1
|
Phuengmaung P, Chongrak C, Saisorn W, Makjaroen J, Singkham-in U, Leelahavanichkul A. The Coexistence of Klebsiella pneumoniae and Candida albicans Enhanced Biofilm Thickness but Induced Less Severe Neutrophil Responses and Less Inflammation in Pneumonia Mice Than K. pneumoniae Alone. Int J Mol Sci 2024; 25:12157. [PMID: 39596223 PMCID: PMC11594830 DOI: 10.3390/ijms252212157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2024] [Revised: 10/31/2024] [Accepted: 11/06/2024] [Indexed: 11/28/2024] Open
Abstract
Due to the possible coexistence of Klebsiella pneumoniae (KP) and Candida albicans (CA), strains of KP and CA with biofilm production properties clinically isolated from patients were tested. The production of biofilms from the combined organisms (KP+CA) was higher than the biofilms from each organism alone, as indicated by crystal violet and z-stack immunofluorescence. In parallel, the bacterial abundance in KP + CA was similar to KP, but the fungal abundance was higher than CA (culture method), implying that CA grows better in the presence of KP. Proteomic analysis was performed to compare KP + CA biofilm to KP biofilm alone. With isolated mouse neutrophils (thioglycolate induction), KP + CA biofilms induced less prominent responses than KP biofilms, as determined by (i) neutrophilic supernatant cytokines (ELISA) and (ii) neutrophil extracellular traps (NETs), using immunofluorescent images (neutrophil elastase, myeloperoxidase, and citrullinated histone 3), peptidyl arginine deiminase 4 (PAD4) expression, and cell-free DNA. Likewise, intratracheal KP + CA in C57BL/6 mice induces less severe pneumonia than KP alone, as indicated by organ injury (serum creatinine and alanine transaminase) (colorimetric assays), cytokines (ELISA), bronchoalveolar lavage fluid parameters (bacterial culture and neutrophil abundances using a hemocytometer), histology score (H&E stains), and NETs (immunofluorescence on the lung tissue). In conclusion, the biofilm biomass of KP + CA was mostly produced from CA with less potent neutrophil activation and less severe pneumonia than KP alone. Hence, fungi in the respiratory tract might benefit the host in some situations, despite the well-known adverse effects of fungi.
Collapse
Affiliation(s)
- Pornpimol Phuengmaung
- Department of Microbiology, Faculty of Medicine, Chulalongkorn University, Bangkok 10330, Thailand; (P.P.); (C.C.); (W.S.)
- Center of Excellence on Translational Research in Inflammation and Immunology (CETRII), Department of Microbiology, Faculty of Medicine, Chulalongkorn University, Bangkok 10330, Thailand
| | - Chiratchaya Chongrak
- Department of Microbiology, Faculty of Medicine, Chulalongkorn University, Bangkok 10330, Thailand; (P.P.); (C.C.); (W.S.)
- Center of Excellence on Translational Research in Inflammation and Immunology (CETRII), Department of Microbiology, Faculty of Medicine, Chulalongkorn University, Bangkok 10330, Thailand
- Medical Microbiology, Interdisciplinary and International Program, Graduate School, Chulalongkorn University, Bangkok 10330, Thailand
| | - Wilasinee Saisorn
- Department of Microbiology, Faculty of Medicine, Chulalongkorn University, Bangkok 10330, Thailand; (P.P.); (C.C.); (W.S.)
- Center of Excellence on Translational Research in Inflammation and Immunology (CETRII), Department of Microbiology, Faculty of Medicine, Chulalongkorn University, Bangkok 10330, Thailand
| | - Jiradej Makjaroen
- Department of Transfusion Medicine and Clinical Microbiology, Faculty of Allied Health Sciences, Chulalongkorn University, Bangkok 10330, Thailand;
| | - Uthaibhorn Singkham-in
- Center of Excellence on Translational Research in Inflammation and Immunology (CETRII), Department of Microbiology, Faculty of Medicine, Chulalongkorn University, Bangkok 10330, Thailand
- Faculty of Medical Technology, Rangsit University, Pathum Thani 12000, Thailand
| | - Asada Leelahavanichkul
- Department of Microbiology, Faculty of Medicine, Chulalongkorn University, Bangkok 10330, Thailand; (P.P.); (C.C.); (W.S.)
