1
|
Jiang J, Zheng X, He T, Liu X, Zhao Q, Tan W, Xiong L, Li B, Yin H, Agyei GD, Xie F, Cui G, Chen Y. The Function of PpKCS6 in Regulating Cuticular Wax Synthesis and Drought Resistance of Kentucky Bluegrass. PLANT, CELL & ENVIRONMENT 2025; 48:4643-4655. [PMID: 40051268 DOI: 10.1111/pce.15465] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2024] [Revised: 02/23/2025] [Accepted: 02/24/2025] [Indexed: 05/06/2025]
Abstract
Drought stress significantly limits plant growth and crop productivity. Cuticular wax minimizes plant water loss and contributes to drought resistance. Kentucky bluegrass (Poa pratensis L.) is a widely used cool-season turfgrass worldwide. However, the molecular mechanisms underlying the regulation of dynamic changes in cuticular wax in relation to drought resistance in Kentucky bluegrass remain unclear. Here, we compared molecular mechanisms of cuticular wax biosynthesis in two Kentucky bluegrass cultivars 'Maoershan' (drought-tolerant) and 'Brilliant' (drought-sensitive). The results showed that 'Brilliant' with lower wax content, suffered more severe morphological and physiological damage from drought stress than the 'Maoershan'. Through transcriptome analysis of these two cultivars, a hub gene of PpKCS6, involved in cuticular wax synthesis, was identified. Overexpression of PpKCS6 promoted the synthesis of very long-chain fatty acids, especially increased the content of fatty acids and alkanes with carbon chains above C24. This led to greater cuticular wax accumulation, which further protected the plants against water loss and improved photosynthesis and water use efficiency. Alternatively, RNAi-PpKCS6 lines exhibited the opposite performance to the overexpression line. These results demonstrate that PpKCS6 plays an important role in drought stress resistance by regulating wax biosynthesis.
Collapse
Affiliation(s)
- Jia Jiang
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, China
| | - Xueling Zheng
- College of Horticulture, Northeast Agricultural University, Harbin, China
| | - Tiantian He
- College of Horticulture, Northeast Agricultural University, Harbin, China
| | - Xiashun Liu
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, China
| | - Qianhan Zhao
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, China
| | - Wei Tan
- Horticultural Sub-Academy, Heilongjiang Academy of Agricultural Sciences, Harbin, China
| | - Liangbing Xiong
- College of Horticulture, Northeast Agricultural University, Harbin, China
| | - Bing Li
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, China
| | - Hang Yin
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, China
| | | | - Fuchun Xie
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, China
| | - Guowen Cui
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, China
| | - Yajun Chen
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, China
- College of Horticulture, Northeast Agricultural University, Harbin, China
| |
Collapse
|
2
|
Lv P, Lv J, Zhan Y, Wang N, Zhao X, Sha Q, Zhou W, Gong Y, Yang J, Zhou H, Chu P, Sun Y. Genome-wide analysis of the KCS gene family in Medicago truncatula and their expression profile under various abiotic stress. Sci Rep 2025; 15:15938. [PMID: 40335581 PMCID: PMC12059053 DOI: 10.1038/s41598-025-00809-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2025] [Accepted: 04/30/2025] [Indexed: 05/09/2025] Open
Abstract
Very long-chain fatty acids (VLCFAs) are indispensable constituents of cuticular wax and exert pivotal functions in regulating plant growth, development and response to stress. β-Ketoacyl-CoA synthase (KCS) represents the rate-limiting enzyme for the biosynthesis of VLCFAs. In this study, 25 KCS genes were identified in the M. truncatula genome and were unevenly distributed across seven of the eight chromosomes. The 25 MtKCS genes were clustered into seven groups, each exhibiting conserved gene structure and motif distribution. MtKCS gene promoters contained multiple hormone signaling and stress-responsive elements, indicating that the expression of these genes may be modulated by a range of developmental and environmental stimuli. The expression profiles revealed that the MtKCS genes exhibit diverse expression patterns across various organs/tissues and are differentially expressed under abiotic stress. It is noteworthy that several genes, such as MtKCS2, 10, and 13, exhibited significantly increased expression in leaves under cold, heat, salt, and drought stress. This suggests that MtKCS genes may play an integral role in the abiotic stress resistance of M. truncatula. These findings establish a foundation for understanding the evolution of KCS genes in higher plants and facilitated further functional exploration of MtKCS genes.
