mitochondrial biogenesis. Such interactions are modulated through different mechanisms: regulation of TFAM expression and turnover, modulation of TFAM binding activity to mtDNA through post-translational modifications and differential affinity of TFAM, occurrence of TFAM sliding on mtDNA filaments and of cooperative binding among TFAM molecules, modulation of protein-protein interactions. The tissue-specific regulation of mitochondrial biogenesis in aging and calorie restriction (CR) highlights the relevance of modulation of TFAM-mtDNA interactions.
Collapse
Affiliation(s)
- Anna Picca
- Department of Biosciences, Biotechnologies and Biopharmaceutics, University of Bari, Via Orabona, 4, 70125, Bari, Italy
| | - Angela Maria Serena Lezza
- Department of Biosciences, Biotechnologies and Biopharmaceutics, University of Bari, Via Orabona, 4, 70125, Bari, Italy.
| |
Collapse
|
23
|
Gualberto JM, Le Ret M, Beator B, Kühn K. The RAD52-like protein ODB1 is required for the efficient excision of two mitochondrial introns spliced via first-step hydrolysis. Nucleic Acids Res 2015; 43:6500-10. [PMID: 26048959 PMCID: PMC4513849 DOI: 10.1093/nar/gkv540] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2015] [Accepted: 05/11/2015] [Indexed: 12/16/2022] Open
Abstract
Transcript splicing in plant mitochondria involves numerous nucleus-encoded factors, most of which are of eukaryotic origin. Some of these belong to protein families initially characterised to perform unrelated functions. The RAD52-like ODB1 protein has been reported to have roles in homologous recombination-dependent DNA repair in the nuclear and mitochondrial compartments in Arabidopsis thaliana. We show that it is additionally involved in splicing and facilitates the excision of two cis-spliced group II introns, nad1 intron 2 and nad2 intron 1, in Arabidopsis mitochondria. odb1 mutants lacking detectable amounts of ODB1 protein over-accumulated incompletely spliced nad1 and nad2 transcripts. The two ODB1-dependent introns were both found to splice via first-step hydrolysis and to be released as linear or circular molecules instead of lariats. Our systematic analysis of the structures of excised introns in Arabidopsis mitochondria revealed several other hydrolytically spliced group II introns in addition to nad1 intron 2 and nad2 intron 1, indicating that ODB1 is not a general determinant of the hydrolytic splicing pathway.
Collapse
Affiliation(s)
- José M Gualberto
- Institut de Biologie Moléculaire des Plantes-CNRS-UPR2357, Université de Strasbourg, Strasbourg, France
| | - Monique Le Ret
- Institut de Biologie Moléculaire des Plantes-CNRS-UPR2357, Université de Strasbourg, Strasbourg, France
| | - Barbara Beator
- Molekulare Zellbiologie der Pflanzen, Institut für Biologie, Humboldt-Universität zu Berlin, 10115 Berlin, Germany
| | - Kristina Kühn
- Molekulare Zellbiologie der Pflanzen, Institut für Biologie, Humboldt-Universität zu Berlin, 10115 Berlin, Germany
| |
Collapse
|
24
|
The complex crosstalk between mitochondria and the nucleus: What goes in between? Int J Biochem Cell Biol 2015; 63:10-5. [DOI: 10.1016/j.biocel.2015.01.026] [Citation(s) in RCA: 65] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2014] [Revised: 01/21/2015] [Accepted: 01/29/2015] [Indexed: 12/22/2022]
|
25
|
Iommarini L, Peralta S, Torraco A, Diaz F. Mitochondrial Diseases Part II: Mouse models of OXPHOS deficiencies caused by defects in regulatory factors and other components required for mitochondrial function. Mitochondrion 2015; 22:96-118. [PMID: 25640959 DOI: 10.1016/j.mito.2015.01.008] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2015] [Accepted: 01/22/2015] [Indexed: 01/21/2023]
Abstract
Mitochondrial disorders are defined as defects that affect the oxidative phosphorylation system (OXPHOS). They are characterized by a heterogeneous array of clinical presentations due in part to a wide variety of factors required for proper function of the components of the OXPHOS system. There is no cure for these disorders owing to our poor knowledge of the pathogenic mechanisms of disease. To understand the mechanisms of human disease numerous mouse models have been developed in recent years. Here we summarize the features of several mouse models of mitochondrial diseases directly related to those factors affecting mtDNA maintenance, replication, transcription, translation as well as other proteins that are involved in mitochondrial dynamics and quality control which affect mitochondrial OXPHOS function without being intrinsic components of the system. We discuss how these models have contributed to our understanding of mitochondrial diseases and their pathogenic mechanisms.
