1
|
Denisko D, Kim J, Ku J, Zhao B, Lee EA. Inverted Alu repeats in loop-out exon skipping across hominoid evolution. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.03.07.642063. [PMID: 40161837 PMCID: PMC11952303 DOI: 10.1101/2025.03.07.642063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 04/02/2025]
Abstract
Background Changes in RNA splicing over the course of evolution have profoundly diversified the functional landscape of the human genome. While DNA sequences proximal to intron-exon junctions are known to be critical for RNA splicing, the impact of distal intronic sequences remains underexplored. Emerging evidence suggests that inverted pairs of intronic Alu elements can promote exon skipping by forming RNA stem-loop structures. However, their prevalence and influence throughout evolution remain unknown. Results Here, we present a systematic analysis of inverted Alu pairs across the human genome to assess their impact on exon skipping through predicted RNA stem-loop formation and their relevance to hominoid evolution. We found that inverted Alu pairs, particularly pairs of AluY-AluSx1 and AluSz-AluSx, are enriched in the flanking regions of skippable exons genome-wide and are predicted to form stable stem-loop structures. Exons defined by weak 3' acceptor and strong 5' donor splice sites appear especially prone to this skipping mechanism. Through comparative genome analysis across nine primate species, we identified 67,126 hominoid-specific Alu insertions, primarily from AluY and AluS subfamilies, which form inverted pairs enriched across skippable exons in genes of ubiquitination-related pathways. Experimental validation of exon skipping among several hominoid-specific inverted Alu pairs further reinforced their potential evolutionary significance. Conclusion This work extends our current knowledge of the roles of RNA secondary structure formed by inverted Alu pairs and details a newly emerging mechanism through which transposable elements have contributed to genomic innovation across hominoid evolution at the transcriptomic level.
Collapse
Affiliation(s)
- Danielle Denisko
- Division of Genetics and Genomics, Boston Children’s Hospital and Harvard Medical School, Boston, MA 02115, USA
- Department of Biomedical Informatics, Harvard Medical School, Boston, MA 02115, USA
| | - Jeonghyeon Kim
- Division of Genetics and Genomics, Boston Children’s Hospital and Harvard Medical School, Boston, MA 02115, USA
- Department of Chemical and Systems Biology, Stanford University, Stanford, CA 94305, USA
| | - Jayoung Ku
- Division of Genetics and Genomics, Boston Children’s Hospital and Harvard Medical School, Boston, MA 02115, USA
- Broad Institute of MIT and Harvard, Cambridge, MA 02115, USA
- Manton Center for Orphan Disease Research, Boston Children’s Hospital, Boston, MA 02115, USA
| | - Boxun Zhao
- Division of Genetics and Genomics, Boston Children’s Hospital and Harvard Medical School, Boston, MA 02115, USA
- Broad Institute of MIT and Harvard, Cambridge, MA 02115, USA
- Manton Center for Orphan Disease Research, Boston Children’s Hospital, Boston, MA 02115, USA
| | - Eunjung Alice Lee
- Division of Genetics and Genomics, Boston Children’s Hospital and Harvard Medical School, Boston, MA 02115, USA
- Broad Institute of MIT and Harvard, Cambridge, MA 02115, USA
- Manton Center for Orphan Disease Research, Boston Children’s Hospital, Boston, MA 02115, USA
| |
Collapse
|
2
|
Mańka R, Sapoń K, Zaziąbło J, Janas T, Czogalla A, Janas T. The role of RNA structural motifs in RNA-lipid raft interaction. Sci Rep 2025; 15:6777. [PMID: 40000734 PMCID: PMC11861254 DOI: 10.1038/s41598-025-91093-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Accepted: 02/18/2025] [Indexed: 02/27/2025] Open
Abstract
Here, we sought to determine the role of specific RNA structural motifs in the interaction of RNA with model lipid vesicles containing liquid-ordered domains (RAFT liposomes). We show that the presence of several small apical loops within RNA structure favors RNA affinity for RAFT liposomes while the increased number of nucleotides within bulges inhibits this affinity. FRET flow cytometry measurements confirmed a modulation of the interaction of RNA with plasma membrane by the presence of specific RNA structural motifs. The analysis of viral RNA fragments revealed that a long double helix at the apical loop increases the affinity of viral RNA to lipid rafts. The analysis of exosomal Y RNAs secreted by nematode parasites showed that the presence of the EXO-motif GGAG is strongly correlated to the presence of small number of large apical loops within RNA structure. These results show that RNA structural motifs can modulate RNA affinity to liquid-ordered membrane lipid raft domains thus suggesting the importance of these motifs both for the mechanism of RNA loading into extracellular vesicles, and for the development of RNA-based lipid biosensors for monitoring of viral RNAs in biofluids and wastewater.
Collapse
Affiliation(s)
- Rafał Mańka
- Institute of Biology, University of Opole, Kominka 6, 45-032, Opole, Poland
| | - Karolina Sapoń
- Institute of Biology, University of Opole, Kominka 6, 45-032, Opole, Poland
| | - Joanna Zaziąbło
- Institute of Biology, University of Opole, Kominka 6, 45-032, Opole, Poland
| | - Teresa Janas
- Institute of Biology, University of Opole, Kominka 6, 45-032, Opole, Poland
| | - Aleksander Czogalla
- Department of Cytobiochemistry, Faculty of Biotechnology, University of Wroclaw, F. Joliot‑Curie 14a, 50‑383, Wrocław, Poland
| | - Tadeusz Janas
- Institute of Biology, University of Opole, Kominka 6, 45-032, Opole, Poland.
| |
Collapse
|
3
|
Dai G, Cheng J, Liu W, Yin X, Zhang Y. The Establishment of Artificial RNA Cascade Circuits for Gene Regulation Based on Doxycycline-Induced Pre-mRNA Alternative Splicing. Int J Mol Sci 2025; 26:1163. [PMID: 39940931 PMCID: PMC11817826 DOI: 10.3390/ijms26031163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2024] [Revised: 01/23/2025] [Accepted: 01/27/2025] [Indexed: 02/16/2025] Open
Abstract
This study developed an artificial chimeric intron module with an RNA riboswitch and TetR aptamer that were integrated into essential gene exons. Doxycycline can modulate Pre-mRNA alternative splicing, modify the exon reading frame, and dynamically regulate gene expression. By shifting the aptamer 2 base pair within the switch, we unexpectedly obtained the "on-switch" CTM and "off-switch" C2ITetR>4A, which possess thoroughly contrasting regulatory functions. The CTM module can conditionally induce tumor cell apoptosis and regulate genes reversibly and sustainably following doxycycline induction. We integrated the C2ITetR>4A/CTM switches with the L7Ae/k-turn module to create an intron-spliced double-switched RNA cascade system. The system can both activate and inhibit the splicing mechanism utilizing the same ligand to minimize crosstalk among aptamer switching elements, control target gene leakage, and enhance the dynamic range of gene expression. We analyzed numerous factors affecting Pre-mRNA splicing to identify the optimal equilibrium point for switch regulation. This will enable precise predictions of dynamic regulatory efficiency and the rational design of genetic modules, thereby providing a valuable instrument for mammalian synthetic biology.