Collapse
Affiliation(s)
- Peng Lv
- College of Agriculture and Biology, Liaocheng University, Liaocheng, 252000, China
| | - Jiaqi Lv
- College of Agriculture and Biology, Liaocheng University, Liaocheng, 252000, China
| | - Yawen Zhan
- College of Agriculture and Biology, Liaocheng University, Liaocheng, 252000, China
| | - Ning Wang
- Rural Economic Development Center of Dong'e County, Liaocheng, 252000, China
| | - Xinyan Zhao
- College of Agriculture and Biology, Liaocheng University, Liaocheng, 252000, China
| | - Qi Sha
- College of Agriculture and Biology, Liaocheng University, Liaocheng, 252000, China
| | - Wen Zhou
- College of Agriculture and Biology, Liaocheng University, Liaocheng, 252000, China
| | - Yujie Gong
- College of Agriculture and Biology, Liaocheng University, Liaocheng, 252000, China
| | - Jing Yang
- College of Agriculture and Biology, Liaocheng University, Liaocheng, 252000, China
| | - Hang Zhou
- Shennong Zhiyi Intelligent Technology Co., Ltd, Liaocheng, 252000, China
| | - Pengfei Chu
- College of Agriculture and Biology, Liaocheng University, Liaocheng, 252000, China.
| | - Yongwang Sun
- College of Agriculture and Biology, Liaocheng University, Liaocheng, 252000, China.
| |
Collapse
|
3
|
Zhou J, Pang R, Han Y, Guo Y, Wang Y, Yang H, Wang W, Fu X, Zhang R, Zheng X, Zhang T, Zhang Y, Wang Q. CRISPR-Cas9-mediated knockout of OsKCS11 in rice reveals potential crosstalk between very-long-chain fatty acids and cytokinin. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2025; 122:e70208. [PMID: 40359574 DOI: 10.1111/tpj.70208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2025] [Revised: 04/06/2025] [Accepted: 04/25/2025] [Indexed: 05/15/2025]
Abstract
Very-long-chain fatty acids (VLCFAs) play crucial roles in various physiological processes in plants. Through our investigation using a CRISPR-Cas9 knockout mutant library in rice, we identified a semi-dwarf rice mutant named CRISPR-Cas-based dwarf-1 (csd-1). This mutant displayed multiple developmental defects, such as decreased plant height, panicle length, seed size, and seed-setting rate. Whole-genome resequencing analysis revealed that a T-nucleotide insertion in β-ketoacyl-CoA synthase 11 (KCS11), responsible for the initial step in fatty acid elongation, was responsible for the observed defects in csd-1. The identity of csd-1 was confirmed through genetic complementation and CRISPR-Cas9-mediated knockout. Expression analysis indicated that OsKCS11 was present in various tissues, with differential abundance observed through RT-qPCR and promoter GUS staining, and strong localization at the node position by RNA in situ hybridization; furthermore, OsKCS11 protein was confirmed to be in the endoplasmic reticulum. Furthermore, csd-1 exhibited significantly reduced levels of linolenic acid (18:3), C24:0-OH, C28:0-alkanes, C29:0-alkanes, alpha-tocopherol, and C33:0-alkanes, while trans-nonadecenoic acid and behenic acid levels were increased. Cytokinin analysis revealed significant increases in isopentenyladenine (IPA) and cis-zeatin (cZ) levels in csd-1. Molecular investigations indicated upregulation of genes involved in cytokinin biosynthesis or signaling, suggesting a potential link between VLCFAs and cytokinin synthesis through acetyl-CoA. This study not only proposed an alternative gene mapping method based on whole-genome resequencing but also elucidated the mechanism by which VLCFAs influence cytokinin synthesis and signaling.
