1
|
Li J, Lv L, Hu M, Liu Z, Zhou S. Inhibition of N6-methyladenosine methylation of ASC by berberine ameliorates pyroptosis of renal tubular epithelial cells in acute kidney injury. Cell Signal 2025; 131:111732. [PMID: 40074191 DOI: 10.1016/j.cellsig.2025.111732] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2024] [Revised: 03/04/2025] [Accepted: 03/09/2025] [Indexed: 03/14/2025]
Abstract
Acute kidney injury (AKI) lacks a definitive therapeutic approach beyond supportive care. One significant pathological mechanism involves the regulated death of tubular epithelial cells; however, the regulatory mechanisms underlying this cell death pathway require further investigation. The N6-methyladenosine (m6A) modification, recognized as the most prevalent modification in eukaryotes, plays a critical role in the regulatory processes associated with AKI. Here, this study investigates the association between methyltransferase-like 3 (METTL3) and pyroptosis in mice with folic acid (FA)-induced AKI. Both in vitro and in vivo experiments have confirmed that METTL3 plays a role in AKI progression, correlating with renal epithelial cell pyroptosis and inflammation. Moreover, RNA immunoprecipitation quantitative PCR (RIP-qPCR) analysis demonstrated that METTL3-mediated m6A methylation occurred in the mRNA of Apoptosis-associated speck-like protein containing a CARD (ASC) in H2O2-induced renal tubular epithelial (TCMK-1) cells. Notably, METTL3 knockdown resulted in reduced ASC protein expression, decreased release of inflammatory factors, and reduced pyroptosis. In addition, we verified the inhibitory effect of berberine hydrochloride, a monomer used in traditional Chinese medicine, on METTL3 expression. We also demonstrated that berberine ameliorated FA-induced AKI and H2O2-induced pyroptosis in TCMK-1 cells by inhibiting METTL3 and modulating the ASC/caspase-1/Gasdermin D axis. These findings provide insights into targeted therapies and drug development for AKI.
Collapse
Affiliation(s)
- Jiacheng Li
- Traditional Chinese Medicine Integrated Department of Nephrology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, PR China; Research Institute of Nephrology, Zhengzhou University, Zhengzhou 450052, PR China; Henan Province Research Center for Kidney Disease, Zhengzhou 450052, PR China; Key Laboratory of Precision Diagnosis and Treatment for Chronic Kidney Disease in Henan Province, Zhengzhou 450052, PR China; Tianjian Laboratory of Advanced Biomedical Sciences, Academy of Medical Sciences, Zhengzhou University Zhengzhou, Henan, China; Innovation Center of Basic Research for Metabolic-Associated Fatty Liver Disease, Ministry of Education of, China
| | - Linxiao Lv
- Traditional Chinese Medicine Integrated Department of Nephrology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, PR China; Research Institute of Nephrology, Zhengzhou University, Zhengzhou 450052, PR China; Henan Province Research Center for Kidney Disease, Zhengzhou 450052, PR China; Key Laboratory of Precision Diagnosis and Treatment for Chronic Kidney Disease in Henan Province, Zhengzhou 450052, PR China; Tianjian Laboratory of Advanced Biomedical Sciences, Academy of Medical Sciences, Zhengzhou University Zhengzhou, Henan, China; Innovation Center of Basic Research for Metabolic-Associated Fatty Liver Disease, Ministry of Education of, China
| | - Mingyang Hu
- Traditional Chinese Medicine Integrated Department of Nephrology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, PR China; Research Institute of Nephrology, Zhengzhou University, Zhengzhou 450052, PR China; Henan Province Research Center for Kidney Disease, Zhengzhou 450052, PR China; Key Laboratory of Precision Diagnosis and Treatment for Chronic Kidney Disease in Henan Province, Zhengzhou 450052, PR China; Tianjian Laboratory of Advanced Biomedical Sciences, Academy of Medical Sciences, Zhengzhou University Zhengzhou, Henan, China; Innovation Center of Basic Research for Metabolic-Associated Fatty Liver Disease, Ministry of Education of, China
| | - Zhangsuo Liu
- Traditional Chinese Medicine Integrated Department of Nephrology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, PR China; Research Institute of Nephrology, Zhengzhou University, Zhengzhou 450052, PR China; Henan Province Research Center for Kidney Disease, Zhengzhou 450052, PR China; Key Laboratory of Precision Diagnosis and Treatment for Chronic Kidney Disease in Henan Province, Zhengzhou 450052, PR China; Tianjian Laboratory of Advanced Biomedical Sciences, Academy of Medical Sciences, Zhengzhou University Zhengzhou, Henan, China; Innovation Center of Basic Research for Metabolic-Associated Fatty Liver Disease, Ministry of Education of, China.
| | - Sijie Zhou
- Traditional Chinese Medicine Integrated Department of Nephrology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, PR China; Research Institute of Nephrology, Zhengzhou University, Zhengzhou 450052, PR China; Henan Province Research Center for Kidney Disease, Zhengzhou 450052, PR China; Key Laboratory of Precision Diagnosis and Treatment for Chronic Kidney Disease in Henan Province, Zhengzhou 450052, PR China; Tianjian Laboratory of Advanced Biomedical Sciences, Academy of Medical Sciences, Zhengzhou University Zhengzhou, Henan, China; Innovation Center of Basic Research for Metabolic-Associated Fatty Liver Disease, Ministry of Education of, China.
| |
Collapse
|
2
|
Xi B, Lu Z, Zhang R, Zhao S, Li J, An X, Yue Y. Comprehensive analysis of the transcriptome-wide m6A Methylome in sheep testicular development. Genomics 2025; 117:111005. [PMID: 39855482 DOI: 10.1016/j.ygeno.2025.111005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2024] [Revised: 12/24/2024] [Accepted: 01/20/2025] [Indexed: 01/27/2025]
Abstract
N6-methyladenosine (m6A) modification of RNA is a critical post-transcriptional modification, that dynamically contributes to testicular development and spermatogenesis. Nevertheless, the investigation into the role of m6A in testicular development of sheep remains insufficient. Herein, we conducted a comprehensive analysis of the m6A transcriptome landscape in the testes of F1 hybrid Southdown × Hu sheep across M0 (0 months old, newborn), M3 (3 months old, sexually immature), M6 (6 months old, sexually mature), and Y1 (1 years old, adult). By profiling the m6A signatures across the transcriptome, we observed distinct differences in m6A modification patterns during sheep testicular development. Our cross-analysis of m6A and mRNA expression revealed that the expression of 743 genes and their m6A modification were concurrent. Notably, the combined analysis of the two comparative groups, M0 vs. M6 and M0 vs. Y1, exhibited a positive correlation, with 30 candidate genes each located within the largest protein-protein interaction network. Intriguingly, eight key hub genes (VEGFA, HDAC9, ZBTB40, KDM5B, MTRR, EAPS1, TSSK3, and BMP4) were identified to be associated with the regulation of sheep testicular development and spermatogenesis. These findings contribute to a deeper understanding of the dynamic role of m6A modification in sheep testicular biology. This study to map RNA m6A modification in sheep testes at different ages, providing novel insights into m6A topology and the molecular mechanisms associated with spermatogenesis in Southdown × Hu sheep F1 hybrids and laying the foundation for further investigations of mammalian spermatogenesis.
Collapse
Affiliation(s)
- Binpeng Xi
- Key Laboratory of Animal Genetics and Breeding on the Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730050, China; Sheep Breeding Engineering Technology Research Center of Chinese Academy of Agricultural Sciences, Lanzhou 730050, China; College of Animal Science and Technology, Gansu Agricultural University, Lanzhou 730070, China
| | - Zengkui Lu
- Key Laboratory of Animal Genetics and Breeding on the Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730050, China; Sheep Breeding Engineering Technology Research Center of Chinese Academy of Agricultural Sciences, Lanzhou 730050, China
| | - Rui Zhang
- Key Laboratory of Animal Genetics and Breeding on the Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730050, China; Sheep Breeding Engineering Technology Research Center of Chinese Academy of Agricultural Sciences, Lanzhou 730050, China
| | - Shengguo Zhao
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou 730070, China
| | - Jianye Li
- Key Laboratory of Animal Genetics and Breeding on the Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730050, China; Sheep Breeding Engineering Technology Research Center of Chinese Academy of Agricultural Sciences, Lanzhou 730050, China
| | - Xuejiao An
- Key Laboratory of Animal Genetics and Breeding on the Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730050, China; Sheep Breeding Engineering Technology Research Center of Chinese Academy of Agricultural Sciences, Lanzhou 730050, China.
| | - Yaojing Yue
- Key Laboratory of Animal Genetics and Breeding on the Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730050, China; Sheep Breeding Engineering Technology Research Center of Chinese Academy of Agricultural Sciences, Lanzhou 730050, China.
| |
Collapse
|
3
|
Ren T, Xu M, Du X, Wang Y, Loor JJ, Lei L, Gao W, Du X, Song Y, Liu G, Li X. Research Progress on the Role of M6A in Regulating Economic Traits in Livestock. Int J Mol Sci 2024; 25:8365. [PMID: 39125935 PMCID: PMC11313175 DOI: 10.3390/ijms25158365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Revised: 06/23/2024] [Accepted: 07/16/2024] [Indexed: 08/12/2024] Open
Abstract
Reversible regulation of N6-methyladenosine (m6A) methylation of eukaryotic RNA via methyltransferases is an important epigenetic event affecting RNA metabolism. As such, m6A methylation plays crucial roles in regulating animal growth, development, reproduction, and disease progression. Herein, we review the latest research advancements in m6A methylation modifications and discuss regulatory aspects in the context of growth, development, and reproductive traits of livestock. New insights are highlighted and perspectives for the study of m6A methylation modifications in shaping economically important traits are discussed.
Collapse
Affiliation(s)
- Tuanhui Ren
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, College of Veterinary Medicine, Jilin University, Changchun 130062, China; (T.R.); (M.X.); (X.D.); (Y.W.); (L.L.); (W.G.); (X.D.); (Y.S.); (G.L.)
| | - Meng Xu
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, College of Veterinary Medicine, Jilin University, Changchun 130062, China; (T.R.); (M.X.); (X.D.); (Y.W.); (L.L.); (W.G.); (X.D.); (Y.S.); (G.L.)
| | - Xinyu Du
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, College of Veterinary Medicine, Jilin University, Changchun 130062, China; (T.R.); (M.X.); (X.D.); (Y.W.); (L.L.); (W.G.); (X.D.); (Y.S.); (G.L.)
| | - Yanxi Wang
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, College of Veterinary Medicine, Jilin University, Changchun 130062, China; (T.R.); (M.X.); (X.D.); (Y.W.); (L.L.); (W.G.); (X.D.); (Y.S.); (G.L.)
| | - Juan J. Loor
- Mammalian NutriPhysioGenomics, Department of Animal Sciences and Division of Nutritional Sciences, University of Illinois, Urbana, IL 61801, USA;
| | - Lin Lei
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, College of Veterinary Medicine, Jilin University, Changchun 130062, China; (T.R.); (M.X.); (X.D.); (Y.W.); (L.L.); (W.G.); (X.D.); (Y.S.); (G.L.)
| | - Wenwen Gao
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, College of Veterinary Medicine, Jilin University, Changchun 130062, China; (T.R.); (M.X.); (X.D.); (Y.W.); (L.L.); (W.G.); (X.D.); (Y.S.); (G.L.)
| | - Xiliang Du
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, College of Veterinary Medicine, Jilin University, Changchun 130062, China; (T.R.); (M.X.); (X.D.); (Y.W.); (L.L.); (W.G.); (X.D.); (Y.S.); (G.L.)
| | - Yuxiang Song
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, College of Veterinary Medicine, Jilin University, Changchun 130062, China; (T.R.); (M.X.); (X.D.); (Y.W.); (L.L.); (W.G.); (X.D.); (Y.S.); (G.L.)
| | - Guowen Liu
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, College of Veterinary Medicine, Jilin University, Changchun 130062, China; (T.R.); (M.X.); (X.D.); (Y.W.); (L.L.); (W.G.); (X.D.); (Y.S.); (G.L.)
| | - Xinwei Li
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, College of Veterinary Medicine, Jilin University, Changchun 130062, China; (T.R.); (M.X.); (X.D.); (Y.W.); (L.L.); (W.G.); (X.D.); (Y.S.); (G.L.)
| |
Collapse
|
4
|
Ma Q, Gui Y, Ma X, Zhang B, Xiong W, Yang S, Cao C, Mo S, Shu G, Ye J, Liu K, Wang X, Gui Y, Wang F, Yuan S. N6-methyladenosine writer METTL16-mediated alternative splicing and translation control are essential for murine spermatogenesis. Genome Biol 2024; 25:193. [PMID: 39030605 PMCID: PMC11264951 DOI: 10.1186/s13059-024-03332-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Accepted: 07/09/2024] [Indexed: 07/21/2024] Open
Abstract
BACKGROUND The mitosis-to-meiosis switch during spermatogenesis requires dynamic changes in gene expression. However, the regulation of meiotic transcriptional and post-transcriptional machinery during this transition remains elusive. RESULTS We report that methyltransferase-like protein 16 (METTL16), an N6-methyladenosine (m6A) writer, is required for mitosis-to-meiosis transition during spermatogenesis. Germline conditional knockout of Mettl16 in male mice impairs spermatogonial differentiation and meiosis initiation. Mechanistically, METTL16 interacts with splicing factors to regulate the alternative splicing of meiosis-related genes such as Stag3. Ribosome profiling reveals that the translation efficiency of many meiotic genes is dysregulated in METTL16-deficient testes. m6A-sequencing shows that ablation of METTL16 causes upregulation of the m6A-enriched transcripts and downregulation of the m6A-depleted transcripts, similar to Meioc and/or Ythdc2 mutants. Further in vivo and in vitro experiments demonstrate that the methyltransferase activity site (PP185-186AA) of METTL16 is necessary for spermatogenesis. CONCLUSIONS Our findings support a molecular model wherein the m6A writer METTL16-mediated alternative splicing and translation efficiency regulation are required to control the mitosis-to-meiosis germ cell fate decision in mice, with implications for understanding meiosis-related male fertility disorders.
Collapse
Affiliation(s)
- Qian Ma
- Department of Urology, Shenzhen Key Laboratory of Male Reproductive Medicine and Genetics, Peking University Shenzhen Hospital, Shenzhen, Guangdong, 518036, China
| | - Yiqian Gui
- Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Xixiang Ma
- Laboratory Animal Center, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China
| | - Bingqian Zhang
- Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Wenjing Xiong
- Laboratory Animal Center, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China
| | - Shiyu Yang
- Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Congcong Cao
- Department of Urology, Shenzhen Key Laboratory of Male Reproductive Medicine and Genetics, Peking University Shenzhen Hospital, Shenzhen, Guangdong, 518036, China
| | - Shaomei Mo
- Department of Urology, Shenzhen Key Laboratory of Male Reproductive Medicine and Genetics, Peking University Shenzhen Hospital, Shenzhen, Guangdong, 518036, China
| | - Ge Shu
- Department of Urology, Shenzhen Key Laboratory of Male Reproductive Medicine and Genetics, Peking University Shenzhen Hospital, Shenzhen, Guangdong, 518036, China
| | - Jing Ye
- Department of Urology, Shenzhen Key Laboratory of Male Reproductive Medicine and Genetics, Peking University Shenzhen Hospital, Shenzhen, Guangdong, 518036, China
| | - Kuan Liu
- Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Xiaoli Wang
- Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Yaoting Gui
- Department of Urology, Shenzhen Key Laboratory of Male Reproductive Medicine and Genetics, Peking University Shenzhen Hospital, Shenzhen, Guangdong, 518036, China.
| | - Fengli Wang
- Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.
| | - Shuiqiao Yuan
- Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.
- Laboratory Animal Center, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China.
- Shenzhen Huazhong University of Science and Technology Research Institute, Shenzhen, 518057, China.
| |
Collapse
|
5
|
Zhang P, Zhang F, Sui H, Yang X, Ji Y, Zheng S, Li W, Cheng K, Wang C, Jiao J, Zhang X, Cao Z, Zhang Y. Characterization of sexual maturity-associated N6-methyladenosine in boar testes. BMC Genomics 2024; 25:447. [PMID: 38714941 PMCID: PMC11075296 DOI: 10.1186/s12864-024-10343-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2023] [Accepted: 04/23/2024] [Indexed: 05/12/2024] Open
Abstract
BACKGROUND The health and size of the testes are crucial for boar fertility. Testicular development is tightly regulated by epigenetics. N6-methyladenosine (m6A) modification is a prevalent internal modification on mRNA and plays an important role in development. The mRNA m6A methylation in boar testicular development still needs to be investigated. RESULTS Using the MeRIP-seq technique, we identify and profile m6A modification in boar testes between piglets and adults. The results showed 7783 distinct m6A peaks in piglets and 6590 distinct m6A peaks in adults, with 2,471 peaks shared between the two groups. Enrichment of GO and KEGG analysis reveal dynamic m6A methylation in various biological processes and signalling pathways. Meanwhile, we conjointly analyzed differentially methylated and expressed genes in boar testes before and after sexual maturity, and reproductive related genes (TLE4, TSSK3, TSSK6, C11ORF94, PATZ1, PHLPP1 and PAQR7) were identified. Functional enrichment analysis showed that differential genes are associated with important biological functions, including regulation of growth and development, regulation of metabolic processes and protein catabolic processes. CONCLUSION The results demonstrate that m6A methylation, differential expression and the related signalling pathways are crucial for boar testicular development. These results suggest a role for m6A modification in boar testicular development and provided a resource for future studies on m6A function in boar testicular development.