Collapse
Affiliation(s)
- Luisa Iommarini
- Department of Pharmacy and Biotechnology (FABIT), University of Bologna, Via Irnerio 42, 40128 Bologna, Italy.
| | - Susana Peralta
- Department of Neurology, University of Miami, Miller School of Medicine, Miami, FL 33136, USA.
| | - Alessandra Torraco
- Unit for Neuromuscular and Neurodegenerative Disorders, Laboratory of Molecular Medicine, Bambino Gesù Children's Hospital, IRCCS, Viale di San Paolo, 15 - 00146, Rome, Italy.
| | - Francisca Diaz
- Department of Neurology, University of Miami, Miller School of Medicine, Miami, FL 33136, USA.
| |
Collapse
|
26
|
The Emerging Role of MitomiRs in the Pathophysiology of Human Disease. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2015; 888:123-54. [DOI: 10.1007/978-3-319-22671-2_8] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
27
|
Gualberto JM, Kühn K. DNA-binding proteins in plant mitochondria: Implications for transcription. Mitochondrion 2014; 19 Pt B:323-8. [DOI: 10.1016/j.mito.2014.02.004] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2013] [Revised: 02/05/2014] [Accepted: 02/07/2014] [Indexed: 12/24/2022]
|
28
|
Duarte FV, Palmeira CM, Rolo AP. The Role of microRNAs in Mitochondria: Small Players Acting Wide. Genes (Basel) 2014; 5:865-86. [PMID: 25264560 PMCID: PMC4276918 DOI: 10.3390/genes5040865] [Citation(s) in RCA: 109] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2014] [Revised: 09/05/2014] [Accepted: 09/05/2014] [Indexed: 01/17/2023] Open
Abstract
MicroRNAs (miRNAs) are short, single-stranded, non-coding RNA molecules that act as post-transcriptional gene regulators. They can inhibit target protein-coding genes, through repressing messenger RNA (mRNA) translation or promoting their degradation. miRNAs were initially found to be originated from nuclear genome and exported to cytosol; where they exerted most of their actions. More recently, miRNAs were found to be present specifically in mitochondria; even originated there from mitochondrial DNA, regulating in a direct manner genes coding for mitochondrial proteins, and consequently mitochondrial function. Since miRNAs are recognized as major players in several biological processes, they are being considered as a key to better understand, explain, and probably prevent/cure not only the pathogenesis of multifactorial diseases but also mitochondrial dysfunction and associated diseases. Here we review some of the molecular mechanisms purported for miRNA actions in several biological processes, particularly the miRNAs acting in mitochondria or in mitochondria-related mechanisms.
Collapse
Affiliation(s)
- Filipe V Duarte
- Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra 3004-504, Portugal.
| | - Carlos M Palmeira
- Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra 3004-504, Portugal.
| | - Anabela P Rolo
- Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra 3004-504, Portugal.