Collapse
Affiliation(s)
- Guimin Dai
- School of Life Science, Anhui Medical University, Hefei 230032, China; (G.D.); (J.C.); (W.L.)
| | - Jiawen Cheng
- School of Life Science, Anhui Medical University, Hefei 230032, China; (G.D.); (J.C.); (W.L.)
| | - Weiran Liu
- School of Life Science, Anhui Medical University, Hefei 230032, China; (G.D.); (J.C.); (W.L.)
| | - Xueli Yin
- School of Basic Medical Sciences, Anhui Medical University, Hefei 230032, China
| | - Yuanyuan Zhang
- School of Life Science, Anhui Medical University, Hefei 230032, China; (G.D.); (J.C.); (W.L.)
| |
Collapse
|
4
|
Anil AT, Pandian R, Mishra SK. Introns with branchpoint-distant 3' splice sites: Splicing mechanism and regulatory roles. Biophys Chem 2024; 314:107307. [PMID: 39173313 DOI: 10.1016/j.bpc.2024.107307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2024] [Revised: 07/26/2024] [Accepted: 08/07/2024] [Indexed: 08/24/2024]
Abstract
The two transesterification reactions of pre-mRNA splicing require highly complex yet well-controlled rearrangements of small nuclear RNAs and proteins (snRNP) in the spliceosome. The efficiency and accuracy of these reactions are critical for gene expression, as almost all human genes pass through pre-mRNA splicing. Key parameters that determine the splicing outcome are the length of the intron, the strengths of its splicing signals and gaps between them, and the presence of splicing controlling elements. In particular, the gap between the branchpoint (BP) and the 3' splice site (ss) of introns is a major determinant of the splicing efficiency. This distance falls within a small range across the introns of an organism. The constraints exist possibly because BP and 3'ss are recognized by BP-binding proteins, U2 snRNP and U2 accessory factors (U2AF) in a coordinated manner. Furthermore, varying distances between the two signals may also affect the second transesterification reaction since the intervening RNA needs to be accurately positioned within the complex RNP machinery. Splicing such pre-mRNAs requires cis-acting elements in the RNA and many trans-acting splicing regulators. Regulated pre-mRNA splicing with BP-distant 3'ss adds another layer of control to gene expression and promotes alternative splicing.
Collapse
Affiliation(s)
- Anupa T Anil
- Department of Biological Sciences, Indian Institute of Science Education and Research (IISER) Mohali, Sector 81, 140306, Punjab, India
| | - Rakesh Pandian
- Department of Biological Sciences, Indian Institute of Science Education and Research (IISER) Mohali, Sector 81, 140306, Punjab, India
| | - Shravan Kumar Mishra
- Department of Biological Sciences, Indian Institute of Science Education and Research (IISER) Mohali, Sector 81, 140306, Punjab, India.
| |
Collapse
|
5
|
Bonacquisti EE, Ferguson SW, Wadsworth GM, Jasiewicz NE, Wang J, Chaudhari AP, Kussatz CC, Nogueira AT, Keeley DP, Itano MS, Bolton ML, Hahn KM, Banerjee PR, Nguyen J. Fluorogenic RNA-based biomaterials for imaging and tracking the cargo of extracellular vesicles. J Control Release 2024; 374:349-368. [PMID: 39111600 PMCID: PMC11550487 DOI: 10.1016/j.jconrel.2024.07.043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Revised: 07/15/2024] [Accepted: 07/17/2024] [Indexed: 08/25/2024]
Abstract
Extracellular vesicles (EVs), or exosomes, play important roles in physiological and pathological cellular communication and have gained substantial traction as biological drug carriers. EVs contain both short and long non-coding RNAs that regulate gene expression and epigenetic processes. To fully capitalize on the potential of EVs as drug carriers, it is important to study and understand the intricacies of EV function and EV RNA-based communication. Here we developed a genetically encodable RNA-based biomaterial, termed EXO-Probe, for tracking EV RNAs. The EXO-Probe comprises an EV-loading RNA sequence (EXO-Code), fused to a fluorogenic RNA Mango aptamer for RNA imaging. This fusion construct allowed the visualization and tracking of EV RNA and colocalization with markers of multivesicular bodies; imaging RNA within EVs, and non-destructive quantification of EVs. Overall, the new RNA-based biomaterial provides a useful and versatile means to interrogate the role of EVs in cellular communication via RNA trafficking to EVs and to study cellular sorting decisions. The system will also help lay the foundation to further improve the therapeutic efficacy of EVs as drug carriers.
Collapse
Affiliation(s)
- Emily E Bonacquisti
- Division of Pharmacoengineering and Molecular Pharmaceutics, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Scott W Ferguson
- Department of Pharmaceutical Sciences, University at Buffalo, USA
| | - Gable M Wadsworth
- Department of Physics, University at Buffalo, State University of New York, Buffalo, NY, 14260, USA
| | - Natalie E Jasiewicz
- Division of Pharmacoengineering and Molecular Pharmaceutics, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Jinli Wang
- Department of Biomedical Engineering, University at Buffalo, State University of New York, Buffalo, NY, 14260, USA
| | - Ameya P Chaudhari
- Division of Pharmacoengineering and Molecular Pharmaceutics, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Caden C Kussatz
- Division of Pharmacoengineering and Molecular Pharmaceutics, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Ana T Nogueira
- Department of Pharmacology, University of North Carolina at Chapel Hill, NC 27599, USA
| | - Daniel P Keeley
- UNC Neuroscience Microscopy Core, Carolina Institute for Developmental Disabilities, UNC Neuroscience Center, University of North Carolina at Chapel Hill, NC 25799, USA
| | - Michelle S Itano
- UNC Neuroscience Microscopy Core, Carolina Institute for Developmental Disabilities, UNC Neuroscience Center, University of North Carolina at Chapel Hill, NC 25799, USA; Department of Cell Biology and Physiology, University of North Carolina at Chapel Hill, NC 27599, USA
| | - Matthew L Bolton
- Department of Systems and Information Engineering, University of Virginia, Charlottesville, 22903, USA
| | - Klaus M Hahn
- Department of Pharmacology, University of North Carolina at Chapel Hill, NC 27599, USA
| | - Priya R Banerjee
- Department of Physics, University at Buffalo, State University of New York, Buffalo, NY, 14260, USA
| | - Juliane Nguyen
- Division of Pharmacoengineering and Molecular Pharmaceutics, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA.
| |
Collapse
|
6
|
Eich T, O’Leary C, Moss W. Intronic RNA secondary structural information captured for the human MYC pre-mRNA. NAR Genom Bioinform 2024; 6:lqae143. [PMID: 39450312 PMCID: PMC11500451 DOI: 10.1093/nargab/lqae143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 09/06/2024] [Accepted: 10/04/2024] [Indexed: 10/26/2024] Open
Abstract
To address the lack of intronic reads in secondary structure probing data for the human MYC pre-mRNA, we developed a method that combines spliceosomal inhibition with RNA probing and sequencing. Here, the SIRP-seq method was applied to study the secondary structure of human MYC RNAs by chemically probing HeLa cells with dimethyl sulfate in the presence of the small molecule spliceosome inhibitor pladienolide B. Pladienolide B binds to the SF3B complex of the spliceosome to inhibit intron removal during splicing, resulting in retained intronic sequences. This method was used to increase the read coverage over intronic regions of MYC. The purpose for increasing coverage across introns was to generate complete reactivity profiles for intronic sequences via the DMS-MaPseq approach. Notably, depth was sufficient for analysis by the program DRACO, which was able to deduce distinct reactivity profiles and predict multiple secondary structural conformations as well as their suggested stoichiometric abundances. The results presented here provide a new method for intronic RNA secondary structural analyses, as well as specific structural insights relevant to MYC RNA splicing regulation and therapeutic targeting.
Collapse
Affiliation(s)
- Taylor O Eich
- Roy J. Carver Department of Biochemistry, Biophysics and Molecular Biology, Iowa State University, Ames, IA 50011, USA
| | - Collin A O’Leary
- Roy J. Carver Department of Biochemistry, Biophysics and Molecular Biology, Iowa State University, Ames, IA 50011, USA
- Current Address: Department of Biology and Chemistry, Cornell College, Mount Vernon, IA 52314, USA
| | - Walter N Moss
- Roy J. Carver Department of Biochemistry, Biophysics and Molecular Biology, Iowa State University, Ames, IA 50011, USA
| |
Collapse
|
7
|
Liang W, Xu F, Li L, Peng C, Sun H, Qiu J, Sun J. Epigenetic control of skeletal muscle atrophy. Cell Mol Biol Lett 2024; 29:99. [PMID: 38978023 PMCID: PMC11229277 DOI: 10.1186/s11658-024-00618-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Accepted: 06/26/2024] [Indexed: 07/10/2024] Open
Abstract
Skeletal muscular atrophy is a complex disease involving a large number of gene expression regulatory networks and various biological processes. Despite extensive research on this topic, its underlying mechanisms remain elusive, and effective therapeutic approaches are yet to be established. Recent studies have shown that epigenetics play an important role in regulating skeletal muscle atrophy, influencing the expression of numerous genes associated with this condition through the addition or removal of certain chemical modifications at the molecular level. This review article comprehensively summarizes the different types of modifications to DNA, histones, RNA, and their known regulators. We also discuss how epigenetic modifications change during the process of skeletal muscle atrophy, the molecular mechanisms by which epigenetic regulatory proteins control skeletal muscle atrophy, and assess their translational potential. The role of epigenetics on muscle stem cells is also highlighted. In addition, we propose that alternative splicing interacts with epigenetic mechanisms to regulate skeletal muscle mass, offering a novel perspective that enhances our understanding of epigenetic inheritance's role and the regulatory network governing skeletal muscle atrophy. Collectively, advancements in the understanding of epigenetic mechanisms provide invaluable insights into the study of skeletal muscle atrophy. Moreover, this knowledge paves the way for identifying new avenues for the development of more effective therapeutic strategies and pharmaceutical interventions.
