1
|
Kelley M, Holmes CJ, Herbert C, Rayhan A, Joves J, Uhran M, Klaus L, Frigard R, Singh K, Limbach PA, Addepalli B, Benoit JB. Tyrosine transfer RNA levels and modifications during blood-feeding and vitellogenesis in the mosquito, Aedes aegypti. INSECT MOLECULAR BIOLOGY 2025; 34:65-80. [PMID: 39105593 PMCID: PMC11705514 DOI: 10.1111/imb.12950] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Accepted: 07/23/2024] [Indexed: 08/07/2024]
Abstract
Mosquitoes such as Aedes aegypti must consume a blood meal for the nutrients necessary for egg production. Several transcriptome and proteome changes occur post-blood meal that likely corresponds with codon usage alterations. Transfer RNA (tRNA) is the adapter molecule that reads messenger RNA codons to add the appropriate amino acid during protein synthesis. Chemical modifications to tRNA enhance codon decoding, improving the accuracy and efficiency of protein synthesis. Here, we examined tRNA modifications and transcripts associated with the blood meal and subsequent periods of vitellogenesis in A. aegypti. More specifically, we assessed tRNA transcript abundance and modification levels in the fat body at critical times post blood-feeding. Based on a combination of alternative codon usage and identification of particular modifications, we discovered that increased transcription of tyrosine tRNAs is likely critical during the synthesis of egg yolk proteins in the fat body following a blood meal. Altogether, changes in both the abundance and modification of tRNA are essential factors in the process of vitellogenin production after blood-feeding in mosquitoes.
Collapse
Affiliation(s)
- Melissa Kelley
- Department of Biological SciencesUniversity of CincinnatiCincinnatiOhioUSA
| | | | | | - Asif Rayhan
- Department of ChemistryUniversity of CincinnatiCincinnatiOhioUSA
| | - Judd Joves
- Department of Biological SciencesUniversity of CincinnatiCincinnatiOhioUSA
| | - Melissa Uhran
- Department of Biological SciencesUniversity of CincinnatiCincinnatiOhioUSA
| | - Lucas Klaus
- Department of Biological SciencesUniversity of CincinnatiCincinnatiOhioUSA
| | - Ronja Frigard
- Department of Biological SciencesUniversity of CincinnatiCincinnatiOhioUSA
| | - Khwahish Singh
- Department of Biological SciencesUniversity of CincinnatiCincinnatiOhioUSA
| | | | | | - Joshua B. Benoit
- Department of Biological SciencesUniversity of CincinnatiCincinnatiOhioUSA
| |
Collapse
|
2
|
Borland G, Wilkie SE, Thomson J, Wang Z, Tullet JMA, Alic N, Selman C. Polr3b heterozygosity in mice induces both beneficial and deleterious effects on health during ageing with no effect on lifespan. Aging Cell 2024; 23:e14141. [PMID: 38465473 PMCID: PMC11113255 DOI: 10.1111/acel.14141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 02/13/2024] [Accepted: 02/26/2024] [Indexed: 03/12/2024] Open
Abstract
The genetic pathways that modulate ageing in multicellular organisms are typically highly conserved across wide evolutionary distances. Recently RNA polymerase III (Pol III) was shown to promote ageing in yeast, C. elegans and D. melanogaster. In this study we investigated the role of Pol III in mammalian ageing using C57BL/6N mice heterozygous for Pol III (Polr3b+/-). We identified sexually dimorphic, organ-specific beneficial as well as detrimental effects of the Polr3b+/- mutation on health. Female Polr3b+/- mice displayed improved bone health during ageing, but their ability to maintain an effective gut barrier function was compromised and they were susceptible to idiopathic dermatitis (ID). In contrast, male Polr3b+/- mice were lighter than wild-type (WT) males and had a significantly improved gut barrier function in old age. Several metabolic parameters were affected by both age and sex, but no genotype differences were detected. Neither male nor female Polr3b+/- mice were long-lived compared to WT controls. Overall, we find no evidence that a reduced Pol III activity extends mouse lifespan but we do find some potential organ- and sex-specific benefits for old-age health.
Collapse
Affiliation(s)
- Gillian Borland
- School of Biodiversity, One Health and Veterinary MedicineUniversity of GlasgowGlasgowUK
- Present address:
School of Molecular BiosciencesUniversity of GlasgowGlasgowUK
| | - Stephen E. Wilkie
- School of Biodiversity, One Health and Veterinary MedicineUniversity of GlasgowGlasgowUK
- Present address:
Division of Molecular Metabolism, Department of Medical Biochemistry and BiophysicsKarolinska InstitutetSolnaSweden
| | - Jackie Thomson
- School of Biodiversity, One Health and Veterinary MedicineUniversity of GlasgowGlasgowUK
| | - Zhe Wang
- School of Biodiversity, One Health and Veterinary MedicineUniversity of GlasgowGlasgowUK
| | | | - Nazif Alic
- Department of Genetics Evolution and Environment, Institute of Healthy AgeingUniversity College LondonLondonUK
| | - Colin Selman
- School of Biodiversity, One Health and Veterinary MedicineUniversity of GlasgowGlasgowUK
- Present address:
School of Molecular BiosciencesUniversity of GlasgowGlasgowUK
| |
Collapse
|
3
|
Čáp M, Palková Z. Non-Coding RNAs: Regulators of Stress, Ageing, and Developmental Decisions in Yeast? Cells 2024; 13:599. [PMID: 38607038 PMCID: PMC11012152 DOI: 10.3390/cells13070599] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Revised: 03/19/2024] [Accepted: 03/27/2024] [Indexed: 04/13/2024] Open
Abstract
Cells must change their properties in order to adapt to a constantly changing environment. Most of the cellular sensing and regulatory mechanisms described so far are based on proteins that serve as sensors, signal transducers, and effectors of signalling pathways, resulting in altered cell physiology. In recent years, however, remarkable examples of the critical role of non-coding RNAs in some of these regulatory pathways have been described in various organisms. In this review, we focus on all classes of non-coding RNAs that play regulatory roles during stress response, starvation, and ageing in different yeast species as well as in structured yeast populations. Such regulation can occur, for example, by modulating the amount and functional state of tRNAs, rRNAs, or snRNAs that are directly involved in the processes of translation and splicing. In addition, long non-coding RNAs and microRNA-like molecules are bona fide regulators of the expression of their target genes. Non-coding RNAs thus represent an additional level of cellular regulation that is gradually being uncovered.
Collapse
Affiliation(s)
- Michal Čáp
- Department of Genetics and Microbiology, Faculty of Science, Charles University, BIOCEV, 128 00 Prague, Czech Republic
| | - Zdena Palková
- Department of Genetics and Microbiology, Faculty of Science, Charles University, BIOCEV, 128 00 Prague, Czech Republic
| |
Collapse
|
4
|
Serrano A, Moret M, Fernández-Parras I, Bombarely A, Luque F, Navarro F. RNA Polymerases IV and V Are Involved in Olive Fruit Development. Genes (Basel) 2023; 15:1. [PMID: 38275583 PMCID: PMC10815247 DOI: 10.3390/genes15010001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 12/11/2023] [Accepted: 12/15/2023] [Indexed: 01/27/2024] Open
Abstract
Transcription is carried out in most eukaryotes by three multimeric complexes (RNA polymerases I, II and III). However, plants contain two additional RNA polymerases (IV and V), which have evolved from RNA polymerase II. RNA polymerases II, IV and V contain both common and specific subunits that may specialise some of their functions. In this study, we conducted a search for the genes that putatively code for the specific subunits of RNA polymerases IV and V, as well as those corresponding to RNA polymerase II in olive trees. Based on the homology with the genes of Arabidopsis thaliana, we identified 13 genes that putatively code for the specific subunits of polymerases IV and V, and 16 genes that code for the corresponding specific subunits of polymerase II in olives. The transcriptomic analysis by RNA-Seq revealed that the expression of the RNA polymerases IV and V genes was induced during the initial stages of fruit development. Given that RNA polymerases IV and V are involved in the transcription of long non-coding RNAs, we investigated their expression and observed relevant changes in the expression of this type of RNAs. Particularly, the expression of the intergenic and intronic long non-coding RNAs tended to increase in the early steps of fruit development, suggesting their potential role in this process. The positive correlation between the expression of RNA polymerases IV and V subunits and the expression of non-coding RNAs supports the hypothesis that RNA polymerases IV and V may play a role in fruit development through the synthesis of this type of RNAs.
Collapse
Affiliation(s)
- Alicia Serrano
- Instituto Universitario de Investigación en Olivar y Aceites de Oliva, Universidad de Jaén, 23071 Jaén, Spain; (A.S.); (M.M.); (I.F.-P.)
| | - Martín Moret
- Instituto Universitario de Investigación en Olivar y Aceites de Oliva, Universidad de Jaén, 23071 Jaén, Spain; (A.S.); (M.M.); (I.F.-P.)
| | - Isabel Fernández-Parras
- Instituto Universitario de Investigación en Olivar y Aceites de Oliva, Universidad de Jaén, 23071 Jaén, Spain; (A.S.); (M.M.); (I.F.-P.)
| | - Aureliano Bombarely
- Instituto de Biología Molecular y Celular de Plantas (IBMCP), CSIC and Universitat Politécnica de Valencia, 46011 Valencia, Spain;
| | - Francisco Luque
- Instituto Universitario de Investigación en Olivar y Aceites de Oliva, Universidad de Jaén, 23071 Jaén, Spain; (A.S.); (M.M.); (I.F.-P.)
| | - Francisco Navarro
- Departamento de Biología Experimental, Universidad de Jaén, 23071 Jaén, Spain
| |
Collapse
|
5
|
van Breugel ME, van Kruijsbergen I, Mittal C, Lieftink C, Brouwer I, van den Brand T, Kluin RJC, Hoekman L, Menezes RX, van Welsem T, Del Cortona A, Malik M, Beijersbergen RL, Lenstra TL, Verstrepen KJ, Pugh BF, van Leeuwen F. Locus-specific proteome decoding reveals Fpt1 as a chromatin-associated negative regulator of RNA polymerase III assembly. Mol Cell 2023; 83:4205-4221.e9. [PMID: 37995691 PMCID: PMC11289708 DOI: 10.1016/j.molcel.2023.10.037] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 09/27/2023] [Accepted: 10/26/2023] [Indexed: 11/25/2023]
Abstract
Transcription of tRNA genes by RNA polymerase III (RNAPIII) is tuned by signaling cascades. The emerging notion of differential tRNA gene regulation implies the existence of additional regulatory mechanisms. However, tRNA gene-specific regulators have not been described. Decoding the local chromatin proteome of a native tRNA gene in yeast revealed reprogramming of the RNAPIII transcription machinery upon nutrient perturbation. Among the dynamic proteins, we identified Fpt1, a protein of unknown function that uniquely occupied RNAPIII-regulated genes. Fpt1 binding at tRNA genes correlated with the efficiency of RNAPIII eviction upon nutrient perturbation and required the transcription factors TFIIIB and TFIIIC but not RNAPIII. In the absence of Fpt1, eviction of RNAPIII was reduced, and the shutdown of ribosome biogenesis genes was impaired upon nutrient perturbation. Our findings provide support for a chromatin-associated mechanism required for RNAPIII eviction from tRNA genes and tuning the physiological response to changing metabolic demands.
Collapse
Affiliation(s)
- Maria Elize van Breugel
- Division of Gene Regulation, Netherlands Cancer Institute, Amsterdam 1066 CX, the Netherlands
| | - Ila van Kruijsbergen
- Division of Gene Regulation, Netherlands Cancer Institute, Amsterdam 1066 CX, the Netherlands
| | - Chitvan Mittal
- Baker Institute for Animal Health, College of Veterinary Medicine, Cornell University, Ithaca, NY 14853, USA; Department of Molecular Biology and Genetics, Biotechnology Building, Cornell University, Ithaca, NY 14853, USA
| | - Cor Lieftink
- Division of Molecular Carcinogenesis and Robotics and Screening Center, Netherlands Cancer Institute, Amsterdam 1066 CX, the Netherlands
| | - Ineke Brouwer
- Division of Gene Regulation, Netherlands Cancer Institute, Amsterdam 1066 CX, the Netherlands; Division of Gene Regulation, Netherlands Cancer Institute, Oncode Institute, Amsterdam 1066 CX, the Netherlands
| | - Teun van den Brand
- Division of Gene Regulation, Netherlands Cancer Institute, Amsterdam 1066 CX, the Netherlands
| | - Roelof J C Kluin
- Genomics Core Facility, Netherlands Cancer Institute, Amsterdam 1066 CX, the Netherlands
| | - Liesbeth Hoekman
- Proteomics Facility, Netherlands Cancer Institute, Amsterdam 1066 CX, the Netherlands
| | - Renée X Menezes
- Biostatistics Centre and Division of Psychosocial Research and Epidemiology, Netherlands Cancer Institute, Amsterdam 1066 CX, the Netherlands
| | - Tibor van Welsem
- Division of Gene Regulation, Netherlands Cancer Institute, Amsterdam 1066 CX, the Netherlands
| | - Andrea Del Cortona
- VIB-KU Leuven Center for Microbiology, KU Leuven, 3001 Heverlee-Leuven, Belgium
| | - Muddassir Malik
- Division of Gene Regulation, Netherlands Cancer Institute, Amsterdam 1066 CX, the Netherlands
| | - Roderick L Beijersbergen
- Division of Molecular Carcinogenesis and Robotics and Screening Center, Netherlands Cancer Institute, Amsterdam 1066 CX, the Netherlands; Genomics Core Facility, Netherlands Cancer Institute, Amsterdam 1066 CX, the Netherlands
| | - Tineke L Lenstra
- Division of Gene Regulation, Netherlands Cancer Institute, Amsterdam 1066 CX, the Netherlands; Division of Gene Regulation, Netherlands Cancer Institute, Oncode Institute, Amsterdam 1066 CX, the Netherlands
| | - Kevin J Verstrepen
- VIB-KU Leuven Center for Microbiology, KU Leuven, 3001 Heverlee-Leuven, Belgium
| | - B Franklin Pugh
- Department of Molecular Biology and Genetics, Biotechnology Building, Cornell University, Ithaca, NY 14853, USA
| | - Fred van Leeuwen
- Division of Gene Regulation, Netherlands Cancer Institute, Amsterdam 1066 CX, the Netherlands; Department of Medical Biology, Amsterdam UMC, University of Amsterdam, Amsterdam 1105 AZ, the Netherlands.
| |
Collapse
|
6
|
Kelley M, Holmes CJ, Herbert C, Rayhan A, Joves J, Uhran M, Frigard R, Singh K, Limbach PA, Addepalli B, Benoit JB. Tyrosine transfer RNA levels and modifications during blood-feeding and vitellogenesis in the mosquito, Aedes aegypti. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.11.29.569187. [PMID: 38076852 PMCID: PMC10705485 DOI: 10.1101/2023.11.29.569187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/21/2023]
Abstract
Mosquitoes such as Aedes aegypti must consume a blood meal for the nutrients necessary for egg production. Several transcriptome and proteome changes occur post blood meal that likely corresponds with codon usage alterations. Transfer RNA (tRNA) is the adapter molecule that reads messenger RNA (mRNA) codons to add the appropriate amino acid during protein synthesis. Chemical modifications to tRNA enhance codons' decoding, improving the accuracy and efficiency of protein synthesis. Here, we examined tRNA modifications and transcripts associated with the blood meal and subsequent periods of vitellogenesis in A. aegypti. More specifically, we assessed tRNA transcript abundance and modification levels in the fat body at critical times post blood-feeding. Based on a combination of alternative codon usage and identification of particular modifications, we identified that increased transcription of tyrosine tRNAs is likely critical during the synthesis of egg yolk proteins in the fat body following a blood meal. Altogether, changes in both the abundance and modification of tRNA are essential factors in the process of vitellogenin production after blood-feeding in mosquitoes.
