1
|
Endo I, Matsuyama R, Mori R, Shimada H. Intrahepatic stones. BLUMGART'S SURGERY OF THE LIVER, BILIARY TRACT AND PANCREAS, 2-VOLUME SET 2017:642-655.e3. [DOI: 10.1016/b978-0-323-34062-5.00039-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
2
|
Gooijert KER, Havinga R, Wolters H, Wang R, Ling V, Tazuma S, Verkade HJ. The mechanism of increased biliary lipid secretion in mice with genetic inactivation of bile salt export pump. Am J Physiol Gastrointest Liver Physiol 2015; 308:G450-7. [PMID: 25552583 DOI: 10.1152/ajpgi.00391.2014] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Human bile salt export pump (BSEP) mutations underlie progressive familial intrahepatic cholestasis type 2 (PFIC2). In the PFIC2 animal model, Bsep(-/-) mice, biliary secretion of bile salts (BS) is decreased, but that of phospholipids (PL) and cholesterol (CH) is increased. Under physiological conditions, the biliary secretion of PL and CH is positively related ("coupled") to that of BS. We aimed to elucidate the mechanism of increased biliary lipid secretion in Bsep(-/-) mice. The secretion of the BS tauro-β-muricholic acid (TβMCA) is relatively preserved in Bsep(-/-) mice. We infused Bsep(-/-) and Bsep(+/+) (control) mice with TβMCA in stepwise increasing dosages (150-600 nmol/min) and determined biliary bile flow, BS, PL, and CH secretion. mRNA and protein expression of relevant canalicular transporters was analyzed in livers from noninfused Bsep(-/-) and control mice. TβMCA infusion increased BS secretion in both Bsep(-/-) and control mice. The secreted PL or CH amount per BS, i.e., the "coupling," was continuously two- to threefold higher in Bsep(-/-) mice (P < 0.05). Hepatic mRNA expression of canalicular lipid transporters Mdr2, Abcg5, and Abcg8 was 45-55% higher in Bsep(-/-) mice (Abcg5; P < 0.05), as was canalicular Mdr2 and Abcg5 protein expression. Potential other explanations for the increased coupling of the biliary secretion of PL and CH to that of BS in Bsep(-/-) mice could be excluded. We conclude that the mechanism of increased biliary lipid secretion in Bsep(-/-) mice is based on increased expression of the responsible canalicular transporter proteins.
Collapse
MESH Headings
- ATP Binding Cassette Transporter, Subfamily B/genetics
- ATP Binding Cassette Transporter, Subfamily B/metabolism
- ATP Binding Cassette Transporter, Subfamily B, Member 11
- ATP Binding Cassette Transporter, Subfamily G, Member 5
- ATP Binding Cassette Transporter, Subfamily G, Member 8
- ATP-Binding Cassette Transporters/genetics
- ATP-Binding Cassette Transporters/metabolism
- Animals
- Bile Canaliculi/metabolism
- Cholestasis, Intrahepatic/genetics
- Cholestasis, Intrahepatic/metabolism
- Female
- Lipoproteins/genetics
- Lipoproteins/metabolism
- Male
- Mice
- Mice, Inbred C57BL
- Phospholipids/metabolism
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- Taurocholic Acid/analogs & derivatives
- Taurocholic Acid/metabolism
- ATP-Binding Cassette Sub-Family B Member 4
Collapse
Affiliation(s)
- K E R Gooijert
- Research Laboratory Pediatrics, Beatrix Children's Hospital-University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - R Havinga
- Research Laboratory Pediatrics, Beatrix Children's Hospital-University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - H Wolters
- Research Laboratory Pediatrics, Beatrix Children's Hospital-University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - R Wang
- British Columbia Cancer Research Center, Vancouver, British Columbia, Canada; and
| | - V Ling
- British Columbia Cancer Research Center, Vancouver, British Columbia, Canada; and
| | - S Tazuma
- Department of General Medicine and Clinical Pharmacotherapy, Hiroshima University, Hiroshima, Japan
| | - H J Verkade
- Research Laboratory Pediatrics, Beatrix Children's Hospital-University Medical Center Groningen, University of Groningen, Groningen, The Netherlands;
| |
Collapse
|
3
|
Gao Y, Shao J, Jiang Z, Chen J, Gu S, Yu S, Zheng K, Jia L. Drug enterohepatic circulation and disposition: constituents of systems pharmacokinetics. Drug Discov Today 2014; 19:326-40. [DOI: 10.1016/j.drudis.2013.11.020] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2013] [Revised: 10/30/2013] [Accepted: 11/22/2013] [Indexed: 01/06/2023]
|
4
|
Cross-talk between liver and intestine in control of cholesterol and energy homeostasis. Mol Aspects Med 2014; 37:77-88. [PMID: 24560594 DOI: 10.1016/j.mam.2014.02.001] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2013] [Revised: 12/04/2013] [Accepted: 02/10/2014] [Indexed: 12/19/2022]
Abstract
A major hurdle for organisms to dispose of cholesterol is the inability to degrade the sterol nucleus which constitutes the central part of the molecule. Synthesis of the sterol nucleus requires a complex, energy costly, metabolic pathway but also generates a diverse array of intermediates serving crucial roles in cellular energy metabolism and signal transduction. This may be the reason why this complex pathway has survived evolutionary pressure. The only way to get rid of substantial amounts of cholesterol is conversion into bile acid or direct excretion of the sterol in the feces. The lack of versatility in disposal mechanisms causes a lack of flexibility to regulate cholesterol homeostasis which may underlie the considerable human pathology linked to cholesterol removal from the body. Export of cholesterol from the body requires an intricate communication between intestine and the liver. The last decade this inter-organ cross talk has been focus of intense research leading to considerable new insight. This novel information on particular the cross-talk between liver and intestine and role of bile acids as signal transducing molecules forms the focus of this review.