Collapse
Affiliation(s)
- Wenpeng Liang
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-Innovation Center of Neuroregeneration, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Nantong University, Nantong, 26001, China
- Department of Prenatal Screening and Diagnosis Center, Affiliated Maternity and Child Health Care Hospital of Nantong University, Nantong, 226001, China
| | - Feng Xu
- Department of Endocrinology, Affiliated Hospital 2 of Nantong University and First People's Hospital of Nantong City, Nantong, 226001, China
| | - Li Li
- Nantong Center for Disease Control and Prevention, Medical School of Nantong University, Nantong, 226001, China
| | - Chunlei Peng
- Department of Medical Oncology, Tumor Hospital Affiliated to Nantong University, Nantong, 226000, China
| | - Hualin Sun
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-Innovation Center of Neuroregeneration, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Nantong University, Nantong, 26001, China
| | - Jiaying Qiu
- Department of Prenatal Screening and Diagnosis Center, Affiliated Maternity and Child Health Care Hospital of Nantong University, Nantong, 226001, China.
| | - Junjie Sun
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-Innovation Center of Neuroregeneration, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Nantong University, Nantong, 26001, China.
| |
Collapse
|
8
|
Szelest M, Giannopoulos K. Biological relevance of alternative splicing in hematologic malignancies. Mol Med 2024; 30:62. [PMID: 38760666 PMCID: PMC11100220 DOI: 10.1186/s10020-024-00839-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Accepted: 05/14/2024] [Indexed: 05/19/2024] Open
Abstract
Alternative splicing (AS) is a strictly regulated process that generates multiple mRNA variants from a single gene, thus contributing to proteome diversity. Transcriptome-wide sequencing studies revealed networks of functionally coordinated splicing events, which produce isoforms with distinct or even opposing functions. To date, several mechanisms of AS are deregulated in leukemic cells, mainly due to mutations in splicing and/or epigenetic regulators and altered expression of splicing factors (SFs). In this review, we discuss aberrant splicing events induced by mutations affecting SFs (SF3B1, U2AF1, SRSR2, and ZRSR2), spliceosome components (PRPF8, LUC7L2, DDX41, and HNRNPH1), and epigenetic modulators (IDH1 and IDH2). Finally, we provide an extensive overview of the biological relevance of aberrant isoforms of genes involved in the regulation of apoptosis (e. g. BCL-X, MCL-1, FAS, and c-FLIP), activation of key cellular signaling pathways (CASP8, MAP3K7, and NOTCH2), and cell metabolism (PKM).
Collapse
Affiliation(s)
- Monika Szelest
- Department of Experimental Hematooncology, Medical University of Lublin, Chodzki 1, 20-093, Lublin, Poland.
| | - Krzysztof Giannopoulos
- Department of Experimental Hematooncology, Medical University of Lublin, Chodzki 1, 20-093, Lublin, Poland
| |
Collapse
|
9
|
Suárez-Herrera N, Garanto A, Collin RWJ. Understanding and Rescuing the Splicing Defect Caused by the Frequent ABCA4 Variant c.4253+43G>A Underlying Stargardt Disease. Nucleic Acid Ther 2024; 34:73-82. [PMID: 38466963 DOI: 10.1089/nat.2023.0076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/13/2024] Open
Abstract
Pathogenic variants in ABCA4 are the underlying molecular cause of Stargardt disease (STGD1), an autosomal recessive macular dystrophy characterized by a progressive loss of central vision. Among intronic ABCA4 variants, c.4253+43G>A is frequently detected in STGD1 cases and is classified as a hypomorphic allele, generally associated with late-onset cases. This variant was previously reported to alter splicing regulatory sequences, but the splicing outcome is not fully understood yet. In this study, we attempted to better understand its effect on splicing and to rescue the aberrant splicing via antisense oligonucleotides (AONs). Wild-type and c.4253+43G>A variant-harboring maxigene vectors revealed additional skipping events, which were not previously detected upon transfection in HEK293T cells. To restore exon inclusion, we designed a set of 27 AONs targeting either splicing silencer motifs or the variant region and screened these in maxigene-transfected HEK293T cells. Candidate AONs able to promote exon inclusion were selected for further testing in patient-derived photoreceptor precursor cells. Surprisingly, no robust splicing modulation was observed in this model system. Overall, this research helped to adequately characterize the splicing alteration caused by the c.4253+43G>A variant, although future development of AON-mediated exon inclusion therapy for ABCA4 is needed.
Collapse
Affiliation(s)
- Nuria Suárez-Herrera
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Alejandro Garanto
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, The Netherlands
- Department of Pediatrics, Amalia Children's Hospital, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Rob W J Collin
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, The Netherlands
| |
Collapse
|
10
|
Balcerowicz M, Wigge PA, Di Antonio M, Chung B. Monitoring Real-Time Temperature Dynamics of a Short RNA Hairpin Using Förster Resonance Energy Transfer and Circular Dichroism. Methods Mol Biol 2024; 2795:149-158. [PMID: 38594536 DOI: 10.1007/978-1-0716-3814-9_15] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/11/2024]
Abstract
RNA molecules play crucial roles in gene expression regulation and cellular signaling, and these functions are governed by the formation of RNA secondary and tertiary structures. These structures are highly dynamic and subject to rapid changes in response to environmental cues, temperature in particular. Thermosensitive RNA secondary structures have been harnessed by multiple organisms to survey their temperature environment and to adjust gene expression accordingly. It is thus highly desirable to observe RNA structural changes in real time over a range of temperatures. Multiple approaches have been developed to study structural dynamics, but many of these require extensive processing of the RNA, large amounts of RNA input, and/or cannot be applied under physiological conditions. Here, we describe the use of a dually fluorescently labeled RNA oligonucleotide (containing a predicted hairpin structure) to monitor subtle RNA structural dynamics in vitro by Förster resonance energy transfer (FRET) and circular dichroism (CD) spectroscopy. These approaches can be employed under physiologically relevant conditions over a range of temperatures and with RNA concentrations as low as 200 nM; they enable us to observe RNA structural dynamics in real time and to correlate these dynamics with changes in biological processes such as translation.
Collapse
Affiliation(s)
- Martin Balcerowicz
- Division of Plant Sciences, University of Dundee at the James Hutton Institute, Dundee, UK.
| | - Philip A Wigge
- Leibniz Institute for Vegetable and Ornamental Crops (IGZ), Grossbeeren, Germany
| | - Marco Di Antonio
- Imperial College London, Chemistry Department, Molecular Science Research Hub, London, UK.
- The Institute of Chemical Biology (ICB), Molecular Science Research Hub, London, UK.