Collapse
Affiliation(s)
- Melissa Kelley
- Department of Biological Sciences, University of Cincinnati, Cincinnati, OH 45211
| | | | - Cassandra Herbert
- Department of Chemistry, University of Cincinnati, Cincinnati, OH 45211
| | - Asif Rayhan
- Department of Chemistry, University of Cincinnati, Cincinnati, OH 45211
| | - Judd Joves
- Department of Biological Sciences, University of Cincinnati, Cincinnati, OH 45211
| | - Melissa Uhran
- Department of Biological Sciences, University of Cincinnati, Cincinnati, OH 45211
| | - Ronja Frigard
- Department of Biological Sciences, University of Cincinnati, Cincinnati, OH 45211
| | - Khwahish Singh
- Department of Biological Sciences, University of Cincinnati, Cincinnati, OH 45211
| | | | | | - Joshua B. Benoit
- Department of Biological Sciences, University of Cincinnati, Cincinnati, OH 45211
| |
Collapse
|
7
|
Schwank K, Schmid C, Fremter T, Engel C, Milkereit P, Griesenbeck J, Tschochner H. Features of yeast RNA polymerase I with special consideration of the lobe binding subunits. Biol Chem 2023; 404:979-1002. [PMID: 37823775 DOI: 10.1515/hsz-2023-0184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Accepted: 07/13/2023] [Indexed: 10/13/2023]
Abstract
Ribosomal RNAs (rRNAs) are structural components of ribosomes and represent the most abundant cellular RNA fraction. In the yeast Saccharomyces cerevisiae, they account for more than 60 % of the RNA content in a growing cell. The major amount of rRNA is synthesized by RNA polymerase I (Pol I). This enzyme transcribes exclusively the rRNA gene which is tandemly repeated in about 150 copies on chromosome XII. The high number of transcribed rRNA genes, the efficient recruitment of the transcription machinery and the dense packaging of elongating Pol I molecules on the gene ensure that enough rRNA is generated. Specific features of Pol I and of associated factors confer promoter selectivity and both elongation and termination competence. Many excellent reviews exist about the state of research about function and regulation of Pol I and how Pol I initiation complexes are assembled. In this report we focus on the Pol I specific lobe binding subunits which support efficient, error-free, and correctly terminated rRNA synthesis.
Collapse
Affiliation(s)
- Katrin Schwank
- Regensburg Center of Biochemistry (RCB), Universität Regensburg, D-93053 Regensburg, Germany
| | - Catharina Schmid
- Regensburg Center of Biochemistry (RCB), Universität Regensburg, D-93053 Regensburg, Germany
| | - Tobias Fremter
- Regensburg Center of Biochemistry (RCB), Universität Regensburg, D-93053 Regensburg, Germany
| | - Christoph Engel
- Regensburg Center of Biochemistry (RCB), Universität Regensburg, D-93053 Regensburg, Germany
| | - Philipp Milkereit
- Regensburg Center of Biochemistry (RCB), Universität Regensburg, D-93053 Regensburg, Germany
| | - Joachim Griesenbeck
- Regensburg Center of Biochemistry (RCB), Universität Regensburg, D-93053 Regensburg, Germany
| | - Herbert Tschochner
- Regensburg Center of Biochemistry (RCB), Universität Regensburg, D-93053 Regensburg, Germany
| |
Collapse
|
8
|
Huynh TV, Hall AS, Xu S. The Transcriptomic Signature of Cyclical Parthenogenesis. Genome Biol Evol 2023; 15:evad122. [PMID: 37392457 PMCID: PMC10340444 DOI: 10.1093/gbe/evad122] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 06/13/2023] [Accepted: 06/28/2023] [Indexed: 07/03/2023] Open
Abstract
Cyclical parthenogenesis, where females can engage in sexual or asexual reproduction depending on environmental conditions, represents a novel reproductive phenotype that emerged during eukaryotic evolution. The fact that environmental conditions can trigger cyclical parthenogens to engage in distinct reproductive modes strongly suggests that gene expression plays a key role in the origin of cyclical parthenogenesis. However, the genetic basis underlying cyclical parthenogenesis remains understudied. In this study, we characterize the female transcriptomic signature of sexual versus asexual reproduction in the cyclically parthenogenetic microcrustacean Daphnia pulex and Daphnia pulicaria. Our analyses of differentially expressed genes (DEGs), pathway enrichment, and gene ontology (GO) term enrichment clearly show that compared with sexual reproduction, the asexual reproductive stage is characterized by both the underregulation of meiosis and cell cycle genes and the upregulation of metabolic genes. The consensus set of DEGs that this study identifies within the meiotic, cell cycle, and metabolic pathways serves as candidate genes for future studies investigating how the two reproductive cycles in cyclical parthenogenesis are mediated at a molecular level. Furthermore, our analyses identify some cases of divergent expression among gene family members (e.g., doublesex and NOTCH2) associated with asexual or sexual reproductive stage, suggesting potential functional divergence among gene family members.
Collapse
Affiliation(s)
- Trung Viet Huynh
- Department of Biology, University of Texas at Arlington, Arlington, Texas, USA
| | - Alexander S Hall
- Department of Biology, University of Texas at Arlington, Arlington, Texas, USA
| | - Sen Xu
- Department of Biology, University of Texas at Arlington, Arlington, Texas, USA
| |
Collapse
|
9
|
Nguyen T, Mills JC, Cho CJ. The coordinated management of ribosome and translation during injury and regeneration. Front Cell Dev Biol 2023; 11:1186638. [PMID: 37427381 PMCID: PMC10325863 DOI: 10.3389/fcell.2023.1186638] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Accepted: 06/06/2023] [Indexed: 07/11/2023] Open
Abstract
Diverse acute and chronic injuries induce damage responses in the gastrointestinal (GI) system, and numerous cell types in the gastrointestinal tract demonstrate remarkable resilience, adaptability, and regenerative capacity in response to stress. Metaplasias, such as columnar and secretory cell metaplasia, are well-known adaptations that these cells make, the majority of which are epidemiologically associated with an elevated cancer risk. On a number of fronts, it is now being investigated how cells respond to injury at the tissue level, where diverse cell types that differ in proliferation capacity and differentiation state cooperate and compete with one another to participate in regeneration. In addition, the cascades or series of molecular responses that cells show are just beginning to be understood. Notably, the ribosome, a ribonucleoprotein complex that is essential for translation on the endoplasmic reticulum (ER) and in the cytoplasm, is recognized as the central organelle during this process. The highly regulated management of ribosomes as key translational machinery, and their platform, rough endoplasmic reticulum, are not only essential for maintaining differentiated cell identity, but also for achieving successful cell regeneration after injury. This review will cover in depth how ribosomes, the endoplasmic reticulum, and translation are regulated and managed in response to injury (e.g., paligenosis), as well as why this is essential for the proper adaptation of a cell to stress. For this, we will first discuss how multiple gastrointestinal organs respond to stress through metaplasia. Next, we will cover how ribosomes are generated, maintained, and degraded, in addition to the factors that govern translation. Finally, we will investigate how ribosomes and translation machinery are dynamically regulated in response to injury. Our increased understanding of this overlooked cell fate decision mechanism will facilitate the discovery of novel therapeutic targets for gastrointestinal tract tumors, focusing on ribosomes and translation machinery.
Collapse
Affiliation(s)
- Thanh Nguyen
- Department of Medicine, Baylor College of Medicine, Houston, TX, United States
| | - Jason C. Mills
- Department of Medicine, Baylor College of Medicine, Houston, TX, United States
- Department of Pathology and Immunology, Baylor College of Medicine, Houston, TX, United States
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, United States
| | - Charles J. Cho
- Department of Medicine, Baylor College of Medicine, Houston, TX, United States
| |
Collapse
|
10
|
U A, Viswam P, Kattupalli D, Eppurathu Vasudevan S. Elucidation of transfer RNAs as stress regulating agents and the experimental strategies to conceive the functional role of tRNA-derived fragments in plants. Crit Rev Biotechnol 2023; 43:275-292. [PMID: 35382663 DOI: 10.1080/07388551.2022.2026288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
In plants, the transfer RNAs (tRNAs) exhibit their profound influence in orchestrating diverse physiological activities like cell growth, development, and response to several surrounding stimuli. The tRNAs, which were known to restrict their function solely in deciphering the codons, are now emerging as frontline defenders in stress biology. The plants that are constantly confronted with a huge panoply of stresses rely on tRNA-mediated stress regulation by altering the tRNA abundance, curbing the transport of tRNAs, fragmenting the mature tRNAs during stress. Among them, the studies on the generation of transfer RNA-derived fragments (tRFs) and their biological implication in stress response have attained huge interest. In plants, the tRFs hold stable expression patterns and regulate biological functions under diverse environmental conditions. In this review, we discuss the fate of plant tRNAs upon stress and thereafter how the tRFs are metamorphosed into sharp ammunition to wrestle with stress. We also address the various methods developed to date for uncovering the role of tRFs and their function in plants.
Collapse
Affiliation(s)
- Aswathi U
- Rajiv Gandhi Centre for Biotechnology, Transdisciplinary Biology Laboratory, Thiruvananthapuram, India
| | - Pooja Viswam
- Rajiv Gandhi Centre for Biotechnology, Transdisciplinary Biology Laboratory, Thiruvananthapuram, India
| | - Divya Kattupalli
- Rajiv Gandhi Centre for Biotechnology, Transdisciplinary Biology Laboratory, Thiruvananthapuram, India
| | | |
Collapse
|
11
|
Watt KE, Macintosh J, Bernard G, Trainor PA. RNA Polymerases I and III in development and disease. Semin Cell Dev Biol 2023; 136:49-63. [PMID: 35422389 PMCID: PMC9550887 DOI: 10.1016/j.semcdb.2022.03.027] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Revised: 03/18/2022] [Accepted: 03/21/2022] [Indexed: 12/18/2022]
Abstract
Ribosomes are macromolecular machines that are globally required for the translation of all proteins in all cells. Ribosome biogenesis, which is essential for cell growth, proliferation and survival, commences with transcription of a variety of RNAs by RNA Polymerases I and III. RNA Polymerase I (Pol I) transcribes ribosomal RNA (rRNA), while RNA Polymerase III (Pol III) transcribes 5S ribosomal RNA and transfer RNAs (tRNA) in addition to a wide variety of small non-coding RNAs. Interestingly, despite their global importance, disruptions in Pol I and Pol III function result in tissue-specific developmental disorders, with craniofacial anomalies and leukodystrophy/neurodegenerative disease being among the most prevalent. Furthermore, pathogenic variants in genes encoding subunits shared between Pol I and Pol III give rise to distinct syndromes depending on whether Pol I or Pol III function is disrupted. In this review, we discuss the global roles of Pol I and III transcription, the consequences of disruptions in Pol I and III transcription, disorders arising from pathogenic variants in Pol I and Pol III subunits, and mechanisms underpinning their tissue-specific phenotypes.
Collapse
Affiliation(s)
- Kristin En Watt
- Stowers Institute for Medical Research, Kansas City, MO, USA
| | - Julia Macintosh
- Department of Neurology and Neurosurgery, McGill University, Montreal, QC, Canada; Child Health and Human Development Program, Research Institute of the McGill University Health Center, Montreal, QC, Canada
| | - Geneviève Bernard
- Department of Neurology and Neurosurgery, McGill University, Montreal, QC, Canada; Child Health and Human Development Program, Research Institute of the McGill University Health Center, Montreal, QC, Canada; Departments of Pediatrics and Human Genetics, McGill University, Montreal, QC, Canada; Department of Specialized Medicine, Division of Medical Genetics, McGill University Health Center, Montreal, QC, Canada.
| | - Paul A Trainor
- Stowers Institute for Medical Research, Kansas City, MO, USA; Department of Anatomy & Cell Biology, University of Kansas Medical Center, Kansas City, KS, USA.
| |
Collapse
|
12
|
Wang J, Chen Q, Peng F, Zhao S, Zhang C, Song X, Yu D, Wu Z, Du J, Ni H, Deng H, Deng W. Transcription factor AP-2α activates RNA polymerase III-directed transcription and tumor cell proliferation by controlling expression of c-MYC and p53. J Biol Chem 2023; 299:102945. [PMID: 36707053 PMCID: PMC9999235 DOI: 10.1016/j.jbc.2023.102945] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 01/05/2023] [Accepted: 01/06/2023] [Indexed: 01/26/2023] Open
Abstract
Deregulation of transcription factor AP2 alpha (TFAP2A) and RNA polymerase III (Pol III) products is associated with tumorigenesis. However, the mechanism underlying this event is not fully understood and the connection between TFAP2A and Pol III-directed transcription has not been investigated. Here, we report that TFAP2A functions as a positive factor in the regulation of Pol III-directed transcription and cell proliferation. We found TFAP2A is also required for the activation of Pol III transcription induced by the silencing of filamin A, a well-known cytoskeletal protein and an inhibitor in Pol III-dependent transcription identified previously. Using a chromatin immunoprecipitation technique, we showed TFAP2A positively modulates the assembly of Pol III transcription machinery factors at Pol III-transcribed gene loci. We found TFAP2A can activate the expression of Pol III transcription-related factors, including BRF1, GTF3C2, and c-MYC. Furthermore, we demonstrate TFAP2A enhances expression of MDM2, a negative regulator of tumor suppressor p53, and also inhibits p53 expression. Finally, we found MDM2 overexpression can rescue the inhibition of Pol III-directed transcription and cell proliferation caused by TFAP2A silencing. In summary, we identified that TFAP2A can activate Pol III-directed transcription by controlling multiple pathways, including general transcription factors, c-MYC and MDM2/p53. The findings from this study provide novel insights into the regulatory mechanisms of Pol III-dependent transcription and cancer cell proliferation.