- Center of Excellence on Translational Research in Inflammation and Immunology (CETRII), Department of Microbiology, Faculty of Medicine, Chulalongkorn University, Bangkok 10330, Thailand
- Division of Nephrology, Department of Medicine, Faculty of Medicine, Chulalongkorn University, Bangkok 10330, Thailand
| |
Collapse
|
2
|
Hiyoshi T, Haga M, Sato N. Preferential phosphatidylglycerol synthesis via phosphorus supply through rRNA degradation in the cyanobacterium, Synechocystis sp. PCC 6803, under phosphate-starved conditions. FRONTIERS IN PLANT SCIENCE 2024; 15:1335085. [PMID: 38348270 PMCID: PMC10859501 DOI: 10.3389/fpls.2024.1335085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Accepted: 01/08/2024] [Indexed: 02/15/2024]
Abstract
Photosynthetic organisms often encounter phosphorus (P) limitation in natural habitats. When faced with P limitation, seed plants degrade nucleic acids and extra-plastid phospholipids to remobilize P, thereby enhancing their internal-P utilization efficiency. Although prokaryotic and eukaryotic photosynthetic organisms decrease the content of phosphatidylglycerol (PG) under P-limited conditions, it remains unclear whether PG is degraded for P remobilization. Moreover, information is limited on internal-P remobilization in photosynthetic microbes. This study investigates internal-P remobilization under P-starvation (-P) conditions in a cyanobacterium, Synechocystis sp. PCC 6803, focusing on PG and nucleic acids. Our results reveal that the PG content increases by more than double in the -P culture, indicating preferential PG synthesis among cellular P compounds. Simultaneously, the faster increases of glycolipids counteract this PG increase, which decreases the PG proportion in total lipids. Two genes, glpD and plsX, contribute to the synthesis of diacylglycerol moieties in glycerolipids, with glpD also responsible for the polar head group synthesis in PG. The mRNA levels of both glpD and plsX are upregulated during -P, which would cause the preferential metabolic flow of their P-containing substrates toward glycerolipid synthesis, particularly PG synthesis. Meanwhile, we find that RNA accounts for 62% of cellular P, and that rRNA species, which makes up the majority of RNA, are degraded under -P conditions to less than 30% of their initial levels. These findings emphasize the importance of PG in -P-acclimating cell growth and the role of rRNA as a significant internal-P source for P remobilization, including preferential PG synthesis.
Collapse
Affiliation(s)
| | | | - Norihiro Sato
- School of Life Sciences, Tokyo University of Pharmacy and Life Sciences, Hachioji, Japan
| |
Collapse
|
3
|
Liao S, Tian L, Qi Q, Hu L, Wang M, Gao C, Cui H, Gai Z, Gong G. Transcriptome Analysis of Protocatechualdehyde against Listeria monocytogenes and Its Effect on Chicken Quality Characteristics. Foods 2023; 12:2625. [PMID: 37444363 DOI: 10.3390/foods12132625] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 06/29/2023] [Accepted: 07/05/2023] [Indexed: 07/15/2023] Open
Abstract
The development of natural antimicrobial agents offers new strategies for food preservation due to the health hazards associated with the spoilage of meat products caused by microbial contamination. In this paper, the inhibitory mechanism of protocatechualdehyde (PCA) on Listeria monocytogenes was described, and its effect on the preservation of cooked chicken breast was evaluated. The results showed that the minimal inhibitory concentration (MIC) of PCA on L. monocytogenes was 0.625 mg/mL. Secondly, PCA destroyed the integrity of the L. monocytogenes cell membrane, which was manifested as a decrease in membrane hyperpolarization, intracellular ATP level, and intracellular pH value. Field emission gun scanning electron microscopy (FEG-SEM) observed a cell membrane rupture. Transcriptome analysis showed that PCA may inhibit cell growth by affecting amino acid, nucleotide metabolism, energy metabolism, and the cell membrane of L. monocytogenes. Additionally, it was discovered that PCA enhanced the color and texture of cooked chicken breast meat while decreasing the level of thiobarbituric acid active substance (TBARS). In conclusion, PCA as a natural antibacterial agent has a certain reference value in extending the shelf life of cooked chicken breast.