- The Francis Crick Institute, London, UK.
| | - Betty Chung
- Department of Pathology, University of Cambridge, Cambridge, UK.
| |
Collapse
|
11
|
Liu X, Shi X, Xin Q, Liu Z, Pan F, Qiao D, Chen M, Zhang Y, Guo W, Li C, Zhang Y, Shao L, Zhang R. Identified eleven exon variants in PKD1 and PKD2 genes that altered RNA splicing by minigene assay. BMC Genomics 2023; 24:407. [PMID: 37468838 PMCID: PMC10354997 DOI: 10.1186/s12864-023-09444-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2023] [Accepted: 06/11/2023] [Indexed: 07/21/2023] Open
Abstract
BACKGROUND Autosomal dominant polycystic kidney disease (ADPKD) is a common monogenic multisystem disease caused primarily by mutations in the PKD1 gene or PKD2 gene. There is increasing evidence that some of these variants, which are described as missense, synonymous or nonsense mutations in the literature or databases, may be deleterious by affecting the pre-mRNA splicing process. RESULTS This study aimed to determine the effect of these PKD1 and PKD2 variants on exon splicing combined with predictive bioinformatics tools and minigene assay. As a result, among the 19 candidate single nucleotide alterations, 11 variants distributed in PKD1 (c.7866C > A, c.7960A > G, c.7979A > T, c.7987C > T, c.11248C > G, c.11251C > T, c.11257C > G, c.11257C > T, c.11346C > T, and c.11393C > G) and PKD2 (c.1480G > T) were identified to result in exon skipping. CONCLUSIONS We confirmed that 11 variants in the gene of PKD1 and PKD2 affect normal splicing by interfering the recognition of classical splicing sites or by disrupting exon splicing enhancers and generating exon splicing silencers. This is the most comprehensive study to date on pre-mRNA splicing of exonic variants in ADPKD-associated disease-causing genes in consideration of the increasing number of identified variants in PKD1 and PKD2 gene in recent years. These results emphasize the significance of assessing the effect of exon single nucleotide variants in ADPKD at the mRNA level.
Collapse
Affiliation(s)
- Xuyan Liu
- Department of Nephrology, the Affiliated Qingdao Municipal Hospital of Qingdao University, No.5 Donghai Middle Road, Qingdao, 266071, China
| | - Xiaomeng Shi
- Department of Nephrology, the Affiliated Qingdao Municipal Hospital of Qingdao University, No.5 Donghai Middle Road, Qingdao, 266071, China
| | - Qing Xin
- Department of Nephrology, the Affiliated Qingdao Municipal Hospital of Qingdao University, No.5 Donghai Middle Road, Qingdao, 266071, China
| | - Zhiying Liu
- Renal Division, Peking University First Hospital, Beijing, China
| | - Fengjiao Pan
- Department of Nephrology, the Affiliated Qingdao Municipal Hospital of Qingdao University, No.5 Donghai Middle Road, Qingdao, 266071, China
| | - Dan Qiao
- Department of Nephrology, Dalian Medical University, Dalian, China
| | - Mengke Chen
- Department of Nephrology, Shandong First Medical University, Taian, China
| | - Yiyin Zhang
- Department of Nephrology, the Affiliated Qingdao Municipal Hospital of Qingdao University, No.5 Donghai Middle Road, Qingdao, 266071, China
| | - Wencong Guo
- Department of Nephrology, the Affiliated Qingdao Municipal Hospital of Qingdao University, No.5 Donghai Middle Road, Qingdao, 266071, China
| | - Changying Li
- Department of Nephrology, the Affiliated Qingdao Municipal Hospital of Qingdao University, No.5 Donghai Middle Road, Qingdao, 266071, China
| | - Yan Zhang
- Department of Nephrology, Weifang Medical University, Weifang, China
| | - Leping Shao
- Department of Nephrology, the Affiliated Qingdao Municipal Hospital of Qingdao University, No.5 Donghai Middle Road, Qingdao, 266071, China.
| | - Ruixiao Zhang
- Department of Emergency, the Affiliated Qingdao Municipal Hospital of Qingdao University, No.5 Donghai Middle Road, Qingdao, 266071, China.
| |
Collapse
|
12
|
Bergeron D, Faucher-Giguère L, Emmerichs AK, Choquet K, Song KS, Deschamps-Francoeur G, Fafard-Couture É, Rivera A, Couture S, Churchman LS, Heyd F, Abou Elela S, Scott MS. Intronic small nucleolar RNAs regulate host gene splicing through base pairing with their adjacent intronic sequences. Genome Biol 2023; 24:160. [PMID: 37415181 PMCID: PMC10324135 DOI: 10.1186/s13059-023-03002-y] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Accepted: 06/29/2023] [Indexed: 07/08/2023] Open
Abstract
BACKGROUND Small nucleolar RNAs (snoRNAs) are abundant noncoding RNAs best known for their involvement in ribosomal RNA maturation. In mammals, most expressed snoRNAs are embedded in introns of longer genes and produced through transcription and splicing of their host. Intronic snoRNAs were long viewed as inert passengers with little effect on host expression. However, a recent study reported a snoRNA influencing the splicing and ultimate output of its host gene. Overall, the general contribution of intronic snoRNAs to host expression remains unclear. RESULTS Computational analysis of large-scale human RNA-RNA interaction datasets indicates that 30% of detected snoRNAs interact with their host transcripts. Many snoRNA-host duplexes are located near alternatively spliced exons and display high sequence conservation suggesting a possible role in splicing regulation. The study of the model SNORD2-EIF4A2 duplex indicates that the snoRNA interaction with the host intronic sequence conceals the branch point leading to decreased inclusion of the adjacent alternative exon. Extended SNORD2 sequence containing the interacting intronic region accumulates in sequencing datasets in a cell-type-specific manner. Antisense oligonucleotides and mutations that disrupt the formation of the snoRNA-intron structure promote the splicing of the alternative exon, shifting the EIF4A2 transcript ratio away from nonsense-mediated decay. CONCLUSIONS Many snoRNAs form RNA duplexes near alternative exons of their host transcripts, placing them in optimal positions to control host output as shown for the SNORD2-EIF4A2 model system. Overall, our study supports a more widespread role for intronic snoRNAs in the regulation of their host transcript maturation.
Collapse
Affiliation(s)
- Danny Bergeron
- Département de Biochimie Et Génomique Fonctionnelle, Faculté de Médecine Et Des Sciences de La Santé, Université de Sherbrooke, Sherbrooke, Québec, J1E 4K8, Canada
| | - Laurence Faucher-Giguère
- Département de Microbiologie Et d'infectiologie, Faculté de Médecine Et Des Sciences de La Santé, Université de Sherbrooke, Sherbrooke, Québec, J1E 4K8, Canada
| | - Ann-Kathrin Emmerichs
- Institute of Chemistry and Biochemistry, Freie Universität Berlin, Laboratory of RNA Biochemistry, Takustrasse 6, 14195, Berlin, Germany
| | - Karine Choquet
- Department of Genetics, Blavatnik Institute, Harvard Medical School, Boston, MA, 02115, USA
| | - Kristina Sungeun Song
- Département de Biochimie Et Génomique Fonctionnelle, Faculté de Médecine Et Des Sciences de La Santé, Université de Sherbrooke, Sherbrooke, Québec, J1E 4K8, Canada
| | - Gabrielle Deschamps-Francoeur
- Département de Biochimie Et Génomique Fonctionnelle, Faculté de Médecine Et Des Sciences de La Santé, Université de Sherbrooke, Sherbrooke, Québec, J1E 4K8, Canada
| | - Étienne Fafard-Couture
- Département de Biochimie Et Génomique Fonctionnelle, Faculté de Médecine Et Des Sciences de La Santé, Université de Sherbrooke, Sherbrooke, Québec, J1E 4K8, Canada
| | - Andrea Rivera
- Département de Microbiologie Et d'infectiologie, Faculté de Médecine Et Des Sciences de La Santé, Université de Sherbrooke, Sherbrooke, Québec, J1E 4K8, Canada
| | - Sonia Couture
- Département de Microbiologie Et d'infectiologie, Faculté de Médecine Et Des Sciences de La Santé, Université de Sherbrooke, Sherbrooke, Québec, J1E 4K8, Canada
| | - L Stirling Churchman
- Department of Genetics, Blavatnik Institute, Harvard Medical School, Boston, MA, 02115, USA
| | - Florian Heyd
- Institute of Chemistry and Biochemistry, Freie Universität Berlin, Laboratory of RNA Biochemistry, Takustrasse 6, 14195, Berlin, Germany
| | - Sherif Abou Elela
- Département de Microbiologie Et d'infectiologie, Faculté de Médecine Et Des Sciences de La Santé, Université de Sherbrooke, Sherbrooke, Québec, J1E 4K8, Canada
| | - Michelle S Scott
- Département de Biochimie Et Génomique Fonctionnelle, Faculté de Médecine Et Des Sciences de La Santé, Université de Sherbrooke, Sherbrooke, Québec, J1E 4K8, Canada.