Collapse
Affiliation(s)
- Jianping Zhou
- Department of Biotechnology, School of Life Sciences and Technology, Center for Informational Biology, University of Electronic Science and Technology of China, Chengdu, 610054, China
| | - Rui Pang
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, 518120, China
| | - Yangshuo Han
- Chongqing Key Laboratory of Tree Germplasm Innovation and Utilization, School of Life Sciences, Integrative Science Center of Germplasm Creation in Western China (Chongqing) Science City, Southwest University, Chongqing, 400715, China
- Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding/Zhongshan Biological Breeding Laboratory/Key Laboratory of Plant Functional Genomics of the Ministry of Education, Agricultural College, Yangzhou University, Yangzhou, 225009, China
| | - Yachong Guo
- Department of Biotechnology, School of Life Sciences and Technology, Center for Informational Biology, University of Electronic Science and Technology of China, Chengdu, 610054, China
| | - Yibo Wang
- Department of Biotechnology, School of Life Sciences and Technology, Center for Informational Biology, University of Electronic Science and Technology of China, Chengdu, 610054, China
| | - Hongjun Yang
- Department of Biotechnology, School of Life Sciences and Technology, Center for Informational Biology, University of Electronic Science and Technology of China, Chengdu, 610054, China
| | - Wei Wang
- Department of Biotechnology, School of Life Sciences and Technology, Center for Informational Biology, University of Electronic Science and Technology of China, Chengdu, 610054, China
| | - Xinxuan Fu
- Department of Biotechnology, School of Life Sciences and Technology, Center for Informational Biology, University of Electronic Science and Technology of China, Chengdu, 610054, China
| | - Rui Zhang
- Department of Biotechnology, School of Life Sciences and Technology, Center for Informational Biology, University of Electronic Science and Technology of China, Chengdu, 610054, China
| | - Xuelian Zheng
- Chongqing Key Laboratory of Tree Germplasm Innovation and Utilization, School of Life Sciences, Integrative Science Center of Germplasm Creation in Western China (Chongqing) Science City, Southwest University, Chongqing, 400715, China
| | - Tao Zhang
- Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding/Zhongshan Biological Breeding Laboratory/Key Laboratory of Plant Functional Genomics of the Ministry of Education, Agricultural College, Yangzhou University, Yangzhou, 225009, China
| | - Yong Zhang
- Department of Biotechnology, School of Life Sciences and Technology, Center for Informational Biology, University of Electronic Science and Technology of China, Chengdu, 610054, China
- Chongqing Key Laboratory of Tree Germplasm Innovation and Utilization, School of Life Sciences, Integrative Science Center of Germplasm Creation in Western China (Chongqing) Science City, Southwest University, Chongqing, 400715, China
| | - Quan Wang
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, 518120, China
| |
Collapse
|
4
|
Keyl A, Herrfurth C, Pandey G, Kim RJ, Helwig L, Haslam TM, de Vries S, de Vries J, Gutsche N, Zachgo S, Suh MC, Kunst L, Feussner I. Divergent evolution of the alcohol-forming pathway of wax biosynthesis among bryophytes. THE NEW PHYTOLOGIST 2024. [PMID: 38501480 DOI: 10.1111/nph.19687] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Accepted: 03/01/2024] [Indexed: 03/20/2024]
Abstract
The plant cuticle is a hydrophobic barrier, which seals the epidermal surface of most aboveground organs. While the cuticle biosynthesis of angiosperms has been intensively studied, knowledge about its existence and composition in nonvascular plants is scarce. Here, we identified and characterized homologs of Arabidopsis thaliana fatty acyl-CoA reductase (FAR) ECERIFERUM 4 (AtCER4) and bifunctional wax ester synthase/acyl-CoA:diacylglycerol acyltransferase 1 (AtWSD1) in the liverwort Marchantia polymorpha (MpFAR2 and MpWSD1) and the moss Physcomitrium patens (PpFAR2A, PpFAR2B, and PpWSD1). Although bryophyte harbor similar compound classes as described for angiosperm cuticles, their biosynthesis may not be fully conserved between the bryophytes M. polymorpha and P. patens or between these bryophytes and angiosperms. While PpFAR2A and PpFAR2B contribute to the production of primary alcohols in P. patens, loss of MpFAR2 function does not affect the wax profile of M. polymorpha. By contrast, MpWSD1 acts as the major wax ester-producing enzyme in M. polymorpha, whereas mutations of PpWSD1 do not affect the wax ester levels of P. patens. Our results suggest that the biosynthetic enzymes involved in primary alcohol and wax ester formation in land plants have either evolved multiple times independently or undergone pronounced radiation followed by the formation of lineage-specific toolkits.