| |
Collapse
|
29
|
Stat3 binds to mtDNA and regulates mitochondrial gene expression in keratinocytes. J Invest Dermatol 2014; 134:1971-1980. [PMID: 24496235 PMCID: PMC4057971 DOI: 10.1038/jid.2014.68] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2013] [Revised: 09/26/2013] [Accepted: 11/05/2013] [Indexed: 11/24/2022]
Abstract
The nuclear transcription factor Stat3 has recently been reported to have a localized mitochondrial regulatory function. Current data suggest that mitochondrial Stat3 (mitoStat3) is necessary for maximal mitochondrial activity and for Ras-mediated transformation independent of Stat3 nuclear activity. We have previously shown that Stat3 plays a pivotal role in epithelial carcinogenesis. Therefore, the aim of the current study was to determine the role of mitoStat3 in epidermal keratinocytes. Herein, we show that normal and neoplastic keratinocytes contain a pool of mitoStat3. EGF and TPA induce Stat3 mitochondrial translocation mediated through phosphorylation of Stat3 at Ser727. In addition, we report that mitoStat3 binds mitochondrial DNA (mtDNA) and associates with the mitochondrial transcription factor TFAM. Furthermore, Stat3 ablation resulted in an increase of mitochondrial encoded gene transcripts. An increase in key nuclear-encoded metabolic genes, PGC-1α and NRF-1, was also observed in Stat3 null keratinocytes, however no changes in nuclear-encoded ETC gene transcripts or mtDNA copy number were observed. Collectively, our findings suggest a heretofore-unreported function for mitoStat3 as a potential mitochondrial transcription factor in keratinocytes. This mitoStat3-mtDNA interaction may represent an alternate signaling pathway that could alter mitochondrial function and biogenesis and play a role in tumorigenesis.
Collapse
|
30
|
Kotiadis VN, Duchen MR, Osellame LD. Mitochondrial quality control and communications with the nucleus are important in maintaining mitochondrial function and cell health. Biochim Biophys Acta Gen Subj 2013; 1840:1254-65. [PMID: 24211250 PMCID: PMC3970188 DOI: 10.1016/j.bbagen.2013.10.041] [Citation(s) in RCA: 147] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2013] [Revised: 10/14/2013] [Accepted: 10/29/2013] [Indexed: 12/14/2022]
Abstract
BACKGROUND The maintenance of cell metabolism and homeostasis is a fundamental characteristic of living organisms. In eukaryotes, mitochondria are the cornerstone of these life supporting processes, playing leading roles in a host of core cellular functions, including energy transduction, metabolic and calcium signalling, and supporting roles in a number of biosynthetic pathways. The possession of a discrete mitochondrial genome dictates that the maintenance of mitochondrial 'fitness' requires quality control mechanisms which involve close communication with the nucleus. SCOPE OF REVIEW This review explores the synergistic mechanisms that control mitochondrial quality and function and ensure cellular bioenergetic homeostasis. These include antioxidant defence mechanisms that protect against oxidative damage caused by reactive oxygen species, while regulating signals transduced through such free radicals. Protein homeostasis controls import, folding, and degradation of proteins underpinned by mechanisms that regulate bioenergetic capacity through the mitochondrial unfolded protein response. Autophagic machinery is recruited for mitochondrial turnover through the process of mitophagy. Mitochondria also communicate with the nucleus to exact specific transcriptional responses through retrograde signalling pathways. MAJOR CONCLUSIONS The outcome of mitochondrial quality control is not only reliant on the efficient operation of the core homeostatic mechanisms but also in the effective interaction of mitochondria with other cellular components, namely the nucleus. GENERAL SIGNIFICANCE Understanding mitochondrial quality control and the interactions between the organelle and the nucleus will be crucial in developing therapies for the plethora of diseases in which the pathophysiology is determined by mitochondrial dysfunction. This article is part of a Special Issue entitled Frontiers of Mitochondrial Research.
Collapse
Affiliation(s)
- Vassilios N Kotiadis
- Department of Cell and Developmental Biology, University College London, WC1E 6BT, UK; UCL Consortium for Mitochondrial Research, University College London, WC1E 6BT, UK
| | - Michael R Duchen
- Department of Cell and Developmental Biology, University College London, WC1E 6BT, UK; UCL Consortium for Mitochondrial Research, University College London, WC1E 6BT, UK
| | - Laura D Osellame
- Department of Cell and Developmental Biology, University College London, WC1E 6BT, UK; UCL Consortium for Mitochondrial Research, University College London, WC1E 6BT, UK.