Collapse
Affiliation(s)
- Juan Wang
- School of Life Science and Health, Wuhan University of Science and Technology, Wuhan, China; School of Materials and Metallurgy, Wuhan University of Science and Technology, Wuhan, China
| | - Qiyue Chen
- School of Life Science and Health, Wuhan University of Science and Technology, Wuhan, China
| | - Feixia Peng
- School of Life Science and Health, Wuhan University of Science and Technology, Wuhan, China
| | - Shasha Zhao
- School of Life Science and Health, Wuhan University of Science and Technology, Wuhan, China
| | - Cheng Zhang
- School of Life Science and Health, Wuhan University of Science and Technology, Wuhan, China
| | - Xiaoye Song
- School of Life Science and Health, Wuhan University of Science and Technology, Wuhan, China
| | - Deen Yu
- School of Life Science and Health, Wuhan University of Science and Technology, Wuhan, China
| | - Zhongyu Wu
- School of Life Science and Health, Wuhan University of Science and Technology, Wuhan, China
| | - Jiannan Du
- School of Life Science and Health, Wuhan University of Science and Technology, Wuhan, China
| | - Hongwei Ni
- School of Materials and Metallurgy, Wuhan University of Science and Technology, Wuhan, China.
| | - Huan Deng
- School of Life Science and Health, Wuhan University of Science and Technology, Wuhan, China.
| | - Wensheng Deng
- School of Life Science and Health, Wuhan University of Science and Technology, Wuhan, China.
| |
Collapse
|
13
|
Zhang C, Zhao S, Deng H, Zhang S, Wang J, Song X, Yu D, Zhang Y, Deng W. STAT3 promotes RNA polymerase III-directed transcription by controlling the miR-106a-5p/TP73 axis. eLife 2023; 12:e82826. [PMID: 36656267 PMCID: PMC9851613 DOI: 10.7554/elife.82826] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Accepted: 01/05/2023] [Indexed: 01/20/2023] Open
Abstract
Deregulation of Pol III products causes a range of diseases, including neural diseases and cancers. However, the factors and mechanisms that modulate Pol III-directed transcription remain to be found, although massive advances have been achieved. Here, we show that STAT3 positively regulates the activities of Pol III-dependent transcription and cancer cell growth. RNA-seq analysis revealed that STAT3 inhibits the expression of TP73, a member of the p53 family. We found that TP73 is not only required for the regulation of Pol III-directed transcription mediated by STAT3 but also independently suppresses the synthesis of Pol III products. Mechanistically, TP73 can disrupt the assembly of TFIIIB subunits and inhibit their occupancies at Pol III target loci by interacting with TFIIIB subunit TBP. MiR-106a-5p can activate Pol III-directed transcription by targeting the TP73 mRNA 3' UTR to reduce TP 73 expression. We show that STAT3 activates the expression of miR-106a-5p by binding to the miRNA promoter, indicating that the miR-106a-5p links STAT3 with TP73 to regulate Pol III-directed transcription. Collectively, these findings indicate that STAT3 functions as a positive regulator in Pol III-directed transcription by controlling the miR-106a-5p/TP73 axis.
Collapse
Affiliation(s)
- Cheng Zhang
- School of Life Science and Health, Wuhan University of Science and TechnologyWuhanChina
| | - Shasha Zhao
- School of Life Science and Health, Wuhan University of Science and TechnologyWuhanChina
| | - Huan Deng
- School of Life Science and Health, Wuhan University of Science and TechnologyWuhanChina
| | - Shihua Zhang
- School of Life Science and Health, Wuhan University of Science and TechnologyWuhanChina
| | - Juan Wang
- School of Life Science and Health, Wuhan University of Science and TechnologyWuhanChina
- School of Materials and Metallurgy, Wuhan University of Science and TechnologyWuhanChina
| | - Xiaoye Song
- School of Life Science and Health, Wuhan University of Science and TechnologyWuhanChina
| | - Deen Yu
- School of Life Science and Health, Wuhan University of Science and TechnologyWuhanChina
| | - Yue Zhang
- School of Life Science and Health, Wuhan University of Science and TechnologyWuhanChina
| | - Wensheng Deng
- School of Life Science and Health, Wuhan University of Science and TechnologyWuhanChina
| |
Collapse
|
14
|
Wang J, Chen Q, Wang X, Zhao S, Deng H, Guo B, Zhang C, Song X, Deng W, Zhang T, Ni H. TFIIB-related factor 1 is a nucleolar protein that promotes RNA polymerase I-directed transcription and tumour cell growth. Hum Mol Genet 2023; 32:104-121. [PMID: 35925837 DOI: 10.1093/hmg/ddac152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2022] [Revised: 06/26/2022] [Accepted: 07/01/2022] [Indexed: 01/25/2023] Open
Abstract
Eukaryotic RNA polymerase I (Pol I) products play fundamental roles in ribosomal assembly, protein synthesis, metabolism and cell growth. Abnormal expression of both Pol I transcription-related factors and Pol I products causes a range of diseases, including ribosomopathies and cancers. However, the factors and mechanisms governing Pol I-dependent transcription remain to be elucidated. Here, we report that transcription factor IIB-related factor 1 (BRF1), a subunit of transcription factor IIIB required for RNA polymerase III (Pol III)-mediated transcription, is a nucleolar protein and modulates Pol I-mediated transcription. We showed that BRF1 can be localized to the nucleolus in several human cell types. BRF1 expression correlates positively with Pol I product levels and tumour cell growth in vitro and in vivo. Pol III transcription inhibition assays confirmed that BRF1 modulates Pol I-directed transcription in an independent manner rather than through a Pol III product-to-45S pre-rRNA feedback mode. Mechanistically, BRF1 binds to the Pol I transcription machinery components and can be recruited to the rDNA promoter along with them. Additionally, alteration of BRF1 expression affects the recruitment of Pol I transcription machinery components to the rDNA promoter and the expression of TBP and TAF1A. These findings indicate that BRF1 modulates Pol I-directed transcription by controlling the expression of selective factor 1 subunits. In summary, we identified a novel role of BRF1 in Pol I-directed transcription, suggesting that BRF1 can independently regulate both Pol I- and Pol III-mediated transcription and act as a key coordinator of Pol I and Pol III.
Collapse
Affiliation(s)
- Juan Wang
- School of Life Science and Health, Wuhan University of Science and Technology, Wuhan 430065, China.,School of Materials and Metallurgy, Wuhan University of Science and Technology, Wuhan 430081, China
| | - Qiyue Chen
- School of Life Science and Health, Wuhan University of Science and Technology, Wuhan 430065, China
| | - Xin Wang
- Faculty of Biology, Medicine, and Health, University of Manchester, Manchester M13 9PL, UK
| | - Shasha Zhao
- School of Life Science and Health, Wuhan University of Science and Technology, Wuhan 430065, China
| | - Huan Deng
- School of Life Science and Health, Wuhan University of Science and Technology, Wuhan 430065, China
| | - Baoqiang Guo
- School of Healthcare Science, Manchester Metropolitan University, Manchester M1 5GD, UK
| | - Cheng Zhang
- School of Life Science and Health, Wuhan University of Science and Technology, Wuhan 430065, China
| | - Xiaoye Song
- School of Life Science and Health, Wuhan University of Science and Technology, Wuhan 430065, China
| | - Wensheng Deng
- School of Life Science and Health, Wuhan University of Science and Technology, Wuhan 430065, China
| | - Tongcun Zhang
- School of Life Science and Health, Wuhan University of Science and Technology, Wuhan 430065, China
| | - Hongwei Ni
- School of Materials and Metallurgy, Wuhan University of Science and Technology, Wuhan 430081, China
| |
Collapse
|
15
|
Vinayachandran V, Bhargava P. Structural Features of the Nucleosomal DNA Modulate the Functional Binding of a Transcription Factor and Productive Transcription. Front Genet 2022; 13:870700. [PMID: 35646068 PMCID: PMC9136082 DOI: 10.3389/fgene.2022.870700] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Accepted: 04/08/2022] [Indexed: 11/13/2022] Open
Abstract
A small non-histone protein of budding yeast, Nhp6 has been reported to specifically influence the transcription of a yeast gene, SNR6. The gene is essential, transcribed by the enzyme RNA polymerase III, and codes for the U6snRNA required for mRNA splicing. A translationally positioned nucleosome on the gene body enables the assembly factor TFIIIC binding by juxtaposing its otherwise widely separated binding sites, boxes A and B. We found histone depletion results in the loss of U6 snRNA production. Changing the rotational phase of the boxes and the linear distance between them with deletions in 5 bp steps displayed a helical periodicity in transcription, which gradually reduced with incremental deletions up to 40 bp but increased on further deletions enclosing the pseudoA boxes. Nhp6 influences the transcription in a dose-dependent manner, which is modulated by its previously reported co-operator, an upstream stretch of seven T residues centered between the TATA box and transcription start site. Nhp6 occupancy on the gene in vivo goes up at least 2-fold under the repression conditions. Nhp6 absence, T7 disruption, or shorter A–B box distance all cause the downstream initiation of transcription. The right +1 site is selected with the correct placement of TFIIIC before the transcription initiation factor TFIIIB. Thus, the T7 sequence and Nhp6 help the assembly and placement of the transcription complex at the right position. Apart from the chromatin remodelers, the relative rotational orientation of the promoter elements in nucleosomal DNA, and Nhp6 regulate the transcription of the SNR6 gene with precision.
Collapse
|
16
|
Early Growth Response 1 Strengthens Pol-III-Directed Transcription and Transformed Cell Proliferation by Controlling PTEN/AKT Signalling Activity. Int J Mol Sci 2022; 23:ijms23094930. [PMID: 35563324 PMCID: PMC9105817 DOI: 10.3390/ijms23094930] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 04/23/2022] [Accepted: 04/25/2022] [Indexed: 01/27/2023] Open
Abstract
RNA polymerase III (Pol III) products play essential roles in ribosome assembly, protein synthesis, and cell survival. Deregulation of Pol-III-directed transcription is closely associated with tumorigenesis. However, the regulatory pathways or factors controlling Pol-III-directed transcription remain to be investigated. In this study, we identified a novel role of EGR1 in Pol-III-directed transcription. We found that Filamin A (FLNA) silencing stimulated EGR1 expression at both RNA and protein levels. EGR1 expression positively correlated with Pol III product levels and cell proliferation activity. Mechanistically, EGR1 downregulation dampened the occupancies of Pol III transcription machinery factors at the loci of Pol III target genes. Alteration of EGR1 expression did not affect the expression of p53, c-MYC, and Pol III general transcription factors. Instead, EGR1 activated RhoA expression and inhibited PTEN expression in several transformed cell lines. We found that PTEN silencing, rather than RhoA overexpression, could reverse the inhibition of Pol-III-dependent transcription and cell proliferation caused by EGR1 downregulation. EGR1 could positively regulate AKT phosphorylation levels and is required for the inhibition of Pol-III-directed transcription mediated by FLNA. The findings from this study indicate that EGR1 can promote Pol-III-directed transcription and cell proliferation by controlling the PTEN/AKT signalling pathway.
Collapse
|
17
|
Blayney J, Geary J, Chrisp R, Violet J, Barratt L, Tavukçu L, Paine K, Vaistij FE, Graham IA, Denby KJ, White RJ. Impact on Arabidopsis growth and stress resistance of depleting the Maf1 repressor of RNA polymerase III. Gene 2022; 815:146130. [PMID: 35017035 DOI: 10.1016/j.gene.2021.146130] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Revised: 12/07/2021] [Accepted: 12/15/2021] [Indexed: 11/30/2022]
Abstract
Maf1 is a transcription factor that is conserved in sequence and structure between yeasts, animals and plants. Its principal molecular function is also well conserved, being to bind and repress RNA polymerase (pol) III, thereby inhibiting synthesis of tRNAs and other noncoding RNAs. Restrictions on tRNA production and hence protein synthesis can provide a mechanism to preserve resources under conditions that are suboptimal for growth. Accordingly, Maf1 is found in some organisms to influence growth and/or stress survival. Because of their sessile nature, plants are especially vulnerable to environmental changes and molecular adaptations that enhance growth under benign circumstances can increase sensitivity to external challenges. We tested if Maf1 depletion in the model plant Arabidopsis affects growth, pathogen resistance and tolerance of drought or soil salinity, a common physiological challenge that imposes both osmotic and ionic stress. We find that disruption of the Maf1 gene or RNAi-mediated depletion of its transcript is well-tolerated and confers a modest growth advantage without compromising resistance to common biotic and abiotic challenges.
Collapse
Affiliation(s)
- Joseph Blayney
- Department of Biology, University of York, Heslington, York YO10 5DD, UK
| | - James Geary
- Department of Biology, University of York, Heslington, York YO10 5DD, UK
| | - Ruby Chrisp
- Department of Biology, University of York, Heslington, York YO10 5DD, UK
| | - Joseph Violet
- Department of Biology, University of York, Heslington, York YO10 5DD, UK
| | - Liam Barratt
- Department of Biology, University of York, Heslington, York YO10 5DD, UK
| | - Laçin Tavukçu
- Department of Biology, University of York, Heslington, York YO10 5DD, UK
| | - Katherine Paine
- Department of Biology, University of York, Heslington, York YO10 5DD, UK
| | - Fabián E Vaistij
- Centre for Novel Agricultural Products (CNAP), Department of Biology, University of York, Heslington, York YO10 5DD, UK
| | - Ian A Graham
- Centre for Novel Agricultural Products (CNAP), Department of Biology, University of York, Heslington, York YO10 5DD, UK
| | - Katherine J Denby
- Centre for Novel Agricultural Products (CNAP), Department of Biology, University of York, Heslington, York YO10 5DD, UK
| | - Robert J White
- Department of Biology, University of York, Heslington, York YO10 5DD, UK.
| |
Collapse
|
18
|
Abstract
RNA polymerase III (Pol III) is a large multisubunit complex conserved in all eukaryotes that plays an essential role in producing a variety of short non-coding RNAs, such as tRNA, 5S rRNA and U6 snRNA transcripts. Pol III comprises of 17 subunits in both yeast and human with a 10-subunit core and seven peripheral subunits. Because of its size and complexity, Pol III has posed a formidable challenge to structural biologists. The first atomic cryogenic electron microscopy structure of yeast Pol III leading to the canonical view was reported in 2015. Within the last few years, the optimization of endogenous extract and purification procedure and the technical and methodological advances in cryogenic electron microscopy, together allow us to have a first look at the unprecedented details of human Pol III organization. Here, we look back on the structural studies of human Pol III and discuss them in the light of our current understanding of its role in eukaryotic transcription.