Collapse
Affiliation(s)
- Pengfei Zhang
- Anhui Province Key Laboratory of Local Livestock and Poultry, Genetical Resource Conservation and Breeding, College of Animal Science and Technology, Anhui Agricultural University, No.130 West Changjiang Road, Hefei, 230036, China
| | - Fei Zhang
- Anhui Province Key Laboratory of Local Livestock and Poultry, Genetical Resource Conservation and Breeding, College of Animal Science and Technology, Anhui Agricultural University, No.130 West Changjiang Road, Hefei, 230036, China
| | - Heming Sui
- Anhui Province Key Laboratory of Local Livestock and Poultry, Genetical Resource Conservation and Breeding, College of Animal Science and Technology, Anhui Agricultural University, No.130 West Changjiang Road, Hefei, 230036, China
- National Animal Husbandry Service, Beijing, 100125, China
| | - Xingyu Yang
- Anhui Province Key Laboratory of Local Livestock and Poultry, Genetical Resource Conservation and Breeding, College of Animal Science and Technology, Anhui Agricultural University, No.130 West Changjiang Road, Hefei, 230036, China
| | - Yiming Ji
- Anhui Province Key Laboratory of Local Livestock and Poultry, Genetical Resource Conservation and Breeding, College of Animal Science and Technology, Anhui Agricultural University, No.130 West Changjiang Road, Hefei, 230036, China
| | - Shenghao Zheng
- Anhui Province Key Laboratory of Local Livestock and Poultry, Genetical Resource Conservation and Breeding, College of Animal Science and Technology, Anhui Agricultural University, No.130 West Changjiang Road, Hefei, 230036, China
| | - Wei Li
- Anhui Province Key Laboratory of Local Livestock and Poultry, Genetical Resource Conservation and Breeding, College of Animal Science and Technology, Anhui Agricultural University, No.130 West Changjiang Road, Hefei, 230036, China
| | - Kun Cheng
- Anhui Province Key Laboratory of Local Livestock and Poultry, Genetical Resource Conservation and Breeding, College of Animal Science and Technology, Anhui Agricultural University, No.130 West Changjiang Road, Hefei, 230036, China
| | - Chonglong Wang
- Institute of Animal Husbandry and Veterinary Medicine, Anhui Academy of Agricultural Sciences, Hefei, 230031, China
| | - Jun Jiao
- Anhui Haoyu Animal Husbandry Co., Ltd, Luan, 237451, China
| | - Xiaodong Zhang
- Anhui Province Key Laboratory of Local Livestock and Poultry, Genetical Resource Conservation and Breeding, College of Animal Science and Technology, Anhui Agricultural University, No.130 West Changjiang Road, Hefei, 230036, China.
| | - Zubing Cao
- Anhui Province Key Laboratory of Local Livestock and Poultry, Genetical Resource Conservation and Breeding, College of Animal Science and Technology, Anhui Agricultural University, No.130 West Changjiang Road, Hefei, 230036, China.
| | - Yunhai Zhang
- Anhui Province Key Laboratory of Local Livestock and Poultry, Genetical Resource Conservation and Breeding, College of Animal Science and Technology, Anhui Agricultural University, No.130 West Changjiang Road, Hefei, 230036, China.
| |
Collapse
|
6
|
Xiong YW, Zhu HL, Zhang J, Geng H, Tan LL, Zheng XM, Li H, Fan LL, Wang XR, Zhang XD, Wang KW, Chang W, Zhang YF, Yuan Z, Duan ZL, Cao YX, He XJ, Xu DX, Wang H. Multigenerational paternal obesity enhances the susceptibility to male subfertility in offspring via Wt1 N6-methyladenosine modification. Nat Commun 2024; 15:1353. [PMID: 38355624 PMCID: PMC10866985 DOI: 10.1038/s41467-024-45675-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Accepted: 01/30/2024] [Indexed: 02/16/2024] Open
Abstract
There is strong evidence that obesity is a risk factor for poor semen quality. However, the effects of multigenerational paternal obesity on the susceptibility to cadmium (a reproductive toxicant)-induced spermatogenesis disorders in offspring remain unknown. Here, we show that, in mice, spermatogenesis and retinoic acid levels become progressively lower as the number of generations exposed to a high-fat diet increase. Furthermore, exposing several generations of mice to a high fat diet results in a decrease in the expression of Wt1, a transcription factor upstream of the enzymes that synthesize retinoic acid. These effects can be rescued by injecting adeno-associated virus 9-Wt1 into the mouse testes of the offspring. Additionally, multigenerational paternal high-fat diet progressively increases METTL3 and Wt1 N6-methyladenosine levels in the testes of offspring mice. Mechanistically, treating the fathers with STM2457, a METTL3 inhibitor, restores obesity-reduced sperm count, and decreases Wt1 N6-methyladenosine level in the mouse testes of the offspring. A case-controlled study shows that human donors who are overweight or obese exhibit elevated N6-methyladenosine levels in sperm and decreased sperm concentration. Collectively, these results indicate that multigenerational paternal obesity enhances the susceptibility of the offspring to spermatogenesis disorders by increasing METTL3-mediated Wt1 N6-methyladenosine modification.
Collapse
Affiliation(s)
- Yong-Wei Xiong
- Department of Toxicology, School of Public Health, Anhui Medical University, Hefei, China
- Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, Hefei, China
| | - Hua-Long Zhu
- Department of Toxicology, School of Public Health, Anhui Medical University, Hefei, China
- Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, Hefei, China
| | - Jin Zhang
- Department of Toxicology, School of Public Health, Anhui Medical University, Hefei, China
- Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, Hefei, China
| | - Hao Geng
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, The First Affiliated Hospital of Anhui Medical University, Hefei, China
- NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract (Anhui Medical University), Hefei, China
- Key Laboratory of Population Health Across Life Cycle (Anhui Medical University), Ministry of Education of the People's Republic of China, Hefei, China
| | - Lu-Lu Tan
- Department of Toxicology, School of Public Health, Anhui Medical University, Hefei, China
- Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, Hefei, China
| | - Xin-Mei Zheng
- Department of Toxicology, School of Public Health, Anhui Medical University, Hefei, China
- Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, Hefei, China
| | - Hao Li
- Department of Toxicology, School of Public Health, Anhui Medical University, Hefei, China
- Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, Hefei, China
| | - Long-Long Fan
- Department of Toxicology, School of Public Health, Anhui Medical University, Hefei, China
- Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, Hefei, China
| | - Xin-Run Wang
- Department of Toxicology, School of Public Health, Anhui Medical University, Hefei, China
- Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, Hefei, China
| | - Xu-Dong Zhang
- Department of Toxicology, School of Public Health, Anhui Medical University, Hefei, China
- Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, Hefei, China
| | - Kai-Wen Wang
- Department of Toxicology, School of Public Health, Anhui Medical University, Hefei, China
- Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, Hefei, China
| | - Wei Chang
- Department of Toxicology, School of Public Health, Anhui Medical University, Hefei, China
- Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, Hefei, China
| | - Yu-Feng Zhang
- Department of Toxicology, School of Public Health, Anhui Medical University, Hefei, China
- Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, Hefei, China
| | - Zhi Yuan
- Department of Toxicology, School of Public Health, Anhui Medical University, Hefei, China
- Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, Hefei, China
| | - Zong-Liu Duan
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, The First Affiliated Hospital of Anhui Medical University, Hefei, China
- NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract (Anhui Medical University), Hefei, China
- Key Laboratory of Population Health Across Life Cycle (Anhui Medical University), Ministry of Education of the People's Republic of China, Hefei, China
| | - Yun-Xia Cao
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, The First Affiliated Hospital of Anhui Medical University, Hefei, China
- NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract (Anhui Medical University), Hefei, China
- Key Laboratory of Population Health Across Life Cycle (Anhui Medical University), Ministry of Education of the People's Republic of China, Hefei, China
| | - Xiao-Jin He
- NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract (Anhui Medical University), Hefei, China.
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| | - De-Xiang Xu
- Department of Toxicology, School of Public Health, Anhui Medical University, Hefei, China.
- Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, Hefei, China.
- Key Laboratory of Population Health Across Life Cycle (Anhui Medical University), Ministry of Education of the People's Republic of China, Hefei, China.
| | - Hua Wang
- Department of Toxicology, School of Public Health, Anhui Medical University, Hefei, China.
- Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, Hefei, China.
- Key Laboratory of Population Health Across Life Cycle (Anhui Medical University), Ministry of Education of the People's Republic of China, Hefei, China.
| |
Collapse
|
7
|
Guo M, Li X, Li T, Liu R, Pang W, Luo J, Zeng W, Zheng Y. YTHDF2 promotes DNA damage repair by positively regulating the histone methyltransferase SETDB1 in spermatogonia†. Biol Reprod 2024; 110:48-62. [PMID: 37812443 DOI: 10.1093/biolre/ioad136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 09/04/2023] [Accepted: 10/06/2023] [Indexed: 10/10/2023] Open
Abstract
Genomic integrity is critical for sexual reproduction, ensuring correct transmission of parental genetic information to the descendant. To preserve genomic integrity, germ cells have evolved multiple DNA repair mechanisms, together termed as DNA damage response. The RNA N6-methyladenosine is the most abundant mRNA modification in eukaryotic cells, which plays important roles in DNA damage response, and YTH N6-methyladenosine RNA binding protein 2 (YTHDF2) is a well-acknowledged N6-methyladenosine reader protein regulating the mRNA decay and stress response. Despite this, the correlation between YTHDF2 and DNA damage response in germ cells, if any, remains enigmatic. Here, by employing a Ythdf2-conditional knockout mouse model as well as a Ythdf2-null GC-1 mouse spermatogonial cell line, we explored the role and the underlying mechanism for YTHDF2 in spermatogonial DNA damage response. We identified that, despite no evident testicular morphological abnormalities under the normal circumstance, conditional mutation of Ythdf2 in adult male mice sensitized germ cells, including spermatogonia, to etoposide-induced DNA damage. Consistently, Ythdf2-KO GC-1 cells displayed increased sensitivity and apoptosis in response to DNA damage, accompanied by the decreased SET domain bifurcated 1 (SETDB1, a histone methyltransferase) and H3K9me3 levels. The Setdb1 knockdown in GC-1 cells generated a similar phenotype, but its overexpression in Ythdf2-null GC-1 cells alleviated the sensitivity and apoptosis in response to DNA damage. Taken together, these results demonstrate that the N6-methyladenosine reader YTHDF2 promotes DNA damage repair by positively regulating the histone methyltransferase SETDB1 in spermatogonia, which provides novel insights into the mechanisms underlying spermatogonial genome integrity maintenance and therefore contributes to safe reproduction.
Collapse
Affiliation(s)
- Ming Guo
- Key Laboratory for Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Xueliang Li
- Key Laboratory for Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Tianjiao Li
- Key Laboratory for Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Ruifang Liu
- Key Laboratory for Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Weijun Pang
- Key Laboratory for Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Jun Luo
- Key Laboratory for Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Wenxian Zeng
- Key Laboratory for Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Yi Zheng
- Key Laboratory for Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, China
| |
Collapse
|
8
|
Huang L, Shao J, Xu X, Hong W, Yu W, Zheng S, Ge X. WTAP regulates autophagy in colon cancer cells by inhibiting FLNA through N6-methyladenosine. Cell Adh Migr 2023; 17:1-13. [PMID: 36849408 PMCID: PMC9980444 DOI: 10.1080/19336918.2023.2180196] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/01/2023] Open
Abstract
Our study investigated the role of WTAP in colon cancer. We employed experiments including m6A dot blot hybridization, methylated RNA immunoprecipitation, dual-luciferase, and RNA immunoprecipitation to investigate the regulatory mechanism of WTAP. Western blot was performed to analyze the expression of WTAP, FLNA and autophagy-related proteins in cells. Our results confirmed the up-regulation of WTAP in colon cancer and its promoting effect on proliferation and inhibiting effect on apoptosis. FLNA was the downstream gene of WTAP and WTAP-regulated m6A modification led to post-transcriptional repression of FLNA. The rescue experiments showed that WTAP/FLNA could inhibit autophagy. WTAP-mediated m6A modification was confirmed to be crucial in colon cancer development, providing new insights into colon cancer therapy.
Collapse
Affiliation(s)
- Liang Huang
- Department of General Surgery, Taizhou First People’s Hospital, Taizhou, Zhejiang, China
| | - Jinfan Shao
- Department of General Surgery, Taizhou First People’s Hospital, Taizhou, Zhejiang, China
| | - Xijuan Xu
- Department of General Surgery, Taizhou First People’s Hospital, Taizhou, Zhejiang, China
| | - Weiwen Hong
- Department of General Surgery, Taizhou First People’s Hospital, Taizhou, Zhejiang, China
| | - Wenfeng Yu
- Department of General Surgery, Taizhou First People’s Hospital, Taizhou, Zhejiang, China
| | - Shuang Zheng
- Department of General Surgery, Taizhou First People’s Hospital, Taizhou, Zhejiang, China
| | - Xiaogang Ge
- Department of General Surgery, Taizhou First People’s Hospital, Taizhou, Zhejiang, China,CONTACT Xiaogang Ge Department of General Surgery, Taizhou First People’s Hospital, No. 218 Hengjie Road, Huangyan District, Taizhou, Zhejiang, 318020, China
| |
Collapse
|
9
|
Chen C, Tang X, Yan S, Yang A, Xiang J, Deng Y, Yin Y, Chen B, Gu J. Comprehensive Analysis of the Transcriptome-Wide m 6A Methylome in Shaziling Pig Testicular Development. Int J Mol Sci 2023; 24:14475. [PMID: 37833923 PMCID: PMC10572705 DOI: 10.3390/ijms241914475] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 09/18/2023] [Accepted: 09/21/2023] [Indexed: 10/15/2023] Open
Abstract
RNA N6-methyladenosine (m6A) modification is one of the principal post-transcriptional modifications and plays a dynamic role in testicular development and spermatogenesis. However, the role of m6A in porcine testis is understudied. Here, we performed a comprehensive analysis of the m6A transcriptome-wide profile in Shaziling pig testes at birth, puberty, and maturity. We analyzed the total transcriptome m6A profile and found that the m6A patterns were highly distinct in terms of the modification of the transcriptomes during porcine testis development. We found that key m6A methylated genes (AURKC, OVOL, SOX8, ACVR2A, and SPATA46) were highly enriched during spermatogenesis and identified in spermatogenesis-related KEGG pathways, including Wnt, cAMP, mTOR, AMPK, PI3K-Akt, and spliceosome. Our findings indicated that m6A methylations are involved in the complex yet well-organized post-transcriptional regulation of porcine testicular development and spermatogenesis. We found that the m6A eraser ALKBH5 negatively regulated the proliferation of immature porcine Sertoli cells. Furthermore, we proposed a novel mechanism of m6A modification during testicular development: ALKBH5 regulated the RNA methylation level and gene expression of SOX9 mRNA. In addition to serving as a potential target for improving boar reproduction, our findings contributed to the further understanding of the regulation of m6A modifications in male reproduction.
Collapse
Affiliation(s)
- Chujie Chen
- College of Animal Science and Technology, Hunan Agricultural University, Changsha 410128, China; (C.C.); (X.T.); (S.Y.); (A.Y.); (J.X.); (Y.D.); (Y.Y.)
- Hunan Provincial Key Laboratory for Genetic Improvement of Domestic Animal, Hunan Agricultural University, Changsha 410128, China
| | - Xiangwei Tang
- College of Animal Science and Technology, Hunan Agricultural University, Changsha 410128, China; (C.C.); (X.T.); (S.Y.); (A.Y.); (J.X.); (Y.D.); (Y.Y.)
- Hunan Provincial Key Laboratory for Genetic Improvement of Domestic Animal, Hunan Agricultural University, Changsha 410128, China
| | - Saina Yan
- College of Animal Science and Technology, Hunan Agricultural University, Changsha 410128, China; (C.C.); (X.T.); (S.Y.); (A.Y.); (J.X.); (Y.D.); (Y.Y.)
- Hunan Provincial Key Laboratory for Genetic Improvement of Domestic Animal, Hunan Agricultural University, Changsha 410128, China
| | - Anqi Yang
- College of Animal Science and Technology, Hunan Agricultural University, Changsha 410128, China; (C.C.); (X.T.); (S.Y.); (A.Y.); (J.X.); (Y.D.); (Y.Y.)
- Hunan Provincial Key Laboratory for Genetic Improvement of Domestic Animal, Hunan Agricultural University, Changsha 410128, China
| | - Jiaojiao Xiang
- College of Animal Science and Technology, Hunan Agricultural University, Changsha 410128, China; (C.C.); (X.T.); (S.Y.); (A.Y.); (J.X.); (Y.D.); (Y.Y.)
- Hunan Provincial Key Laboratory for Genetic Improvement of Domestic Animal, Hunan Agricultural University, Changsha 410128, China
| | - Yanhong Deng
- College of Animal Science and Technology, Hunan Agricultural University, Changsha 410128, China; (C.C.); (X.T.); (S.Y.); (A.Y.); (J.X.); (Y.D.); (Y.Y.)
- Hunan Provincial Key Laboratory for Genetic Improvement of Domestic Animal, Hunan Agricultural University, Changsha 410128, China
| | - Yulong Yin
- College of Animal Science and Technology, Hunan Agricultural University, Changsha 410128, China; (C.C.); (X.T.); (S.Y.); (A.Y.); (J.X.); (Y.D.); (Y.Y.)
- Key Laboratory of Agro-Ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha 410125, China
| | - Bin Chen
- College of Animal Science and Technology, Hunan Agricultural University, Changsha 410128, China; (C.C.); (X.T.); (S.Y.); (A.Y.); (J.X.); (Y.D.); (Y.Y.)