| |
Collapse
|
31
|
Hammani K, Bonnard G, Bouchoucha A, Gobert A, Pinker F, Salinas T, Giegé P. Helical repeats modular proteins are major players for organelle gene expression. Biochimie 2013; 100:141-50. [PMID: 24021622 DOI: 10.1016/j.biochi.2013.08.031] [Citation(s) in RCA: 68] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2013] [Accepted: 08/30/2013] [Indexed: 11/18/2022]
Abstract
Mitochondria and chloroplasts are often described as semi-autonomous organelles because they have retained a genome. They thus require fully functional gene expression machineries. Many of the required processes going all the way from transcription to translation have specificities in organelles and arose during eukaryote history. Most factors involved in these RNA maturation steps have remained elusive for a long time. The recent identification of a number of novel protein families including pentatricopeptide repeat proteins, half-a-tetratricopeptide proteins, octotricopeptide repeat proteins and mitochondrial transcription termination factors has helped to settle long-standing questions regarding organelle gene expression. In particular, their functions have been related to replication, transcription, RNA processing, RNA editing, splicing, the control of RNA turnover and translation throughout eukaryotes. These families of proteins, although evolutionary independent, seem to share a common overall architecture. For all of them, proteins contain tandem arrays of repeated motifs. Each module is composed of two to three α-helices and their succession forms a super-helix. Here, we review the features characterising these protein families, in particular, their distribution, the identified functions and mode of action and propose that they might share similar substrate recognition mechanisms.
Collapse
|
32
|
Dominy JE, Puigserver P. Mitochondrial biogenesis through activation of nuclear signaling proteins. Cold Spring Harb Perspect Biol 2013; 5:5/7/a015008. [PMID: 23818499 DOI: 10.1101/cshperspect.a015008] [Citation(s) in RCA: 186] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
The dynamics of mitochondrial biogenesis and function is a complex interplay of cellular and molecular processes that ultimately shape bioenergetics capacity. Mitochondrial mass, by itself, represents the net balance between rates of biogenesis and degradation. Mitochondrial biogenesis is dependent on different signaling cascades and transcriptional complexes that promote the formation and assembly of mitochondria--a process that is heavily dependent on timely and coordinated transcriptional control of genes encoding for mitochondrial proteins. In this article, we discuss the major signals and transcriptional complexes, programming mitochondrial biogenesis, and bioenergetic activity. This regulatory network represents a new therapeutic window into the treatment of the wide spectrum of mitochondrial and neurodegenerative diseases characterized by dysregulation of mitochondrial dynamics and bioenergetic deficiencies.
Collapse
Affiliation(s)
- John E Dominy
- Department of Cancer Biology, Dana-Farber Cancer Institute and Department of Cell Biology, Harvard Medical School, Boston, Massachusetts 02215, USA
| | | |
Collapse
|
33
|
Wenz T. Regulation of mitochondrial biogenesis and PGC-1α under cellular stress. Mitochondrion 2013; 13:134-42. [DOI: 10.1016/j.mito.2013.01.006] [Citation(s) in RCA: 177] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2012] [Revised: 12/09/2012] [Accepted: 01/11/2013] [Indexed: 12/14/2022]
|
34
|
Raval AP, Borges-Garcia R, Diaz F, Sick TJ, Bramlett H. Oral contraceptives and nicotine synergistically exacerbate cerebral ischemic injury in the female brain. Transl Stroke Res 2013; 4:402-12. [PMID: 24323338 DOI: 10.1007/s12975-013-0253-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2012] [Revised: 01/24/2013] [Accepted: 01/28/2013] [Indexed: 02/06/2023]
Abstract
Oral contraceptives (OC) and smoking-derived nicotine (N) are known to synergistically increase the risk and severity of cerebral ischemia in women. Although it has been known for some time that long-term use of OC and nicotine will have an increased risk of peripheral thrombus formation, little is known about how the combination of OC and nicotine increases severity of brain ischemia. Recent laboratory studies simulating the conditions of nicotine exposure produced by cigarette smoking and OC regimen of women in female rats confirms that the severity of ischemic hippocampal damage is far greater in female rats simultaneously exposed to OC than to nicotine alone. These studies also demonstrated that the concurrent exposure of OC and nicotine reduces endogenous 17β-estradiol levels and inhibits estrogen signaling in the brain of female rats. The endogenous 17β-estradiol plays a key role in cerebrovascular protection in women during their pre-menopausal life and loss of circulating estrogen at reproductive senescence increases both the incidence and severity of cerebrovascular diseases. Therefore, OC and nicotine induced severe post-ischemic damage might be a consequence of lack of estrogen signaling in the brain. In the present review we highlight possible mechanisms by which OC and nicotine inhibits estrogen signaling that could be responsible for severe ischemic damage in females.