Collapse
Affiliation(s)
- Alisa Keyl
- Department of Plant Biochemistry, Albrecht-von-Haller-Institute, University of Goettingen, Goettingen, 37077, Germany
| | - Cornelia Herrfurth
- Department of Plant Biochemistry, Albrecht-von-Haller-Institute, University of Goettingen, Goettingen, 37077, Germany
- Service Unit for Metabolomics and Lipidomics, Goettingen Center for Molecular Biosciences (GZMB), University of Goettingen, Goettingen, 37077, Germany
| | - Garima Pandey
- Department of Life Science, Sogang University, Seoul, 04107, Korea
| | - Ryeo Jin Kim
- Department of Life Science, Sogang University, Seoul, 04107, Korea
| | - Lina Helwig
- Department of Plant Biochemistry, Albrecht-von-Haller-Institute, University of Goettingen, Goettingen, 37077, Germany
| | - Tegan M Haslam
- Department of Plant Biochemistry, Albrecht-von-Haller-Institute, University of Goettingen, Goettingen, 37077, Germany
| | - Sophie de Vries
- Department of Applied Bioinformatics, Institute for Microbiology and Genetics, University of Goettingen, Goettingen, 37077, Germany
| | - Jan de Vries
- Department of Applied Bioinformatics, Institute for Microbiology and Genetics, University of Goettingen, Goettingen, 37077, Germany
- Campus Institute Data Science (CIDAS), University of Goettingen, Goettingen, 37077, Germany
- Department of Applied Informatics, Goettingen Center for Molecular Biosciences (GZMB), University of Goettingen, Goettingen, 37077, Germany
| | - Nora Gutsche
- Division of Botany, Osnabrueck University, Osnabrueck, 49076, Germany
| | - Sabine Zachgo
- Division of Botany, Osnabrueck University, Osnabrueck, 49076, Germany
| | - Mi Chung Suh
- Department of Life Science, Sogang University, Seoul, 04107, Korea
| | - Ljerka Kunst
- Department of Botany, University of British Columbia, Vancouver, BC, V6T 1Z4, Canada
| | - Ivo Feussner
- Department of Plant Biochemistry, Albrecht-von-Haller-Institute, University of Goettingen, Goettingen, 37077, Germany
- Service Unit for Metabolomics and Lipidomics, Goettingen Center for Molecular Biosciences (GZMB), University of Goettingen, Goettingen, 37077, Germany
- Department of Plant Biochemistry, Goettingen Center for Molecular Biosciences (GZMB), University of Goettingen, Goettingen, 37077, Germany
| |
Collapse
|
5
|
Wang P, Yan Y, Yan M, Piao X, Wang Y, Lei X, Yang H, Zhang N, Li W, Di P, Yang L. Identification and analysis of BAHD superfamily related to malonyl ginsenoside biosynthesis in Panax ginseng. FRONTIERS IN PLANT SCIENCE 2023; 14:1301084. [PMID: 38186598 PMCID: PMC10768564 DOI: 10.3389/fpls.2023.1301084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/24/2023] [Accepted: 11/30/2023] [Indexed: 01/09/2024]
Abstract
Introduction The BAHD (benzylalcohol O-acetyl transferase, anthocyanin O-hydroxycinnamoyl transferase, N-hydroxycinnamoyl anthranilate benzoyl transferase and deacetylvindoline 4-O-acetyltransferase), has various biological functions in plants, including catalyzing the biosynthesis of terpenes, phenolics and esters, participating in plant stress response, affecting cell stability, and regulating fruit quality. Methods Bioinformatics methods, real-time fluorescence quantitative PCR technology, and ultra-high-performance liquid chromatography combined with an Orbitrap mass spectrometer were used to explore the relationship between the BAHD gene family and malonyl ginsenosides in Panax ginseng. Results In this study, 103 BAHD genes were identified in P. ginseng, mainly distributed in three major clades. Most PgBAHDs contain cis-acting elements associated with abiotic stress response and plant hormone response. Among the 103 genes, 68 PgBAHDs are WGD (whole-genome duplication) genes. The significance of malonylation in biosynthesis has garnered