- Hunan Provincial Key Laboratory for Genetic Improvement of Domestic Animal, Hunan Agricultural University, Changsha 410128, China
| | - Jingjing Gu
- College of Animal Science and Technology, Hunan Agricultural University, Changsha 410128, China; (C.C.); (X.T.); (S.Y.); (A.Y.); (J.X.); (Y.D.); (Y.Y.)
- Hunan Provincial Key Laboratory for Genetic Improvement of Domestic Animal, Hunan Agricultural University, Changsha 410128, China
| |
Collapse
|
10
|
Liu H, Tsai H, Yang M, Li G, Bian Q, Ding G, Wu D, Dai J. Three-dimensional genome structure and function. MedComm (Beijing) 2023; 4:e326. [PMID: 37426677 PMCID: PMC10329473 DOI: 10.1002/mco2.326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 05/31/2023] [Accepted: 06/09/2023] [Indexed: 07/11/2023] Open
Abstract
Linear DNA undergoes a series of compression and folding events, forming various three-dimensional (3D) structural units in mammalian cells, including chromosomal territory, compartment, topologically associating domain, and chromatin loop. These structures play crucial roles in regulating gene expression, cell differentiation, and disease progression. Deciphering the principles underlying 3D genome folding and the molecular mechanisms governing cell fate determination remains a challenge. With advancements in high-throughput sequencing and imaging techniques, the hierarchical organization and functional roles of higher-order chromatin structures have been gradually illuminated. This review systematically discussed the structural hierarchy of the 3D genome, the effects and mechanisms of cis-regulatory elements interaction in the 3D genome for regulating spatiotemporally specific gene expression, the roles and mechanisms of dynamic changes in 3D chromatin conformation during embryonic development, and the pathological mechanisms of diseases such as congenital developmental abnormalities and cancer, which are attributed to alterations in 3D genome organization and aberrations in key structural proteins. Finally, prospects were made for the research about 3D genome structure, function, and genetic intervention, and the roles in disease development, prevention, and treatment, which may offer some clues for precise diagnosis and treatment of related diseases.
Collapse
Affiliation(s)
- Hao Liu
- Department of Oral and Cranio‐Maxillofacial SurgeryShanghai Ninth People's Hospital, Shanghai Jiao Tong University School of MedicineCollege of Stomatology, Shanghai Jiao Tong UniversityNational Center for StomatologyNational Clinical Research Center for Oral DiseasesShanghai Key Laboratory of StomatologyShanghaiChina
- School of StomatologyWeifang Medical UniversityWeifangChina
| | - Hsiangyu Tsai
- Department of Oral and Cranio‐Maxillofacial SurgeryShanghai Ninth People's Hospital, Shanghai Jiao Tong University School of MedicineCollege of Stomatology, Shanghai Jiao Tong UniversityNational Center for StomatologyNational Clinical Research Center for Oral DiseasesShanghai Key Laboratory of StomatologyShanghaiChina
| | - Maoquan Yang
- School of Clinical MedicineWeifang Medical UniversityWeifangChina
| | - Guozhi Li
- Department of Oral and Cranio‐Maxillofacial SurgeryShanghai Ninth People's Hospital, Shanghai Jiao Tong University School of MedicineCollege of Stomatology, Shanghai Jiao Tong UniversityNational Center for StomatologyNational Clinical Research Center for Oral DiseasesShanghai Key Laboratory of StomatologyShanghaiChina
| | - Qian Bian
- Shanghai Institute of Precision MedicineShanghaiChina
| | - Gang Ding
- School of StomatologyWeifang Medical UniversityWeifangChina
| | - Dandan Wu
- Department of Oral and Cranio‐Maxillofacial SurgeryShanghai Ninth People's Hospital, Shanghai Jiao Tong University School of MedicineCollege of Stomatology, Shanghai Jiao Tong UniversityNational Center for StomatologyNational Clinical Research Center for Oral DiseasesShanghai Key Laboratory of StomatologyShanghaiChina
| | - Jiewen Dai
- Department of Oral and Cranio‐Maxillofacial SurgeryShanghai Ninth People's Hospital, Shanghai Jiao Tong University School of MedicineCollege of Stomatology, Shanghai Jiao Tong UniversityNational Center for StomatologyNational Clinical Research Center for Oral DiseasesShanghai Key Laboratory of StomatologyShanghaiChina
| |
Collapse
|
11
|
Zhang M, Nie J, Chen Y, Li X, Chen H. Connecting the Dots: N6-Methyladenosine (m 6 A) Modification in Spermatogenesis. Adv Biol (Weinh) 2023; 7:e2300068. [PMID: 37353958 DOI: 10.1002/adbi.202300068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 05/20/2023] [Indexed: 06/25/2023]
Abstract
N6-methyladenosine (m6 A) is the most common RNA modification found in eukaryotes and is involved in multiple biological processes, including neuronal development, tumorigenesis, and gametogenesis. It is well known that methylation-modifying enzymes (classified into writers, erasers, and readers) mediate catalysis, clearance, and recognition of m6 A. Recent studies suggest that these genes may be associated with spermatogenesis. Numerous studies have revealed the m6 A role during spermatogenesis. However, the expression patterns and relationships of these m6 A enzymes during various stages of spermatogenesis remain unknown. In this review, it is aimed to provide an overview of m6 A enzyme functions and elucidate their potential mechanisms and regulatory relationships at a specific phase during spermatogenesis, providing new insights into the m6 A modification underlying the spermatogenesis process.
Collapse
Affiliation(s)
- Mengya Zhang
- Institute of Reproductive Medicine, Medical School, Nantong University, Nantong, 226000, China
| | - Junyu Nie
- Institute of Reproductive Medicine, Medical School, Nantong University, Nantong, 226000, China
| | - Yufei Chen
- Institute of Reproductive Medicine, Medical School, Nantong University, Nantong, 226000, China
| | - Xiaofeng Li
- Department of Laboratory Medicine, Peking University Shenzhen Hospital, Lianhua Road No. 1120, Futian District, Shenzhen, Guangdong Province, 518000, P. R. China
| | - Hao Chen
- Institute of Reproductive Medicine, Medical School, Nantong University, Nantong, 226000, China
| |
Collapse
|
12
|
Wu Y, Li J, Li C, Lu S, Wei X, Li Y, Xia W, Qian C, Wang Z, Liu M, Gu Y, Huang B, Tan Y, Hu Z. Fat mass and obesity-associated factor (FTO)-mediated N6-methyladenosine regulates spermatogenesis in an age-dependent manner. J Biol Chem 2023:104783. [PMID: 37146971 DOI: 10.1016/j.jbc.2023.104783] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2023] [Revised: 04/22/2023] [Accepted: 04/23/2023] [Indexed: 05/07/2023] Open
Abstract
N6-methyladenosine (m6A) is the most prevalent reversible RNA modification in the mammalian transcriptome. It has recently been demonstrated that m6A is crucial for male germline development. Fat mass and obesity-associated factor (FTO), a known m6A demethylase, is widely expressed in human and mouse tissues and is involved in manifold biological processes and human diseases. However, the function of FTO in spermatogenesis and male fertility remains poorly understood. Here, we generated an Fto knockout mouse model using CRISPR/Cas9-mediated genome editing techniques to address this knowledge gap. Remarkably, we found that loss of Fto in mice caused spermatogenesis defects in an age-dependent manner, resulting from the attenuated proliferation ability of undifferentiated spermatogonia and increased male germ cell apoptosis. Further research showed that FTO plays a vital role in the modulation of spermatogenesis and Leydig cell maturation by regulating the translation of the androgen receptor in an m6A-dependent manner. In addition, we identified two functional mutations of FTO in male infertility patients, resulting in truncated FTO protein and increased m6A modification in vitro. Our results highlight the crucial effects of FTO on spermatogonia and Leydig cells for the long-term maintenance of spermatogenesis and expand our understanding of the function of m6A in male fertility.
Collapse
Affiliation(s)
- Yifei Wu
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, Jiangsu 211166, China; Department of Epidemiology, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu 211166, China
| | - Jincheng Li
- State Key Laboratory of Reproductive Medicine, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou 215002, China; Suzhou Municipal Hospital, Suzhou 215002, China
| | - Chenmeijie Li
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, Jiangsu 211166, China; Department of Epidemiology, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu 211166, China
| | - Shuai Lu
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, Jiangsu 211166, China; Department of Epidemiology, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu 211166, China
| | - Xiaoyu Wei
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, Jiangsu 211166, China; Department of Epidemiology, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu 211166, China
| | - Yang Li
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, Jiangsu 211166, China; Department of Epidemiology, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu 211166, China
| | - Wenjuan Xia
- State Key Laboratory of Reproductive Medicine, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou 215002, China; Suzhou Municipal Hospital, Suzhou 215002, China
| | - Chunfeng Qian
- State Key Laboratory of Reproductive Medicine, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou 215002, China; Suzhou Municipal Hospital, Suzhou 215002, China
| | - Zihang Wang
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, Jiangsu 211166, China; Department of Epidemiology, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu 211166, China
| | - Mingxi Liu
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, Jiangsu 211166, China
| | - Yayun Gu
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, Jiangsu 211166, China; Department of Epidemiology, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu 211166, China
| | - Boxian Huang
- State Key Laboratory of Reproductive Medicine, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou 215002, China; Suzhou Municipal Hospital, Suzhou 215002, China.
| | - Yueqiu Tan
- Institute of Reproductive and Stem Cell Engineering, School of Basic Medical Science, Central South University, Changsha 410000, China; Clinical Research Center for Reproduction and Genetics in Hunan Province, Reproductive and Genetic Hospital of CITIC-Xiangya, Changsha 410000, China.
| | - Zhibin Hu
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, Jiangsu 211166, China; Department of Epidemiology, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu 211166, China.
| |
Collapse
|
13
|
Han L, Wang J, Zhang L, Jing J, Zhang W, Liu Z, Gao A. The role of N 6-methyladenosine modification in benzene-induced testicular damage and the protective effect of melatonin. CHEMOSPHERE 2023; 319:138035. [PMID: 36736484 DOI: 10.1016/j.chemosphere.2023.138035] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 01/11/2023] [Accepted: 01/30/2023] [Indexed: 06/18/2023]
Abstract
Benzene is a universal ambient pollutant. Population-based studies have shown that benzene exposure affects male fertility. However, the mechanism of benzene-induced reproductive toxicity is unknown. Here, we established a dynamic inhalation model and exposed C57BL/6J mice to 0, 10, and 50 ppm benzene (6 h/day, 6 days/week, 7 weeks). Our study revealed that benzene exposure caused testicular injury, including structural damage to spermatogenic tubules, reduced semen quality, and decreased testosterone levels. In addition, the decrease in the global level of N6-Methyladenosine (m6A) and the change of m6A important regulatory enzymes in mice testes suggested that m6A was involved in the benzene-induced testicular injury. Further genome-wide m6A methylation analysis showed that 1469 differential m6A peaks were present in the testes of control and benzene groups, indicating that benzene exposure modulated m6A methylation in testes. Furthermore, the comprehensive analysis of m6A-sequencing and transcriptome revealed that hypermethylated Rara and its consequent reduced expression impaired the sperm production process. In particular, melatonin alleviated benzene-induced testicular injury by modulating m6A-related genes. Overall, our research provides a new idea and fundamental knowledge into the possible mechanisms of m6A modifications in benzene-induced testicular impairment, as well as a new experimental basis for benzene-induced male fertility therapy.
Collapse
Affiliation(s)
- Lin Han
- Department of Occupational Health and Environmental Health, School of Public Health, Capital Medical University, Beijing, 100069, PR China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing, 100069, PR China
| | - Jingyu Wang
- Department of Occupational Health and Environmental Health, School of Public Health, Capital Medical University, Beijing, 100069, PR China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing, 100069, PR China
| | - Lei Zhang
- Department of Occupational Health and Environmental Health, School of Public Health, Capital Medical University, Beijing, 100069, PR China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing, 100069, PR China
| | - Jiaru Jing
- Department of Occupational Health and Environmental Health, School of Public Health, Capital Medical University, Beijing, 100069, PR China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing, 100069, PR China
| | - Wei Zhang
- Department of Occupational Health and Environmental Health, School of Public Health, Capital Medical University, Beijing, 100069, PR China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing, 100069, PR China
| | - Ziyan Liu
- Department of Occupational Health and Environmental Health, School of Public Health, Capital Medical University, Beijing, 100069, PR China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing, 100069, PR China
| | - Ai Gao
- Department of Occupational Health and Environmental Health, School of Public Health, Capital Medical University, Beijing, 100069, PR China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing, 100069, PR China.
| |
Collapse
|
14
|
Han L, Zhang W, Wang J, Jing J, Zhang L, Liu Z, Gao A. Shikonin targets to m6A-modified oxidative damage pathway to alleviate benzene-induced testicular injury. Food Chem Toxicol 2022; 170:113496. [DOI: 10.1016/j.fct.2022.113496] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Revised: 10/05/2022] [Accepted: 10/20/2022] [Indexed: 11/06/2022]
|
15
|
Ling Y, Huang X, Li A, Zhang J, Chen J, Ren J, Liu Y, Xie M. Bisphenol A exposure induces testicular oxidative damage via FTO/m6A/Nrf2 axis during postnatal development in mice. J Appl Toxicol 2022; 43:694-705. [PMID: 36451259 DOI: 10.1002/jat.4417] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Revised: 10/30/2022] [Accepted: 11/15/2022] [Indexed: 12/03/2022]
Abstract
Bisphenol A (BPA), a commonly used plasticizer in the production of polycarbonate plastics and epoxy resins, has been shown to induce male reproductive toxicity. However, the effects of BPA exposure on early testicular development have not been thoroughly studied, and the underlying mechanism is yet to be elucidated. In the current study, neonatal male mice were exposed to BPA at 0, 0.1, and 5 mg/kg, respectively, by daily subcutaneous injection during postnatal day (PND) 1-35 to explore its effects on testicular development at PND 36 (the end of the first round of spermatogenesis). Morphological analyses showed that BPA exposure significantly induced apoptosis of testicular cells (p < 0.01 and p < 0.001) and reduced the thickness of seminiferous epithelium (p < 0.01). In addition, BPA exposure significantly decreased the total antioxidant capacity of testes and levels of transcription factor Nrf2 as well as its downstream antioxidant molecules of NQO1 and GPx-1 (p < 0.05 and p < 0.01). Furthermore, global m6A modifications of mRNAs were upregulated accompanied by declined m6A demethylase (FTO) in the testes of BPA groups (p < 0.05 and p < 0.01). MeRIP-quantitative real-time polymerase chain reaction (qPCR) demonstrated that BPA exposure markedly increased the m6A modification of Nrf2 mRNA (p < 0.05 and p < 0.01). These findings suggest that upregulation of m6A induced by inhibited FTO may be involved in BPA-induced testicular oxidative stress and developmental injury during postnatal development, which provides a new idea to reveal the mechanism underlying BPA interfering with testicular development.
Collapse
Affiliation(s)
- Yuanchao Ling
- School of Life Science and Technology, Weifang Medical University, Weifang, China
| | - Xiaodi Huang
- School of Life Science and Technology, Weifang Medical University, Weifang, China
| | - Anlong Li
- School of Life Science and Technology, Weifang Medical University, Weifang, China
| | - Jinzhi Zhang
- School of Life Science and Technology, Weifang Medical University, Weifang, China
| | - Jianmei Chen
- School of Life Science and Technology, Weifang Medical University, Weifang, China
| | - Jiale Ren
- School of Life Science and Technology, Weifang Medical University, Weifang, China
| | - Yanan Liu
- School of Life Science and Technology, Weifang Medical University, Weifang, China
| | - Meina Xie
- School of Life Science and Technology, Weifang Medical University, Weifang, China
| |
Collapse
|
16
|
Zhu X, Fu H, Sun J, Di Q, Xu Q. N6-methyladenosine modification on Hmbox1 is related to telomere dysfunction in DEHP-induced male reproductive injury. Life Sci 2022; 309:121005. [PMID: 36174712 DOI: 10.1016/j.lfs.2022.121005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Revised: 09/12/2022] [Accepted: 09/23/2022] [Indexed: 11/19/2022]
Abstract
AIMS Di (2-ethylhexyl) phthalate (DEHP), as an environmental endocrine-disrupting chemical (EDC), can induce male reproductive injury. N6-methyladenosine (m6A) plays a vital role in environmental exposure-induced diseases by regulating gene expression. Therefore, we aim to investigate the role of m6A in DEHP-induced reproductive injury. MAIN METHODS We established an in vivo model of mice exposed to DEHP to explore the effect of DEHP on reproductive injury and m6A. To further explore the molecular mechanism of DEHP toxicity, we built a model of GC-2 cells exposed to mono-(2-ethylhexyl) phthalate (MEHP) in vitro and further silenced Mettl3 in GC-2cells. Besides, we also conducted MeRIP-qPCR and RIP assays to identify the target genes for m6A modification. KEY FINDINGS DEHP induced testicular injury and senescence. And telomeres shortening, reduced levels of telomere repeat-binding factor 1 (TRF1), TRF2, protection of telomeres 1 (POT1), and telomerase reverse transcriptase (TERT) can be observed in DEHP-treated testes. MEHP also induced GC-2 cellular senescence and telomere dysfunction. Besides, increased m6A mediated by METTL3 stabilized homeobox containing 1 (Hmbox1) in an m6A-dependent manner in MEHP-exposed GC-2 cells. Mettl3 knockdown led to lower m6A modification and reduced Hmbox1 stability, resulting in further shortening of telomere length. SIGNIFICANCE our work uncovered that DEHP led to male reproductive injury by telomere dysfunction and m6A modified Hmbox1 contributed to maintaining telomere homeostasis in this process, suggesting that accurate regulation of m6A modification level by drugs has potential value in the treatment of DEHP-induced male reproductive injury.