Collapse
Affiliation(s)
- Sichen Liao
- School of Food Science and Engineering, Shaanxi University of Science and Technology, Xi'an 710021, China
| | - Lu Tian
- School of Food Science and Engineering, Shaanxi University of Science and Technology, Xi'an 710021, China
| | - Qi Qi
- School of Food Science and Engineering, Shaanxi University of Science and Technology, Xi'an 710021, China
| | - Lemei Hu
- School of Food Science and Engineering, Shaanxi University of Science and Technology, Xi'an 710021, China
| | - Minmin Wang
- School of Food Science and Engineering, Shaanxi University of Science and Technology, Xi'an 710021, China
| | - Chang Gao
- School of Food Science and Engineering, Shaanxi University of Science and Technology, Xi'an 710021, China
| | - Haoyue Cui
- School of Food Science and Engineering, Shaanxi University of Science and Technology, Xi'an 710021, China
| | - Zhongchao Gai
- School of Food Science and Engineering, Shaanxi University of Science and Technology, Xi'an 710021, China
| | - Guoli Gong
- School of Food Science and Engineering, Shaanxi University of Science and Technology, Xi'an 710021, China
| |
Collapse
|
4
|
Wagner L, Jules M, Borkowski O. What remains from living cells in bacterial lysate-based cell-free systems. Comput Struct Biotechnol J 2023; 21:3173-3182. [PMID: 37333859 PMCID: PMC10275740 DOI: 10.1016/j.csbj.2023.05.025] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 05/23/2023] [Accepted: 05/23/2023] [Indexed: 06/20/2023] Open
Abstract
Because they mimic cells while offering an accessible and controllable environment, lysate-based cell-free systems (CFS) have emerged as valuable biotechnology tools for synthetic biology. Historically used to uncover fundamental mechanisms of life, CFS are nowadays used for a multitude of purposes, including protein production and prototyping of synthetic circuits. Despite the conservation of fundamental functions in CFS like transcription and translation, RNAs and certain membrane-embedded or membrane-bound proteins of the host cell are lost when preparing the lysate. As a result, CFS largely lack some essential properties of living cells, such as the ability to adapt to changing conditions, to maintain homeostasis and spatial organization. Regardless of the application, shedding light on the black-box of the bacterial lysate is necessary to fully exploit the potential of CFS. Most measurements of the activity of synthetic circuits in CFS and in vivo show significant correlations because these only require processes that are preserved in CFS, like transcription and translation. However, prototyping circuits of higher complexity that require functions that are lost in CFS (cell adaptation, homeostasis, spatial organization) will not show such a good correlation with in vivo conditions. Both for prototyping circuits of higher complexity and for building artificial cells, the cell-free community has developed devices to reconstruct cellular functions. This mini-review compares bacterial CFS to living cells, focusing on functional and cellular process differences and the latest developments in restoring lost functions through complementation of the lysate or device engineering.