Collapse
Affiliation(s)
- Qianmin Wang
- Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Shanghai Institute of Precision Medicine, Shanghai, China
| | - Ming Lei
- Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Shanghai Institute of Precision Medicine, Shanghai, China.,State Key Laboratory of Oncogenes and Related Genes, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jian Wu
- Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Shanghai Institute of Precision Medicine, Shanghai, China
| |
Collapse
|
19
|
Nojima T, Proudfoot NJ. Mechanisms of lncRNA biogenesis as revealed by nascent transcriptomics. Nat Rev Mol Cell Biol 2022; 23:389-406. [DOI: 10.1038/s41580-021-00447-6] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/14/2021] [Indexed: 12/14/2022]
|
20
|
Enserink JM, Chymkowitch P. Cell Cycle-Dependent Transcription: The Cyclin Dependent Kinase Cdk1 Is a Direct Regulator of Basal Transcription Machineries. Int J Mol Sci 2022; 23:ijms23031293. [PMID: 35163213 PMCID: PMC8835803 DOI: 10.3390/ijms23031293] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 01/22/2022] [Accepted: 01/22/2022] [Indexed: 12/21/2022] Open
Abstract
The cyclin-dependent kinase Cdk1 is best known for its function as master regulator of the cell cycle. It phosphorylates several key proteins to control progression through the different phases of the cell cycle. However, studies conducted several decades ago with mammalian cells revealed that Cdk1 also directly regulates the basal transcription machinery, most notably RNA polymerase II. More recent studies in the budding yeast Saccharomyces cerevisiae have revisited this function of Cdk1 and also revealed that Cdk1 directly controls RNA polymerase III activity. These studies have also provided novel insight into the physiological relevance of this process. For instance, cell cycle-stage-dependent activity of these complexes may be important for meeting the increased demand for various proteins involved in housekeeping, metabolism, and protein synthesis. Recent work also indicates that direct regulation of the RNA polymerase II machinery promotes cell cycle entry. Here, we provide an overview of the regulation of basal transcription by Cdk1, and we hypothesize that the original function of the primordial cell-cycle CDK was to regulate RNAPII and that it later evolved into specialized kinases that govern various aspects of the transcription machinery and the cell cycle.
Collapse
Affiliation(s)
- Jorrit M. Enserink
- Section for Biochemistry and Molecular Biology, Faculty of Mathematics and Natural Sciences, University of Oslo, 0316 Oslo, Norway
- Department of Molecular Cell Biology, Institute for Cancer Research, Oslo University Hospital, 0379 Oslo, Norway
- Centre for Cancer Cell Reprogramming, Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, 0318 Oslo, Norway
- Correspondence: (J.M.E.); (P.C.)
| | - Pierre Chymkowitch
- Section for Biochemistry and Molecular Biology, Faculty of Mathematics and Natural Sciences, University of Oslo, 0316 Oslo, Norway
- Department of Microbiology, Oslo University Hospital, 0372 Oslo, Norway
- Correspondence: (J.M.E.); (P.C.)
| |
Collapse
|
21
|
Zhang C, Zhao H, Song X, Wang J, Zhao S, Deng H, He L, Zhou X, Yin X, Zhang K, Zhang Y, Wu Z, Chen Q, Du J, Yu D, Zhang S, Deng W. Transcription factor GATA4 drives RNA polymerase III-directed transcription and transformed cell proliferation through a filamin A/GATA4/SP1 pathway. J Biol Chem 2022; 298:101581. [PMID: 35038452 PMCID: PMC8857480 DOI: 10.1016/j.jbc.2022.101581] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Revised: 12/31/2021] [Accepted: 01/03/2022] [Indexed: 11/27/2022] Open
Abstract
RNA polymerase III (pol III) products play fundamental roles in a variety of cellular processes, including protein synthesis and cancer cell proliferation. In addition, dysregulation of pol III-directed transcription closely correlates with tumorigenesis. It is therefore of interest to identify novel pathways or factors governing pol III-directed transcription. Here, we show that transcription factor (TF) GATA binding protein 4 (GATA4) expression in SaOS2 cells was stimulated by the silencing of filamin A (FLNA), a repressor of pol III-directed transcription, suggesting that GATA4 is potentially associated with the regulation of pol III-directed transcription. Indeed, we show that GATA4 expression positively correlates with pol III-mediated transcription and tumor cell proliferation. Mechanistically, we found that GATA4 depletion inhibits the occupancies of the pol III transcription machinery factors at the loci of pol III target genes by reducing expression of both TFIIIB subunit TFIIB-related factor 1 and TFIIIC subunit general transcription factor 3C subunit 2 (GTF3C2). GATA4 has been shown to activate specificity factor 1 (Sp1) gene transcription by binding to the Sp1 gene promoter, and Sp1 has been confirmed to activate pol III gene transcription by directly binding to both Brf1 and Gtf3c2 gene promoters. Thus, the findings from this study suggest that GATA4 links FLNA and Sp1 signaling to form an FLNA/GATA4/Sp1 axis to modulate pol III-directed transcription and transformed cell proliferation. Taken together, these results provide novel insights into the regulatory mechanism of pol III-directed transcription.
Collapse
Affiliation(s)
- Cheng Zhang
- School of Life Science and Health, Wuhan University of Science and Technology, Wuhan, China
| | - Houliang Zhao
- School of Life Science and Health, Wuhan University of Science and Technology, Wuhan, China
| | - Xiaoye Song
- School of Life Science and Health, Wuhan University of Science and Technology, Wuhan, China
| | - Juan Wang
- School of Materials and Metallurgy, Wuhan University of Science and Technology, Wuhan, China
| | - Shasha Zhao
- School of Life Science and Health, Wuhan University of Science and Technology, Wuhan, China
| | - Huan Deng
- School of Life Science and Health, Wuhan University of Science and Technology, Wuhan, China
| | - Liu He
- School of Life Science and Health, Wuhan University of Science and Technology, Wuhan, China
| | - Xiangyu Zhou
- School of Life Science and Health, Wuhan University of Science and Technology, Wuhan, China
| | - Xiaomei Yin
- School of Life Science and Health, Wuhan University of Science and Technology, Wuhan, China
| | - Kewei Zhang
- School of Life Science and Health, Wuhan University of Science and Technology, Wuhan, China
| | - Yue Zhang
- School of Life Science and Health, Wuhan University of Science and Technology, Wuhan, China
| | - Zhongyu Wu
- School of Life Science and Health, Wuhan University of Science and Technology, Wuhan, China
| | - Qiyue Chen
- School of Life Science and Health, Wuhan University of Science and Technology, Wuhan, China
| | - Jiannan Du
- School of Life Science and Health, Wuhan University of Science and Technology, Wuhan, China
| | - Deen Yu
- School of Life Science and Health, Wuhan University of Science and Technology, Wuhan, China
| | - Shihua Zhang
- School of Life Science and Health, Wuhan University of Science and Technology, Wuhan, China.
| | - Wensheng Deng
- School of Life Science and Health, Wuhan University of Science and Technology, Wuhan, China.
| |
Collapse
|
22
|
Merkl PE, Schächner C, Pilsl M, Schwank K, Schmid C, Längst G, Milkereit P, Griesenbeck J, Tschochner H. Specialization of RNA Polymerase I in Comparison to Other Nuclear RNA Polymerases of Saccharomyces cerevisiae. Methods Mol Biol 2022; 2533:63-70. [PMID: 35796982 PMCID: PMC9761553 DOI: 10.1007/978-1-0716-2501-9_4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
In archaea and bacteria the major classes of RNAs are synthesized by one DNA-dependent RNA polymerase (RNAP). In contrast, most eukaryotes have three highly specialized RNAPs to transcribe the nuclear genome. RNAP I synthesizes almost exclusively ribosomal (r)RNA, RNAP II synthesizes mRNA as well as many noncoding RNAs involved in RNA processing or RNA silencing pathways and RNAP III synthesizes mainly tRNA and 5S rRNA. This review discusses functional differences of the three nuclear core RNAPs in the yeast S. cerevisiae with a particular focus on RNAP I transcription of nucleolar ribosomal (r)DNA chromatin.
Collapse
Affiliation(s)
- Philipp E Merkl
- Universität Regensburg, Regensburg Center for Biochemistry (RCB), Lehrstuhl Biochemie III, Regensburg, Germany
- TUM ForTe, Technische Universität München, Munich, Germany
| | - Christopher Schächner
- Universität Regensburg, Regensburg Center for Biochemistry (RCB), Lehrstuhl Biochemie III, Regensburg, Germany
| | - Michael Pilsl
- Universität Regensburg, Regensburg Center for Biochemistry (RCB), Lehrstuhl Biochemie III, Regensburg, Germany
| | - Katrin Schwank
- Universität Regensburg, Regensburg Center for Biochemistry (RCB), Lehrstuhl Biochemie III, Regensburg, Germany
| | - Catharina Schmid
- Universität Regensburg, Regensburg Center for Biochemistry (RCB), Lehrstuhl Biochemie III, Regensburg, Germany
| | - Gernot Längst
- Universität Regensburg, Regensburg Center for Biochemistry (RCB), Lehrstuhl Biochemie III, Regensburg, Germany
| | - Philipp Milkereit
- Universität Regensburg, Regensburg Center for Biochemistry (RCB), Lehrstuhl Biochemie III, Regensburg, Germany.
| | - Joachim Griesenbeck
- Universität Regensburg, Regensburg Center for Biochemistry (RCB), Lehrstuhl Biochemie III, Regensburg, Germany
| | - Herbert Tschochner
- Universität Regensburg, Regensburg Center for Biochemistry (RCB), Lehrstuhl Biochemie III, Regensburg, Germany.
| |
Collapse
|
23
|
Kessler AC, Maraia RJ. The nuclear and cytoplasmic activities of RNA polymerase III, and an evolving transcriptome for surveillance. Nucleic Acids Res 2021; 49:12017-12034. [PMID: 34850129 PMCID: PMC8643620 DOI: 10.1093/nar/gkab1145] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Revised: 10/26/2021] [Accepted: 11/02/2021] [Indexed: 12/23/2022] Open
Abstract
A 1969 report that described biochemical and activity properties of the three eukaryotic RNA polymerases revealed Pol III as highly distinguishable, even before its transcripts were identified. Now known to be the most complex, Pol III contains several stably-associated subunits referred to as built-in transcription factors (BITFs) that enable highly efficient RNA synthesis by a unique termination-associated recycling process. In vertebrates, subunit RPC7(α/β) can be of two forms, encoded by POLR3G or POLR3GL, with differential activity. Here we review promoter-dependent transcription by Pol III as an evolutionary perspective of eukaryotic tRNA expression. Pol III also provides nonconventional functions reportedly by promoter-independent transcription, one of which is RNA synthesis from DNA 3'-ends during repair. Another is synthesis of 5'ppp-RNA signaling molecules from cytoplasmic viral DNA in a pathway of interferon activation that is dysfunctional in immunocompromised patients with mutations in Pol III subunits. These unconventional functions are also reviewed, including evidence that link them to the BITF subunits. We also review data on a fraction of the human Pol III transcriptome that evolved to include vault RNAs and snaRs with activities related to differentiation, and in innate immune and tumor surveillance. The Pol III of higher eukaryotes does considerably more than housekeeping.
Collapse
Affiliation(s)
- Alan C Kessler
- Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, 20892 USA
| | - Richard J Maraia
- Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, 20892 USA
| |
Collapse
|
24
|
Mishra S, Hasan SH, Sakhawala RM, Chaudhry S, Maraia RJ. Mechanism of RNA polymerase III termination-associated reinitiation-recycling conferred by the essential function of the N terminal-and-linker domain of the C11 subunit. Nat Commun 2021; 12:5900. [PMID: 34625550 PMCID: PMC8501072 DOI: 10.1038/s41467-021-26080-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Accepted: 09/17/2021] [Indexed: 01/06/2023] Open
Abstract
RNA polymerase III achieves high level tRNA synthesis by termination-associated reinitiation-recycling that involves the essential C11 subunit and heterodimeric C37/53. The C11-CTD (C-terminal domain) promotes Pol III active center-intrinsic RNA 3'-cleavage although deciphering function for this activity has been complicated. We show that the isolated NTD (N-terminal domain) of C11 stimulates Pol III termination by C37/53 but not reinitiation-recycling which requires the NTD-linker (NTD-L). By an approach different from what led to current belief that RNA 3'-cleavage activity is essential, we show that NTD-L can provide the essential function of Saccharomyces cerevisiae C11 whereas classic point mutations that block cleavage, interfere with active site function and are toxic to growth. Biochemical and in vivo analysis including of the C11 invariant central linker led to a model for Pol III termination-associated reinitiation-recycling. The C11 NTD and CTD stimulate termination and RNA 3'-cleavage, respectively, whereas reinitiation-recycling activity unique to Pol III requires only the NTD-linker. RNA 3'-cleavage activity increases growth rate but is nonessential.