Collapse
Affiliation(s)
- Xiaofang Zhu
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing 210009, China
| | - Haowei Fu
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing 210009, China
| | - Jiahui Sun
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing 210009, China
| | - Qiannan Di
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing 210009, China
| | - Qian Xu
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing 210009, China.
| |
Collapse
|
17
|
Wang X, Pei J, Guo S, Cao M, Kang Y, Xiong L, La Y, Bao P, Liang C, Yan P, Guo X. Characterization of N6-methyladenosine in cattle-yak testis tissue. Front Vet Sci 2022; 9:971515. [PMID: 36016801 PMCID: PMC9395605 DOI: 10.3389/fvets.2022.971515] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Accepted: 07/21/2022] [Indexed: 01/12/2023] Open
Abstract
N6-methyladenosine (m6A) is the most common form of eukaryotic mRNA modification, and it has been shown to exhibit broad regulatory activity in yeast, plants, and mammals. The specific role of m6A methylation as a regulator of spermatogenesis, however, has yet to be established. In this experiment, through a series of preliminary studies and methylated RNA immunoprecipitation sequencing, the m6A map of cattle-yak testicular tissue was established as a means of exploring how m6A modification affects cattle-yak male infertility. Cattle-yak testis tissues used in this study were found to contain sertoli cells and spermatogonia. Relative to sexually mature yak samples, those isolated from cattle-yak testis exhibited slightly reduced levels of overall methylation, although these levels were significantly higher than those in samples from pre-sexually mature yaks. Annotation analyses revealed that differentially methylated peaks were most concentrated in exonic regions, with progressively lower levels of concentration in the 3'-untranslated region (UTR) and 5'-UTR regions. To further explore the role of such m6A modification, enrichment analyses were performed on differentially methylated and differentially expressed genes in these samples. For the cattle-yaks vs. 18-months-old yaks group comparisons, differentially methylated genes were found to be associated with spermatogenesis-related GO terms related to the cytoskeleton and actin-binding, as well as with KEGG terms related to the regulation of the actin cytoskeleton and the MAPK signaling pathway. Similarly, enrichment analyses performed for the cattle-yaks vs. 5-years-old yaks comparison revealed differentially methylated genes to be associated with GO terms related to protein ubiquitination, ubiquitin ligase complexes, ubiquitin-dependent protein catabolism, and endocytotic activity, as well as with KEGG terms related to apoptosis and the Fanconi anemia pathway. Overall, enrichment analyses for the cattle-yaks vs. 18-months-old yaks comparison were primarily associated with spermatogenesis, whereas those for the cattle-yaks vs. 5-years-old yaks comparison were primarily associated with apoptosis.
Collapse
Affiliation(s)
- Xingdong Wang
- Key Laboratory of Yak Breeding Engineering of Gansu Province, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou, China
- Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Lanzhou, China
| | - Jie Pei
- Key Laboratory of Yak Breeding Engineering of Gansu Province, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou, China
- Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Lanzhou, China
| | - Shaoke Guo
- Key Laboratory of Yak Breeding Engineering of Gansu Province, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou, China
- Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Lanzhou, China
| | - Mengli Cao
- Key Laboratory of Yak Breeding Engineering of Gansu Province, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou, China
- Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Lanzhou, China
| | - Yandong Kang
- Key Laboratory of Yak Breeding Engineering of Gansu Province, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou, China
- Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Lanzhou, China
| | - Lin Xiong
- Key Laboratory of Yak Breeding Engineering of Gansu Province, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou, China
- Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Lanzhou, China
| | - Yongfu La
- Key Laboratory of Yak Breeding Engineering of Gansu Province, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou, China
- Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Lanzhou, China
| | - Pengjia Bao
- Key Laboratory of Yak Breeding Engineering of Gansu Province, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou, China
- Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Lanzhou, China
| | - Chunnian Liang
- Key Laboratory of Yak Breeding Engineering of Gansu Province, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou, China
- Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Lanzhou, China
| | - Ping Yan
- Key Laboratory of Yak Breeding Engineering of Gansu Province, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou, China
- Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Lanzhou, China
| | - Xian Guo
- Key Laboratory of Yak Breeding Engineering of Gansu Province, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou, China
- Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Lanzhou, China
- *Correspondence: Xian Guo
| |
Collapse
|
18
|
Hong S, Shen X, Luo C, Sun F. Comparative analysis of the testes from wild-type and Alkbh5-knockout mice using single-cell RNA sequencing. G3 GENES|GENOMES|GENETICS 2022; 12:6598802. [PMID: 35652742 PMCID: PMC9339272 DOI: 10.1093/g3journal/jkac130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Accepted: 05/20/2022] [Indexed: 11/23/2022]
Abstract
The RNA demethylase ALKBH5 is regarded as the “eraser” in N6-methyladenosine modification. ALKBH5 deficiency causes male infertility in mice; however, the mechanisms that confer disruption of spermatogenesis are not completely clear. In this study, we profiled testis samples from wild-type and Alkbh5-knockout mice using single-cell RNA sequencing. We obtained single-cell RNA sequencing data of 5,596 and 6,816 testis cells from a wild-type and a knockout mouse, respectively. There were differences detected between the transcriptional profiles of the groups at various germ cell developmental stages. This ranged from the development of spermatogonia to sperm cells, in macrophages, Sertoli cells, and Leydig cells. We identified the differentially expressed genes related to spermatogenesis in germ cells and somatic cells (Sertoli cells and Leydig cells) and evaluated their functions and associated pathways, such as chromatin-related functional pathways, through gene ontology enrichment analysis. This study provides the first single-cell RNA sequencing profile of the testes of ALKBH5-deficient mice. This highlights that ALKBH5 is an important gene for germ cell development and spermatogenesis and offers new molecular mechanistic insights. These findings could provide the basis for further research into the causes and treatment of male infertility.
Collapse
Affiliation(s)
- Shihao Hong
- Institute of Reproductive Medicine, Medical School of Nantong University , Nantong 226001, China
| | - Xiaozhong Shen
- Institute of Reproductive Medicine, Medical School of Nantong University , Nantong 226001, China
| | - Chunhai Luo
- Institute of Reproductive Medicine, Medical School of Nantong University , Nantong 226001, China
| | - Fei Sun
- Institute of Reproductive Medicine, Medical School of Nantong University , Nantong 226001, China
| |
Collapse
|
19
|
Burgos CF, Cikutovic R, Alarcón M. MicroRNA expression in male infertility. Reprod Fertil Dev 2022; 34:805-818. [PMID: 35760398 DOI: 10.1071/rd21131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2021] [Accepted: 05/25/2022] [Indexed: 11/23/2022] Open
Abstract
Male infertility is a multifactorial disorder that involves different physiopathological mechanisms and multiple genes. In this sense, we analyse the role of miRNAs in this pathology. Gene expression analysis can provide relevant information to detect biomarkers, signalling pathways, pathologic mechanisms, and potential therapeutic targets for the disease. In this review, we describe four miRNA microarrays related to patients who present infertility diseases, including azoospermia, asthenozoospermia, and oligoasthenozoospermic. We selected 13 miRNAs with altered expressions in testis tissue (hsa-miR-122-5p, hsa-miR-145-5p, hsa-miR-16-5p, hsa-miR-193a-3p, hsa-miR-19a-3p, hsa-miR-23a-3p, hsa-miR-30b-5p, hsa-miR-34b-5p, hsa-miR-34c-5p, hsa-miR-374b-5p, hsa-miR-449a, hsa-miR-574-3p and hsa-miR-92a-3p), and systematically examine the mechanisms of four relevant miRNAs (hsa-miR-16-5p, hsa-miR-19a-3p, hsa-miR-92a-3p and hsa-miR-30b-5p) which we found that regulated a large number of proteins. An interaction network was generated, and its connections allowed us to identify signalling pathways and interactions between proteins associated with male infertility. In this way, we confirm that the most affected and relevant pathway is the PI3K-Akt signalling.
Collapse
Affiliation(s)
- C F Burgos
- Department of Physiology, Faculty of Biological Sciences, Universidad de Concepción, Concepcion, Chile
| | - R Cikutovic
- Universidad de Talca, Talca, 360000 Maule, Chile
| | - M Alarcón
- Department of Clinical Biochemistry and Immunohaematology, Faculty of Health Sciences, Universidad de Talca, Talca, Chile
| |
Collapse
|
20
|
Chen H, Zhang J, Yan Y, Zhu C, Wang L, Fu S, Zuo F, Zhang GW. N6-methyladenosine RNA demethylase ALKBH5 is testis-specifically downregulated in hybrid male sterile dzo and is a target gene of bta-miR-200a. Theriogenology 2022; 187:51-57. [DOI: 10.1016/j.theriogenology.2022.04.022] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Revised: 04/23/2022] [Accepted: 04/23/2022] [Indexed: 01/29/2023]
|
21
|
Zhang S, Tao W, Han JDJ. 3D chromatin structure changes during spermatogenesis and oogenesis. Comput Struct Biotechnol J 2022; 20:2434-2441. [PMID: 35664233 PMCID: PMC9136186 DOI: 10.1016/j.csbj.2022.05.032] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2022] [Revised: 05/16/2022] [Accepted: 05/16/2022] [Indexed: 01/19/2023] Open
|
22
|
Liu C, Cao J, Zhang H, Wu J, Yin J. Profiling of Transcriptome-Wide N6-Methyladenosine (m6A) Modifications and Identifying m6A Associated Regulation in Sperm Tail Formation in Anopheles sinensis. Int J Mol Sci 2022; 23:ijms23094630. [PMID: 35563020 PMCID: PMC9101273 DOI: 10.3390/ijms23094630] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2022] [Revised: 04/19/2022] [Accepted: 04/19/2022] [Indexed: 12/13/2022] Open
Abstract
Recent discoveries of reversible N6-methyladenosine (m6A) methylation on messenger RNA (mRNA) and mapping of m6A methylomes in many species have revealed potential regulatory functions of this RNA modification by m6A players—writers, readers, and erasers. Here, we first profile transcriptome-wide m6A in female and male Anopheles sinensis and reveal that m6A is also a highly conserved modification of mRNA in mosquitoes. Distinct from mammals and yeast but similar to Arabidopsis thaliana, m6A in An. sinensis is enriched not only around the stop codon and within 3′-untranslated regions but also around the start codon and 5′-UTR. Gene ontology analysis indicates the unique distribution pattern of m6A in An. sinensis is associated with mosquito sex-specific pathways such as tRNA wobble uridine modification and phospholipid-binding in females, and peptidoglycan catabolic process, exosome and signal recognition particle, endoplasmic reticulum targeting, and RNA helicase activity in males. The positive correlation between m6A deposition and mRNA abundance indicates that m6A can play a role in regulating gene expression in mosquitoes. Furthermore, many spermatogenesis-associated genes, especially those related to mature sperm flagellum formation, are positively modulated by m6A methylation. A transcriptional regulatory network of m6A in An. sinensis is first profiled in the present study, especially in spermatogenesis, which may provide a new clue for the control of this disease-transmitting vector.
Collapse
|
23
|
Zhuo R, Xu M, Wang X, Zhou B, Wu X, Leone V, Chang EB, Zhong X. The regulatory role of N 6 -methyladenosine modification in the interaction between host and microbes. WILEY INTERDISCIPLINARY REVIEWS. RNA 2022; 13:e1725. [PMID: 35301791 DOI: 10.1002/wrna.1725] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2021] [Revised: 01/21/2022] [Accepted: 02/21/2022] [Indexed: 01/02/2023]
Abstract
N6 -methyladenosine (m6 A) is the most prevalent posttranscriptional modification in eukaryotic mRNAs. Dynamic and reversible m6 A modification regulates gene expression to control cellular processes and diverse biological functions. Growing evidence indicated that m6 A modification is involved in the homeostasis of host and microbes (mostly viruses and bacteria). Disturbance of m6 A modification affects the life cycles of viruses and bacteria, however, these microbes could in turn change host m6 A modification leading to human disease including autoimmune diseases and cancer. Thus, we raise the concept that m6 A could be a "messenger" molecule to participate in the interactions between host and microbes. In this review, we summarize the regulatory mechanisms of m6 A modification on viruses and commensal microbiota, highlight the roles of m6 A methylation in the interaction of host and microbes, and finally discuss drugs development targeting m6 A modification. This article is categorized under: RNA in Disease and Development > RNA in Disease.
Collapse
Affiliation(s)
- Ruhao Zhuo
- Joint International Research Laboratory of Animal Health & Food Safety, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - Menghui Xu
- Joint International Research Laboratory of Animal Health & Food Safety, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - Xiaoyun Wang
- Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, Institute of Insect Science and Technology, School of Life Sciences, South China Normal University, Guangzhou, China
| | - Bin Zhou
- Joint International Research Laboratory of Animal Health & Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Xin Wu
- Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, China
| | - Vanessa Leone
- Department of Animal Biologics and Metabolism, University of Wisconsin, Madison, Wisconsin, USA.,Department of Medicine, The University of Chicago, Chicago, Illinois, USA
| | - Eugene B Chang
- Department of Medicine, The University of Chicago, Chicago, Illinois, USA
| | - Xiang Zhong
- Joint International Research Laboratory of Animal Health & Food Safety, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
| |
Collapse
|
24
|
Moura FH, Macias-Franco A, Pena-Bello CA, Archilia EC, Batalha IM, Silva AEM, Moreira GM, Norris AB, Schütz LF, Fonseca MA. Sperm DNA 5-methyl cytosine and RNA N6-methyladenosine methylation are differently affected during periods of body weight losses and body weight gain of young and mature breeding bulls. J Anim Sci 2021; 100:6460477. [PMID: 34902028 PMCID: PMC8849232 DOI: 10.1093/jas/skab362] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2021] [Accepted: 12/10/2021] [Indexed: 12/15/2022] Open
Abstract
Aiming to characterize the effects of nutritional status on epigenetic markers, such as DNA 5-methyl cytosine (mC) methylation and RNA N6-methyladenosine (m6A) methylation, of bovine sperm, 12 Angus × Hereford crossbred breeding bulls were submitted to nutritional changes for a period of 180 d: no change in body weight (BW) (phase 1 = 12 d), BW loss (phase 2 = 78 d), and BW gain (phase 3 = 90 d) in a repeated measures design. Animals were fed Beardless wheat (Triticum aestivum) hay and mineral mix. Statistical analyses were performed using SAS 9.4 (SAS Inst., Cary, NC). Higher levels of RNA m6A (P = 0.004) and DNA methylation (P = 0.007) of spermatic cells were observed at phase 2 compared with phase 1. In phase 3, sperm RNA m6A methylation levels continued to be higher (P = 0.004), whereas the DNA of sperm cells was similar (P = 0.426) compared with phase 1. Growing bulls had a tendency (P = 0.109) of higher RNA m6A methylation levels than mature bulls. Phase 2 altered scrotal circumference (P < 0.001), sperm volume (P = 0.007), sperm total motility (P = 0.004), sperm progressive motility (P = 0.004), total sperm count (P = 0.049), normal sperm (P < 0.001), abnormal sperm (P < 0.001), primary sperm defects (P = 0.039), and secondary sperm defects (P < 0.001). In phase 3, bulls had scrotal circumference, sperm volume, sperm motility, sperm progressive motility, total sperm count, normal and abnormal spermatozoa, and primary and secondary spermatozoa defects similar to phase 1 (P > 0.05). Serum concentrations of insulin-like growth factor-1 and leptin decreased during phase 2 (P = 0.010), while no differences (P > 0.05) were detected between phases 3 and 1; growing bulls tended (P = 0.102) to present higher leptin levels than mature bulls. Specific for mature bulls, DNA methylation was positively correlated with leptin concentration (0.569, P = 0.021), whereas for young bulls, DNA methylation was positively correlated with abnormal spermatozoa (0.824, P = 0.006), primary spermatozoa defect (0.711, P = 0.032), and secondary spermatozoa defect (0.661, P = 0.052) and negatively correlated with normal spermatozoa (-0.824, P = 0.006), total sperm count (-0.702, P = 0.035), and sperm concentration (-0.846, P = 0.004). There was no significant correlation (P > 0.05) between RNA m6A and hormones and semen traits. In conclusion, the nutritional status of breeding bulls alters epigenetic markers, such as DNA methylation and RNA m6A methylation, in sperm, and the impact of change seems to be age dependent. These markers may serve as biomarkers of sperm quality and fertility of bulls in the future. Detrimental effects on sperm production and seminal quality are observed at periods and places when and where environmental and nutritional limitations are a year-round reality and may carry hidden players that may influence a lifetime of underperformance.