Collapse
|
5
|
Crivello G, Fracchia L, Ciardelli G, Boffito M, Mattu C. In Vitro Models of Bacterial Biofilms: Innovative Tools to Improve Understanding and Treatment of Infections. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:nano13050904. [PMID: 36903781 PMCID: PMC10004855 DOI: 10.3390/nano13050904] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 02/23/2023] [Accepted: 02/24/2023] [Indexed: 06/02/2023]
Abstract
Bacterial infections are a growing concern to the health care systems. Bacteria in the human body are often found embedded in a dense 3D structure, the biofilm, which makes their eradication even more challenging. Indeed, bacteria in biofilm are protected from external hazards and are more prone to develop antibiotic resistance. Moreover, biofilms are highly heterogeneous, with properties dependent on the bacteria species, the anatomic localization, and the nutrient/flow conditions. Therefore, antibiotic screening and testing would strongly benefit from reliable in vitro models of bacterial biofilms. This review article summarizes the main features of biofilms, with particular focus on parameters affecting biofilm composition and mechanical properties. Moreover, a thorough overview of the in vitro biofilm models recently developed is presented, focusing on both traditional and advanced approaches. Static, dynamic, and microcosm models are described, and their main features, advantages, and disadvantages are compared and discussed.
Collapse
Affiliation(s)
- G. Crivello
- Department of Mechanical and Aerospace Engineering, Politecnico di Torino, C.so Duca degli Abruzzi 24, 10129 Torino, Italy
| | - L. Fracchia
- Department of Pharmaceutical Sciences, Università del Piemonte Orientale “A. Avogadro”, Largo Donegani 2, 28100 Novara, Italy
| | - G. Ciardelli
- Department of Mechanical and Aerospace Engineering, Politecnico di Torino, C.so Duca degli Abruzzi 24, 10129 Torino, Italy
- Department of Life Sciences, University of Modena and Reggio Emilia, Via Campi 287, 41125 Modena, Italy
| | - M. Boffito
- Department of Mechanical and Aerospace Engineering, Politecnico di Torino, C.so Duca degli Abruzzi 24, 10129 Torino, Italy
| | - C. Mattu
- Department of Mechanical and Aerospace Engineering, Politecnico di Torino, C.so Duca degli Abruzzi 24, 10129 Torino, Italy
| |
Collapse
|
6
|
Zhang Z, He P, Cai D, Chen S. Genetic and metabolic engineering for poly-γ-glutamic acid production: current progress, challenges, and prospects. World J Microbiol Biotechnol 2022; 38:208. [DOI: 10.1007/s11274-022-03390-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Accepted: 08/13/2022] [Indexed: 11/29/2022]
|
7
|
Adaptation of the gut pathobiont Enterococcus faecalis to deoxycholate and taurocholate bile acids. Sci Rep 2022; 12:8485. [PMID: 35590028 PMCID: PMC9120511 DOI: 10.1038/s41598-022-12552-3] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Accepted: 05/11/2022] [Indexed: 11/24/2022] Open
Abstract
Enterococcus faecalis is a natural inhabitant of the human gastrointestinal tract. This bacterial species is subdominant in a healthy physiological state of the gut microbiota (eubiosis) in adults, but can become dominant and cause infections when the intestinal homeostasis is disrupted (dysbiosis). The relatively high concentrations of bile acids deoxycholate (DCA) and taurocholate (TCA) hallmark eubiosis and dysbiosis, respectively. This study aimed to better understand how E. faecalis adapts to DCA and TCA. We showed that DCA impairs E. faecalis growth and possibly imposes a continuous adjustment in the expression of many essential genes, including a majority of ribosomal proteins. This may account for slow growth and low levels of E. faecalis in the gut. In contrast, TCA had no detectable growth effect. The evolving transcriptome upon TCA adaptation showed the early activation of an oligopeptide permease system (opp2) followed by the adjustment of amino acid and nucleotide metabolisms. We provide evidence that TCA favors the exploitation of oligopeptide resources to fuel amino acid needs in limiting oligopeptide conditions. Altogether, our data suggest that the combined effects of decreased DCA and increased TCA concentrations can contribute to the rise of E. faecalis population during dysbiosis.