Collapse
Affiliation(s)
- Ami P Raval
- Cerebral Vascular Disease Research Center, Department of Neurology, Leonard M. Miller School of Medicine, University of Miami, Two Story Lab (TSL), Room # 230A, 1420 NW 9th Avenue, Miami, FL, 33101, USA,
| | | | | | | | | |
Collapse
|
35
|
Abstract
Mitochondrial oxidative phosphorylation (OXPHOS) sustains organelle function and plays a central role in cellular energy metabolism. The OXPHOS system consists of 5 multisubunit complexes (CI-CV) that are built up of 92 different structural proteins encoded by the nuclear (nDNA) and mitochondrial DNA (mtDNA). Biogenesis of a functional OXPHOS system further requires the assistance of nDNA-encoded OXPHOS assembly factors, of which 35 are currently identified. In humans, mutations in both structural and assembly genes and in genes involved in mtDNA maintenance, replication, transcription, and translation induce 'primary' OXPHOS disorders that are associated with neurodegenerative diseases including Leigh syndrome (LS), which is probably the most classical OXPHOS disease during early childhood. Here, we present the current insights regarding function, biogenesis, regulation, and supramolecular architecture of the OXPHOS system, as well as its genetic origin. Next, we provide an inventory of OXPHOS structural and assembly genes which, when mutated, induce human neurodegenerative disorders. Finally, we discuss the consequences of mutations in OXPHOS structural and assembly genes at the single cell level and how this information has advanced our understanding of the role of OXPHOS dysfunction in neurodegeneration.
Collapse
|
36
|
Campbell CT, Kolesar JE, Kaufman BA. Mitochondrial transcription factor A regulates mitochondrial transcription initiation, DNA packaging, and genome copy number. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2012; 1819:921-9. [DOI: 10.1016/j.bbagrm.2012.03.002] [Citation(s) in RCA: 236] [Impact Index Per Article: 18.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2012] [Revised: 03/08/2012] [Accepted: 03/15/2012] [Indexed: 10/28/2022]
|
37
|
Bruni F, Manzari C, Filice M, Loguercio Polosa P, Colella M, Carmone C, Hambardjieva E, Garcia-Diaz M, Cantatore P, Roberti M. D-MTERF5 is a novel factor modulating transcription in Drosophila mitochondria. Mitochondrion 2012; 12:492-9. [PMID: 22784680 PMCID: PMC3447168 DOI: 10.1016/j.mito.2012.06.010] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2012] [Revised: 06/20/2012] [Accepted: 06/28/2012] [Indexed: 11/08/2022]
Abstract
The MTERF protein family comprises members from Metazoans and plants. All the Metazoan MTERF proteins characterized to date, including the mitochondrial transcription termination factors, play a key role in mitochondrial gene expression. In this study we report the characterization of Drosophila MTERF5 (D-MTERF5), a mitochondrial protein existing only in insects, probably originated from a duplication event of the transcription termination factor DmTTF. D-MTERF5 knock-down in D.Mel-2 cells alters transcript levels with an opposite pattern to that produced by DmTTF knock-down. D-MTERF5 is able to interact with mtDNA at the same sites contacted by DmTTF, but only in the presence of the termination factor. We propose that the two proteins participate in the transcription termination process, with D-MTERF5 engaged in relieving the block exerted by DmTTF. This hypothesis is supported also by D-MTERF5 homology modeling, which suggests that this protein contains protein–protein interaction domains. Co-regulation by DREF (DNA Replication-related Element binding Factor) of D-MTERF5 and DmTTF implies that expression of the two factors needs to be co-ordinated to ensure fine modulation of Drosophila mitochondrial transcription.
Collapse
Affiliation(s)
- Francesco Bruni
- Dipartimento di Bioscienze, Biotecnologie e Scienze Farmacologiche, Università degli Studi di Bari Aldo Moro, Via Orabona 4, 70125 Bari, Italy
| | | | | | | | | | | | | | | | | | | |
Collapse
|