Collapse
Affiliation(s)
- Felipe H Moura
- Department of Animal, Veterinary and Rangeland Sciences, University of Nevada, Reno, Reno, NV 89557, USA
| | - Arturo Macias-Franco
- Department of Animal, Veterinary and Rangeland Sciences, University of Nevada, Reno, Reno, NV 89557, USA
| | - Camilo A Pena-Bello
- Department of Animal, Veterinary and Rangeland Sciences, University of Nevada, Reno, Reno, NV 89557, USA
| | - Evandro C Archilia
- Department of Animal, Veterinary and Rangeland Sciences, University of Nevada, Reno, Reno, NV 89557, USA
| | - Isadora M Batalha
- Department of Animal, Veterinary and Rangeland Sciences, University of Nevada, Reno, Reno, NV 89557, USA
| | - Aghata E M Silva
- Department of Animal, Veterinary and Rangeland Sciences, University of Nevada, Reno, Reno, NV 89557, USA
| | - Gabriel M Moreira
- Department of Animal, Veterinary and Rangeland Sciences, University of Nevada, Reno, Reno, NV 89557, USA
| | - Aaron B Norris
- Department of Animal, Veterinary and Rangeland Sciences, University of Nevada, Reno, Reno, NV 89557, USA,Department of Natural Resources Management, Texas Tech University, Lubbock, TX 79430, USA
| | - Luis F Schütz
- Department of Animal, Veterinary and Rangeland Sciences, University of Nevada, Reno, Reno, NV 89557, USA
| | - Mozart A Fonseca
- Department of Animal, Veterinary and Rangeland Sciences, University of Nevada, Reno, Reno, NV 89557, USA,Corresponding author:
| |
Collapse
|
25
|
Liu X, Du Y, Huang Z, Qin H, Chen J, Zhao Y. Insights into roles of METTL14 in tumors. Cell Prolif 2021; 55:e13168. [PMID: 34904301 PMCID: PMC8780950 DOI: 10.1111/cpr.13168] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2021] [Accepted: 12/03/2021] [Indexed: 12/20/2022] Open
Abstract
N6-Methyladenosine (m6A) is considered the most common and endogenous modification of eukaryotic RNAs. Highly conserved in many species, m6A regulates RNA metabolism, cell differentiation, cell circadian rhythm, and cell cycle; it also responds to endogenous and exogenous stimuli and is associated with the development of tumors. The m6A methyltransferase complex (MTC) regulates the m6A modification of transcripts and involves two components, methyltransferase-like enzyme 3 (METTL3) and methyltransferase-like enzyme 14 (METTL14), and other auxiliary regulatory distinct components. Though with no catalytic effect, METTL14 serves as an RNA-binding scaffold in MTC, promotes RNA substrate recognition, activates, and escalates the catalytic capability of METTL3, thus accounting for a pivotal member of the complex. It was reported that METTL14 regulates tumor proliferation, metastasis, and self-renewal, and plays a part in tumorigenesis, tumor progression, and other processes. The present work is a review of the role of METTL14 both as a tumor suppressor and a tumor promoter in the oncogenesis and progression of various tumors, as well as the potential molecular mechanisms.
Collapse
Affiliation(s)
- Xin Liu
- Department of Obstetrics and Gynecology, Department of Gynecologic Oncology Research Office, Key Laboratory for Major Obstetric Diseases of Guangdong Province, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Yuping Du
- Department of Obstetrics and Gynecology, Department of Gynecologic Oncology Research Office, Key Laboratory for Major Obstetric Diseases of Guangdong Province, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Zhenghao Huang
- Department of Obstetrics and Gynecology, Department of Gynecologic Oncology Research Office, Key Laboratory for Major Obstetric Diseases of Guangdong Province, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Honglei Qin
- Department of Obstetrics and Gynecology, Department of Gynecologic Oncology Research Office, Key Laboratory for Major Obstetric Diseases of Guangdong Province, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Jingwen Chen
- Department of Obstetrics and Gynecology, Department of Gynecologic Oncology Research Office, Key Laboratory for Major Obstetric Diseases of Guangdong Province, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Yang Zhao
- Department of Obstetrics and Gynecology, Department of Gynecologic Oncology Research Office, Key Laboratory for Major Obstetric Diseases of Guangdong Province, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| |
Collapse
|
26
|
Small Noncoding RNAs in Reproduction and Infertility. Biomedicines 2021; 9:biomedicines9121884. [PMID: 34944700 PMCID: PMC8698561 DOI: 10.3390/biomedicines9121884] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 11/16/2021] [Accepted: 11/17/2021] [Indexed: 12/20/2022] Open
Abstract
Infertility has been reported as one of the most common reproductive impairments, affecting nearly one in six couples worldwide. A large proportion of infertility cases are diagnosed as idiopathic, signifying a deficit in information surrounding the pathology of infertility and necessity of medical intervention such as assisted reproductive therapy. Small noncoding RNAs (sncRNAs) are well-established regulators of mammalian reproduction. Advanced technologies have revealed the dynamic expression and diverse functions of sncRNAs during mammalian germ cell development. Mounting evidence indicates sncRNAs in sperm, especially microRNAs (miRNAs) and transfer RNA (tRNA)-derived small RNAs (tsRNAs), are sensitive to environmental changes and mediate the inheritance of paternally acquired metabolic and mental traits. Here, we review the critical roles of sncRNAs in mammalian germ cell development. Furthermore, we highlight the functions of sperm-borne sncRNAs in epigenetic inheritance. We also discuss evidence supporting sncRNAs as promising biomarkers for fertility and embryo quality in addition to the present limitations of using sncRNAs for infertility diagnosis and treatment.
Collapse
|
27
|
Zhao X, Lin Z, Fan Y, Li W, Zhang Y, Li F, Hong T, Feng H, Tong M, Wang N, Kuang Y, Lyu Q. YTHDF2 is essential for spermatogenesis and fertility by mediating a wave of transcriptional transition in spermatogenic cells. Acta Biochim Biophys Sin (Shanghai) 2021; 53:1702-1712. [PMID: 34664060 DOI: 10.1093/abbs/gmab148] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Indexed: 11/13/2022] Open
Abstract
The dynamic and reversible regulation roles of m6A modification and the characterization of m6A readers have provided new insights into spermatogenesis at the post-transcriptional level. YTHDF2, as an m6A reader, has been reported to mediate the m6A-containing transcript decay during the mouse oocyte maturation, embryonic stem cell differentiation, neural development, and zebrafish maternal-to-zygotic transition. However, the roles of YTHDF2 in mammalian spermatogenesis are uncertain. Here, we generated germ cell-specific Ythdf2 mutants (Ythdf2-vKO) at a C57BL/6J background and demonstrated that YTHDF2 is essential for mouse spermatogenesis and fertility. Ythdf2-vKO provides oligoasthenoteratozoospermia phenotype with increased apoptosis in germ cells. High-throughput RNA-seq analysis showed that a group of mRNAs is upregulated in Ythdf2-vKO mouse testis; further analysis and MeRIP-qPCR data showed that most of the upregulated genes in Ythdf2-vKO mouse testis are modified with m6A and are YTHDF2 candidate binding genes. Interestingly, RNA-seq analysis combined with our previous single-cell transcriptomics data of mouse spermatogenesis pointed out the failure of a wave of transcript transition during the spermatogenesis of Ythdf2-vKO mice, which was confirmed by gene expression analysis using qPCR of diplotene spermatocytes and round spermatids obtained through fluorescence-activated cell sorting. Our study demonstrates the fundamental role of YTHDF2 during mouse spermatogenesis and provides a potential candidate for the diagnosis of male infertility with the oligoasthenoteratozoospermia syndrome.
Collapse
Affiliation(s)
- Xinxi Zhao
- Department of Assisted Reproduction, Shanghai Ninth People's Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200011, China
| | - Zhen Lin
- State Key Laboratory of Molecular Biology, Shanghai Key Laboratory of Molecular Andrology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai 200031, China
| | - Yong Fan
- Department of Assisted Reproduction, Shanghai Ninth People's Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200011, China
| | - Wenzhi Li
- Department of Assisted Reproduction, Shanghai Ninth People's Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200011, China
| | - Yujie Zhang
- State Key Laboratory of Molecular Biology, Shanghai Key Laboratory of Molecular Andrology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai 200031, China
| | - Fei Li
- State Key Laboratory of Molecular Biology, Shanghai Key Laboratory of Molecular Andrology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai 200031, China
| | - Tong Hong
- State Key Laboratory of Molecular Biology, Shanghai Key Laboratory of Molecular Andrology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai 200031, China
| | - Hua Feng
- Omics Core, Bio-Med Big Data Center, CAS-MPG Partner Institute for Computational Biology, Shanghai Institute of Nutrition and Health, Chinese Academy of Sciences, Shanghai 200031, China
| | - Minghan Tong
- State Key Laboratory of Molecular Biology, Shanghai Key Laboratory of Molecular Andrology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai 200031, China
| | - Ningling Wang
- Department of Assisted Reproduction, Shanghai Ninth People's Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200011, China
| | - Yanping Kuang
- Department of Assisted Reproduction, Shanghai Ninth People's Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200011, China
| | - Qifeng Lyu
- Department of Assisted Reproduction, Shanghai Ninth People's Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200011, China
| |
Collapse
|
28
|
Wang X, Pei J, Guo S, Cao M, Bao P, Xiong L, Wu X, Chu M, Liang C, Yan P, Guo X. Characterization of N 6-Methyladenosine in Domesticated Yak Testes Before and After Sexual Maturity. Front Cell Dev Biol 2021; 9:755670. [PMID: 34858983 PMCID: PMC8632223 DOI: 10.3389/fcell.2021.755670] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Accepted: 10/27/2021] [Indexed: 11/26/2022] Open
Abstract
The potential regulatory role of N6-methyladenosine (m6A), the most prominent mRNA modification in eukaryotes, has recently been identified in mammals, plants, and yeast. However, whether and how m6A methylation is involved in sexual maturation in mammals remains largely unexplored. In this study, testicular tissue was obtained from yaks before and after sexual maturation, and m6A maps were generated via preliminary experiments and methylated RNA immunoprecipitation sequencing. Only spermatogonial cells and a few primary spermatocytes were observed in the testicular tissue of yaks before sexual maturation, while spermatogenic cells at different stages of maturity could observed after sexual maturation. Experiments examining the expression of methylation-related enzymes and overall methylation levels showed that the methylation levels in yak testes increased after sexual maturation. Overall, 1,438 methylation peaks were differentially expressed before and after sexual maturation; 1,226 showed significant up-regulation and 212 showed significant down-regulation after sexual maturation. Annotation analysis showed that the differential methylation peaks were most commonly concentrated in the exon region, followed by the 3′UTR and finally the 5′UTR region. KEGG pathway analysis demonstrated that homologous recombination, the Notch signaling pathway, growth hormone synthesis, and other signaling pathways may be involved in testicular development and maturation in yaks. Levels of most m6A modifications were positively correlated with mRNA abundance, suggesting that m6A plays a regulatory role in mammalian sexual maturation. To our knowledge, this is the first report of an m6A transcriptional map of the yak testes, and our study lays the foundation for elucidating the function of m6A in the development of yak testes.
Collapse
Affiliation(s)
- Xingdong Wang
- Key Laboratory of Yak Breeding Engineering of Gansu Province, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Jie Pei
- Key Laboratory of Yak Breeding Engineering of Gansu Province, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Shaoke Guo
- Key Laboratory of Yak Breeding Engineering of Gansu Province, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Mengli Cao
- Key Laboratory of Yak Breeding Engineering of Gansu Province, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Pengjia Bao
- Key Laboratory of Yak Breeding Engineering of Gansu Province, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Lin Xiong
- Key Laboratory of Yak Breeding Engineering of Gansu Province, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Xiaoyun Wu
- Key Laboratory of Yak Breeding Engineering of Gansu Province, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Min Chu
- Key Laboratory of Yak Breeding Engineering of Gansu Province, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Chunnian Liang
- Key Laboratory of Yak Breeding Engineering of Gansu Province, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Ping Yan
- Key Laboratory of Yak Breeding Engineering of Gansu Province, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Xian Guo
- Key Laboratory of Yak Breeding Engineering of Gansu Province, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou, China
| |
Collapse
|
29
|
Liu X, Wang H, Liu B, Qi Z, Li J, Xu B, Liu W, Xu Z, Deng Y. The Latest Research Progress of m 6A Modification and Its Writers, Erasers, Readers in Infertility: A Review. Front Cell Dev Biol 2021; 9:681238. [PMID: 34568313 PMCID: PMC8461070 DOI: 10.3389/fcell.2021.681238] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Accepted: 07/06/2021] [Indexed: 01/22/2023] Open
Abstract
Eukaryotic messenger mRNAs contain many RNA methyl chemical modifications, in which N6-methyladenosine (m6A) plays a very important role. The modification process of RNA methylation is a dynamic reversible regulatory process that is mainly catalyzed by "Writer" m6A methyltransferase, removed by "Eraser" m6A demethylase, and recognized by the m6A binding protein, thereby, linking m6A modification with other mRNA pathways. At various stages of the life cycle, m6A modification plays an extremely important role in regulating mRNA splicing, processing, translation, as well as degradation, and is associated with gametogenesis and fertility for both sexes. Normal gametogenesis is a basic guarantee of fertility. Infertility leads to trauma, affects harmony in the family and seriously affects the quality of life. We review the roles and mechanisms of RNA m6A methylation modification in infertility and provide a potential target for infertility treatment, which can be used for drug development.
Collapse
Affiliation(s)
- Xuda Liu
- Department of Public Health, China Medical University, Shenyang, China
| | - Haiying Wang
- Department of Public Health, China Medical University, Shenyang, China
| | - Bingchen Liu
- Department of Public Health, China Medical University, Shenyang, China
| | - Zhipeng Qi
- Department of Public Health, China Medical University, Shenyang, China
| | - Jiashuo Li
- Department of Public Health, China Medical University, Shenyang, China
| | - Bin Xu
- Department of Public Health, China Medical University, Shenyang, China
| | - Wei Liu
- Department of Public Health, China Medical University, Shenyang, China
| | - Zhaofa Xu
- Department of Public Health, China Medical University, Shenyang, China
| | - Yu Deng
- Department of Public Health, China Medical University, Shenyang, China
| |
Collapse
|
30
|
Baker J, Meade A, Venditti C. Genes underlying the evolution of tetrapod testes size. BMC Biol 2021; 19:162. [PMID: 34407824 PMCID: PMC8375169 DOI: 10.1186/s12915-021-01107-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Accepted: 07/19/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Testes vary widely in mass relative to body mass across species, but we know very little about which genes underlie and contribute to such variation. This is partly because evidence for which genes are implicated in testis size variation tends to come from investigations involving just one or a few species. Contemporary comparative phylogenetic methods provide an opportunity to test candidate genes for their role in phenotypic change at a macro-evolutionary scale-across species and over millions of years. Previous attempts to detect genotype-phenotype associations across species have been limited in that they can only detect where genes have driven directional selection (e.g. brain size increase). RESULTS Here, we introduce an approach that uses rates of evolutionary change to overcome this limitation to test whether any of twelve candidate genes have driven testis size evolution across tetrapod vertebrates-regardless of directionality. We do this by seeking a relationship between the rates of genetic and phenotypic evolution. Our results reveal five genes (Alkbh5, Dmrtb1, Pld6, Nlrp3, Sp4) that each have played unique and complex roles in tetrapod testis size diversity. In all five genes, we find strong significant associations between the rate of protein-coding substitutions and the rate of testis size evolution. Such an association has never, to our knowledge, been tested before for any gene or phenotype. CONCLUSIONS We describe a new approach to tackle one of the most fundamental questions in biology: how do individual genes give rise to biological diversity? The ability to detect genotype-phenotype associations that have acted across species has the potential to build a picture of how natural selection has sculpted phenotypic change over millions of years.
Collapse
Affiliation(s)
- Joanna Baker
- School of Biological Sciences, University of Reading, Reading, RG6 6BX, UK.
| | - Andrew Meade
- School of Biological Sciences, University of Reading, Reading, RG6 6BX, UK
| | - Chris Venditti
- School of Biological Sciences, University of Reading, Reading, RG6 6BX, UK.
| |
Collapse
|
31
|
Chen X, Wang J, Tahir M, Zhang F, Ran Y, Liu Z, Wang J. Current insights into the implications of m6A RNA methylation and autophagy interaction in human diseases. Cell Biosci 2021; 11:147. [PMID: 34315538 PMCID: PMC8314498 DOI: 10.1186/s13578-021-00661-x] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Accepted: 07/19/2021] [Indexed: 12/12/2022] Open
Abstract
Autophagy is a conserved degradation process crucial to maintaining the primary function of cellular and organismal metabolism. Impaired autophagy could develop numerous diseases, including cancer, cardiomyopathy, neurodegenerative disorders, and aging. N6-methyladenosine (m6A) is the most common RNA modification in eukaryotic cells, and the fate of m6A modified transcripts is controlled by m6A RNA binding proteins. m6A modification influences mRNA alternative splicing, stability, translation, and subcellular localization. Intriguingly, recent studies show that m6A RNA methylation could alter the expression of essential autophagy-related (ATG) genes and influence the autophagy function. Thus, both m6A modification and autophagy could play a crucial role in the onset and progression of various human diseases. In this review, we summarize the latest studies describing the impact of m6A modification in autophagy regulation and discuss the role of m6A modification-autophagy axis in different human diseases, including obesity, heart disease, azoospermatism or oligospermatism, intervertebral disc degeneration, and cancer. The comprehensive understanding of the m6A modification and autophagy interplay may help in interpreting their impact on human diseases and may aid in devising future therapeutic strategies.