Collapse
|
8
|
A Novel Non-Coding RNA CsiR Regulates the Ciprofloxacin Resistance in Proteus vulgaris by Interacting with emrB mRNA. Int J Mol Sci 2021; 22:ijms221910627. [PMID: 34638966 PMCID: PMC8508932 DOI: 10.3390/ijms221910627] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2021] [Revised: 09/23/2021] [Accepted: 09/26/2021] [Indexed: 12/13/2022] Open
Abstract
Bacterial non-coding RNAs (ncRNAs) play important regulatory roles in various physiological metabolic pathways. In this study, a novel ncRNA CsiR (ciprofloxacin stress-induced ncRNA) involved in the regulation of ciprofloxacin resistance in the foodborne multidrug-resistant Proteus vulgaris (P. vulgaris) strain P3M was identified. The survival rate of the CsiR-deficient strain was higher than that of the wild-type strain P3M under the ciprofloxacin treatment condition, indicating that CsiR played a negative regulatory role, and its target gene emrB was identified through further target prediction, quantitative real-time PCR (qRT-PCR), and microscale thermophoresis (MST). Further studies showed that the interaction between CsiR and emrB mRNA affected the stability of the latter at the post-transcriptional level to a large degree, and ultimately affected the ciprofloxacin resistance of P3M. Notably, the base-pairing sites between CsiR and emrB mRNAs were highly conserved in other sequenced P. vulgaris strains, suggesting that this regulatory mechanism may be ubiquitous in this species. To the best of our knowledge, this is the first identification of a novel ncRNA involved in the regulation of ciprofloxacin resistance in P. vulgaris species, which lays a solid foundation for comprehensively expounding the antibiotic resistance mechanism of P. vulgaris.
Collapse
|
9
|
Feaga HA, Dworkin J. Transcription regulates ribosome hibernation. Mol Microbiol 2021; 116:663-673. [PMID: 34152658 PMCID: PMC8628635 DOI: 10.1111/mmi.14762] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Revised: 05/17/2021] [Accepted: 05/24/2021] [Indexed: 11/26/2022]
Abstract
Most bacteria are quiescent, typically as a result of nutrient limitation. In order to minimize energy consumption during this potentially prolonged state, quiescent bacteria substantially attenuate protein synthesis, the most energetically costly cellular process. Ribosomes in quiescent bacteria are present as dimers of two 70S ribosomes. Dimerization is dependent on a single protein, hibernation promoting factor (HPF), that binds the ribosome in the mRNA channel. This interaction indicates that dimers are inactive, suggesting that HPF inhibits translation. However, we observe that HPF does not significantly affect protein synthesis in vivo suggesting that dimerization is a consequence of inactivity, not the cause. The HPF-dimer interaction further implies that re-initiation of translation when the bacteria exit quiescence requires dimer resolution. We show that ribosome dimers quickly resolve in the presence of nutrients, and this resolution is dependent on transcription, indicating that mRNA synthesis is required for dimer resolution. Finally, we observe that ectopic HPF expression in growing cells where mRNA is abundant does not significantly affect protein synthesis despite stimulating dimer formation, suggesting that dimerization is dynamic. Thus, the extensive transcription that occurs in response to nutrient availability rapidly re-activates the translational apparatus of a quiescent cell and induces dimer resolution.
Collapse
Affiliation(s)
| | - Jonathan Dworkin
- Department of Microbiology and Immunology, College of Physicians and Surgeons, Columbia University, New York, NY 10032
| |
Collapse
|
10
|
Guzmán-Soto I, McTiernan C, Gonzalez-Gomez M, Ross A, Gupta K, Suuronen EJ, Mah TF, Griffith M, Alarcon EI. Mimicking biofilm formation and development: Recent progress in in vitro and in vivo biofilm models. iScience 2021; 24:102443. [PMID: 34013169 PMCID: PMC8113887 DOI: 10.1016/j.isci.2021.102443] [Citation(s) in RCA: 127] [Impact Index Per Article: 31.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Biofilm formation in living organisms is associated to tissue and implant infections, and it has also been linked to the contribution of antibiotic resistance. Thus, understanding biofilm development and being able to mimic such processes is vital for the successful development of antibiofilm treatments and therapies. Several decades of research have contributed to building the foundation for developing in vitro and in vivo biofilm models. However, no such thing as an "all fit" in vitro or in vivo biofilm models is currently available. In this review, in addition to presenting an updated overview of biofilm formation, we critically revise recent approaches for the improvement of in vitro and in vivo biofilm models.