Collapse
Affiliation(s)
- Saurabh Mishra
- Intramural Research Program of the Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, USA
- Department of Biochemistry, Banaras Hindu University, Varanasi, Uttar Pradesh, India
| | - Shaina H Hasan
- Intramural Research Program of the Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, USA
- Mayo Clinic Alix School of Medicine, Scottsdale, AZ, USA
| | - Rima M Sakhawala
- Intramural Research Program of the Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, USA
- Section on Regulatory RNA, National Institute of Diabetes and Digestive and Kidney Diseases, Bethesda, MD, USA
| | - Shereen Chaudhry
- Intramural Research Program of the Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, USA
- Pfizer (Pearl River Site), 401 N Middletown Rd, Pearl River, NY, USA
| | - Richard J Maraia
- Intramural Research Program of the Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, USA.
| |
Collapse
|
25
|
Defective myelination in an RNA polymerase III mutant leukodystrophic mouse. Proc Natl Acad Sci U S A 2021; 118:2024378118. [PMID: 34583988 DOI: 10.1073/pnas.2024378118] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/25/2021] [Indexed: 01/06/2023] Open
Abstract
RNA polymerase (Pol) III synthesizes abundant short noncoding RNAs that have essential functions in protein synthesis, secretion, and other processes. Despite the ubiquitous functions of these RNAs, mutations in Pol III subunits cause Pol III-related leukodystrophy, an early-onset neurodegenerative disease. The basis of this neural sensitivity and the mechanisms of disease pathogenesis are unknown. Here we show that mice expressing pathogenic mutations in the largest Pol III subunit, Polr3a, specifically in Olig2-expressing cells, have impaired growth and developmental delay, deficits in cognitive, sensory, and fine sensorimotor function, and hypomyelination in multiple regions of the cerebrum and spinal cord. These phenotypes reflect a subset of clinical features seen in patients. In contrast, the gross motor defects and cerebellar hypomyelination that are common features of severely affected patients are absent in the mice, suggesting a relatively mild form of the disease in this conditional model. Our results show that disease pathogenesis in the mice involves defects that reduce both the number of mature myelinating oligodendrocytes and the ability of these cells to produce a myelin sheath of normal thickness. The findings suggest unique sensitivities of oligodendrogenesis and myelination to perturbations of Pol III transcription.
Collapse
|
26
|
Rashidieh B, Molakarimi M, Mohseni A, Tria SM, Truong H, Srihari S, Adams RC, Jones M, Duijf PHG, Kalimutho M, Khanna KK. Targeting BRF2 in Cancer Using Repurposed Drugs. Cancers (Basel) 2021; 13:cancers13153778. [PMID: 34359683 PMCID: PMC8345145 DOI: 10.3390/cancers13153778] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 07/16/2021] [Accepted: 07/21/2021] [Indexed: 11/29/2022] Open
Abstract
Simple Summary BRF2, a subunit of the RNA polymerase III transcription complex, is upregulated in a wide variety of cancers and is a potential therapeutic target; however, no effective drugs are available to target BRF2. The upregulation of BRF2 in cancer cells confers survival via the prevention of oxidative stress-induced apoptosis. In this manuscript, we report the identification of potential BRF2 inhibitors through in silico drug repurposing screening. We further characterized bexarotene as a hit compound for the development of selective BRF2 inhibitors and provide experimental validation to support the repurposing of this FDA-approved drug as an agent to reduce the cellular levels of ROS and consequent BRF2 expression in cancers with elevated levels of oxidative stress. Abstract The overexpression of BRF2, a selective subunit of RNA polymerase III, has been shown to be crucial in the development of several types of cancers, including breast cancer and lung squamous cell carcinoma. Predominantly, BRF2 acts as a central redox-sensing transcription factor (TF) and is involved in rescuing oxidative stress (OS)-induced apoptosis. Here, we showed a novel link between BRF2 and the DNA damage response. Due to the lack of BRF2-specific inhibitors, through virtual screening and molecular dynamics simulation, we identified potential drug candidates that interfere with BRF2-TATA-binding Protein (TBP)-DNA complex interactions based on binding energy, intermolecular, and torsional energy parameters. We experimentally tested bexarotene as a potential BRF2 inhibitor. We found that bexarotene (Bex) treatment resulted in a dramatic decline in oxidative stress and Tert-butylhydroquinone (tBHQ)-induced levels of BRF2 and consequently led to a decrease in the cellular proliferation of cancer cells which may in part be due to the drug pretreatment-induced reduction of ROS generated by the oxidizing agent. Our data thus provide the first experimental evidence that BRF2 is a novel player in the DNA damage response pathway and that bexarotene can be used as a potential inhibitor to treat cancers with the specific elevation of oxidative stress.
Collapse
Affiliation(s)
- Behnam Rashidieh
- QIMR Berghofer Medical Research Institute, Herston, QLD 4006, Australia; (S.M.T.); (H.T.); (S.S.); (R.C.A.); (M.K.)
- Correspondence: (B.R.); (K.K.K.)
| | - Maryam Molakarimi
- Department of Biochemistry, Faculty of Biological Sciences, Tarbiat Modares University (TMU), Nasr Bridge, Tehran 14115-154, Iran; (M.M.); (A.M.)
| | - Ammar Mohseni
- Department of Biochemistry, Faculty of Biological Sciences, Tarbiat Modares University (TMU), Nasr Bridge, Tehran 14115-154, Iran; (M.M.); (A.M.)
| | - Simon Manuel Tria
- QIMR Berghofer Medical Research Institute, Herston, QLD 4006, Australia; (S.M.T.); (H.T.); (S.S.); (R.C.A.); (M.K.)
- School of Environment and Science, Griffith University, Nathan, QLD 4111, Australia
| | - Hein Truong
- QIMR Berghofer Medical Research Institute, Herston, QLD 4006, Australia; (S.M.T.); (H.T.); (S.S.); (R.C.A.); (M.K.)
| | - Sriganesh Srihari
- QIMR Berghofer Medical Research Institute, Herston, QLD 4006, Australia; (S.M.T.); (H.T.); (S.S.); (R.C.A.); (M.K.)
| | - Rachael C. Adams
- QIMR Berghofer Medical Research Institute, Herston, QLD 4006, Australia; (S.M.T.); (H.T.); (S.S.); (R.C.A.); (M.K.)
| | - Mathew Jones
- The University of Queensland Diamantina Institute, Faculty of Medicine, The University of Queensland, Brisbane, QLD 4102, Australia;
| | - Pascal H. G. Duijf
- Institute of Health and Biomedical Innovation, School of Biomedical Sciences, Faculty of Health, Queensland University of Technology (QUT), Brisbane, QLD 4000, Australia;
- Centre for Data Science, Queensland University of Technology (QUT), Brisbane, QLD 4000, Australia
| | - Murugan Kalimutho
- QIMR Berghofer Medical Research Institute, Herston, QLD 4006, Australia; (S.M.T.); (H.T.); (S.S.); (R.C.A.); (M.K.)
| | - Kum Kum Khanna
- QIMR Berghofer Medical Research Institute, Herston, QLD 4006, Australia; (S.M.T.); (H.T.); (S.S.); (R.C.A.); (M.K.)
- Correspondence: (B.R.); (K.K.K.)
| |
Collapse
|
27
|
Structure of human RNA polymerase III elongation complex. Cell Res 2021; 31:791-800. [PMID: 33674783 PMCID: PMC8249397 DOI: 10.1038/s41422-021-00472-2] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Accepted: 01/06/2021] [Indexed: 01/31/2023] Open
Abstract
RNA polymerase III (Pol III) transcribes essential structured small RNAs, such as tRNAs, 5S rRNA and U6 snRNA. The transcriptional activity of Pol III is tightly controlled and its dysregulation is associated with human diseases, such as cancer. Human Pol III has two isoforms with difference only in one of its subunits RPC7 (α and β). Despite structural studies of yeast Pol III, structure of human Pol III remains unsolved. Here, we determined the structures of 17-subunit human Pol IIIα complex in the backtracked and post-translocation states, respectively. Human Pol III contains a generally conserved catalytic core, similar to that of yeast counterpart, and structurally unique RPC3-RPC6-RPC7 heterotrimer and RPC10. The N-ribbon of TFIIS-like RPC10 docks on the RPC4-RPC5 heterodimer and the C-ribbon inserts into the funnel of Pol III in the backtracked state but is more flexible in the post-translocation state. RPC7 threads through the heterotrimer and bridges the stalk and Pol III core module. The winged helix 1 domain of RPC6 and the N-terminal region of RPC7α stabilize each other and may prevent Maf1-mediated repression of Pol III activity. The C-terminal FeS cluster of RPC6 coordinates a network of interactions that mediate core-heterotrimer contacts and stabilize Pol III. Our structural analysis sheds new light on the molecular mechanism of human Pol IIIα-specific transcriptional regulation and provides explanations for upregulated Pol III activity in RPC7α-dominant cancer cells.
Collapse
|
28
|
Cherkasova V, Iben JR, Pridham KJ, Kessler AC, Maraia RJ. The leucine-NH4+ uptake regulator Any1 limits growth as part of a general amino acid control response to loss of La protein by fission yeast. PLoS One 2021; 16:e0253494. [PMID: 34153074 PMCID: PMC8216550 DOI: 10.1371/journal.pone.0253494] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Accepted: 06/04/2021] [Indexed: 11/19/2022] Open
Abstract
The sla1+ gene of Schizosachharoymces pombe encodes La protein which promotes proper processing of precursor-tRNAs. Deletion of sla1 (sla1Δ) leads to disrupted tRNA processing and sensitivity to target of rapamycin (TOR) inhibition. Consistent with this, media containing NH4+ inhibits leucine uptake and growth of sla1Δ cells. Here, transcriptome analysis reveals that genes upregulated in sla1Δ cells exhibit highly significant overalp with general amino acid control (GAAC) genes in relevant transcriptomes from other studies. Growth in NH4+ media leads to additional induced genes that are part of a core environmental stress response (CESR). The sla1Δ GAAC response adds to evidence linking tRNA homeostasis and broad signaling in S. pombe. We provide evidence that deletion of the Rrp6 subunit of the nuclear exosome selectively dampens a subset of GAAC genes in sla1Δ cells suggesting that nuclear surveillance-mediated signaling occurs in S. pombe. To study the NH4+-effects, we isolated sla1Δ spontaneous revertants (SSR) of the slow growth phenotype and found that GAAC gene expression and rapamycin hypersensitivity were also reversed. Genome sequencing identified a F32V substitution in Any1, a known negative regulator of NH4+-sensitive leucine uptake linked to TOR. We show that 3H-leucine uptake by SSR-any1-F32V cells in NH4+-media is more robust than by sla1Δ cells. Moreover, F32V may alter any1+ function in sla1Δ vs. sla1+ cells in a distinctive way. Thus deletion of La, a tRNA processing factor leads to a GAAC response involving reprogramming of amino acid metabolism, and isolation of the any1-F32V rescuing mutant provides an additional specific link.
Collapse
Affiliation(s)
- Vera Cherkasova
- Kelly@DeWitt, Inc, National Library of Medicine, National Institutes of Health, Bethesda, MD, United States of America
| | - James R. Iben
- Molecular Genomics Core, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, United States of America
| | - Kevin J. Pridham
- Fralin Biomedical Research Institute at Virginia Tech, Roanoke, VA, United States of America
| | - Alan C. Kessler
- Section on Molecular and Cell Biology, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD United States of America
| | - Richard J. Maraia
- Section on Molecular and Cell Biology, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD United States of America
- * E-mail:
| |
Collapse
|
29
|
McNeill RV, Palladino VS, Brunkhorst-Kanaan N, Grimm O, Reif A, Kittel-Schneider S. Expression of the adult ADHD-associated gene ADGRL3 is dysregulated by risk variants and environmental risk factors. World J Biol Psychiatry 2021; 22:335-349. [PMID: 32787626 DOI: 10.1080/15622975.2020.1809014] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
OBJECTIVES ADGRL3 is a well-replicated risk gene for adult ADHD, encoding the G protein-coupled receptor latrophilin-3 (LPHN3). However, LPHN3's potential role in pathogenesis is unclear. We aimed to determine whether ADGRL3 expression could be dysregulated by genetic risk variants and/or ADHD-associated environmental risk factors. METHODS Eighteen adult ADHD patients and healthy controls were genotyped for rs734644, rs1397547, rs1397548, rs2271338, rs2305339, rs2345039 and rs6551665 ADGRL3 SNPs, and fibroblast cells were derived from skin punches. The environmental ADHD risk factors 'low birthweight' and 'maternal smoking' were modelled in fibroblast cell culture using starvation and nicotine exposure, respectively. Quantitative real-time PCR and western blotting were performed to quantify ADGRL3 gene and protein expression under control, starvation and nicotine-exposed conditions. RESULTS Starvation was found to significantly decrease ADGRL3 expression, whereas nicotine exposure significantly increased ADGRL3 expression. rs1397547 significantly elevated ADGRL3 transcription and protein expression. rs6551665 and rs2345039 interacted with environment to modulate ADGRL3 transcription. ADGRL3 SNPs were significantly able to predict its transcription under both baseline and starvation conditions, and rs1397547 was identified as a significant independent predictor. CONCLUSIONS ADGRL3 SNPs and environmental risk factors can regulate ADGRL3 expression, providing a potential functional mechanism by which LPHN3 may play a role in ADHD pathogenesis.
Collapse
Affiliation(s)
- Rhiannon V McNeill
- Department of Psychiatry, Psychotherapy and Psychosomatic Medicine, University Hospital Frankfurt, Frankfurt, Germany.,Department of Psychiatry, Psychotherapy and Psychosomatic Medicine, University Hospital Würzburg, Würzburg, Germany
| | - Viola Stella Palladino
- Department of Psychiatry, Psychotherapy and Psychosomatic Medicine, University Hospital Frankfurt, Frankfurt, Germany
| | - Nathalie Brunkhorst-Kanaan
- Department of Psychiatry, Psychotherapy and Psychosomatic Medicine, University Hospital Frankfurt, Frankfurt, Germany
| | - Oliver Grimm
- Department of Psychiatry, Psychotherapy and Psychosomatic Medicine, University Hospital Frankfurt, Frankfurt, Germany
| | - Andreas Reif
- Department of Psychiatry, Psychotherapy and Psychosomatic Medicine, University Hospital Frankfurt, Frankfurt, Germany
| | - Sarah Kittel-Schneider
- Department of Psychiatry, Psychotherapy and Psychosomatic Medicine, University Hospital Frankfurt, Frankfurt, Germany.,Department of Psychiatry, Psychotherapy and Psychosomatic Medicine, University Hospital Würzburg, Würzburg, Germany
| |
Collapse
|
30
|
Jarrous N, Mani D, Ramanathan A. Coordination of transcription and processing of tRNA. FEBS J 2021; 289:3630-3641. [PMID: 33929081 DOI: 10.1111/febs.15904] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Revised: 04/02/2021] [Accepted: 04/28/2021] [Indexed: 12/17/2022]
Abstract
Coordination of transcription and processing of RNA is a basic principle in regulation of gene expression in eukaryotes. In the case of mRNA, coordination is primarily founded on a co-transcriptional processing mechanism by which a nascent precursor mRNA undergoes maturation via cleavage and modification by the transcription machinery. A similar mechanism controls the biosynthesis of rRNA. However, the coordination of transcription and processing of tRNA, a rather short transcript, remains unknown. Here, we present a model for high molecular weight initiation complexes of human RNA polymerase III that assemble on tRNA genes and process precursor transcripts to mature forms. These multifunctional initiation complexes may support co-transcriptional processing, such as the removal of the 5' leader of precursor tRNA by RNase P. Based on this model, maturation of tRNA is predetermined prior to transcription initiation.