Collapse
Affiliation(s)
- Xuechai Chen
- Center of Excellence for Environmental Safety and Biological Effects, Beijing International Science and Technology Cooperation Base for Antiviral Drugs, Faculty of Environment and Life, Beijing University of Technology, 100 Ping Le Yuan, Chaoyang District, Beijing, 100124, People's Republic of China
| | - Jianan Wang
- Center of Excellence for Environmental Safety and Biological Effects, Beijing International Science and Technology Cooperation Base for Antiviral Drugs, Faculty of Environment and Life, Beijing University of Technology, 100 Ping Le Yuan, Chaoyang District, Beijing, 100124, People's Republic of China
| | - Muhammad Tahir
- Center of Excellence for Environmental Safety and Biological Effects, Beijing International Science and Technology Cooperation Base for Antiviral Drugs, Faculty of Environment and Life, Beijing University of Technology, 100 Ping Le Yuan, Chaoyang District, Beijing, 100124, People's Republic of China
| | - Fangfang Zhang
- Center of Excellence for Environmental Safety and Biological Effects, Beijing International Science and Technology Cooperation Base for Antiviral Drugs, Faculty of Environment and Life, Beijing University of Technology, 100 Ping Le Yuan, Chaoyang District, Beijing, 100124, People's Republic of China
| | - Yuanyuan Ran
- Department of Rehabilitation, Beijing Rehabilitation Hospital, Capital Medical University, Xixiazhuang, Badachu, Beijing, 100144, People's Republic of China
| | - Zongjian Liu
- Department of Rehabilitation, Beijing Rehabilitation Hospital, Capital Medical University, Xixiazhuang, Badachu, Beijing, 100144, People's Republic of China.
| | - Juan Wang
- Center of Excellence for Environmental Safety and Biological Effects, Beijing International Science and Technology Cooperation Base for Antiviral Drugs, Faculty of Environment and Life, Beijing University of Technology, 100 Ping Le Yuan, Chaoyang District, Beijing, 100124, People's Republic of China.
| |
Collapse
|
32
|
Gui Y, Yuan S. Epigenetic regulations in mammalian spermatogenesis: RNA-m 6A modification and beyond. Cell Mol Life Sci 2021; 78:4893-4905. [PMID: 33835194 PMCID: PMC11073063 DOI: 10.1007/s00018-021-03823-9] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Revised: 03/04/2021] [Accepted: 03/25/2021] [Indexed: 02/06/2023]
Abstract
Emerging evidence shows that m6A, one of the most abundant RNA modifications in mammals, is involved in the entire process of spermatogenesis, including mitosis, meiosis, and spermiogenesis. "Writers" catalyze m6A formation on stage-specific transcripts during male germline development, while "erasers" remove m6A modification to maintain a balance between methylation and demethylation. The different functions of RNA-m6A transcripts depend on their recognition by "readers". m6A modification mediates RNA metabolism, including mRNA splicing, translation, and degradation, as well as the maturity and biosynthesis of non-coding RNAs. Sperm RNA profiles are easily affected by environmental exposure and can even be inherited for several generations, similar to epigenetic inheritance. Here, we review and summarize the critical role of m6A in different developmental stages of male germ cells, to understand of the mechanisms and epigenetic regulation of m6A modifications. In addition, we also outline and discuss the important role of non-coding RNAs in spermatogenesis and RNA modifications in epigenetic inheritance.
Collapse
Affiliation(s)
- Yiqian Gui
- Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Shuiqiao Yuan
- Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.
- Shenzhen Huazhong University of Science and Technology Research Institute, Shenzhen, 518057, China.
| |
Collapse
|
33
|
Fang F, Wang X, Li Z, Ni K, Xiong C. Epigenetic regulation of mRNA N6-methyladenosine modifications in mammalian gametogenesis. Mol Hum Reprod 2021; 27:6212059. [PMID: 33823008 DOI: 10.1093/molehr/gaab025] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2021] [Revised: 03/12/2021] [Indexed: 12/20/2022] Open
Abstract
N6-methyladenosine (m6A) is the most prevalent epigenetic modification of mRNAs and broadly influences various biological processes by regulating post-transcriptional gene expression in eukaryotes. The reversible m6A modification is catalyzed by methyltransferases, METTL3 and METTL14 (writers), removed by the demethylases FTO and ALKBH5 (erasers) and recognized by m6A-binding proteins, namely the YTH domain-containing family of proteins (readers). Both m6A modification and the related enzymes are involved in the regulation of normal gametogenesis and embryonic development in many species. Recent studies showed that loss of m6A compromises gamete maturation, sex hormone synthesis, fertility and early embryonic development. In this review, we have summarized the most recent findings on the role of mRNA m6A modification in mammalian gametogenesis to emphasize the epigenetic regulation of mRNA in the reproductive system.
Collapse
Affiliation(s)
- Fang Fang
- Department of Obstetrics and Gynecology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Xiao Wang
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Zili Li
- Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Ke Ni
- Department of Gynecology and Obstetrics, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Chengliang Xiong
- Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China.,Center of Reproductive Medicine, Wuhan Tongji Reproductive Medicine Hospital, Wuhan 430013, China
| |
Collapse
|
34
|
Bo D, Jiang X, Liu G, Hu R, Chong Y. RNA-Seq Implies Divergent Regulation Patterns of LincRNA on Spermatogenesis and Testis Growth in Goats. Animals (Basel) 2021; 11:ani11030625. [PMID: 33653002 PMCID: PMC7996862 DOI: 10.3390/ani11030625] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Revised: 02/20/2021] [Accepted: 02/22/2021] [Indexed: 01/09/2023] Open
Abstract
Simple Summary Long intergenic non-coding RNAs (lincRNAs) can regulate testicular development by acting on protein-coding genes. Therefore, it is important to explore the expression patterns and roles of lincRNAs during the postnatal development of the goat testis. In this study, the testes of Yiling goats with average ages of 0, 30, 60, 90, 120, 150, and 180 days postnatal were used for RNA-seq. In total, 20,269 lincRNAs were identified, including 16,931 novel lincRNAs. Using weighted gene co-expression network analysis, seven time-specifically diverse lincRNA modules and six mRNA modules were identified. Dramatically, the down-regulation of growth-related lincRNAs was nearly one month earlier than the up-regulation of spermatogenesis-related lincRNAs, while the down-regulation of growth-related protein-coding genes and the correspondent up-regulation of spermatogenesis-related protein-coding genes occurred at the same age. Moreover, potential lincRNA target genes were predicted. Moreover, key lincRNAs in the process of testis development were predicted, such as ENSCHIT00000000777, ENSCHIT00000002069, and ENSCHIT00000005076. In the present study, the divergent regulation patterns of lincRNA on spermatogenesis and testis growth were discovered. This study can improve our understanding of the functions of lincRNAs in the regulation of testis development. Abstract Long intergenic non-coding RNAs (lincRNAs) regulate testicular development by acting on protein-coding genes. However, little is known about whether lincRNAs and protein-coding genes exhibit the same expression pattern in the same phase of postnatal testicular development in goats. Therefore, this study aimed to demonstrate the expression patterns and roles of lincRNAs during the postnatal development of the goat testis. Herein, the testes of Yiling goats with average ages of 0, 30, 60, 90, 120, 150, and 180 days postnatal (DP) were used for RNA-seq. In total, 20,269 lincRNAs were identified, including 16,931 novel lincRNAs. We identified seven time-specifically diverse lincRNA modules and six mRNA modules by weighted gene co-expression network analysis (WGCNA). Interestingly, the down-regulation of growth-related lincRNAs was nearly one month earlier than the up-regulation of spermatogenesis-related lincRNAs, while the down-regulation of growth-related protein-coding genes and the correspondent up-regulation of spermatogenesis-related protein-coding genes occurred at the same age. Then, potential lincRNA target genes were predicted. Moreover, the co-expression network of lincRNAs demonstrated that ENSCHIT00000000777, ENSCHIT00000002069, and ENSCHIT00000005076 were the key lincRNAs in the process of testis development. Our study discovered the divergent regulation patterns of lincRNA on spermatogenesis and testis growth, providing a fresh insight into age-biased changes in lincRNA expression in the goat testis.
Collapse
Affiliation(s)
- Dongdong Bo
- Laboratory of Small Ruminant Genetics, Breeding and Reproduction, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; (D.B.); (X.J.); (R.H.); (Y.C.)
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction, Ministry of Education, Wuhan 430070, China
| | - Xunping Jiang
- Laboratory of Small Ruminant Genetics, Breeding and Reproduction, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; (D.B.); (X.J.); (R.H.); (Y.C.)
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction, Ministry of Education, Wuhan 430070, China
| | - Guiqiong Liu
- Laboratory of Small Ruminant Genetics, Breeding and Reproduction, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; (D.B.); (X.J.); (R.H.); (Y.C.)
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction, Ministry of Education, Wuhan 430070, China
- Correspondence: ; Tel.: +86-027-87585120
| | - Ruixue Hu
- Laboratory of Small Ruminant Genetics, Breeding and Reproduction, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; (D.B.); (X.J.); (R.H.); (Y.C.)
| | - Yuqing Chong
- Laboratory of Small Ruminant Genetics, Breeding and Reproduction, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; (D.B.); (X.J.); (R.H.); (Y.C.)
| |
Collapse
|
35
|
Jiang X, Liu B, Nie Z, Duan L, Xiong Q, Jin Z, Yang C, Chen Y. The role of m6A modification in the biological functions and diseases. Signal Transduct Target Ther 2021; 6:74. [PMID: 33611339 PMCID: PMC7897327 DOI: 10.1038/s41392-020-00450-x] [Citation(s) in RCA: 1146] [Impact Index Per Article: 286.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2020] [Accepted: 12/09/2020] [Indexed: 01/31/2023] Open
Abstract
N6-methyladenosine (m6A) is the most prevalent, abundant and conserved internal cotranscriptional modification in eukaryotic RNAs, especially within higher eukaryotic cells. m6A modification is modified by the m6A methyltransferases, or writers, such as METTL3/14/16, RBM15/15B, ZC3H3, VIRMA, CBLL1, WTAP, and KIAA1429, and, removed by the demethylases, or erasers, including FTO and ALKBH5. It is recognized by m6A-binding proteins YTHDF1/2/3, YTHDC1/2 IGF2BP1/2/3 and HNRNPA2B1, also known as "readers". Recent studies have shown that m6A RNA modification plays essential role in both physiological and pathological conditions, especially in the initiation and progression of different types of human cancers. In this review, we discuss how m6A RNA methylation influences both the physiological and pathological progressions of hematopoietic, central nervous and reproductive systems. We will mainly focus on recent progress in identifying the biological functions and the underlying molecular mechanisms of m6A RNA methylation, its regulators and downstream target genes, during cancer progression in above systems. We propose that m6A RNA methylation process offer potential targets for cancer therapy in the future.
Collapse
Affiliation(s)
- Xiulin Jiang
- grid.419010.d0000 0004 1792 7072Key Laboratory of Animal Models and Human Disease Mechanisms of Chinese Academy of Sciences & Yunnan Province, Kunming Institute of Zoology, 650223 Kunming, Yunnan China ,grid.410726.60000 0004 1797 8419Kunming College of Life Science, University of Chinese Academy of Sciences, 100049 Beijing, China
| | - Baiyang Liu
- grid.419010.d0000 0004 1792 7072Key Laboratory of Animal Models and Human Disease Mechanisms of Chinese Academy of Sciences & Yunnan Province, Kunming Institute of Zoology, 650223 Kunming, Yunnan China ,grid.410726.60000 0004 1797 8419Kunming College of Life Science, University of Chinese Academy of Sciences, 100049 Beijing, China
| | - Zhi Nie
- grid.419010.d0000 0004 1792 7072Key Laboratory of Animal Models and Human Disease Mechanisms of Chinese Academy of Sciences & Yunnan Province, Kunming Institute of Zoology, 650223 Kunming, Yunnan China ,grid.410726.60000 0004 1797 8419Kunming College of Life Science, University of Chinese Academy of Sciences, 100049 Beijing, China ,grid.285847.40000 0000 9588 0960Kunming Medical University, 650500 Kunming, China
| | - Lincan Duan
- grid.285847.40000 0000 9588 0960Kunming Medical University, 650500 Kunming, China
| | - Qiuxia Xiong
- grid.285847.40000 0000 9588 0960Kunming Medical University, 650500 Kunming, China
| | - Zhixian Jin
- grid.285847.40000 0000 9588 0960Kunming Medical University, 650500 Kunming, China
| | - Cuiping Yang
- grid.419010.d0000 0004 1792 7072Key Laboratory of Animal Models and Human Disease Mechanisms of Chinese Academy of Sciences & Yunnan Province, Kunming Institute of Zoology, 650223 Kunming, Yunnan China
| | - Yongbin Chen
- grid.419010.d0000 0004 1792 7072Key Laboratory of Animal Models and Human Disease Mechanisms of Chinese Academy of Sciences & Yunnan Province, Kunming Institute of Zoology, 650223 Kunming, Yunnan China ,grid.9227.e0000000119573309Center for Excellence in Animal Evolution and Genetics, Chinese Academy of Sciences, 650223 Kunming, Yunnan China
| |
Collapse
|
36
|
Cao Z, Zhang L, Hong R, Li Y, Wang Y, Qi X, Ning W, Gao D, Xu T, Ma Y, Yu T, Knott JG, Sathanawongs A, Zhang Y. METTL3-mediated m6A methylation negatively modulates autophagy to support porcine blastocyst development‡. Biol Reprod 2021; 104:1008-1021. [PMID: 33590832 DOI: 10.1093/biolre/ioab022] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Revised: 11/21/2020] [Accepted: 02/10/2021] [Indexed: 12/29/2022] Open
Abstract
N6-methyladenosine (m6A) catalyzed by METTL3 regulates the maternal-to-zygotic transition in zebrafish and mice. However, the role and mechanism of METTL3-mediated m6A methylation in blastocyst development remains unclear. Here, we show that METTL3-mediated m6A methylation sustains porcine blastocyst development via negatively modulating autophagy. We found that reduced m6A levels triggered by METTL3 knockdown caused embryonic arrest during morula-blastocyst transition and developmental defects in trophectoderm cells. Intriguingly, overexpression of METTL3 in early embryos resulted in increased m6A levels and these embryos phenocopied METTL3 knockdown embryos. Mechanistically, METTL3 knockdown or overexpression resulted in a significant increase or decrease in expression of ATG5 (a key regulator of autophagy) and LC3 (an autophagy marker) in blastocysts, respectively. m6A modification of ATG5 mRNA mainly occurs at 3'UTR, and METTL3 knockdown enhanced ATG5 mRNA stability, suggesting that METTL3 negatively regulated autophagy in an m6A dependent manner. Furthermore, single-cell qPCR revealed that METTL3 knockdown only increased expression of LC3 and ATG5 in trophectoderm cells, indicating preferential inhibitory effects of METTL3 on autophagy activity in the trophectoderm lineage. Importantly, autophagy restoration by 3MA (an autophagy inhibitor) treatment partially rescued developmental defects of METTL3 knockdown blastocysts. Taken together, these results demonstrate that METTL3-mediated m6A methylation negatively modulates autophagy to support blastocyst development.
Collapse
Affiliation(s)
- Zubing Cao
- Anhui Province Key Laboratory of Local Livestock and Poultry, Genetical Resource Conservation and Breeding, College of Animal Science and Technology, Anhui Agricultural University, Hefei, China
| | - Ling Zhang
- Anhui Province Key Laboratory of Local Livestock and Poultry, Genetical Resource Conservation and Breeding, College of Animal Science and Technology, Anhui Agricultural University, Hefei, China
| | - Renyun Hong
- Department of Reproductive Medicine, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, China
| | - Yunsheng Li
- Anhui Province Key Laboratory of Local Livestock and Poultry, Genetical Resource Conservation and Breeding, College of Animal Science and Technology, Anhui Agricultural University, Hefei, China
| | - Yiqing Wang
- Anhui Province Key Laboratory of Local Livestock and Poultry, Genetical Resource Conservation and Breeding, College of Animal Science and Technology, Anhui Agricultural University, Hefei, China
| | - Xin Qi
- Anhui Province Key Laboratory of Local Livestock and Poultry, Genetical Resource Conservation and Breeding, College of Animal Science and Technology, Anhui Agricultural University, Hefei, China
| | - Wei Ning
- Anhui Province Key Laboratory of Local Livestock and Poultry, Genetical Resource Conservation and Breeding, College of Animal Science and Technology, Anhui Agricultural University, Hefei, China
| | - Di Gao
- Anhui Province Key Laboratory of Local Livestock and Poultry, Genetical Resource Conservation and Breeding, College of Animal Science and Technology, Anhui Agricultural University, Hefei, China
| | - Tengteng Xu
- Anhui Province Key Laboratory of Local Livestock and Poultry, Genetical Resource Conservation and Breeding, College of Animal Science and Technology, Anhui Agricultural University, Hefei, China
| | - Yangyang Ma
- Anhui Province Key Laboratory of Local Livestock and Poultry, Genetical Resource Conservation and Breeding, College of Animal Science and Technology, Anhui Agricultural University, Hefei, China
| | - Tong Yu
- Anhui Province Key Laboratory of Local Livestock and Poultry, Genetical Resource Conservation and Breeding, College of Animal Science and Technology, Anhui Agricultural University, Hefei, China
| | - Jason G Knott
- Developmental Epigenetics Laboratory, Department of Animal Science, Michigan State University, East Lansing, MI, USA
| | - Anucha Sathanawongs
- Department of Veterinary Biosciences and Veterinary Public Health, Faculty of Veterinary Medicine, Chiang Mai University, Chiang Mai, Thailand
| | - Yunhai Zhang
- Anhui Province Key Laboratory of Local Livestock and Poultry, Genetical Resource Conservation and Breeding, College of Animal Science and Technology, Anhui Agricultural University, Hefei, China
| |
Collapse
|
37
|
Gu J, Zhan Y, Zhuo L, Zhang Q, Li G, Li Q, Qi S, Zhu J, Lv Q, Shen Y, Guo Y, Liu S, Xie T, Sui X. Biological functions of m 6A methyltransferases. Cell Biosci 2021; 11:15. [PMID: 33431045 PMCID: PMC7798219 DOI: 10.1186/s13578-020-00513-0] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Accepted: 12/07/2020] [Indexed: 12/17/2022] Open
Abstract
M6A methyltransferases, acting as a writer in N6-methyladenosine, have attracted wide attention due to their dynamic regulation of life processes. In this review, we first briefly introduce the individual components of m6A methyltransferases and explain their close connections to each other. Then, we concentrate on the extensive biological functions of m6A methyltransferases, which include cell growth, nerve development, osteogenic differentiation, metabolism, cardiovascular system homeostasis, infection and immunity, and tumour progression. We summarize the currently unresolved problems in this research field and propose expectations for m6A methyltransferases as novel targets for preventive and curative strategies for disease treatment in the future.