Collapse
Affiliation(s)
- Irene Guzmán-Soto
- Division of Cardiac Surgery, University of Ottawa Heart Institute, Ottawa, ON, K1Y4W7, Canada
| | - Christopher McTiernan
- Division of Cardiac Surgery, University of Ottawa Heart Institute, Ottawa, ON, K1Y4W7, Canada
| | - Mayte Gonzalez-Gomez
- Division of Cardiac Surgery, University of Ottawa Heart Institute, Ottawa, ON, K1Y4W7, Canada
| | - Alex Ross
- Division of Cardiac Surgery, University of Ottawa Heart Institute, Ottawa, ON, K1Y4W7, Canada
- Department of Biochemistry, Microbiology, and Immunology, University of Ottawa, Ottawa, ON, K1H8M5, Canada
| | - Keshav Gupta
- Division of Cardiac Surgery, University of Ottawa Heart Institute, Ottawa, ON, K1Y4W7, Canada
| | - Erik J. Suuronen
- Division of Cardiac Surgery, University of Ottawa Heart Institute, Ottawa, ON, K1Y4W7, Canada
| | - Thien-Fah Mah
- Department of Biochemistry, Microbiology, and Immunology, University of Ottawa, Ottawa, ON, K1H8M5, Canada
| | - May Griffith
- Centre de Recherche Hôpital Maisonneuve-Rosemont, Montréal, QC, H1T 2M4, Canada
- Département d'ophtalmologie, Université de Montréal, Montréal, QC, H3T1J4, Canada
| | - Emilio I. Alarcon
- Division of Cardiac Surgery, University of Ottawa Heart Institute, Ottawa, ON, K1Y4W7, Canada
- Department of Biochemistry, Microbiology, and Immunology, University of Ottawa, Ottawa, ON, K1H8M5, Canada
| |
Collapse
|
11
|
The Context-Dependent Influence of Promoter Sequence Motifs on Transcription Initiation Kinetics and Regulation. J Bacteriol 2021; 203:JB.00512-20. [PMID: 33139481 DOI: 10.1128/jb.00512-20] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The fitness of an individual bacterial cell is highly dependent upon the temporal tuning of gene expression levels when subjected to different environmental cues. Kinetic regulation of transcription initiation is a key step in modulating the levels of transcribed genes to promote bacterial survival. The initiation phase encompasses the binding of RNA polymerase (RNAP) to promoter DNA and a series of coupled protein-DNA conformational changes prior to entry into processive elongation. The time required to complete the initiation phase can vary by orders of magnitude and is ultimately dictated by the DNA sequence of the promoter. In this review, we aim to provide the required background to understand how promoter sequence motifs may affect initiation kinetics during promoter recognition and binding, subsequent conformational changes which lead to DNA opening around the transcription start site, and promoter escape. By calculating the steady-state flux of RNA production as a function of these effects, we illustrate that the presence/absence of a consensus promoter motif cannot be used in isolation to make conclusions regarding promoter strength. Instead, the entire series of linked, sequence-dependent structural transitions must be considered holistically. Finally, we describe how individual transcription factors take advantage of the broad distribution of sequence-dependent basal kinetics to either increase or decrease RNA flux.