| |
Collapse
|
13
|
Rogalska ME, Vivori C, Valcárcel J. Regulation of pre-mRNA splicing: roles in physiology and disease, and therapeutic prospects. Nat Rev Genet 2023; 24:251-269. [PMID: 36526860 DOI: 10.1038/s41576-022-00556-8] [Citation(s) in RCA: 97] [Impact Index Per Article: 48.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/10/2022] [Indexed: 12/23/2022]
Abstract
The removal of introns from mRNA precursors and its regulation by alternative splicing are key for eukaryotic gene expression and cellular function, as evidenced by the numerous pathologies induced or modified by splicing alterations. Major recent advances have been made in understanding the structures and functions of the splicing machinery, in the description and classification of physiological and pathological isoforms and in the development of the first therapies for genetic diseases based on modulation of splicing. Here, we review this progress and discuss important remaining challenges, including predicting splice sites from genomic sequences, understanding the variety of molecular mechanisms and logic of splicing regulation, and harnessing this knowledge for probing gene function and disease aetiology and for the design of novel therapeutic approaches.
Collapse
Affiliation(s)
- Malgorzata Ewa Rogalska
- Genome Biology Program, Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Barcelona, Spain
| | - Claudia Vivori
- Genome Biology Program, Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Barcelona, Spain
- Department of Medicine and Life Sciences, Universitat Pompeu Fabra (UPF), Barcelona, Spain
- The Francis Crick Institute, London, UK
| | - Juan Valcárcel
- Genome Biology Program, Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Barcelona, Spain.
- Department of Medicine and Life Sciences, Universitat Pompeu Fabra (UPF), Barcelona, Spain.
- Institució Catalana de Recerca i Estudis Avançats (ICREA), Barcelona, Spain.
| |
Collapse
|
14
|
How does precursor RNA structure influence RNA processing and gene expression? Biosci Rep 2023; 43:232489. [PMID: 36689327 PMCID: PMC9977717 DOI: 10.1042/bsr20220149] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 01/17/2023] [Accepted: 01/23/2023] [Indexed: 01/24/2023] Open
Abstract
RNA is a fundamental biomolecule that has many purposes within cells. Due to its single-stranded and flexible nature, RNA naturally folds into complex and dynamic structures. Recent technological and computational advances have produced an explosion of RNA structural data. Many RNA structures have regulatory and functional properties. Studying the structure of nascent RNAs is particularly challenging due to their low abundance and long length, but their structures are important because they can influence RNA processing. Precursor RNA processing is a nexus of pathways that determines mature isoform composition and that controls gene expression. In this review, we examine what is known about human nascent RNA structure and the influence of RNA structure on processing of precursor RNAs. These known structures provide examples of how other nascent RNAs may be structured and show how novel RNA structures may influence RNA processing including splicing and polyadenylation. RNA structures can be targeted therapeutically to treat disease.
Collapse
|
15
|
Alternative ANKHD1 transcript promotes proliferation and inhibits migration in uterine corpus endometrial carcinoma. NPJ Genom Med 2022; 7:56. [PMID: 36171217 PMCID: PMC9519915 DOI: 10.1038/s41525-022-00321-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2021] [Accepted: 08/08/2022] [Indexed: 11/22/2022] Open
Abstract
Alternative splicing (AS) is common in gene expression, and abnormal splicing often results in several cancers. Overall survival-associated splicing events (OS-SEs) have been used to predict prognosis in cancer. The aim of this study was to investigate the presence and function of OS-SEs in uterine corpus endometrial carcinoma (UCEC). Based on TCGA and TCGASpliceSeq databases, gene expression and the AS data of UCEC samples were retrieved. An alternate terminator of ANKHD1 transcripts named ANKHD1-BP3 was found to be significantly related to metastasis and OS in UCEC and significantly associated with HSPB1. The upregulated expression of HSPB1 induced downregulation of ANKHD1-BP3 and promoted tumor metastasis. These findings indicate that HSPB1, a splicing factor, regulates the expression of ANKHD1-BP3 to promote metastasis in UCEC.
Collapse
|
16
|
Optimization of Bifunctional Antisense Oligonucleotides for Regulation of Mutually Exclusive Alternative Splicing of PKM Gene. Molecules 2022; 27:molecules27175682. [PMID: 36080449 PMCID: PMC9457596 DOI: 10.3390/molecules27175682] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 08/31/2022] [Accepted: 09/01/2022] [Indexed: 11/23/2022] Open
Abstract
Oligonucleotide tools, as modulators of alternative splicing, have been extensively studied, giving a rise to new therapeutic approaches. In this article, we report detailed research on the optimization of bifunctional antisense oligonucleotides (BASOs), which are targeted towards interactions with hnRNP A1 protein. We performed a binding screening assay, Kd determination, and UV melting experiments to select sequences that can be used as a high potency binding platform for hnRNP A1. Newly designed BASOs were applied to regulate the mutually exclusive alternative splicing of the PKM gene. Our studies demonstrate that at least three repetitions of regulatory sequence are necessary to increase expression of the PKM1 isoform. On the other hand, PKM2 expression can be inhibited by a lower number of regulatory sequences. Importantly, a novel branched type of BASOs was developed, which significantly increased the efficiency of splicing modulation. Herein, we provide new insights into BASOs design and show, for the first time, the possibility to regulate mutually exclusive alternative splicing via BASOs.
Collapse
|
17
|
Thomas SE, Balcerowicz M, Chung BYW. RNA structure mediated thermoregulation: What can we learn from plants? FRONTIERS IN PLANT SCIENCE 2022; 13:938570. [PMID: 36092413 PMCID: PMC9450479 DOI: 10.3389/fpls.2022.938570] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/07/2022] [Accepted: 06/27/2022] [Indexed: 06/15/2023]
Abstract
RNA molecules have the capacity to form a multitude of distinct secondary and tertiary structures, but only the most energetically favorable conformations are adopted at any given time. Formation of such structures strongly depends on the environment and consequently, these structures are highly dynamic and may refold as their surroundings change. Temperature is one of the most direct physical parameters that influence RNA structure dynamics, and in turn, thermosensitive RNA structures can be harnessed by a cell to perceive and respond to its temperature environment. Indeed, many thermosensitive RNA structures with biological function have been identified in prokaryotic organisms, but for a long time such structures remained elusive in eukaryotes. Recent discoveries, however, reveal that thermosensitive RNA structures are also found in plants, where they affect RNA stability, pre-mRNA splicing and translation efficiency in a temperature-dependent manner. In this minireview, we provide a short overview of thermosensitive RNA structures in prokaryotes and eukaryotes, highlight recent advances made in identifying such structures in plants and discuss their similarities and differences to established prokaryotic RNA thermosensors.
Collapse
Affiliation(s)
- Sherine E. Thomas
- Department of Pathology, University of Cambridge, Cambridge, United Kingdom
| | - Martin Balcerowicz
- Division of Plant Sciences, The James Hutton Institute, University of Dundee, Dundee, United Kingdom
| | - Betty Y.-W. Chung
- Department of Pathology, University of Cambridge, Cambridge, United Kingdom
| |
Collapse
|
18
|
Georgakopoulos-Soares I, Parada GE, Hemberg M. Secondary structures in RNA synthesis, splicing and translation. Comput Struct Biotechnol J 2022; 20:2871-2884. [PMID: 35765654 PMCID: PMC9198270 DOI: 10.1016/j.csbj.2022.05.041] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 05/19/2022] [Accepted: 05/21/2022] [Indexed: 11/30/2022] Open
Abstract
Even though the functional role of mRNA molecules is primarily decided by the nucleotide sequence, several properties are determined by secondary structure conformations. Examples of secondary structures include long range interactions, hairpins, R-loops and G-quadruplexes and they are formed through interactions of non-adjacent nucleotides. Here, we discuss advances in our understanding of how secondary structures can impact RNA synthesis, splicing, translation and mRNA half-life. During RNA synthesis, secondary structures determine RNA polymerase II (RNAPII) speed, thereby influencing splicing. Splicing is also determined by RNA binding proteins and their binding rates are modulated by secondary structures. For the initiation of translation, secondary structures can control the choice of translation start site. Here, we highlight the mechanisms by which secondary structures modulate these processes, discuss advances in technologies to detect and study them systematically, and consider the roles of RNA secondary structures in disease.