Collapse
Affiliation(s)
- Jianzhong Gu
- College of Pharmacy, School of Medicine, Hangzhou Normal University, Hangzhou, 311121, Zhejiang, China.,Department of Oncology, The First Affiliated Hospital of Zhejiang Chinese Medical University, 54 Youdian Road, Hangzhou, 310006, Zhejiang, China
| | - Yu Zhan
- Department of Oncology, The First Affiliated Hospital of Zhejiang Chinese Medical University, 54 Youdian Road, Hangzhou, 310006, Zhejiang, China
| | - Lvjia Zhuo
- College of Pharmacy, School of Medicine, Hangzhou Normal University, Hangzhou, 311121, Zhejiang, China.,Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, 311121, Zhejiang, China
| | - Qin Zhang
- College of Pharmacy, School of Medicine, Hangzhou Normal University, Hangzhou, 311121, Zhejiang, China.,Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, 311121, Zhejiang, China
| | - Guohua Li
- College of Pharmacy, School of Medicine, Hangzhou Normal University, Hangzhou, 311121, Zhejiang, China.,Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, 311121, Zhejiang, China
| | - Qiujie Li
- College of Pharmacy, School of Medicine, Hangzhou Normal University, Hangzhou, 311121, Zhejiang, China.,Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, 311121, Zhejiang, China
| | - Shasha Qi
- College of Pharmacy, School of Medicine, Hangzhou Normal University, Hangzhou, 311121, Zhejiang, China.,Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, 311121, Zhejiang, China
| | - Jinyu Zhu
- College of Pharmacy, School of Medicine, Hangzhou Normal University, Hangzhou, 311121, Zhejiang, China.,Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, 311121, Zhejiang, China
| | - Qun Lv
- Department of Respiratory medicine, the Affiliated Hospital of Hangzhou Normal University, School of Medicine, Hangzhou Normal University, Hangzhou, 310015, Zhejiang, China
| | - Yingying Shen
- Department of Oncology, The First Affiliated Hospital of Zhejiang Chinese Medical University, 54 Youdian Road, Hangzhou, 310006, Zhejiang, China
| | - Yong Guo
- Department of Oncology, The First Affiliated Hospital of Zhejiang Chinese Medical University, 54 Youdian Road, Hangzhou, 310006, Zhejiang, China
| | - Shuiping Liu
- College of Pharmacy, School of Medicine, Hangzhou Normal University, Hangzhou, 311121, Zhejiang, China. .,Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, 311121, Zhejiang, China.
| | - Tian Xie
- College of Pharmacy, School of Medicine, Hangzhou Normal University, Hangzhou, 311121, Zhejiang, China. .,Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, 311121, Zhejiang, China.
| | - Xinbing Sui
- College of Pharmacy, School of Medicine, Hangzhou Normal University, Hangzhou, 311121, Zhejiang, China. .,Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, 311121, Zhejiang, China.
| |
Collapse
|
38
|
Zhou Y, Kong Y, Fan W, Tao T, Xiao Q, Li N, Zhu X. Principles of RNA methylation and their implications for biology and medicine. Biomed Pharmacother 2020; 131:110731. [PMID: 32920520 DOI: 10.1016/j.biopha.2020.110731] [Citation(s) in RCA: 80] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Revised: 09/03/2020] [Accepted: 09/04/2020] [Indexed: 02/06/2023] Open
Abstract
RNA methylation is a post-transcriptional level of regulation. At present, more than 150 kinds of RNA modifications have been identified. They are widely distributed in messenger RNA (mRNA), transfer RNA (tRNA), ribosomal RNA (rRNA), noncoding small RNA (sncRNA) and long-chain non-coding RNA (lncRNA). In recent years, with the discovery of RNA methylation related proteins and the development of high-throughput sequencing technology, the mystery of RNA methylation has been gradually revealed, and its biological function and application value have gradually emerged. In this review, a large number of research results of RNA methylation in recent years are collected. Through systematic summary and refinement, this review introduced RNA methylation modification-related proteins and RNA methylation sequencing technologies, as well as the biological functions of RNA methylation, expressions and applications of RNA methylation-related genes in physiological or pathological states such as cancer, immunity and virus infection, and discussed the potential therapeutic strategies.
Collapse
Affiliation(s)
- Yujia Zhou
- Guangdong Key Laboratory for Research and Development of Natural Drugs, The Marine Biomedical Research Institute, Guangdong Medical University, Zhanjiang, China; The Marine Biomedical Research Institute of Guangdong Zhanjiang, Zhanjiang, China
| | - Ying Kong
- Department of Clinical Laboratory, Hubei No.3 People's Hospital of Jianghan University, Wuhan, China
| | - Wenguo Fan
- Department of Anesthesiology, Hospital of Stomatology, Sun Yat-sen University, Guangzhou, China
| | - Tao Tao
- Department of Gastroenterology, Zibo Central Hospital, Zibo, China.
| | - Qin Xiao
- Department of Blood Transfusion, Peking University Shenzhen Hospital, Shenzhen, China
| | - Na Li
- College of Basic Medicine, Chongqing Medical University, Chongqing, China.
| | - Xiao Zhu
- Guangdong Key Laboratory for Research and Development of Natural Drugs, The Marine Biomedical Research Institute, Guangdong Medical University, Zhanjiang, China; The Marine Biomedical Research Institute of Guangdong Zhanjiang, Zhanjiang, China; The Key Lab of Zhanjiang for R&D Marine Microbial Resources in the Beibu Gulf Rim, Guangdong Medical University, Zhanjiang, China; Southern Marine Science and Engineering Guangdong Laboratory (Zhanjiang), Zhanjiang, China.
| |
Collapse
|
39
|
Dermentzaki G, Lotti F. New Insights on the Role of N 6-Methyladenosine RNA Methylation in the Physiology and Pathology of the Nervous System. Front Mol Biosci 2020; 7:555372. [PMID: 32984403 PMCID: PMC7492240 DOI: 10.3389/fmolb.2020.555372] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Accepted: 08/12/2020] [Indexed: 12/21/2022] Open
Abstract
RNA modifications termed epitranscriptomics represent an additional layer of gene regulation similar to epigenetic mechanisms operating on DNA. The dynamic nature and the increasing number of RNA modifications offer new opportunities for a rapid fine-tuning of gene expression in response to specific environmental cues. In cooperation with a diverse and versatile set of effector proteins that "recognize" them, these RNA modifications have the ability to mediate and control diverse fundamental cellular functions, such as pre-mRNA splicing, nuclear export, stability, and translation. N 6-methyladenosine (m6A) is the most abundant of these RNA modifications, particularly in the nervous system, where recent studies have highlighted it as an important post-transcriptional regulator of physiological functions from development to synaptic plasticity, learning and memory. Here we review recent findings surrounding the role of m6A modification in regulating physiological responses of the mammalian nervous system and we discuss its emerging role in pathological conditions such as neuropsychiatric and neurodegenerative disorders.
Collapse
Affiliation(s)
- Georgia Dermentzaki
- Center for Motor Neuron Biology and Disease, Department of Pathology and Cell Biology, Columbia University, New York City, NY, United States
- Department of Neurology, Columbia University, New York City, NY, United States
| | - Francesco Lotti
- Center for Motor Neuron Biology and Disease, Department of Pathology and Cell Biology, Columbia University, New York City, NY, United States
- Department of Neurology, Columbia University, New York City, NY, United States
| |
Collapse
|
40
|
Maimaitiyiming Y, Wang QQ, Hsu CH, Naranmandura H. Arsenic induced epigenetic changes and relevance to treatment of acute promyelocytic leukemia and beyond. Toxicol Appl Pharmacol 2020; 406:115212. [PMID: 32882258 DOI: 10.1016/j.taap.2020.115212] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2020] [Revised: 08/18/2020] [Accepted: 08/22/2020] [Indexed: 12/13/2022]
Abstract
Epigenetic alterations regulate gene expression without changes in the DNA sequence. It is well-demonstrated that aberrant epigenetic changes contribute to the leukemogenesis of acute promyelocytic leukemia (APL). Arsenic trioxide (ATO) is one of the most common drugs used in the frontline treatment of APL that act through targeting and destabilizing the PML/RARα oncofusion protein. ATO together with all-trans retinoic acid (ATRA) lead to durable remission of more than 90% non-high-risk APL patients, turning APL treatment into a paradigm of oncoprotein targeted cure. Although relapse and drug resistance in APL are yet to be resolved in the clinic, epigenetic machineries might hold the key to address this issue. Further, ATO also showed promising anticancer activities against a variety of malignancies, but its application is particularly restricted due to limited understanding of the mechanism. Thus, a thorough understanding of epigenetic mechanism behind anti-leukemic effects of ATO would benefit the development of ATO-based anticancer strategy. Role of ATRA on APL associated epigenetic alterations has been extensively studied and reviewed. Recently, accumulating evidence suggest that ATO also induces some epigenetic changes that might favor APL eradication. In this article, we comprehensively discuss arsenic induced epigenetic changes and its relevance in APL treatment and beyond, so as to provide novel insights into overcoming arsenic resistance in APL and promote application of this drug to other malignancies.
Collapse
Affiliation(s)
- Yasen Maimaitiyiming
- Department of Hematology of First Affiliated Hospital, Department of Public Health, Zhejiang University School of Medicine, Hangzhou, China
| | - Qian Qian Wang
- Department of Hematology of First Affiliated Hospital, Department of Public Health, Zhejiang University School of Medicine, Hangzhou, China
| | - Chih-Hung Hsu
- Department of Public Health, and Women's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China.
| | - Hua Naranmandura
- Department of Hematology of First Affiliated Hospital, Department of Public Health, Zhejiang University School of Medicine, Hangzhou, China.
| |
Collapse
|
41
|
Cao Z, Zhang D, Wang Y, Tong X, Avalos LFC, Khan IM, Gao D, Xu T, Zhang L, G Knott J, Zhang Y. Identification and functional annotation of m6A methylation modification in granulosa cells during antral follicle development in pigs. Anim Reprod Sci 2020; 219:106510. [PMID: 32828396 DOI: 10.1016/j.anireprosci.2020.106510] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2019] [Revised: 05/21/2020] [Accepted: 05/21/2020] [Indexed: 12/13/2022]
Abstract
The N6-methyladenosine (m6A) derivative has the capacity for ubiquitous epigenetic modification of messenger RNA (mRNA) that regulates gene expression through post-transcriptional mRNA modifications. Findings with mapping of m6A methylomes have indicated there are potential functions of this derivative in different cell types of several species. A profile of m6A methylomes and potential functions in granulosa cells of pigs during antral follicle development, however, has not yet occurred. In the present study, there was profiling of an epitranscriptome-wide map of m6A methylation in granulosa cells of pigs derived from small and large follicles using methylated RNA immunoprecipitation techniques, next-generation sequencing and further annotation of the potential functions of m6A utilizing bioinformatic analyses procedures. The m6A modification is abundant in granulosa cells of pigs, and there are dynamic changes in m6A methylomes during the developmental transition from small (< 3 mm) to large (> 5 mm) sized follicles. In particular, there was a prevalence of 7289 and 6882 m6A in granulosa cells from follicles of two different sizes. There was an increased prevalence of m6A in close proximity to the 5' or 3'-untranslated coding regions and a shared conserved consensus motif. Results from further analysis indicated there was significant enrichment of differentially expressed m6A methylated genes in several signaling pathways associated with steroidogenesis, granulosa cell proliferation and follicular development. When considered as a whole, these results indicate there are differential m6A modifications in granulosa cells of pigs during follicle development that are potentially associated with steroidogenesis and folliculogenesis.
Collapse
Affiliation(s)
- Zubing Cao
- Anhui Province Key Laboratory of Local Livestock and Poultry, Genetical Resource Conservation and Breeding, College of Animal Science and Technology, Anhui Agricultural University, Hefei 230036, China
| | - Dandan Zhang
- Anhui Province Key Laboratory of Local Livestock and Poultry, Genetical Resource Conservation and Breeding, College of Animal Science and Technology, Anhui Agricultural University, Hefei 230036, China
| | - Yiqing Wang
- Anhui Province Key Laboratory of Local Livestock and Poultry, Genetical Resource Conservation and Breeding, College of Animal Science and Technology, Anhui Agricultural University, Hefei 230036, China
| | - Xu Tong
- Anhui Province Key Laboratory of Local Livestock and Poultry, Genetical Resource Conservation and Breeding, College of Animal Science and Technology, Anhui Agricultural University, Hefei 230036, China
| | - Lourdes Felicidad Córdova Avalos
- Anhui Province Key Laboratory of Local Livestock and Poultry, Genetical Resource Conservation and Breeding, College of Animal Science and Technology, Anhui Agricultural University, Hefei 230036, China
| | - Ibrar Muhammad Khan
- Anhui Province Key Laboratory of Local Livestock and Poultry, Genetical Resource Conservation and Breeding, College of Animal Science and Technology, Anhui Agricultural University, Hefei 230036, China
| | - Di Gao
- Anhui Province Key Laboratory of Local Livestock and Poultry, Genetical Resource Conservation and Breeding, College of Animal Science and Technology, Anhui Agricultural University, Hefei 230036, China
| | - Tengteng Xu
- Anhui Province Key Laboratory of Local Livestock and Poultry, Genetical Resource Conservation and Breeding, College of Animal Science and Technology, Anhui Agricultural University, Hefei 230036, China
| | - Ling Zhang
- Anhui Province Key Laboratory of Local Livestock and Poultry, Genetical Resource Conservation and Breeding, College of Animal Science and Technology, Anhui Agricultural University, Hefei 230036, China
| | - Jason G Knott
- Developmental Epigenetics Laboratory, Department of Animal Science, Michigan State University, East Lansing, MI 48824, USA
| | - Yunhai Zhang
- Anhui Province Key Laboratory of Local Livestock and Poultry, Genetical Resource Conservation and Breeding, College of Animal Science and Technology, Anhui Agricultural University, Hefei 230036, China.
| |
Collapse
|
42
|
Begik O, Lucas MC, Liu H, Ramirez JM, Mattick JS, Novoa EM. Integrative analyses of the RNA modification machinery reveal tissue- and cancer-specific signatures. Genome Biol 2020; 21:97. [PMID: 32375858 PMCID: PMC7204298 DOI: 10.1186/s13059-020-02009-z] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2019] [Accepted: 04/03/2020] [Indexed: 01/09/2023] Open
Abstract
BACKGROUND RNA modifications play central roles in cellular fate and differentiation. However, the machinery responsible for placing, removing, and recognizing more than 170 RNA modifications remains largely uncharacterized and poorly annotated, and we currently lack integrative studies that identify which RNA modification-related proteins (RMPs) may be dysregulated in each cancer type. RESULTS Here, we perform a comprehensive annotation and evolutionary analysis of human RMPs, as well as an integrative analysis of their expression patterns across 32 tissues, 10 species, and 13,358 paired tumor-normal human samples. Our analysis reveals an unanticipated heterogeneity of RMP expression patterns across mammalian tissues, with a vast proportion of duplicated enzymes displaying testis-specific expression, suggesting a key role for RNA modifications in sperm formation and possibly intergenerational inheritance. We uncover many RMPs that are dysregulated in various types of cancer, and whose expression levels are predictive of cancer progression. Surprisingly, we find that several commonly studied RNA modification enzymes such as METTL3 or FTO are not significantly upregulated in most cancer types, whereas several less-characterized RMPs, such as LAGE3 and HENMT1, are dysregulated in many cancers. CONCLUSIONS Our analyses reveal an unanticipated heterogeneity in the expression patterns of RMPs across mammalian tissues and uncover a large proportion of dysregulated RMPs in multiple cancer types. We provide novel targets for future cancer research studies targeting the human epitranscriptome, as well as foundations to understand cell type-specific behaviors that are orchestrated by RNA modifications.
Collapse
Affiliation(s)
- Oguzhan Begik
- Center for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, 08003, Barcelona, Spain
- Garvan Institute of Medical Research, Darlinghurst, NSW, 2010, Australia
- UNSW, Sydney, Sydney, NSW, 2052, Australia
| | - Morghan C Lucas
- Center for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, 08003, Barcelona, Spain
- Universitat Pompeu Fabra (UPF), Barcelona, Spain
| | - Huanle Liu
- Center for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, 08003, Barcelona, Spain
| | - Jose Miguel Ramirez
- Center for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, 08003, Barcelona, Spain
- Universitat Pompeu Fabra (UPF), Barcelona, Spain
| | - John S Mattick
- Garvan Institute of Medical Research, Darlinghurst, NSW, 2010, Australia
- UNSW, Sydney, Sydney, NSW, 2052, Australia
| | - Eva Maria Novoa
- Center for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, 08003, Barcelona, Spain.