Collapse
|
12
|
Guo F, Liang Q, Zhang M, Chen W, Chen H, Yun Y, Zhong Q, Chen W. Antibacterial Activity and Mechanism of Linalool against Shewanella putrefaciens. Molecules 2021; 26:molecules26010245. [PMID: 33466475 PMCID: PMC7796449 DOI: 10.3390/molecules26010245] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2020] [Revised: 12/24/2020] [Accepted: 12/31/2020] [Indexed: 11/26/2022] Open
Abstract
The demand for reduced chemical preservative usage is currently growing, and natural preservatives are being developed to protect seafood. With its excellent antibacterial properties, linalool has been utilized widely in industries. However, its antibacterial mechanisms remain poorly studied. Here, untargeted metabolomics was applied to explore the mechanism of Shewanella putrefaciens cells treated with linalool. Results showed that linalool exhibited remarkable antibacterial activity against S. putrefaciens, with 1.5 µL/mL minimum inhibitory concentration (MIC). The growth of S. putrefaciens was suppressed completely at 1/2 MIC and 1 MIC levels. Linalool treatment reduced the membrane potential (MP); caused the leakage of alkaline phosphatase (AKP); and released the DNA, RNA, and proteins of S. putrefaciens, thus destroying the cell structure and expelling the cytoplasmic content. A total of 170 differential metabolites (DMs) were screened using metabolomics analysis, among which 81 species were upregulated and 89 species were downregulated after linalool treatment. These DMs are closely related to the tricarboxylic acid (TCA) cycle, glycolysis, amino acid metabolism, pantothenate and CoA biosynthesis, aminoacyl-tRNA biosynthesis, and glycerophospholipid metabolism. In addition, linalool substantially affected the activity of key enzymes, such as succinate dehydrogenase (SDH), pyruvate kinase (PK), ATPase, and respiratory chain dehydrogenase. The results provided some insights into the antibacterial mechanism of linalool against S. putrefaciens and are important for the development and application of linalool in seafood preservation.
Collapse
Affiliation(s)
- Fengyu Guo
- College of Food Science and Technology, Hainan University, Haikou 570228, China; (F.G.); (Q.L.); (M.Z.); (W.C.); (H.C.); (Y.Y.)
- Key Laboratory of Food Nutrition and Functional Food of Hainan Province, Haikou 570228, China
- Hainan Provincial Engineering Research Center of Aquatic Resources Efficient Utilization in the South China Sea, Haikou 570228, China
| | - Qiong Liang
- College of Food Science and Technology, Hainan University, Haikou 570228, China; (F.G.); (Q.L.); (M.Z.); (W.C.); (H.C.); (Y.Y.)
| | - Ming Zhang
- College of Food Science and Technology, Hainan University, Haikou 570228, China; (F.G.); (Q.L.); (M.Z.); (W.C.); (H.C.); (Y.Y.)
| | - Wenxue Chen
- College of Food Science and Technology, Hainan University, Haikou 570228, China; (F.G.); (Q.L.); (M.Z.); (W.C.); (H.C.); (Y.Y.)
- Key Laboratory of Food Nutrition and Functional Food of Hainan Province, Haikou 570228, China
- Hainan Provincial Engineering Research Center of Aquatic Resources Efficient Utilization in the South China Sea, Haikou 570228, China
| | - Haiming Chen
- College of Food Science and Technology, Hainan University, Haikou 570228, China; (F.G.); (Q.L.); (M.Z.); (W.C.); (H.C.); (Y.Y.)
- Key Laboratory of Food Nutrition and Functional Food of Hainan Province, Haikou 570228, China
- Hainan Provincial Engineering Research Center of Aquatic Resources Efficient Utilization in the South China Sea, Haikou 570228, China
| | - Yonghuan Yun
- College of Food Science and Technology, Hainan University, Haikou 570228, China; (F.G.); (Q.L.); (M.Z.); (W.C.); (H.C.); (Y.Y.)
- Key Laboratory of Food Nutrition and Functional Food of Hainan Province, Haikou 570228, China
- Hainan Provincial Engineering Research Center of Aquatic Resources Efficient Utilization in the South China Sea, Haikou 570228, China
| | - Qiuping Zhong
- College of Food Science and Technology, Hainan University, Haikou 570228, China; (F.G.); (Q.L.); (M.Z.); (W.C.); (H.C.); (Y.Y.)