Collapse
|
5
|
Wang TY, Liu M, Portincasa P, Wang DQH. New insights into the molecular mechanism of intestinal fatty acid absorption. Eur J Clin Invest 2013; 43:1203-1223. [PMID: 24102389 PMCID: PMC3996833 DOI: 10.1111/eci.12161] [Citation(s) in RCA: 111] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/20/2013] [Accepted: 08/20/2013] [Indexed: 01/05/2023]
Abstract
BACKGROUND Dietary fat is one of the most important energy sources of all the nutrients. Fatty acids, stored as triacylglycerols (also called triglycerides) in the body, are an important reservoir of stored energy and derived primarily from animal fats and vegetable oils. DESIGN Although the molecular mechanisms for the transport of water-insoluble amphipathic fatty acids across cell membranes have been debated for many years, it is now believed that the dominant means for intestinal fatty acid uptake is via membrane-associated fatty acid-binding proteins, that is, fatty acid transporters on the apical membrane of enterocytes. RESULTS These findings indicate that intestinal fatty acid absorption is a multistep process that is regulated by multiple genes at the enterocyte level, and intestinal fatty acid absorption efficiency could be determined by factors influencing intraluminal fatty acid molecules across the brush border membrane of enterocytes. To facilitate research on intestinal, hepatic and plasma triacylglycerol metabolism, it is imperative to establish standard protocols for precisely and accurately measuring the efficiency of intestinal fatty acid absorption in humans and animal models. In this review, we will discuss the chemical structure and nomenclature of fatty acids and summarize recent progress in investigating the molecular mechanisms underlying the intestinal absorption of fatty acids, with a particular emphasis on the physical chemistry of intestinal lipids and the molecular physiology of intestinal fatty acid transporters. CONCLUSIONS A better understanding of the molecular mechanism of intestinal fatty acid absorption should lead to novel approaches to the treatment and the prevention of fatty acid-related metabolic diseases that are prevalent worldwide.
Collapse
Affiliation(s)
- Tony Y. Wang
- Department of Internal Medicine, Division of Gastroenterology and Hepatology, Saint Louis University School of Medicine, St. Louis, MO 63104, USA
- Department of Biomedical Engineering, Washington University, St. Louis, MO 63130, USA
| | - Min Liu
- Department of Pathology and Laboratory Medicine, University of Cincinnati College of Medicine, Cincinnati, OH 45237, USA
| | - Piero Portincasa
- Clinica Medica “A. Murri”, Department of Biomedical Sciences and Human Oncology, University of Bari Medical School, Bari, Italy
| | - David Q.-H. Wang
- Department of Internal Medicine, Division of Gastroenterology and Hepatology, Saint Louis University School of Medicine, St. Louis, MO 63104, USA
| |
Collapse
|
6
|
Reduced absorption of long-chain fatty acids during methotrexate-induced gastrointestinal mucositis in the rat. Clin Nutr 2012; 32:452-9. [PMID: 23102689 DOI: 10.1016/j.clnu.2012.10.002] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2012] [Revised: 09/27/2012] [Accepted: 10/01/2012] [Indexed: 12/18/2022]
Abstract
BACKGROUND & AIMS Patients with chemotherapy-induced gastrointestinal mucositis suffer from weight loss and possibly malabsorption. Since long-chain fatty acids serve important functions in the body, we aimed to determine the intestinal capacity of fat absorption in rats with and without methotrexate-induced mucositis. METHODS Four days after intravenous injection with methotrexate (60 mg/kg) or saline, rats received saturated ([U-(13)C]palmitic acid) and unsaturated ([U-(13)C]linoleic acid) fatty acids dissolved in oil, either as a single bolus by oral gavage or by continuous intraduodenal infusion. We determined plasma and liver label concentrations at specific time points. RESULTS We confirmed methotrexate-induced mucositis by villus atrophy using microscopy. Methotrexate treatment severely reduced the appearance of [U-(13)C]palmitic- and [U-(13)C]linoleic acid in plasma and liver, compared to controls, either when administered as a bolus or continuously (all at least -63%, P < 0.05). Liver [U-(13)C]palmitic acid appearance was higher than [U-(13)C]linoleic acid appearance, either when administered as a bolus (2.8-fold, P < 0.01) or continuously (5.7-fold, P < 0.01). CONCLUSIONS The intestinal capacity to absorb long-chain fatty acids is severely reduced in rats with methotrexate-induced mucositis. Continuous administration does not overcome this impairment. The liver takes up and/or retains mainly saturated fatty acids during mucositis.