- Garvan Institute of Medical Research, Darlinghurst, NSW, 2010, Australia.
- UNSW, Sydney, Sydney, NSW, 2052, Australia.
- Universitat Pompeu Fabra (UPF), Barcelona, Spain.
| |
Collapse
|
43
|
Luo Z, Wang X, Jiang H, Wang R, Chen J, Chen Y, Xu Q, Cao J, Gong X, Wu J, Yang Y, Li W, Han C, Cheng CY, Rosenfeld MG, Sun F, Song X. Reorganized 3D Genome Structures Support Transcriptional Regulation in Mouse Spermatogenesis. iScience 2020; 23:101034. [PMID: 32315832 PMCID: PMC7170994 DOI: 10.1016/j.isci.2020.101034] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2019] [Revised: 12/30/2019] [Accepted: 03/30/2020] [Indexed: 01/22/2023] Open
Abstract
Three-dimensional chromatin structures undergo dynamic reorganization during mammalian spermatogenesis; however, their impacts on gene regulation remain unclear. Here, we focused on understanding the structure-function regulation of meiotic chromosomes by Hi-C and other omics techniques in mouse spermatogenesis across five stages. Beyond confirming recent reports regarding changes in compartmentalization and reorganization of topologically associating domains (TADs), we further demonstrated that chromatin loops are present prior to and after, but not at, the pachytene stage. By integrating Hi-C and RNA-seq data, we showed that the switching of A/B compartments between spermatogenic stages is tightly associated with meiosis-specific mRNAs and piRNAs expression. Moreover, our ATAC-seq data indicated that chromatin accessibility per se is not responsible for the TAD and loop diminishment at pachytene. Additionally, our ChIP-seq data demonstrated that CTCF and cohesin remain bound at TAD boundary regions throughout meiosis, suggesting that dynamic reorganization of TADs does not require CTCF and cohesin clearance.
Collapse
Affiliation(s)
- Zhengyu Luo
- Hefei National Laboratory for Physical Sciences at the Microscale, CAS Key Laboratory of Brain Function and Disease, School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Xiaorong Wang
- Institute of Reproductive Medicine, School of Medicine, Nantong University, Nantong, Jiangsu 226000, China
| | - Hong Jiang
- Hefei National Laboratory for Physical Sciences at the Microscale, CAS Key Laboratory of Brain Function and Disease, School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Ruoyu Wang
- Hefei National Laboratory for Physical Sciences at the Microscale, CAS Key Laboratory of Brain Function and Disease, School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui 230026, China; Department of Biochemistry and Molecular Biology, McGovern Medical School, University of Texas Health Science Center, Houston, TX, USA; Graduate School of Biomedical Sciences, University of Texas MD Anderson Cancer Center and UTHealth, Houston, TX, USA
| | - Jian Chen
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yusheng Chen
- University of Chinese Academy of Sciences, Beijing 100049, China; CAS Key Laboratory of Genomic and Precision Medicine, Collaborative Innovation Center of Genetics and Development, CAS Center for Excellence in Molecular Cell Science, College of Future Technology, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing 100101, China
| | - Qianlan Xu
- Hefei National Laboratory for Physical Sciences at the Microscale, CAS Key Laboratory of Brain Function and Disease, School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Jun Cao
- Hefei National Laboratory for Physical Sciences at the Microscale, CAS Key Laboratory of Brain Function and Disease, School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Xiaowen Gong
- Bio-X Institutes, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Ji Wu
- Bio-X Institutes, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Yungui Yang
- University of Chinese Academy of Sciences, Beijing 100049, China; CAS Key Laboratory of Genomic and Precision Medicine, Collaborative Innovation Center of Genetics and Development, CAS Center for Excellence in Molecular Cell Science, College of Future Technology, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing 100101, China
| | - Wenbo Li
- Department of Biochemistry and Molecular Biology, McGovern Medical School, University of Texas Health Science Center, Houston, TX, USA; Graduate School of Biomedical Sciences, University of Texas MD Anderson Cancer Center and UTHealth, Houston, TX, USA
| | - Chunsheng Han
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - C Yan Cheng
- The Mary M. Wohlford Laboratory for Male Contraceptive Research, Center for Biomedical Research, Population Council, New York, USA
| | - Michael G Rosenfeld
- Howard Hughes Medical Institute, School and Department of Medicine, University of California, San Diego School of Medicine, La Jolla, CA 92093-0651, USA
| | - Fei Sun
- Institute of Reproductive Medicine, School of Medicine, Nantong University, Nantong, Jiangsu 226000, China.
| | - Xiaoyuan Song
- Hefei National Laboratory for Physical Sciences at the Microscale, CAS Key Laboratory of Brain Function and Disease, School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui 230026, China.
| |
Collapse
|
44
|
Feng J, He Y, Shen Y, Zhang G, Ma S, Zhao X, Zhang Y. Protective effects of nuclear factor erythroid 2-related factor on oxidative stress and apoptosis in the testis of mice before adulthood. Theriogenology 2020; 148:112-121. [PMID: 32171970 DOI: 10.1016/j.theriogenology.2020.03.002] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2019] [Revised: 03/02/2020] [Accepted: 03/02/2020] [Indexed: 02/07/2023]
Abstract
Oxidative stress disrupts the intracellular redox balance that modulate many signaling pathways, including nuclear factor erythroid 2-related factor 2 (Nrf2)/Keap1 signaling. However, the antioxidant roles of Nrf2 in the testis before adulthood have not been reported. Accordingly, in this study, we aimed to investigate the effects of the Nrf2 antioxidant system on protection of testicular cells against oxidative stress at different stages of development in the testis of mice before adulthood. Male mice (1, 2, 4, and 8 weeks old) were used, and their relative testes weights were calculated. Malondialdehyde (MDA) contents and superoxide dismutase (SOD) activity were detected to evaluate the antioxidant capacity in the testes. Additionally, Nrf2 signaling pathway and mitochondrial apoptotic pathway proteins were evaluated by western blotting, and the localizations of Nrf2, protein gene product (PGP) 9.5, and activated-caspase 3 in testicular cells were examined using immunohistochemistry. The results showed that the activities of caspase-8 and caspase-3 and the number of activated-caspase 3-positive testicular cells per tubule were increased after 1 week of age. Moreover, MDA contents were increased and SOD activity was decreased with age in mouse testes before adulthood. The expression of PGP9.5 was increased, as well as the number of positive testicular cells per tubule. In addition, Nrf2 translocation to the nuclei of testicular cells also increased, accompanied by activation of the Nrf2/Keap1 signaling pathway. Moreover, nuclear factor-κB was inhibited, and the mitochondrial apoptotic pathway was activated in mouse testes before adulthood. Overall, our findings demonstrated that oxidative stress increased with age in mouse testes before adulthood and that oxidative stress could induce apoptosis in testicular cells. However, testicular cells are still in a rapid proliferative state owing to the antioxidant protection of Nrf2. Thus, our study provided new insights into oxidative stress-mediated impairment of spermatogenesis with age in mouse testes before adulthood and evidence for the protective role of Nrf2 in male fertility.
Collapse
Affiliation(s)
- Jin Feng
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, 730070, Gansu, China
| | - Yuxuan He
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, 730070, Gansu, China
| | - Yulong Shen
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, 730070, Gansu, China
| | - Guanglin Zhang
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, 730070, Gansu, China
| | - Shaotao Ma
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, 730070, Gansu, China
| | - Xingxu Zhao
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, 730070, Gansu, China.
| | - Yong Zhang
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, 730070, Gansu, China.
| |
Collapse
|
45
|
Wang J, Wang L. Deep analysis of RNA N 6-adenosine methylation (m 6A) patterns in human cells. NAR Genom Bioinform 2020; 2:lqaa007. [PMID: 33575554 PMCID: PMC7671394 DOI: 10.1093/nargab/lqaa007] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2019] [Revised: 01/22/2020] [Accepted: 02/04/2020] [Indexed: 02/06/2023] Open
Abstract
N6-adenosine methylation (m6A) is the most abundant internal RNA modification in eukaryotes, and affects RNA metabolism and non-coding RNA function. Previous studies suggest that m6A modifications in mammals occur on the consensus sequence DRACH (D = A/G/U, R = A/G, H = A/C/U). However, only about 10% of such adenosines can be m6A-methylated, and the underlying sequence determinants are still unclear. Notably, the regulation of m6A modifications can be cell-type-specific. In this study, we have developed a deep learning model, called TDm6A, to predict RNA m6A modifications in human cells. For cell types with limited availability of m6A data, transfer learning may be used to enhance TDm6A model performance. We show that TDm6A can learn common and cell-type-specific motifs, some of which are associated with RNA-binding proteins previously reported to be m6A readers or anti-readers. In addition, we have used TDm6A to predict m6A sites on human long non-coding RNAs (lncRNAs) for selection of candidates with high levels of m6A modifications. The results provide new insights into m6A modifications on human protein-coding and non-coding transcripts.
Collapse
Affiliation(s)
- Jun Wang
- Department of Genetics and Biochemistry, Clemson University, Clemson, SC 29631, USA
| | - Liangjiang Wang
- Department of Genetics and Biochemistry, Clemson University, Clemson, SC 29631, USA
| |
Collapse
|
46
|
Liu Y, Zhang Y, Yin J, Gao Y, Li Y, Bai D, He W, Li X, Zhang P, Li R, Zhang L, Jia Y, Zhang Y, Lin J, Zheng Y, Wang H, Gao S, Zeng W, Liu W. Distinct H3K9me3 and DNA methylation modifications during mouse spermatogenesis. J Biol Chem 2019; 294:18714-18725. [PMID: 31662436 DOI: 10.1074/jbc.ra119.010496] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2019] [Revised: 10/24/2019] [Indexed: 12/15/2022] Open
Abstract
DNA methylation and histone modifications critically regulate the expression of many genes and repeat regions during spermatogenesis. However, the molecular details of these processes in male germ cells remain to be addressed. Here, using isolated murine sperm cells, ultra-low-input native ChIP-Seq (ULI-NChIP-Seq), and whole genome bisulfite sequencing (WGBS), we investigated genome-wide DNA methylation patterns and histone 3 Lys-9 trimethylation (H3K9me3) modifications during mouse spermatogenesis. We found that DNA methylation and H3K9me3 have distinct sequence preferences and dynamics in promoters and repeat elements during spermatogenesis. H3K9me3 modifications in histones at gene promoters were highly enriched in round spermatids. H3K9me3 modification on long terminal repeats (LTRs) and long interspersed nuclear elements (LINEs) was involved in silencing active transcription from these regions in conjunction with reestablishment of DNA methylation. Furthermore, H3K9me3 remodeling on the X chromosome was involved in meiotic sex chromosome inactivation and in partial transcriptional reactivation of sex chromosomes in spermatids. Our findings also revealed the DNA methylation patterns and H3K9me3 modification profiles of paternal and maternal germline imprinting control regions (gICRs) during spermatogenesis. Taken together, our results provide a genome-wide map of H3K9me3 modifications during mouse spermatogenesis that may be helpful for understanding male reproductive disorders.
Collapse
Affiliation(s)
- Yingdong Liu
- College of Animal Science and Technology, Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Yanping Zhang
- Clinical and Translational Research Center of Shanghai First Maternity and Infant Hospital, Shanghai Key Laboratory of Signaling and Disease Research, School of Life Sciences and Technology, Tongji University, Shanghai 200092, China
| | - Jiqing Yin
- Clinical and Translational Research Center of Shanghai First Maternity and Infant Hospital, Shanghai Key Laboratory of Signaling and Disease Research, School of Life Sciences and Technology, Tongji University, Shanghai 200092, China
| | - Yawei Gao
- Clinical and Translational Research Center of Shanghai First Maternity and Infant Hospital, Shanghai Key Laboratory of Signaling and Disease Research, School of Life Sciences and Technology, Tongji University, Shanghai 200092, China
| | - Yanhe Li
- Clinical and Translational Research Center of Shanghai First Maternity and Infant Hospital, Shanghai Key Laboratory of Signaling and Disease Research, School of Life Sciences and Technology, Tongji University, Shanghai 200092, China
| | - Dandan Bai
- Clinical and Translational Research Center of Shanghai First Maternity and Infant Hospital, Shanghai Key Laboratory of Signaling and Disease Research, School of Life Sciences and Technology, Tongji University, Shanghai 200092, China
| | - Wenteng He
- Clinical and Translational Research Center of Shanghai First Maternity and Infant Hospital, Shanghai Key Laboratory of Signaling and Disease Research, School of Life Sciences and Technology, Tongji University, Shanghai 200092, China
| | - Xueliang Li
- College of Animal Science and Technology, Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Pengfei Zhang
- College of Animal Science and Technology, Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Rongnan Li
- College of Animal Science and Technology, Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Lingkai Zhang
- College of Animal Science and Technology, Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Yanping Jia
- Clinical and Translational Research Center of Shanghai First Maternity and Infant Hospital, Shanghai Key Laboratory of Signaling and Disease Research, School of Life Sciences and Technology, Tongji University, Shanghai 200092, China
| | - Yalin Zhang
- Clinical and Translational Research Center of Shanghai First Maternity and Infant Hospital, Shanghai Key Laboratory of Signaling and Disease Research, School of Life Sciences and Technology, Tongji University, Shanghai 200092, China
| | - Jiaming Lin
- Clinical and Translational Research Center of Shanghai First Maternity and Infant Hospital, Shanghai Key Laboratory of Signaling and Disease Research, School of Life Sciences and Technology, Tongji University, Shanghai 200092, China
| | - Yi Zheng
- College of Animal Science and Technology, Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Hong Wang
- Clinical and Translational Research Center of Shanghai First Maternity and Infant Hospital, Shanghai Key Laboratory of Signaling and Disease Research, School of Life Sciences and Technology, Tongji University, Shanghai 200092, China
| | - Shaorong Gao
- Clinical and Translational Research Center of Shanghai First Maternity and Infant Hospital, Shanghai Key Laboratory of Signaling and Disease Research, School of Life Sciences and Technology, Tongji University, Shanghai 200092, China.
| | - Wenxian Zeng
- College of Animal Science and Technology, Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, Northwest A&F University, Yangling, Shaanxi 712100, China.
| | - Wenqiang Liu
- Clinical and Translational Research Center of Shanghai First Maternity and Infant Hospital, Shanghai Key Laboratory of Signaling and Disease Research, School of Life Sciences and Technology, Tongji University, Shanghai 200092, China.
| |
Collapse
|
47
|
Chen X, Hua W, Huang X, Chen Y, Zhang J, Li G. Regulatory Role of RNA N 6-Methyladenosine Modification in Bone Biology and Osteoporosis. Front Endocrinol (Lausanne) 2019; 10:911. [PMID: 31998240 PMCID: PMC6965011 DOI: 10.3389/fendo.2019.00911] [Citation(s) in RCA: 57] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/09/2019] [Accepted: 12/13/2019] [Indexed: 12/26/2022] Open
Abstract
Osteoporosis is a metabolic skeletal disorder in which bone mass is depleted and bone structure is destroyed to the degree that bone becomes fragile and prone to fractures. Emerging evidence suggests that N6-methyladenosine (m6A) modification, a novel epitranscriptomic marker, has a significant role in bone development and metabolism. M6A modification not only participates in bone development, but also plays important roles as writers and erasers in the osteoporosis. M6A methyltransferase METTL3 and demethyltransferase FTO involves in the delicate process between adipogenesis differentiation and osteogenic differentiation, which is important for the pathological development of osteoporosis. Conditional knockdown of the METTL3 in bone marrow stem cells (BMSCs) could suppress PI3K-Akt signaling, limit the expression of bone formation-related genes (such as Runx2 and Osterix), restrain the expression of vascular endothelial growth factor (VEGF) and down-regulate the decreased translation efficiency of parathyroid hormone receptor-1 mRNA. Meanwhile, knockdown of the METTL3 significantly promoted the adipogenesis process and janus kinase 1 (JAK1) protein expression via an m6A-dependent way. Specifically, there was a negative correlation between METTL3 expression and porcine BMSCs adipogenesis. The evidence above suggested that the relationship between METTL3 expression and adipogenesis was inverse, and osteogenesis was positive, respectively. Similarly, FTO regulated for BMSCs fate determination during osteoporosis through the GDF11-FTO-PPARγ axis, prompting the shift of MSC lineage commitment to adipocyte and inhibiting bone formation during osteoporosis. In this systematic review, we summarize the most up-to-date evidence of m6A RNA modification in osteoporosis and highlight the potential role of m6A in prevention, treatment, and management of osteoporosis.
Collapse
Affiliation(s)
- Xuejiao Chen
- Center for Clinical Epidemiology and Methodology (CCEM), Guangdong Second Provincial General Hospital, Guangzhou, China
| | - Wenfeng Hua
- Department of Laboratory Medicine and Central Laboratories, Guangdong Second Provincial General Hospital, Guangzhou, China
| | - Xin Huang
- Center for Clinical Epidemiology and Methodology (CCEM), Guangdong Second Provincial General Hospital, Guangzhou, China
| | - Yuming Chen
- Department of Medical Statistics and Epidemiology, School of Public Health, Sun Yat-sen University, Guangzhou, China
| | - Junguo Zhang
- Center for Clinical Epidemiology and Methodology (CCEM), Guangdong Second Provincial General Hospital, Guangzhou, China
| | - Guowei Li
- Center for Clinical Epidemiology and Methodology (CCEM), Guangdong Second Provincial General Hospital, Guangzhou, China
- Department of Health Research Methods, Evidence, and Impact (HEI), McMaster University, Hamilton, ON, Canada
- *Correspondence: Guowei Li
| |
Collapse
|