Collapse
Affiliation(s)
- Ilias Georgakopoulos-Soares
- Department of Bioengineering and Therapeutic Sciences, University of California San Francisco, San Francisco, CA, USA
- Institute for Human Genetics, University of California San Francisco, San Francisco, CA, USA
| | - Guillermo E. Parada
- Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, ON M5S 3E1, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, ON M5A 1A8, Canada
| | - Martin Hemberg
- Evergrande Center for Immunologic Diseases, Harvard Medical School and Brigham and Women’s Hospital, Boston, MA, USA
| |
Collapse
|
19
|
Korsching E, Matschke J, Hotfilder M. Splice variants denote differences between a cancer stem cell side population of EWSR1‑ERG‑based Ewing sarcoma cells, its main population and EWSR1‑FLI‑based cells. Int J Mol Med 2022; 49:39. [PMID: 35088879 PMCID: PMC8815407 DOI: 10.3892/ijmm.2022.5094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Accepted: 12/17/2021] [Indexed: 11/06/2022] Open
Abstract
Ewing sarcoma is a challenging cancer entity, which, besides the characteristic presence of a fusion gene, is driven by multiple alternative splicing events. So far, splice variants in Ewing sarcoma cells were mainly analyzed for EWSR1‑FLI1. The present study provided a comprehensive alternative splicing study on CADO‑ES1, an Ewing model cell line for an EWSR1‑ERG fusion gene. Based on a well‑-characterized RNA‑sequencing dataset with extensive control mechanisms across all levels of analysis, the differential spliced genes in Ewing cancer stem cells were ATP13A3 and EPB41, while the main population was defined by ACADVL, NOP58 and TSPAN3. All alternatively spliced genes were further characterized by their Gene Ontology (GO) terms and by their membership in known protein complexes. These results confirm and extend previous studies towards a systematic whole‑transcriptome analysis. A highlight is the striking segregation of GO terms associated with five basic splice events. This mechanistic insight, together with a coherent integration of all observations with prior knowledge, indicates that EWSR1‑ERG is truly a close twin to EWSR1‑FLI1, but still exhibits certain individuality. Thus, the present study provided a measure of variability in Ewing sarcoma, whose understanding is essential both for clinical procedures and basic mechanistic insight.
Collapse
Affiliation(s)
- Eberhard Korsching
- Institute of Bioinformatics, Faculty of Medicine, University of Münster, D‑48149 Münster, Germany
| | - Julian Matschke
- Institute of Bioinformatics, Faculty of Medicine, University of Münster, D‑48149 Münster, Germany
| | - Marc Hotfilder
- Department of Pediatric Hematology and Oncology, University Hospital Münster, D‑48149 Münster, Germany
| |
Collapse
|
20
|
Liang Q, Lin X, Wu X, Shao Y, Chen C, Dai J, Lu Y, Wu W, Ding Q, Wang X. Unraveling the molecular basis underlying nine putative splice site variants of von Willebrand factor. Hum Mutat 2021; 43:215-227. [PMID: 34882887 DOI: 10.1002/humu.24312] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Revised: 11/17/2021] [Accepted: 12/06/2021] [Indexed: 12/15/2022]
Abstract
Approximately 10% of von Willebrand factor (VWF) gene variants are suspected to disrupt messenger RNA (mRNA) processing, the number of which might be underestimated due to the lack of transcript assays. In the present study, we provided a detailed strategy to evaluate the effects of nine putative splice site variants (PSSVs) of VWF on mRNA processing as well as protein properties and establish their genotype-phenotype relationships. Eight of nine PSSVs affected VWF splicing: c.322A>T, c.1534-13_1551delinsCA, and c.8116-2del caused exon skipping; c.221-2A>C, c.323+1G>T, and c.2547-13T>A resulted in the activation of cryptic splice sites; c.2684A>G led to exon skipping and activation of a cryptic splice site; c.2968-14A>G created a new splice site. The remaining c.5171-9del was likely benign. The efficiency of nonsense-mediated mRNA decay (NMD) was much higher in platelets compared to leukocytes, impairing the identification of aberrant transcripts in 4 of 8 PSSVs. The nonsense variant c.322A>T partially impaired mRNA processing, leaking a small amount of correct transcripts with c.322T (p.Arg108*), while the missense variant c.2684A>G totally disrupted normal splicing of VWF, rather than produced mutant protein with the substitution of Gln895Arg. The results of this study would certainly add novel insights into the molecular events behind von Willebrand disease.
Collapse
Affiliation(s)
- Qian Liang
- Department of Laboratory Medicine, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China.,State Key Laboratory of Medical Genomics, Shanghai Institute of Hematology, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Xiaoyi Lin
- Department of Laboratory Medicine, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Xi Wu
- Department of Laboratory Medicine, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Yanyan Shao
- Department of Laboratory Medicine, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Changming Chen
- Department of Laboratory Medicine, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Jing Dai
- Department of Laboratory Medicine, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Yeling Lu
- Department of Laboratory Medicine, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Wenman Wu
- Department of Laboratory Medicine, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China.,Collaborative Innovation Center of Hematology, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Qiulan Ding
- Department of Laboratory Medicine, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China.,Collaborative Innovation Center of Hematology, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Xuefeng Wang
- Department of Laboratory Medicine, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China.,Collaborative Innovation Center of Hematology, Shanghai Jiaotong University School of Medicine, Shanghai, China
| |
Collapse
|
21
|
Conboy JG. A Deep Exon Cryptic Splice Site Promotes Aberrant Intron Retention in a Von Willebrand Disease Patient. Int J Mol Sci 2021; 22:13248. [PMID: 34948044 PMCID: PMC8706089 DOI: 10.3390/ijms222413248] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2021] [Revised: 11/30/2021] [Accepted: 12/01/2021] [Indexed: 12/13/2022] Open
Abstract
A translationally silent single nucleotide mutation in exon 44 (E44) of the von Willebrand factor (VWF) gene is associated with inefficient removal of intron 44 in a von Willebrand disease (VWD) patient. This intron retention (IR) event was previously attributed to reordered E44 secondary structure that sequesters the normal splice donor site. We propose an alternative mechanism: the mutation introduces a cryptic splice donor site that interferes with the function of the annotated site to favor IR. We evaluated both models using minigene splicing reporters engineered to vary in secondary structure and/or cryptic splice site content. Analysis of splicing efficiency in transfected K562 cells suggested that the mutation-generated cryptic splice site in E44 was sufficient to induce substantial IR. Mutations predicted to vary secondary structure at the annotated site also had modest effects on IR and shifted the balance of residual splicing between the cryptic site and annotated site, supporting competition among the sites. Further studies demonstrated that introduction of cryptic splice donor motifs at other positions in E44 did not promote IR, indicating that interference with the annotated site is context dependent. We conclude that mutant deep exon splice sites can interfere with proper splicing by inducing IR.
Collapse
Affiliation(s)
- John G Conboy
- Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| |
Collapse
|
22
|
Ottesen EW, Luo D, Singh NN, Singh RN. High Concentration of an ISS-N1-Targeting Antisense Oligonucleotide Causes Massive Perturbation of the Transcriptome. Int J Mol Sci 2021; 22:ijms22168378. [PMID: 34445083 PMCID: PMC8395096 DOI: 10.3390/ijms22168378] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Revised: 07/14/2021] [Accepted: 07/31/2021] [Indexed: 12/17/2022] Open
Abstract
Intronic splicing silencer N1 (ISS-N1) located within Survival Motor Neuron 2 (SMN2) intron 7 is the target of a therapeutic antisense oligonucleotide (ASO), nusinersen (Spinraza), which is currently being used for the treatment of spinal muscular atrophy (SMA), a leading genetic disease associated with infant mortality. The discovery of ISS-N1 as a promising therapeutic target was enabled in part by Anti-N1, a 20-mer ASO that restored SMN2 exon 7 inclusion by annealing to ISS-N1. Here, we analyzed the transcriptome of SMA patient cells treated with 100 nM of Anti-N1 for 30 h. Such concentrations are routinely used to demonstrate the efficacy of an ASO. While 100 nM of Anti-N1 substantially stimulated SMN2 exon 7 inclusion, it also caused massive perturbations in the transcriptome and triggered widespread aberrant splicing, affecting expression of essential genes associated with multiple cellular processes such as transcription, splicing, translation, cell signaling, cell cycle, macromolecular trafficking, cytoskeletal dynamics, and innate immunity. We validated our findings with quantitative and semiquantitative PCR of 39 candidate genes associated with diverse pathways. We also showed a substantial reduction in off-target effects with shorter ISS-N1-targeting ASOs. Our findings are significant for implementing better ASO design and dosing regimens of ASO-based drugs.