Collapse
|
7
|
Effect of oxidized phosphatidylcholine on biomarkers of oxidative stress in rats. Indian J Clin Biochem 2011; 26:154-60. [PMID: 22468042 DOI: 10.1007/s12291-010-0064-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2009] [Accepted: 03/05/2010] [Indexed: 10/18/2022]
Abstract
In this study it was planned to investigate the effect of oxidized phosphatidylcholine (derived from egg) feeding on lipid peroxidation of different tissues in rats. Male Wistar albino rats were fed oxidized and unoxidized phosphatidylcholine for 2 and 4 weeks, respectively. During the period of study food intake and body weights of animals increased gradually. Animals fed oxidized phosphatidylcholine for 2 and 4 weeks showed 33 and 15% spontaneous hemolysis of red blood cells in vitro. Under identical experimental conditions animals given unoxidized phosphatidylcholine showed 14.5 and 13.4% hemolysis for 2 and 4 week's period, respectively. Thiobarbituric acid reactive substances (TBARS) level in thymus, spleen, kidney, heart, liver and lung significantly increased in rats given oxidized phosphatidylcholine as compared to unoxidized group. Furthermore, in oxidized phosphatidylcholine group TBARS values in kidney, liver and lungs continued to rise for 4 weeks of treatment while TBARS level in heart, spleen and thymus was found to be decreased at the end of 4 weeks of oxidized phosphatidylcholine feeding. Plasma triacylglycerol and cholesterol was found to increase in rats who had received oxidized phosphatidylcholine for 2 weeks. These findings suggest that excess and persistent intake of oxidized phosphatidylcholine can cause significant damage to organs.
Collapse
|
8
|
Foltz M, Maljaars J, Schuring EAH, van der Wal RJP, Boer T, Duchateau GSM, Peters HPF, Stellaard F, Masclee AA. Intragastric layering of lipids delays lipid absorption and increases plasma CCK but has minor effects on gastric emptying and appetite. Am J Physiol Gastrointest Liver Physiol 2009; 296:G982-91. [PMID: 19325050 DOI: 10.1152/ajpgi.90579.2008] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Intestinal intubation studies have demonstrated that lipids induce satiety, but the contribution of lipid processing by the stomach on satiety remains poorly understood. In this explorative, randomized, placebo-controlled, crossover study we tested whether delayed lipid absorption, increased cholecystokinin (CCK), decelerated gastric emptying (GE), and increased satiety can be achieved by controlling lipid distribution in the stomach. Six healthy men were intubated nasogastrically. Two treatments were performed and repeated in duplicate. In the oil-on-top treatment (OT), subjects received a fat-free liquid meal (LM, 325 ml, 145 kcal) followed by intragastric infusion of 4 g of high-oleic-acid rapeseed oil (4.6 ml, 36 kcal) labeled with 77 mg glyceryl-[(13)C]trioleate. In the emulsion treatment (EM, control), 4 g of labeled rapeseed oil was incorporated into the LM (325 ml, 181 kcal); 4.6 ml of saline was infused as a control. In OT and EM a second LM was consumed at time t = 270 min. Plasma (13)C-C18:1, CCK and satiety were measured over 480 min. GE was determined by the paracetamol absorption test. OT delayed oleic acid absorption shown by an increased lag time of absorption (EM: 37 +/- 7 min; OT: 75 +/- 10 min; P < 0.01) and time at maximum concentration (EM: 162 +/- 18 min; OT: 280 +/- 33 min; P = 0.01). OT released more CCK than EM (P = 0.03), including increased CCK after the second meal. OT accelerated initial GE until 30 min postprandial. OT showed a tendency (P = 0.06) to suppress hunger and increase satiety and fullness 120-270 min postprandially. The results demonstrate that low amounts of lipids, when separated from the aqueous phase of a meal, delay lipid absorption and increase CCK. An escalating-dose study should determine whether this could have implications for the development of weight-control foods.