Collapse
Affiliation(s)
- Nayef Jarrous
- Microbiology and Molecular Genetics, Institute of Medical Research Israel-Canada, The Hebrew University-Hadassah Medical School, Jerusalem, Israel
| | - Dhivakar Mani
- Microbiology and Molecular Genetics, Institute of Medical Research Israel-Canada, The Hebrew University-Hadassah Medical School, Jerusalem, Israel
| | - Aravind Ramanathan
- Microbiology and Molecular Genetics, Institute of Medical Research Israel-Canada, The Hebrew University-Hadassah Medical School, Jerusalem, Israel
| |
Collapse
|
31
|
Plasmodium oocysts respond with dormancy to crowding and nutritional stress. Sci Rep 2021; 11:3090. [PMID: 33542254 PMCID: PMC7862253 DOI: 10.1038/s41598-021-81574-0] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Accepted: 01/08/2021] [Indexed: 12/13/2022] Open
Abstract
Malaria parasites develop as oocysts in the mosquito for several days before they are able to infect a human host. During this time, mosquitoes take bloodmeals to replenish their nutrient and energy reserves needed for flight and reproduction. We hypothesized that these bloodmeals are critical for oocyst growth and that experimental infection protocols, typically involving a single bloodmeal at the time of infection, cause nutritional stress to the developing oocysts. Therefore, enumerating oocysts disregarding their growth and differentiation state may lead to erroneous conclusions about the efficacy of transmission blocking interventions. Here, we examine this hypothesis in Anopheles coluzzii mosquitoes infected with the human and rodent parasites Plasmodium falciparum and Plasmodium berghei, respectively. We show that oocyst growth and maturation rates decrease at late developmental stages as infection intensities increase; an effect exacerbated at very high infection intensities but fully restored with post infection bloodmeals. High infection intensities and starvation conditions reduce RNA Polymerase III activity in oocysts unless supplemental bloodmeals are provided. Our results suggest that oocysts respond to crowding and nutritional stress with a dormancy-like strategy, which urges the development of alternative methods to assess the efficacy of transmission blocking interventions.
Collapse
|
32
|
Wang Q, Li S, Wan F, Xu Y, Wu Z, Cao M, Lan P, Lei M, Wu J. Structural insights into transcriptional regulation of human RNA polymerase III. Nat Struct Mol Biol 2021; 28:220-227. [PMID: 33558766 DOI: 10.1038/s41594-021-00557-x] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2020] [Accepted: 12/29/2020] [Indexed: 01/30/2023]
Abstract
RNA polymerase III (Pol III) synthesizes structured, essential small RNAs, such as transfer RNA, 5S ribosomal RNA and U6 small nuclear RNA. Pol III, the largest nuclear RNA polymerase, is composed of a conserved core region and eight constitutive regulatory subunits, but how these factors jointly regulate Pol III transcription remains unclear. Here, we present cryo-EM structures of human Pol III in both apo and elongating states, which unveil both an orchestrated movement during the apo-to-elongating transition and an unexpected apo state in which the RPC7 subunit tail occupies the DNA-RNA-binding cleft of Pol III, suggesting that RPC7 plays important roles in both autoinhibition and transcription initiation. The structures also reveal a proofreading mechanism for the TFIIS-like subunit RPC10, which stably retains its catalytic position in the secondary channel, explaining the high fidelity of Pol III transcription. Our work provides an integrated picture of the mechanism of Pol III transcription regulation.
Collapse
Affiliation(s)
- Qianmin Wang
- State Key Laboratory of Oncogenes and Related Genes, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Shanghai Institute of Precision Medicine, Shanghai, China
| | - Shaobai Li
- State Key Laboratory of Oncogenes and Related Genes, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Shanghai Institute of Precision Medicine, Shanghai, China
| | - Futang Wan
- State Key Laboratory of Oncogenes and Related Genes, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Shanghai Institute of Precision Medicine, Shanghai, China
| | - Youwei Xu
- Shanghai Institute for Advanced Immunochemical Studies, ShanghaiTech University, Shanghai, China
| | - Zhenfang Wu
- State Key Laboratory of Oncogenes and Related Genes, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Shanghai Institute of Precision Medicine, Shanghai, China
| | - Mi Cao
- State Key Laboratory of Oncogenes and Related Genes, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Shanghai Institute of Precision Medicine, Shanghai, China
| | - Pengfei Lan
- State Key Laboratory of Oncogenes and Related Genes, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China. .,Shanghai Institute of Precision Medicine, Shanghai, China.
| | - Ming Lei
- State Key Laboratory of Oncogenes and Related Genes, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China. .,Shanghai Institute of Precision Medicine, Shanghai, China. .,Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| | - Jian Wu
- State Key Laboratory of Oncogenes and Related Genes, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China. .,Shanghai Institute of Precision Medicine, Shanghai, China.
| |
Collapse
|
33
|
Shukla A, Bhalla P, Potdar PK, Jampala P, Bhargava P. Transcription-dependent enrichment of the yeast FACT complex influences nucleosome dynamics on the RNA polymerase III-transcribed genes. RNA (NEW YORK, N.Y.) 2020; 27:rna.077974.120. [PMID: 33277439 PMCID: PMC7901838 DOI: 10.1261/rna.077974.120] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Accepted: 11/30/2020] [Indexed: 05/04/2023]
Abstract
The FACT (FAcilitates Chromatin Transactions) complex influences transcription initiation and enables passage of RNA polymerase (pol) II through gene body nucleosomes during elongation. In the budding yeast, ~280 non-coding RNA genes highly transcribed in vivo by pol III are found in the nucleosome-free regions bordered by positioned nucleosomes. The downstream nucleosome dynamics was found to regulate transcription via controlling the gene terminator accessibility and hence, terminator-dependent pol III recycling. As opposed to the enrichment at the 5'-ends of pol II-transcribed genes, our genome-wide mapping found transcription-dependent enrichment of the FACT subunit Spt16 near the 3'-end of all pol III-transcribed genes. Spt16 physically associates with the pol III transcription complex and shows gene-specific occupancy levels on the individual genes. On the non-tRNA pol III-transcribed genes, Spt16 facilitates transcription by reducing the nucleosome occupany on the gene body. On the tRNA genes, it maintains the position of the nucleosome at the 3' gene-end and affects transcription in gene-specific manner. Under nutritional stress, Spt16 enrichment is abolished in the gene downstream region of all pol III-transcribed genes and reciprocally changed on the induced or repressed pol II-transcribed ESR genes. Under the heat and replicative stress, its occupancy on the pol III-transcribed genes increases significantly. Our results show that Spt16 elicits a differential, gene-specific and stress-responsive dynamics, which provides a novel stress-sensor mechanism of regulating transcription against external stress. By primarily influencing the nucleosomal organization, FACT links the downstream nucleosome dynamics to transcription and environmental stress on the pol III-transcribed genes.
Collapse
|
34
|
A mutation in POLR3E impairs antiviral immune response and RNA polymerase III. Proc Natl Acad Sci U S A 2020; 117:22113-22121. [PMID: 32843346 DOI: 10.1073/pnas.2009947117] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
RNA polymerase (Pol) III has a noncanonical role of viral DNA sensing in the innate immune system. This polymerase transcribes viral genomes to produce RNAs that lead to induction of type I interferons (IFNs). However, the genetic and functional links of Pol III to innate immunity in humans remain largely unknown. Here, we describe a rare homozygous mutation (D40H) in the POLR3E gene, coding for a protein subunit of Pol III, in a child with recurrent and systemic viral infections and Langerhans cell histiocytosis. Fibroblasts derived from the patient exhibit impaired induction of type I IFN and increased susceptibility to human cytomegalovirus (HCMV) infection. Cultured cell lines infected with HCMV show induction of POLR3E expression. However, induction is not restricted to DNA virus, as sindbis virus, an RNA virus, enhances the expression of this protein. Likewise, foreign nonviral DNA elevates the steady-state level of POLR3E and elicits promoter-dependent and -independent transcription by Pol III. Remarkably, the molecular mechanism underlying the D40H mutation of POLR3E involves the assembly of defective initiation complexes of Pol III. Our study links mutated POLR3E and Pol III to an innate immune deficiency state in humans.
Collapse
|
35
|
Otsubo Y, Kamada Y, Yamashita A. Novel Links between TORC1 and Traditional Non-Coding RNA, tRNA. Genes (Basel) 2020; 11:E956. [PMID: 32825021 PMCID: PMC7563549 DOI: 10.3390/genes11090956] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Revised: 08/17/2020] [Accepted: 08/17/2020] [Indexed: 12/19/2022] Open
Abstract
Target of rapamycin (TOR) is a serine/threonine kinase that modulates cell growth and metabolism in response to environmental changes. Transfer RNA (tRNA) is an abundant and ubiquitous small non-coding RNA that is essential in the translation of mRNAs. Beyond its canonical role, it has been revealed that tRNAs have more diverse functions. TOR complex 1 (TORC1), which is one of the two TOR complexes, regulates tRNA synthesis by controlling RNA polymerase III. In addition to tRNA synthesis regulation, recent studies have revealed hidden connections between TORC1 and tRNA, which are both essential players in eukaryotic cellular activities. Here, we review the accumulating findings on the regulatory links between TORC1 and tRNA-particularly those links in the budding yeast Saccharomyces cerevisiae and the fission yeast Schizosaccharomyces pombe.
Collapse
Affiliation(s)
- Yoko Otsubo
- National Institute for Basic Biology, Nishigonaka 38, Myodaiji, Okazaki, Aichi 444-8585, Japan; (Y.O.); (Y.K.)
- National Institute for Fusion Science, 322-6 Oroshi, Toki, Gifu 509-5292, Japan
- Center for Novel Science Initiatives, National Institutes of Natural Sciences, Nishigonaka 38, Myodaiji, Okazaki, Aichi 444-8585, Japan
| | - Yoshiaki Kamada
- National Institute for Basic Biology, Nishigonaka 38, Myodaiji, Okazaki, Aichi 444-8585, Japan; (Y.O.); (Y.K.)
- Department of Basic Biology, School of Life Science, SOKENDAI (The Graduate University for Advanced Studies), Nishigonaka 38, Myodaiji, Okazaki, Aichi 444-8585, Japan
| | - Akira Yamashita
- National Institute for Basic Biology, Nishigonaka 38, Myodaiji, Okazaki, Aichi 444-8585, Japan; (Y.O.); (Y.K.)
- Center for Novel Science Initiatives, National Institutes of Natural Sciences, Nishigonaka 38, Myodaiji, Okazaki, Aichi 444-8585, Japan
- Department of Basic Biology, School of Life Science, SOKENDAI (The Graduate University for Advanced Studies), Nishigonaka 38, Myodaiji, Okazaki, Aichi 444-8585, Japan
| |
Collapse
|
36
|
MAF1 is a chronic repressor of RNA polymerase III transcription in the mouse. Sci Rep 2020; 10:11956. [PMID: 32686713 PMCID: PMC7371695 DOI: 10.1038/s41598-020-68665-0] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2019] [Accepted: 06/11/2020] [Indexed: 01/09/2023] Open
Abstract
Maf1−/− mice are lean, obesity-resistant and metabolically inefficient. Their increased energy expenditure is thought to be driven by a futile RNA cycle that reprograms metabolism to meet an increased demand for nucleotides stemming from the deregulation of RNA polymerase (pol) III transcription. Metabolic changes consistent with this model have been reported in both fasted and refed mice, however the impact of the fasting-refeeding-cycle on pol III function has not been examined. Here we show that changes in pol III occupancy in the liver of fasted versus refed wild-type mice are largely confined to low and intermediate occupancy genes; high occupancy genes are unchanged. However, in Maf1−/− mice, pol III occupancy of the vast majority of active loci in liver and the levels of specific precursor tRNAs in this tissue and other organs are higher than wild-type in both fasted and refed conditions. Thus, MAF1 functions as a chronic repressor of active pol III loci and can modulate transcription under different conditions. Our findings support the futile RNA cycle hypothesis, elaborate the mechanism of pol III repression by MAF1 and demonstrate a modest effect of MAF1 on global translation via reduced mRNA levels and translation efficiencies for several ribosomal proteins.
Collapse
|
37
|
Horwitz KB, Sartorius CA. 90 YEARS OF PROGESTERONE: Progesterone and progesterone receptors in breast cancer: past, present, future. J Mol Endocrinol 2020; 65:T49-T63. [PMID: 32485679 PMCID: PMC8525510 DOI: 10.1530/jme-20-0104] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Accepted: 05/29/2020] [Indexed: 02/05/2023]
Abstract
Progesterone and progesterone receptors (PR) have a storied albeit controversial history in breast cancers. As endocrine therapies for breast cancer progressed through the twentieth century from oophorectomy to antiestrogens, it was recognized in the 1970s that the presence of estrogen receptors (ER) alone could not efficiently predict treatment responses. PR, an estrogen regulated protein, became the first prognostic and predictive marker of response to endocrine therapies. It remains today as the gold standard for predicting the existence of functional, targetable ER in breast malignancies. PRs were subsequently identified as highly structured transcription factors that regulate diverse physiological processes in breast cancer cells. In the early 2000s, the somewhat surprising finding that prolonged use of synthetic progestin-containing menopausal hormone therapies was associated with increased breast cancer incidence raised new questions about the role of PR in 'tumorigenesis'. Most recently, PR have been linked to expansion of cancer stem cells that are postulated to be the principal cells reactivated in occult or dormant disease. Other studies establish PR as dominant modulators of ER activity. Together, these findings mark PR as bona fide targets for progestin or antiprogestin therapies, yet their diverse actions have confounded that use. Here we summarize the early history of PR in breast cancer; debunk the theory that progesterone causes cancer; discuss recent discoveries that PR regulate cell heterogeneity; attempt to unify theories describing PR as either good or bad actors in tumors; and discuss emerging areas of research that may help explain this enigmatic hormone and receptor.