considerable attention in the study of malonyltransferases. The phylogenetic tree results showed 34 PgBAHDs were clustered with genes that have malonyl characterization. Among them, seven PgBAHDs (PgBAHD4, 45, 65, 74, 90, 97, and 99) showed correlations > 0.9 with crucial enzyme genes involved in ginsenoside biosynthesis and > 0.8 with malonyl ginsenosides. These seven genes were considered potential candidates involved in the biosynthesis of malonyl ginsenosides. Discussion These results help elucidate the structure, evolution, and functions of the P. ginseng BAHD gene family, and establish the foundation for further research on the mechanism of BAHD genes in ginsenoside biosynthesis.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | - Peng Di
- State Local Joint Engineering Research Center of Ginseng Breeding and Application, College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun, China
| | - Limin Yang
- State Local Joint Engineering Research Center of Ginseng Breeding and Application, College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun, China
| |
Collapse
|
6
|
Gong Y, Wang D, Xie H, Zhao Z, Chen Y, Zhang D, Jiao Y, Shi M, Lv P, Sha Q, Yang J, Chu P, Sun Y. Genome-wide identification and expression analysis of the KCS gene family in soybean ( Glycine max) reveal their potential roles in response to abiotic stress. FRONTIERS IN PLANT SCIENCE 2023; 14:1291731. [PMID: 38116151 PMCID: PMC10728876 DOI: 10.3389/fpls.2023.1291731] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/10/2023] [Accepted: 11/01/2023] [Indexed: 12/21/2023]
Abstract
Very long chain fatty acids (VLCFAs) are fatty acids with chain lengths of 20 or more carbon atoms, which are the building blocks of various lipids that regulate developmental processes and plant stress responses. 3-ketoacyl-CoA synthase encoded by the KCS gene is the key rate-limiting enzyme in VLCFA biosynthesis, but the KCS gene family in soybean (Glycine max) has not been adequately studied thus far. In this study, 31 KCS genes (namely GmKCS1 - GmKCS31) were identified in the soybean genome, which are unevenly distributed on 14 chromosomes. These GmKCS genes could be phylogenetically classified into seven groups. A total of 27 paralogous GmKCS gene pairs were identified with their Ka/Ks ratios indicating that they had undergone purifying selection during soybean genome expansion. Cis-acting element analysis revealed that GmKCS promoters contained multiple hormone- and stress-responsive elements, indicating that GmKCS gene expression levels may be regulated by various developmental and environmental stimuli. Expression profiles derived from RNA-seq data and qRT-PCR experiments indicated that GmKCS genes were diversely expressed in different organs/tissues, and many GmKCS genes were found to be differentially expressed in the leaves under cold, heat, salt, and drought stresses, suggesting their critical role in soybean resistance to abiotic stress. These results provide fundamental information about the soybean KCS genes and will aid in their further functional elucidation and exploitation.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | - Pengfei Chu
- School of Agricultural Science and Engineering, Liaocheng University, Liaocheng, China
| | - Yongwang Sun
- School of Agricultural Science and Engineering, Liaocheng University, Liaocheng, China
| |
Collapse
|
7
|
Wei M, Huang Y, Mo C, Wang H, Zeng Q, Yang W, Chen J, Zhang X, Kong Q. Telomere-to-telomere genome assembly of melon ( Cucumis melo L. var. inodorus) provides a high-quality reference for meta-QTL analysis of important traits. HORTICULTURE RESEARCH 2023; 10:uhad189. [PMID: 37915500 PMCID: PMC10615816 DOI: 10.1093/hr/uhad189] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/25/2023] [Accepted: 09/12/2023] [Indexed: 11/03/2023]