Collapse
|
23
|
Li J, Li G, Qi Y, Lu Y, Wang H, Shi K, Li D, Shi J, Stovall DB, Sui G. SRSF5 regulates alternative splicing of DMTF1 pre-mRNA through modulating SF1 binding. RNA Biol 2021; 18:318-336. [PMID: 34291726 DOI: 10.1080/15476286.2021.1947644] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
ABBREVIATIONS ARF: alternative reading frame, that is, p14ARF, or CDKN2A (cyclin-dependent kinase inhibitor 2A); β-gal: β-galactosidase; CLIP-seq: crosslinking and immunoprecipitation-sequencing; DMTF1: the cyclin D binding myb-like transcription factor 1; ESS/ESE: exonic splicing silencer/enhancer; Ex: exon; FBS: fetal bovine serum; Gluc: Gaussia luciferase; hnRNPs: heterogeneous nuclear ribonucleoproteins; In: intron; ISS/ISE: intronic splicing silencer/enhancer; PBS: phosphate-buffered saline; PCR: polymerase chain reaction; PSI: percent-splice-in; qPCR: quantitative real-time PCR; RIP: RNA immunoprecipitation; RNAseq: RNA sequencing; RT: reverse transcription; SF1: splicing factor 1; SR: serine/arginine-rich proteins; SRSF5: serine and arginine-rich splicing factor 5; TCGA: the cancer genome atlas; UCSC: University of California, Santa Cruz. WT: Wild type.
Collapse
Affiliation(s)
- Jialiang Li
- Key Laboratory of Saline-alkali Vegetation Ecology Restoration, Ministry of Education, College of Life Science, Northeast Forestry University, Harbin, China
| | - Guangyue Li
- Key Laboratory of Saline-alkali Vegetation Ecology Restoration, Ministry of Education, College of Life Science, Northeast Forestry University, Harbin, China
| | - Yige Qi
- Key Laboratory of Saline-alkali Vegetation Ecology Restoration, Ministry of Education, College of Life Science, Northeast Forestry University, Harbin, China
| | - Yao Lu
- Key Laboratory of Saline-alkali Vegetation Ecology Restoration, Ministry of Education, College of Life Science, Northeast Forestry University, Harbin, China
| | - Hao Wang
- Key Laboratory of Saline-alkali Vegetation Ecology Restoration, Ministry of Education, College of Life Science, Northeast Forestry University, Harbin, China
| | - Ke Shi
- Key Laboratory of Saline-alkali Vegetation Ecology Restoration, Ministry of Education, College of Life Science, Northeast Forestry University, Harbin, China
| | - Dangdang Li
- Key Laboratory of Saline-alkali Vegetation Ecology Restoration, Ministry of Education, College of Life Science, Northeast Forestry University, Harbin, China
| | - Jinming Shi
- Key Laboratory of Saline-alkali Vegetation Ecology Restoration, Ministry of Education, College of Life Science, Northeast Forestry University, Harbin, China
| | - Daniel B Stovall
- College of Arts and Sciences, Winthrop University, Rock Hill, SC, USA
| | - Guangchao Sui
- Key Laboratory of Saline-alkali Vegetation Ecology Restoration, Ministry of Education, College of Life Science, Northeast Forestry University, Harbin, China
| |
Collapse
|
24
|
Biology of the mRNA Splicing Machinery and Its Dysregulation in Cancer Providing Therapeutic Opportunities. Int J Mol Sci 2021; 22:ijms22105110. [PMID: 34065983 PMCID: PMC8150589 DOI: 10.3390/ijms22105110] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Revised: 05/07/2021] [Accepted: 05/07/2021] [Indexed: 12/13/2022] Open
Abstract
Dysregulation of messenger RNA (mRNA) processing—in particular mRNA splicing—is a hallmark of cancer. Compared to normal cells, cancer cells frequently present aberrant mRNA splicing, which promotes cancer progression and treatment resistance. This hallmark provides opportunities for developing new targeted cancer treatments. Splicing of precursor mRNA into mature mRNA is executed by a dynamic complex of proteins and small RNAs called the spliceosome. Spliceosomes are part of the supraspliceosome, a macromolecular structure where all co-transcriptional mRNA processing activities in the cell nucleus are coordinated. Here we review the biology of the mRNA splicing machinery in the context of other mRNA processing activities in the supraspliceosome and present current knowledge of its dysregulation in lung cancer. In addition, we review investigations to discover therapeutic targets in the spliceosome and give an overview of inhibitors and modulators of the mRNA splicing process identified so far. Together, this provides insight into the value of targeting the spliceosome as a possible new treatment for lung cancer.
Collapse
|
25
|
Tomkiewicz TZ, Suárez-Herrera N, Cremers FPM, Collin RWJ, Garanto A. Antisense Oligonucleotide-Based Rescue of Aberrant Splicing Defects Caused by 15 Pathogenic Variants in ABCA4. Int J Mol Sci 2021; 22:ijms22094621. [PMID: 33924840 PMCID: PMC8124656 DOI: 10.3390/ijms22094621] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 04/22/2021] [Accepted: 04/23/2021] [Indexed: 12/16/2022] Open
Abstract
The discovery of novel intronic variants in the ABCA4 locus has contributed significantly to solving the missing heritability in Stargardt disease (STGD1). The increasing number of variants affecting pre-mRNA splicing makes ABCA4 a suitable candidate for antisense oligonucleotide (AON)-based splicing modulation therapies. In this study, AON-based splicing modulation was assessed for 15 recently described intronic variants (three near-exon and 12 deep-intronic variants). In total, 26 AONs were designed and tested in vitro using a midigene-based splice system. Overall, partial or complete splicing correction was observed for two variants causing exon elongation and all variants causing pseudoexon inclusion. Together, our results confirm the high potential of AONs for the development of future RNA therapies to correct splicing defects causing STGD1.
Collapse
Affiliation(s)
- Tomasz Z. Tomkiewicz
- Department of Human Genetics and Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, 6525GA Nijmegen, The Netherlands; (T.Z.T.); (N.S.-H.); (F.P.M.C.); (R.W.J.C.)
| | - Nuria Suárez-Herrera
- Department of Human Genetics and Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, 6525GA Nijmegen, The Netherlands; (T.Z.T.); (N.S.-H.); (F.P.M.C.); (R.W.J.C.)
| | - Frans P. M. Cremers
- Department of Human Genetics and Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, 6525GA Nijmegen, The Netherlands; (T.Z.T.); (N.S.-H.); (F.P.M.C.); (R.W.J.C.)
| | - Rob W. J. Collin
- Department of Human Genetics and Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, 6525GA Nijmegen, The Netherlands; (T.Z.T.); (N.S.-H.); (F.P.M.C.); (R.W.J.C.)