Collapse
Affiliation(s)
- Kathryn B. Horwitz
- Department of Medicine, Division of Endocrinology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045
| | - Carol A. Sartorius
- Department of Pathology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045
- Corresponding author
| |
Collapse
|
38
|
Gene-Specific Control of tRNA Expression by RNA Polymerase II. Mol Cell 2020; 78:765-778.e7. [PMID: 32298650 DOI: 10.1016/j.molcel.2020.03.023] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2019] [Revised: 02/12/2020] [Accepted: 03/13/2020] [Indexed: 12/20/2022]
Abstract
Increasing evidence suggests that tRNA levels are dynamically and specifically regulated in response to internal and external cues to modulate the cellular translational program. However, the molecular players and the mechanisms regulating the gene-specific expression of tRNAs are still unknown. Using an inducible auxin-degron system to rapidly deplete RPB1 (the largest subunit of RNA Pol II) in living cells, we identified Pol II as a direct gene-specific regulator of tRNA transcription. Our data suggest that Pol II transcription robustly interferes with Pol III function at specific tRNA genes. This activity was further found to be essential for MAF1-mediated repression of a large set of tRNA genes during serum starvation, indicating that repression of tRNA genes by Pol II is dynamically regulated. Hence, Pol II plays a direct and central role in the gene-specific regulation of tRNA expression.
Collapse
|
39
|
Peng F, Zhou Y, Wang J, Guo B, Wei Y, Deng H, Wu Z, Zhang C, Shi K, Li Y, Wang X, Shore P, Zhao S, Deng W. The transcription factor Sp1 modulates RNA polymerase III gene transcription by controlling BRF1 and GTF3C2 expression in human cells. J Biol Chem 2020; 295:4617-4630. [PMID: 32115405 DOI: 10.1074/jbc.ra119.011555] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2019] [Revised: 02/16/2020] [Indexed: 01/10/2023] Open
Abstract
Specificity protein 1 (Sp1) is an important transcription factor implicated in numerous cellular processes. However, whether Sp1 is involved in the regulation of RNA polymerase III (Pol III)-directed gene transcription in human cells remains unknown. Here, we first show that filamin A (FLNA) represses Sp1 expression as well as expression of TFIIB-related factor 1 (BRF1) and general transcription factor III C subunit 2 (GTF3C2) in HeLa, 293T, and SaOS2 cell lines stably expressing FLNA-silencing shRNAs. Both BRF1 promoter 4 (BRF1P4) and GTF3C2 promoter 2 (GTF3C2P2) contain putative Sp1-binding sites, suggesting that Sp1 affects Pol III gene transcription by regulating BRF1 and GTF3C2 expression. We demonstrate that Sp1 knockdown inhibits Pol III gene transcription, BRF1 and GTF3C2 expression, and the proliferation of 293T and HeLa cells, whereas Sp1 overexpression enhances these activities. We obtained a comparable result in a cell line in which both FLNA and Sp1 were depleted. These results indicate that Sp1 is involved in the regulation of Pol III gene transcription independently of FLNA expression. Reporter gene assays showed that alteration of Sp1 expression affects BRF1P4 and GTF3C2P2 activation, suggesting that Sp1 modulates Pol III-mediated gene transcription by controlling BRF1 and GTF3C2 gene expression. Further analysis revealed that Sp1 interacts with and thereby promotes the occupancies of TATA box-binding protein, TFIIAα, and p300 at both BRF1P4 and GTF3C2P2. These findings indicate that Sp1 controls Pol III-directed transcription and shed light on how Sp1 regulates cancer cell proliferation.
Collapse
Affiliation(s)
- Feixia Peng
- College of Life Science and Health, Wuhan University of Science and Technology, Wuhan 430065, China
| | - Ying Zhou
- College of Life Science and Health, Wuhan University of Science and Technology, Wuhan 430065, China
| | - Juan Wang
- College of Life Science and Health, Wuhan University of Science and Technology, Wuhan 430065, China
| | - Baoqiang Guo
- Centre for Bioscience, Faculty of Science and Engineering, Manchester Metropolitan University, Manchester M1 5GD, United Kingdom
| | - Yun Wei
- College of Life Science and Health, Wuhan University of Science and Technology, Wuhan 430065, China
| | - Huan Deng
- College of Life Science and Health, Wuhan University of Science and Technology, Wuhan 430065, China
| | - Zihui Wu
- College of Life Science and Health, Wuhan University of Science and Technology, Wuhan 430065, China
| | - Cheng Zhang
- College of Life Science and Health, Wuhan University of Science and Technology, Wuhan 430065, China
| | - Kaituo Shi
- College of Life Science and Health, Wuhan University of Science and Technology, Wuhan 430065, China
| | - Yuan Li
- College of Life Science and Health, Wuhan University of Science and Technology, Wuhan 430065, China
| | - Xin Wang
- Faculty of Biology, Medicine and Health, University of Manchester, Manchester M13 9PL, United Kingdom
| | - Paul Shore
- Faculty of Biology, Medicine and Health, University of Manchester, Manchester M13 9PL, United Kingdom
| | - Shasha Zhao
- College of Life Science and Health, Wuhan University of Science and Technology, Wuhan 430065, China
| | - Wensheng Deng
- College of Life Science and Health, Wuhan University of Science and Technology, Wuhan 430065, China
| |
Collapse
|
40
|
Yang J, Smith DK, Ni H, Wu K, Huang D, Pan S, Sathe AA, Tang Y, Liu ML, Xing C, Zhang CL, Zhuge Q. SOX4-mediated repression of specific tRNAs inhibits proliferation of human glioblastoma cells. Proc Natl Acad Sci U S A 2020; 117:5782-5790. [PMID: 32123087 PMCID: PMC7084149 DOI: 10.1073/pnas.1920200117] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Transfer RNAs (tRNAs) are products of RNA polymerase III (Pol III) and essential for mRNA translation and ultimately cell growth and proliferation. Whether and how individual tRNA genes are specifically regulated is not clear. Here, we report that SOX4, a well-known Pol II-dependent transcription factor that is critical for neurogenesis and reprogramming of somatic cells, also directly controls, unexpectedly, the expression of a subset of tRNA genes and therefore protein synthesis and proliferation of human glioblastoma cells. Genome-wide location analysis through chromatin immunoprecipitation-sequencing uncovers specific targeting of SOX4 to a subset of tRNA genes, including those for tRNAiMet Mechanistically, sequence-specific SOX4-binding impedes the recruitment of TATA box binding protein and Pol III to tRNA genes and thereby represses their expression. CRISPR/Cas9-mediated down-regulation of tRNAiMet greatly inhibits growth and proliferation of human glioblastoma cells. Conversely, ectopic tRNAiMet partially rescues SOX4-mediated repression of cell proliferation. Together, these results uncover a regulatory mode of individual tRNA genes to control cell behavior. Such regulation may coordinate codon usage and translation efficiency to meet the demands of diverse tissues and cell types, including cancer cells.
Collapse
Affiliation(s)
- Jianjing Yang
- Department of Neurosurgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China 325000
- Zhejiang Provincial Key Laboratory of Aging and Neurological Disorder Research, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China 325000
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390
| | - Derek K Smith
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390
- Hamon Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75390
| | - Haoqi Ni
- Department of Neurosurgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China 325000
- Zhejiang Provincial Key Laboratory of Aging and Neurological Disorder Research, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China 325000
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390
| | - Ke Wu
- Department of Neurosurgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China 325000
- Zhejiang Provincial Key Laboratory of Aging and Neurological Disorder Research, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China 325000
| | - Dongdong Huang
- Department of Neurosurgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China 325000
- Zhejiang Provincial Key Laboratory of Aging and Neurological Disorder Research, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China 325000
| | - Sishi Pan
- Department of Neurosurgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China 325000
- Zhejiang Provincial Key Laboratory of Aging and Neurological Disorder Research, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China 325000
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390
| | - Adwait A Sathe
- McDermott Center of Human Growth and Development, University of Texas Southwestern Medical Center, Dallas, TX 75390
| | - Yu Tang
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390
- Hamon Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75390
| | - Meng-Lu Liu
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390
- Hamon Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75390
| | - Chao Xing
- McDermott Center of Human Growth and Development, University of Texas Southwestern Medical Center, Dallas, TX 75390
- Department of Bioinformatics, University of Texas Southwestern Medical Center, Dallas, TX 75390
- Department of Population and Data Sciences, University of Texas Southwestern Medical Center, Dallas, TX 75390
| | - Chun-Li Zhang
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390;
- Hamon Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75390
| | - Qichuan Zhuge
- Department of Neurosurgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China 325000;
- Zhejiang Provincial Key Laboratory of Aging and Neurological Disorder Research, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China 325000
| |
Collapse
|
41
|
Liapi E, van Bilsen M, Verjans R, Schroen B. tRNAs and tRNA fragments as modulators of cardiac and skeletal muscle function. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2020; 1867:118465. [DOI: 10.1016/j.bbamcr.2019.03.012] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2018] [Revised: 03/20/2019] [Accepted: 03/25/2019] [Indexed: 12/11/2022]
|
42
|
Determinants of Replication-Fork Pausing at tRNA Genes in Saccharomyces cerevisiae. Genetics 2020; 214:825-838. [PMID: 32071194 DOI: 10.1534/genetics.120.303092] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2019] [Accepted: 02/12/2020] [Indexed: 12/21/2022] Open
Abstract
Transfer RNA (tRNA) genes are widely studied sites of replication-fork pausing and genome instability in the budding yeast Saccharomyces cerevisiae tRNAs are extremely highly transcribed and serve as constitutive condensin binding sites. tRNA transcription by RNA polymerase III has previously been identified as stimulating replication-fork pausing at tRNA genes, but the nature of the block to replication has not been incontrovertibly demonstrated. Here, we describe a systematic, genome-wide analysis of the contributions of candidates to replication-fork progression at tDNAs in yeast: transcription factor binding, transcription, topoisomerase activity, condensin-mediated clustering, and Rad18-dependent DNA repair. We show that an asymmetric block to replication is maintained even when tRNA transcription is abolished by depletion of one or more subunits of RNA polymerase III. By contrast, analogous depletion of the essential transcription factor TFIIIB removes the obstacle to replication. Therefore, our data suggest that the RNA polymerase III transcription complex itself represents an asymmetric obstacle to replication even in the absence of RNA synthesis. We additionally demonstrate that replication-fork progression past tRNA genes is unaffected by the global depletion of condensin from the nucleus, and can be stimulated by the removal of topoisomerases or Rad18-dependent DNA repair pathways.
Collapse
|
43
|
Vorländer MK, Baudin F, Moir RD, Wetzel R, Hagen WJH, Willis IM, Müller CW. Structural basis for RNA polymerase III transcription repression by Maf1. Nat Struct Mol Biol 2020; 27:229-232. [PMID: 32066962 PMCID: PMC7104376 DOI: 10.1038/s41594-020-0383-y] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2019] [Accepted: 01/16/2020] [Indexed: 01/10/2023]
Abstract
Maf1 is a conserved inhibitor of RNA polymerase III (Pol III) that influences phenotypes from metabolic efficiency to lifespan. Here, we present a 3.3 Å cryo-EM structure of yeast Maf1 bound to Pol III, establishing that Maf1 sequesters Pol III elements involved in transcription initiation and binds the mobile C34 WH2 domain, sealing off the active site. The Maf1 binding site overlaps with that of TFIIIB in the pre-initiation complex.
Collapse
Affiliation(s)
- Matthias K Vorländer
- Structural and Computational Biology Unit, European Molecular Biology Laboratory (EMBL), Heidelberg, Germany.,Collaboration for Joint PhD Degree between EMBL and Heidelberg University Faculty of Biosciences, Heidelberg University, Heidelberg, Germany
| | - Florence Baudin
- Structural and Computational Biology Unit, European Molecular Biology Laboratory (EMBL), Heidelberg, Germany
| | - Robyn D Moir
- Department of Biochemistry, Albert Einstein College of Medicine, Bronx, NY, USA
| | - René Wetzel
- Structural and Computational Biology Unit, European Molecular Biology Laboratory (EMBL), Heidelberg, Germany
| | - Wim J H Hagen
- Structural and Computational Biology Unit, European Molecular Biology Laboratory (EMBL), Heidelberg, Germany
| | - Ian M Willis
- Department of Biochemistry, Albert Einstein College of Medicine, Bronx, NY, USA.,Department of Systems and Computational Biology, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Christoph W Müller
- Structural and Computational Biology Unit, European Molecular Biology Laboratory (EMBL), Heidelberg, Germany.
| |
Collapse
|
44
|
Shetty M, Noguchi C, Wilson S, Martinez E, Shiozaki K, Sell C, Mell JC, Noguchi E. Maf1-dependent transcriptional regulation of tRNAs prevents genomic instability and is associated with extended lifespan. Aging Cell 2020; 19:e13068. [PMID: 31833215 PMCID: PMC6996946 DOI: 10.1111/acel.13068] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2018] [Revised: 10/17/2019] [Accepted: 10/18/2019] [Indexed: 12/18/2022] Open
Abstract
Maf1 is the master repressor of RNA polymerase III responsible for transcription of tRNAs and 5S rRNAs. Maf1 is negatively regulated via phosphorylation by the mTOR pathway, which governs protein synthesis, growth control, and lifespan regulation in response to nutrient availability. Inhibiting the mTOR pathway extends lifespan in various organisms. However, the downstream effectors for the regulation of cell homeostasis that are critical to lifespan extension remain elusive. Here we show that fission yeast Maf1 is required for lifespan extension. Maf1's function in tRNA repression is inhibited by mTOR-dependent phosphorylation, whereas Maf1 is activated via dephosphorylation by protein phosphatase complexes, PP4 and PP2A. Mutational analysis reveals that Maf1 phosphorylation status influences lifespan, which is correlated with elevated tRNA and protein synthesis levels in maf1∆ cells. However, mTOR downregulation, which negates protein synthesis, fails to rescue the short lifespan of maf1∆ cells, suggesting that elevated protein synthesis is not a cause of lifespan shortening in maf1∆ cells. Interestingly, maf1∆ cells accumulate DNA damage represented by formation of Rad52 DNA damage foci and Rad52 recruitment at tRNA genes. Loss of the Rad52 DNA repair protein further exacerbates the shortened lifespan of maf1∆ cells. Strikingly, PP4 deletion alleviates DNA damage and rescues the short lifespan of maf1∆ cells even though tRNA synthesis is increased in this condition, suggesting that elevated DNA damage is the major cause of lifespan shortening in maf1∆ cells. We propose that Maf1-dependent inhibition of tRNA synthesis controls fission yeast lifespan by preventing genomic instability that arises at tRNA genes.