Abstract
Melon is an important horticultural crop with extensive diversity in many horticultural groups. To explore its genomic diversity, it is necessary to assemble more high-quality complete genomes from different melon accessions. Meanwhile, a large number of QTLs have been mapped in several studies. Integration of the published QTLs onto a complete genome can provide more accurate information for candidate gene cloning. To address these problems, a telomere-to-telomere (T2T) genome of the elite melon landrace Kuizilikjiz (Cucumis melo L. var. inodorus) was de novo assembled and all the published QTLs were projected onto it in this study. The results showed that a high-quality Kuizilikjiz genome with the size of 379.2 Mb and N50 of 31.7 Mb was de novo assembled using the combination of short reads, PacBio high-fidelity long reads, Hi-C data, and a high-density genetic map. Each chromosome contained the centromere and telomeres at both ends. A large number of structural variations were observed between Kuizilikjiz and the other published genomes. A total of 1294 QTLs published in 67 studies were collected and projected onto the T2T genome. Several clustered, co-localized, and overlapped QTLs were determined. Furthermore, 20 stable meta-QTLs were identified, which significantly reduced the mapping intervals of the initial QTLs and greatly facilitated identification of the candidate genes. Collectively, the T2T genome assembly together with the numerous projected QTLs will not only broaden the high-quality genome resources but also provide valuable and abundant QTL information for cloning the genes controlling important traits in melon.
Collapse
Affiliation(s)
- Minghua Wei
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan 430070, China
| | - Ying Huang
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan 430070, China
| | - Changjuan Mo
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan 430070, China
| | - Haiyan Wang
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan 430070, China
| | - Qingguo Zeng
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan 430070, China
| | - Wenli Yang
- Hami-melon Research Center, Xinjiang Academy of Agricultural Sciences, Urumqi 830091, China
| | - Jihao Chen
- Hainan Sanya Experimental Center for Crop Breeding, Xinjiang Academy of Agricultural Sciences, Sanya 572014, China
| | - Xuejun Zhang
- Hami-melon Research Center, Xinjiang Academy of Agricultural Sciences, Urumqi 830091, China
- Hainan Sanya Experimental Center for Crop Breeding, Xinjiang Academy of Agricultural Sciences, Sanya 572014, China
| | - Qiusheng Kong
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan 430070, China
| |
Collapse
|
8
|
Yang L, Fang J, Wang J, Hui S, Zhou L, Xu B, Chen Y, Zhang Y, Lai C, Jiao G, Sheng Z, Wei X, Shao G, Xie L, Wang L, Chen Y, Zhao F, Hu S, Hu P, Tang S. Genome-wide identification and expression analysis of 3-ketoacyl-CoA synthase gene family in rice ( Oryza sativa L.) under cadmium stress. FRONTIERS IN PLANT SCIENCE 2023; 14:1222288. [PMID: 37554558 PMCID: PMC10406525 DOI: 10.3389/fpls.2023.1222288] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/14/2023] [Accepted: 07/03/2023] [Indexed: 08/10/2023]
Abstract