Collapse
Affiliation(s)
- Martin Foltz
- Unilever R&D, Olivier van Noortlaan 120, 3133 AT Vlaardingen, The Netherlands.
| | | | | | | | | | | | | | | | | |
Collapse
|
9
|
Los EL, Wolters H, Stellaard F, Kuipers F, Verkade HJ, Rings EHHM. Intestinal capacity to digest and absorb carbohydrates is maintained in a rat model of cholestasis. Am J Physiol Gastrointest Liver Physiol 2007; 293:G615-22. [PMID: 17627970 DOI: 10.1152/ajpgi.00188.2007] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Cholestasis is associated with systemic accumulation of bile salts and with deficiency of bile in the intestinal lumen. During the past years bile salts have been identified as signaling molecules that regulate lipid, glucose, and energy metabolism. Bile salts have also been shown to activate signaling routes leading to proliferation, apoptosis, or differentiation. It is unclear, however, whether cholestasis affects the constitution and absorptive capacity of the intestinal epithelium in vivo. We studied small intestinal morphology, proliferation, apoptosis, expression of intestine-specific genes, and carbohydrate absorption in cholestatic (1 wk bile duct ligation), bile-deficient (1 wk bile diversion), and control (sham) rats. Absorptive capacity was assessed by determination of plasma [(2)H]- and [(13)C]glucose concentrations after intraduodenal administration of [(2)H]glucose and naturally enriched [(13)C]sucrose, respectively. Small intestinal morphology, proliferation, apoptosis, and gene expression of intestinal transcription factors (mRNA levels of Cdx-2, Gata-4, and Hnf-1alpha, and Cdx-2 protein levels) were similar in cholestatic, bile-deficient, and control rats. The (unlabeled) blood glucose response after intraduodenal administration was delayed in cholestatic animals, but the absorption over 180 min was quantitatively similar between the groups. Plasma concentrations of [(2)H]glucose and [(13)C]glucose peaked to similar extents in all groups within 7.5 and 30 min, respectively. Absorption of [(2)H]glucose and [(13)C]glucose in plasma was similar in all groups. The present data indicate that neither accumulation of bile salts in the body, nor their intestinal deficiency, two characteristic features of cholestasis, affect rat small intestinal proliferation, differentiation, apoptosis, or its capacity to digest and absorb carbohydrates.
Collapse
Affiliation(s)
- E Leonie Los
- Pediatric Gastroenterology/Research Laboratory of Pediatrics, University Medical Center Groningen, University of Groningen, 9700 RB Groningen, The Netherlands
| | | | | | | | | | | |
Collapse
|
10
|
Majumdar S, Mitra AK. Chemical modification and formulation approaches to elevated drug transport across cell membranes. Expert Opin Drug Deliv 2006; 3:511-27. [PMID: 16822226 DOI: 10.1517/17425247.3.4.511] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Drug delivery across cellular barriers, such as intestinal, nasal, buccal, alveolar, vaginal, ocular and blood-brain, is a challenging task. Multiple physiological mechanisms, such as cellular organisation, efflux, and chemical and enzymatic degradation, as well as physicochemical properties of the drug molecule itself, determine the penetration of xenobiotics across epithelial cell layers. Limited intestinal absorption of many novel and highly potent lead compounds has stimulated an intense search for strategies that can effectively enhance permeation across these biological barriers. This review discusses some of the approaches that have been, and are currently being, investigated for transepithelial drug delivery. Transdermal drug delivery requires a separate discussion on its own and is thus outside the scope of this review article.
Collapse
Affiliation(s)
- Soumyajit Majumdar
- Department of Pharmaceutics, School of Pharmacy, The University of Mississippi, MS 38677, USA
| | | |
Collapse
|
11
|
Literature alerts. J Microencapsul 2005; 21:687-94. [PMID: 15762324 DOI: 10.1080/02652040412331343791] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
12
|
Van Gaal L, Mertens I, Ballaux D, Verkade HJ. Modern, new pharmacotherapy for obesity. A gastrointestinal approach. Best Pract Res Clin Gastroenterol 2004; 18:1049-72. [PMID: 15561638 DOI: 10.1016/j.bpg.2004.09.001] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Affiliation(s)
- L Van Gaal
- Department of Diabetology, Metabolism and Clinical Nutrition, University Hospital Antwerp, Wilrjikstraat 10 Edegem, 2650 Antwerp, Belgium.
| | | | | | | |
Collapse
|