Collapse
Affiliation(s)
- Mihir Shetty
- Department of Biochemistry and Molecular Biology, Drexel University College of Medicine, Philadelphia, PA, USA
| | - Chiaki Noguchi
- Department of Biochemistry and Molecular Biology, Drexel University College of Medicine, Philadelphia, PA, USA
| | - Sydney Wilson
- Department of Biochemistry and Molecular Biology, Drexel University College of Medicine, Philadelphia, PA, USA
| | - Esteban Martinez
- Department of Biochemistry and Molecular Biology, Drexel University College of Medicine, Philadelphia, PA, USA
| | - Kazuhiro Shiozaki
- Division of Biological Science, Nara Institute of Science and Technology, Ikoma, Japan
- Department of Microbiology and Molecular Genetics, University of California, Davis, CA, USA
| | - Christian Sell
- Department of Pathology, Drexel University College of Medicine, Philadelphia, PA, USA
| | - Joshua Chang Mell
- Department of Microbiology and Immunology, Centers for Genomics Sciences, Drexel University College of Medicine, Philadelphia, PA, USA
| | - Eishi Noguchi
- Department of Biochemistry and Molecular Biology, Drexel University College of Medicine, Philadelphia, PA, USA
| |
Collapse
|
45
|
Liko D, Mitchell L, Campbell KJ, Ridgway RA, Jones C, Dudek K, King A, Bryson S, Stevenson D, Blyth K, Strathdee D, Morton JP, Bird TG, Knight JRP, Willis AE, Sansom OJ. Brf1 loss and not overexpression disrupts tissues homeostasis in the intestine, liver and pancreas. Cell Death Differ 2019; 26:2535-2550. [PMID: 30858608 PMCID: PMC6861133 DOI: 10.1038/s41418-019-0316-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2018] [Revised: 01/18/2019] [Accepted: 02/13/2019] [Indexed: 12/22/2022] Open
Abstract
RNA polymerase III (Pol-III) transcribes tRNAs and other small RNAs essential for protein synthesis and cell growth. Pol-III is deregulated during carcinogenesis; however, its role in vivo has not been studied. To address this issue, we manipulated levels of Brf1, a Pol-III transcription factor that is essential for recruitment of Pol-III holoenzyme at tRNA genes in vivo. Knockout of Brf1 led to embryonic lethality at blastocyst stage. In contrast, heterozygous Brf1 mice were viable, fertile and of a normal size. Conditional deletion of Brf1 in gastrointestinal epithelial tissues, intestine, liver and pancreas, was incompatible with organ homeostasis. Deletion of Brf1 in adult intestine and liver induced apoptosis. However, Brf1 heterozygosity neither had gross effects in these epithelia nor did it modify tumorigenesis in the intestine or pancreas. Overexpression of BRF1 rescued the phenotypes of Brf1 deletion in intestine and liver but was unable to initiate tumorigenesis. Thus, Brf1 and Pol-III activity are absolutely essential for normal homeostasis during development and in adult epithelia. However, Brf1 overexpression or heterozygosity are unable to modify tumorigenesis, suggesting a permissive, but not driving role for Brf1 in the development of epithelial cancers of the pancreas and gut.
Collapse
Affiliation(s)
- Dritan Liko
- CRUK Beatson Institute, Garscube Estate, Switchback Road, Glasgow, G61 1BD, UK
| | - Louise Mitchell
- CRUK Beatson Institute, Garscube Estate, Switchback Road, Glasgow, G61 1BD, UK
| | - Kirsteen J Campbell
- CRUK Beatson Institute, Garscube Estate, Switchback Road, Glasgow, G61 1BD, UK
| | - Rachel A Ridgway
- CRUK Beatson Institute, Garscube Estate, Switchback Road, Glasgow, G61 1BD, UK
| | - Carolyn Jones
- MRC Toxicology Unit, Hodgkin Building Lancaster Road, Leicester, LE1 9HN, UK
| | - Kate Dudek
- MRC Toxicology Unit, Hodgkin Building Lancaster Road, Leicester, LE1 9HN, UK
| | - Ayala King
- CRUK Beatson Institute, Garscube Estate, Switchback Road, Glasgow, G61 1BD, UK
| | - Sheila Bryson
- CRUK Beatson Institute, Garscube Estate, Switchback Road, Glasgow, G61 1BD, UK
| | - David Stevenson
- CRUK Beatson Institute, Garscube Estate, Switchback Road, Glasgow, G61 1BD, UK
| | - Karen Blyth
- CRUK Beatson Institute, Garscube Estate, Switchback Road, Glasgow, G61 1BD, UK
- Institute of Cancer Sciences, University of Glasgow, Glasgow, G61 1BD, UK
| | - Douglas Strathdee
- CRUK Beatson Institute, Garscube Estate, Switchback Road, Glasgow, G61 1BD, UK
| | - Jennifer P Morton
- CRUK Beatson Institute, Garscube Estate, Switchback Road, Glasgow, G61 1BD, UK
- Institute of Cancer Sciences, University of Glasgow, Glasgow, G61 1BD, UK
| | - Thomas G Bird
- CRUK Beatson Institute, Garscube Estate, Switchback Road, Glasgow, G61 1BD, UK
| | - John R P Knight
- CRUK Beatson Institute, Garscube Estate, Switchback Road, Glasgow, G61 1BD, UK.
| | - Anne E Willis
- MRC Toxicology Unit, Hodgkin Building Lancaster Road, Leicester, LE1 9HN, UK
| | - Owen J Sansom
- CRUK Beatson Institute, Garscube Estate, Switchback Road, Glasgow, G61 1BD, UK.
- Institute of Cancer Sciences, University of Glasgow, Glasgow, G61 1BD, UK.
| |
Collapse
|
46
|
Wang X, Rusin A, Walkey CJ, Lin JJ, Johnson DL. The RNA polymerase III repressor MAF1 is regulated by ubiquitin-dependent proteasome degradation and modulates cancer drug resistance and apoptosis. J Biol Chem 2019; 294:19255-19268. [PMID: 31645432 DOI: 10.1074/jbc.ra119.008849] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2019] [Revised: 10/01/2019] [Indexed: 01/03/2023] Open
Abstract
MAF1 homolog, negative regulator of RNA polymerase III (MAF1) is a key repressor of RNA polymerase (pol) III-dependent transcription and functions as a tumor suppressor. Its expression is frequently down-regulated in primary human hepatocellular carcinomas (HCCs). However, this reduction in MAF1 protein levels does not correlate with its transcript levels, indicating that MAF1 is regulated post-transcriptionally. Here, we demonstrate that MAF1 is a labile protein whose levels are regulated through the ubiquitin-dependent proteasome pathway. We found that MAF1 ubiquitination is enhanced upon mTOR complex 1 (TORC1)-mediated phosphorylation at Ser-75. Moreover, we observed that the E3 ubiquitin ligase cullin 2 (CUL2) critically regulates MAF1 ubiquitination and controls its stability and subsequent RNA pol III-dependent transcription. Analysis of the phenotypic consequences of modulating either CUL2 or MAF1 protein expression revealed changes in actin cytoskeleton reorganization and altered sensitivity to doxorubicin-induced apoptosis. Repression of RNA pol III-dependent transcription by chemical inhibition or knockdown of BRF1 RNA pol III transcription initiation factor subunit (BRF1) enhanced HCC cell sensitivity to doxorubicin, suggesting that MAF1 regulates doxorubicin resistance in HCC by controlling RNA pol III-dependent transcription. Together, our results identify the ubiquitin proteasome pathway and CUL2 as important regulators of MAF1 levels. They suggest that decreases in MAF1 protein underlie chemoresistance in HCC and perhaps other cancers and point to an important role for MAF1 and RNA pol III-mediated transcription in chemosensitivity and apoptosis.
Collapse
Affiliation(s)
- Xianlong Wang
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas 77030
| | - Aleksandra Rusin
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas 77030
| | - Christopher J Walkey
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas 77030
| | | | - Deborah L Johnson
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas 77030
| |
Collapse
|
47
|
Yeast PAF1 complex counters the pol III accumulation and replication stress on the tRNA genes. Sci Rep 2019; 9:12892. [PMID: 31501524 PMCID: PMC6733944 DOI: 10.1038/s41598-019-49316-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2018] [Accepted: 08/21/2019] [Indexed: 12/13/2022] Open
Abstract
The RNA polymerase (pol) III transcribes mostly short, house-keeping genes, which produce stable, non-coding RNAs. The tRNAs genes, highly transcribed by pol III in vivo are known replication fork barriers. One of the transcription factors, the PAF1C (RNA polymerase II associated factor 1 complex) is reported to associate with pol I and pol II and influence their transcription. We found low level PAF1C occupancy on the yeast pol III-transcribed genes, which is not correlated with nucleosome positions, pol III occupancy and transcription. PAF1C interacts with the pol III transcription complex and causes pol III loss from the genes under replication stress. Genotoxin exposure causes pol III but not Paf1 loss from the genes. In comparison, Paf1 deletion leads to increased occupancy of pol III, γ-H2A and DNA pol2 in gene-specific manner. Paf1 restricts the accumulation of pol III by influencing the pol III pause on the genes, which reduces the pol III barrier to the replication fork progression.
Collapse
|
48
|
Organization and regulation of gene transcription. Nature 2019; 573:45-54. [PMID: 31462772 DOI: 10.1038/s41586-019-1517-4] [Citation(s) in RCA: 423] [Impact Index Per Article: 70.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2019] [Accepted: 07/30/2019] [Indexed: 12/18/2022]
Abstract
The regulated transcription of genes determines cell identity and function. Recent structural studies have elucidated mechanisms that govern the regulation of transcription by RNA polymerases during the initiation and elongation phases. Microscopy studies have revealed that transcription involves the condensation of factors in the cell nucleus. A model is emerging for the transcription of protein-coding genes in which distinct transient condensates form at gene promoters and in gene bodies to concentrate the factors required for transcription initiation and elongation, respectively. The transcribing enzyme RNA polymerase II may shuttle between these condensates in a phosphorylation-dependent manner. Molecular principles are being defined that rationalize transcriptional organization and regulation, and that will guide future investigations.
Collapse
|
49
|
Transcription initiation factor TBP: old friend new questions. Biochem Soc Trans 2019; 47:411-423. [DOI: 10.1042/bst20180623] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2018] [Revised: 01/02/2019] [Accepted: 01/04/2019] [Indexed: 12/14/2022]
Abstract
Abstract
In all domains of life, the regulation of transcription by DNA-dependent RNA polymerases (RNAPs) is achieved at the level of initiation to a large extent. Whereas bacterial promoters are recognized by a σ-factor bound to the RNAP, a complex set of transcription factors that recognize specific promoter elements is employed by archaeal and eukaryotic RNAPs. These initiation factors are of particular interest since the regulation of transcription critically relies on initiation rates and thus formation of pre-initiation complexes. The most conserved initiation factor is the TATA-binding protein (TBP), which is of crucial importance for all archaeal-eukaryotic transcription initiation complexes and the only factor required to achieve full rates of initiation in all three eukaryotic and the archaeal transcription systems. Recent structural, biochemical and genome-wide mapping data that focused on the archaeal and specialized RNAP I and III transcription system showed that the involvement and functional importance of TBP is divergent from the canonical role TBP plays in RNAP II transcription. Here, we review the role of TBP in the different transcription systems including a TBP-centric discussion of archaeal and eukaryotic initiation complexes. We furthermore highlight questions concerning the function of TBP that arise from these findings.
Collapse
|
50
|
Bhalla P, Vernekar DV, Gilquin B, Couté Y, Bhargava P. Interactome of the yeast RNA polymerase III transcription machinery constitutes several chromatin modifiers and regulators of the genes transcribed by RNA polymerase II. Gene 2018; 702:205-214. [PMID: 30593915 DOI: 10.1016/j.gene.2018.12.037] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2018] [Revised: 12/17/2018] [Accepted: 12/20/2018] [Indexed: 02/06/2023]
Abstract
Eukaryotic transcription is a highly regulated fundamental life process. A large number of regulatory proteins and complexes, many of them with sequence-specific DNA-binding activity are known to influence transcription by RNA polymerase (pol) II with a fine precision. In comparison, only a few regulatory proteins are known for pol III, which transcribes genes encoding small, stable, non-translated RNAs. The pol III transcription is precisely regulated under various stress conditions. We used pol III transcription complex (TC) components TFIIIC (Tfc6), pol III (Rpc128) and TFIIIB (Brf1) as baits and mass spectrometry to identify their potential interactors in vivo. A large interactome constituting chromatin modifiers, regulators and factors of transcription by pol I and pol II supports the possibility of a crosstalk between the three transcription machineries. The association of proteins and complexes involved in various basic life processes like ribogenesis, RNA processing, protein folding and degradation, DNA damage response, replication and transcription underscores the possibility of the pol III TC serving as a signaling hub for communication between the transcription and other cellular physiological activities under normal growth conditions. We also found an equally large number of proteins and complexes interacting with the TC under nutrient starvation condition, of which at least 25% were non-identical under the two conditions. The data reveal the possibility of a large number of signaling cues for pol III transcription against adverse conditions, necessary for an efficient co-ordination of various cellular functions.
Collapse
Affiliation(s)
- Pratibha Bhalla
- Centre for Cellular and Molecular Biology (Council of Scientific and Industrial Research), Hyderabad, India
| | - Dipti Vinayak Vernekar
- Centre for Cellular and Molecular Biology (Council of Scientific and Industrial Research), Hyderabad, India
| | - Benoit Gilquin
- Univ. Grenoble Alpes, CEA, INSERM, BIG-BGE, Grenoble, France
| | - Yohann Couté
- Univ. Grenoble Alpes, CEA, INSERM, BIG-BGE, Grenoble, France
| | - Purnima Bhargava
- Centre for Cellular and Molecular Biology (Council of Scientific and Industrial Research), Hyderabad, India.
| |
Collapse
|