3-Ketoacyl-CoA synthase (KCS) is the key rate-limiting enzyme for the synthesis of very long-chain fatty acids (VLCFAs) in plants, which determines the carbon chain length of VLCFAs. However, a comprehensive study of KCSs in Oryza sativa has not been reported yet. In this study, we identified 22 OsKCS genes in rice, which are unevenly distributed on nine chromosomes. The OsKCS gene family is divided into six subclasses. Many cis-acting elements related to plant growth, light, hormone, and stress response were enriched in the promoters of OsKCS genes. Gene duplication played a crucial role in the expansion of the OsKCS gene family and underwent a strong purifying selection. Quantitative Real-time polymerase chain reaction (qRT-PCR) results revealed that most KCS genes are constitutively expressed. We also revealed that KCS genes responded differently to exogenous cadmium stress in japonica and indica background, and the KCS genes with higher expression in leaves and seeds may have functions under cadmium stress. This study provides a basis for further understanding the functions of KCS genes and the biosynthesis of VLCFA in rice.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | - Shikai Hu
- State Key Laboratory of Rice Biology and Breeding, China National Rice Research Institute, Hangzhou, China
| | - Peisong Hu
- State Key Laboratory of Rice Biology and Breeding, China National Rice Research Institute, Hangzhou, China
| | - Shaoqing Tang
- State Key Laboratory of Rice Biology and Breeding, China National Rice Research Institute, Hangzhou, China
| |
Collapse
|
9
|
Khan UM, Rana IA, Shaheen N, Raza Q, Rehman HM, Maqbool R, Khan IA, Atif RM. Comparative phylogenomic insights of KCS and ELO gene families in Brassica species indicate their role in seed development and stress responsiveness. Sci Rep 2023; 13:3577. [PMID: 36864046 PMCID: PMC9981734 DOI: 10.1038/s41598-023-28665-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Accepted: 01/23/2023] [Indexed: 03/04/2023] Open
Abstract
Very long-chain fatty acids (VLCFAs) possess more than twenty carbon atoms and are the major components of seed storage oil, wax, and lipids. FAE (Fatty Acid Elongation) like genes take part in the biosynthesis of VLCFAs, growth regulation, and stress responses, and are further comprised of KCS (Ketoacyl-CoA synthase) and ELO (Elongation Defective Elongase) sub-gene families. The comparative genome-wide analysis and mode of evolution of KCS and ELO gene families have not been investigated in tetraploid Brassica carinata and its diploid progenitors. In this study, 53 KCS genes were identified in B. carinata compared to 32 and 33 KCS genes in B. nigra and B. oleracea respectively, which suggests that polyploidization might has impacted the fatty acid elongation process during Brassica evolution. Polyploidization has also increased the number of ELO genes in B. carinata (17) over its progenitors B. nigra (7) and B. oleracea (6). Based on comparative phylogenetics, KCS, and ELO proteins can be classified into eight and four major groups, respectively. The approximate date of divergence for duplicated KCS and ELO genes varied from 0.03 to 3.20 million years ago (MYA). Gene structure analysis indicated that the maximum number of genes were intron-less and remained conserved during evolution. The neutral type of selection seemed to be predominant in both KCS and ELO genes evolution. String-based protein-protein interaction analysis suggested that bZIP53, a transcription factor might be involved in the activation of transcription of ELO/KCS genes. The presence of biotic and abiotic stress-related cis-regulatory elements in the promoter region suggests that both KCS and ELO genes might also play their role in stress tolerance. The expression analysis of both gene family members reflect their preferential seed-specific expression, especially during the mature embryo development stage. Furthermore, some KCS and ELO genes were found to be specifically expressed under heat stress, phosphorus starvation, and Xanthomonas campestris infection. The current study provides a basis to understand the evolution of both KCS and ELO genes in fatty acid elongation and their role in stress tolerance.