| | - Alejandro Garanto
- Departments of Pediatrics and Human Genetics, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, 6525GA Nijmegen, The Netherlands
- Correspondence:
| |
Collapse
|
26
|
Conboy JG. Unannotated splicing regulatory elements in deep intron space. WILEY INTERDISCIPLINARY REVIEWS-RNA 2021; 12:e1656. [PMID: 33887804 DOI: 10.1002/wrna.1656] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Revised: 03/14/2021] [Accepted: 03/23/2021] [Indexed: 12/21/2022]
Abstract
Deep intron space harbors a diverse array of splicing regulatory elements that cooperate with better-known exon-proximal elements to enforce proper tissue-specific and development-specific pre-mRNA processing. Many deep intron elements have been highly conserved through vertebrate evolution, yet remain poorly annotated in the human genome. Recursive splicing exons (RS-exons) and intraexons promote noncanonical, multistep resplicing pathways in long introns, involving transient intermediate structures that are greatly underrepresented in RNA-seq datasets. Decoy splice sites and decoy exons act at a distance to inhibit splicing catalysis at annotated splice sites, with functional consequences such as exon skipping and intron retention. RNA:RNA bridges can juxtapose distant sequences within or across introns to activate deep intron splicing enhancers and silencers, to loop out exons to be skipped, or to select one member of a mutually exclusive set of exons. Similarly, protein bridges mediated by interactions among transcript-bound RNA binding proteins (RBPs) can modulate splicing outcomes. Experimental disruption of deep intron elements serving any of these functions can abrogate normal splicing, strongly suggesting that natural mutations of deep intron elements can do likewise to cause human disease. Understanding noncanonical splicing pathways and discovering deep intron regulatory signals, many of which map hundreds to many thousands of nucleotides from annotated splice junctions, is of great academic interest for basic scientists studying alternative splicing mechanisms. Hopefully, this knowledge coupled with increased analysis of deep intron sequences will also have important medical applications, as better interpretation of deep intron mutations may reveal new disease mechanisms and suggest new therapies. This article is categorized under: RNA Processing > Splicing Regulation/Alternative Splicing.
Collapse
Affiliation(s)
- John G Conboy
- Lawrence Berkeley National Laboratory, Biological Systems and Engineering Division, Berkeley, California, USA
| |
Collapse
|
27
|
Balcerowicz M, Di Antonio M, Chung BYW. Monitoring Real-time Temperature Dynamics of a Short RNA Hairpin Using Förster Resonance Energy Transfer and Circular Dichroism. Bio Protoc 2021; 11:e3950. [PMID: 33855112 DOI: 10.21769/bioprotoc.3950] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Revised: 12/21/2020] [Accepted: 01/05/2021] [Indexed: 11/02/2022] Open
Abstract
RNA secondary structures are highly dynamic and subject to prompt changes in response to the environment. Temperature in particular has a strong impact on RNA structural conformation, and temperature-sensitive RNA hairpin structures have been exploited by multiple organisms to modify the rate of translation in response to temperature changes. Observing RNA structural changes in real-time over a range of temperatures is therefore highly desirable. A variety of approaches exists that probe RNA secondary structures, but many of these either require large amount and/or extensive processing of the RNA or cannot be applied under physiological conditions, rendering the observation of structural dynamics over a range of temperatures difficult. Here, we describe the use of a dually fluorescently labelled RNA oligonucleotide (containing the predicted hairpin structure) that can be used to monitor subtle RNA-structural dynamics by Förster Resonance Energy Transfer (FRET) at different temperatures with RNA concentration as low as 200 nM. FRET efficiency varies as a function of the fluorophores' distance; high efficiency can thus be correlated to a stable hairpin structure, whilst a reduction in FRET efficiency reflects a partial opening of the hairpin or a destabilisation of this structure. The same RNA sequence can also be used for Circular Dichroism spectroscopy to observe global changes of RNA secondary structure at a given temperature. The combination of these approaches allowed us to monitor RNA structural dynamics over a range of temperatures in real-time and correlate structural changes to plant biology phenotypes. Graphic abstract: Monitoring temperature-dependent RNA structural dynamics using Förster Resonance Energy Transfer (FRET).
Collapse
Affiliation(s)
| | - Marco Di Antonio
- Imperial College London, Chemistry Department, Molecular Science Research Hub, London, UK.,The Institute of Chemical Biology (ICB), Molecular Science Research Hub, London, UK
| | - Betty Y W Chung
- Department of Pathology, University of Cambridge, Cambridge, UK
| |
Collapse
|
28
|
Bubenik JL, Hale M, McConnell O, Wang E, Swanson MS, Spitale R, Berglund JA. RNA structure probing to characterize RNA-protein interactions on a low abundance pre-mRNA in living cells. RNA (NEW YORK, N.Y.) 2020; 27:rna.077263.120. [PMID: 33310817 PMCID: PMC7901844 DOI: 10.1261/rna.077263.120] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/12/2020] [Accepted: 11/29/2020] [Indexed: 06/12/2023]
Abstract
In vivo RNA structure analysis has become a powerful tool in molecular biology, largely due to the coupling of an increasingly diverse set of chemical approaches with high-throughput sequencing. This has resulted in a transition from single target to transcriptome-wide approaches. However, these methods require sequencing depths that preclude studying low abundance targets, which are not sufficiently captured in transcriptome-wide approaches. Here we present a ligation-free method to enrich for low abundance RNA sequences, which improves the diversity of molecules analyzed and results in improved analysis. In addition, this method is compatible with any choice of chemical adduct or read-out approach. We utilized this approach to study an autoregulated event in the pre-mRNA of the splicing factor, muscleblind-like splicing regulator 1 (MBNL1).
Collapse
|
29
|
Zhan YT, Li L, Zeng TT, Zhou NN, Guan XY, Li Y. SNRPB-mediated RNA splicing drives tumor cell proliferation and stemness in hepatocellular carcinoma. Aging (Albany NY) 2020; 13:537-554. [PMID: 33289700 PMCID: PMC7834993 DOI: 10.18632/aging.202164] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Accepted: 09/28/2020] [Indexed: 12/24/2022]
Abstract
Hepatocellular carcinoma (HCC) is one of the leading malignant diseases worldwide, but therapeutic targets for HCC are lacking. Here, we characterized a significant upregulation of Small Nuclear Ribonucleoprotein Polypeptides B and B1 (SNRPB) in HCC via qRT-PCR, western blotting, tissue microarray and public database analyses. Increased SNRPB expression was positively associated with adjacent organ invasion, tumor size, serum AFP level and poor HCC patient survival. Next, we transfected SNRPB into HCC cells to construct SNRPB-overexpressing cell lines, and short hairpin RNA targeting SNRPB was used to silence SNRPB in HCC cells. Functional studies showed that SNRPB overexpression could promote HCC cell malignant proliferation and stemness maintenance. Inversely, SNRPB knockdown in HCC cells caused inverse effects. Importantly, analysis of alternative splicing by RNA sequencing revealed that SNRPB promoted the formation of AKT3-204 and LDHA-220 splice variants, which activated the Akt pathway and aerobic glycolysis in HCC cells. In conclusion, SNRPB could serve as a prognostic predictor for patients with HCC, and it promotes HCC progression by inducing metabolic reprogramming.
Collapse
Affiliation(s)
- Yu-Ting Zhan
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou 510060, P. R. China
| | - Lei Li
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou 510060, P. R. China.,Department of Clinical Oncology, The University of Hong Kong, Hong Kong 852, P. R. China
| | - Ting-Ting Zeng
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou 510060, P. R. China
| | - Ning-Ning Zhou
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou 510060, P. R. China
| | - Xin-Yuan Guan
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou 510060, P. R. China.,Department of Clinical Oncology, The University of Hong Kong, Hong Kong 852, P. R. China
| | - Yan Li
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou 510060, P. R. China
| |
Collapse
|
30
|
Baralle FE, Singh RN, Stamm S. RNA structure and splicing regulation. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2019; 1862:194448. [PMID: 31730825 DOI: 10.1016/j.bbagrm.2019.194448] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Affiliation(s)
- Francisco E Baralle
- Italian Liver Disease Foundation (FIF), Building Q AREA Science Park, Basovizza Campus ss14, Km 163,5, 34149 Trieste, Italy
| | - Ravindra N Singh
- Iowa State University, Department of Biomedical Science, 2034 Veterinary Medicine, Ames, IA 50011, United States.
| | - Stefan Stamm
- University of Kentucky, Department of Molecular and Cellular Biochemistry, College of Medicine, B159 Biomedical Biological Sciences Research Bldg. 741 South Limestone, Lexington, KY 40536, United States
| |
Collapse
|