- Key Laboratory of Food Nutrition and Functional Food of Hainan Province, Haikou 570228, China
- Hainan Provincial Engineering Research Center of Aquatic Resources Efficient Utilization in the South China Sea, Haikou 570228, China
- Correspondence: (Q.Z.); (W.C.)
| | - Weijun Chen
- College of Food Science and Technology, Hainan University, Haikou 570228, China; (F.G.); (Q.L.); (M.Z.); (W.C.); (H.C.); (Y.Y.)
- Key Laboratory of Food Nutrition and Functional Food of Hainan Province, Haikou 570228, China
- Hainan Provincial Engineering Research Center of Aquatic Resources Efficient Utilization in the South China Sea, Haikou 570228, China
- Correspondence: (Q.Z.); (W.C.)
| |
Collapse
|
13
|
Pavankumar TL, Mittal P, Hallsworth JE. Molecular insights into the ecology of a psychrotolerant
Pseudomonas syringae. Environ Microbiol 2020; 23:3665-3681. [DOI: 10.1111/1462-2920.15304] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Revised: 11/01/2020] [Accepted: 11/03/2020] [Indexed: 02/06/2023]
Affiliation(s)
- Theetha L. Pavankumar
- Department of Microbiology and Molecular Genetics, Briggs Hall, One Shields Avenue University of California Davis CA USA
| | - Pragya Mittal
- MRC Human Genetics Unit, Institute of Genetics and Molecular Medicine University of Edinburgh Crewe Road South, Edinburgh, EH42XU, Scotland UK
| | - John E. Hallsworth
- Institute for Global Food Security, School of Biological Sciences Queen's University Belfast 19 Chlorine Gardens, Belfast, BT9 5DL Northern Ireland UK
| |
Collapse
|
14
|
Deloupy A, Sauveplane V, Robert J, Aymerich S, Jules M, Robert L. Extrinsic noise prevents the independent tuning of gene expression noise and protein mean abundance in bacteria. SCIENCE ADVANCES 2020; 6:eabc3478. [PMID: 33028528 PMCID: PMC7541070 DOI: 10.1126/sciadv.abc3478] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Accepted: 08/25/2020] [Indexed: 05/03/2023]
Abstract
It is generally accepted that prokaryotes can tune gene expression noise independently of protein mean abundance by varying the relative levels of transcription and translation. Here, we address this question quantitatively, using a custom-made library of 40 Bacillus subtilis strains expressing a fluorescent protein under the control of different transcription and translation control elements. We quantify noise and mean protein abundance by fluorescence microscopy and show that for most of the natural transcription range of B. subtilis, expression noise is equally sensitive to variations in the transcription or translation rate because of the prevalence of extrinsic noise. In agreement, analysis of whole-genome transcriptomic and proteomic datasets suggests that noise optimization through transcription and translation tuning during evolution may only occur in a regime of weak transcription. Therefore, independent control of mean abundance and noise can rarely be achieved, which has strong implications for both genome evolution and biological engineering.
Collapse
Affiliation(s)
- A Deloupy
- Laboratoire Jean Perrin, Sorbonne Université, UMR 8237, 75005 Paris, France
| | - V Sauveplane
- Université Paris-Saclay, INRAE, AgroParisTech, Micalis Institute, 78350 Jouy-en-Josas, France
| | - J Robert
- Laboratoire Jean Perrin, Sorbonne Université, UMR 8237, 75005 Paris, France
| | - S Aymerich
- Université Paris-Saclay, INRAE, AgroParisTech, Micalis Institute, 78350 Jouy-en-Josas, France
| | - M Jules
- Université Paris-Saclay, INRAE, AgroParisTech, Micalis Institute, 78350 Jouy-en-Josas, France.
| | - L Robert
- Laboratoire Jean Perrin, Sorbonne Université, UMR 8237, 75005 Paris, France.
- Université Paris-Saclay, INRAE, AgroParisTech, Micalis Institute, 78350 Jouy-en-Josas, France
| |
Collapse
|