Collapse
Affiliation(s)
- Uzair Muhammad Khan
- Department of Plant Breeding and Genetics, University of Agriculture Faisalabad, Faisalabad, 38000, Pakistan
- Centre for Advanced Studies in Agriculture and Food Security, University of Agriculture Faisalabad, Faisalabad, 38000, Pakistan
| | - Iqrar Ahmad Rana
- Centre for Advanced Studies in Agriculture and Food Security, University of Agriculture Faisalabad, Faisalabad, 38000, Pakistan
- Center of Agricultural Biotechnology and Biochemistry, University of Agriculture Faisalabad, Faisalabad, 38000, Pakistan
| | - Nabeel Shaheen
- Department of Plant Breeding and Genetics, University of Agriculture Faisalabad, Faisalabad, 38000, Pakistan
- Centre for Advanced Studies in Agriculture and Food Security, University of Agriculture Faisalabad, Faisalabad, 38000, Pakistan
| | - Qasim Raza
- Precision Agriculture and Analytics Lab, National Centre in Big Data and Cloud Computing, Centre for Advanced Studies in Agriculture and Food Security, University of Agriculture Faisalabad, Faisalabad, 38000, Pakistan
| | - Hafiz Mamoon Rehman
- Center of Agricultural Biotechnology and Biochemistry, University of Agriculture Faisalabad, Faisalabad, 38000, Pakistan
| | - Rizwana Maqbool
- Department of Plant Breeding and Genetics, University of Agriculture Faisalabad, Faisalabad, 38000, Pakistan
- Centre for Advanced Studies in Agriculture and Food Security, University of Agriculture Faisalabad, Faisalabad, 38000, Pakistan
| | - Iqrar Ahmad Khan
- Precision Agriculture and Analytics Lab, National Centre in Big Data and Cloud Computing, Centre for Advanced Studies in Agriculture and Food Security, University of Agriculture Faisalabad, Faisalabad, 38000, Pakistan
- Institute of Horticultural Sciences, University of Agriculture Faisalabad, Faisalabad, 38000, Pakistan
| | - Rana Muhammad Atif
- Department of Plant Breeding and Genetics, University of Agriculture Faisalabad, Faisalabad, 38000, Pakistan.
- Centre for Advanced Studies in Agriculture and Food Security, University of Agriculture Faisalabad, Faisalabad, 38000, Pakistan.
- Precision Agriculture and Analytics Lab, National Centre in Big Data and Cloud Computing, Centre for Advanced Studies in Agriculture and Food Security, University of Agriculture Faisalabad, Faisalabad, 38000, Pakistan.
| |
Collapse
|
10
|
Wang X, He Z, Yang H, He C, Wang C, Fazal A, Lai X, Yang L, Wen Z, Yang M, Ma S, Jie W, Cai J, Yin T, Liu B, Yang Y, Qi J. Genome-Wide Identification of LeBAHDs in Lithospermum erythrorhizon and In Vivo Transgenic Studies Confirm the Critical Roles of LeBAHD1/LeSAT1 in the Conversion of Shikonin to Acetylshikonin. Life (Basel) 2022; 12:life12111775. [PMID: 36362930 PMCID: PMC9694994 DOI: 10.3390/life12111775] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 10/29/2022] [Accepted: 10/30/2022] [Indexed: 11/06/2022] Open
Abstract
The BAHD acyltransferase family is a unique class of plant proteins that acylates plant metabolites and participates in plant secondary metabolic processes. However, the BAHD members in Lithospermum erythrorhizon remain unknown and uncharacterized. Although the heterologously expressed L. erythrorhizon BAHD family member LeSAT1 in Escherichia coli has been shown to catalyze the conversion of shikonin to acetylshikonin in vitro, its in vivo role remains unknown. In this study, the characterization, evolution, expression patterns, and gene function of LeBAHDs in L. erythrorhizon were explored by bioinformatics and transgenic analysis. We totally identified 73 LeBAHDs in the reference genome of L. erythrorhizon. All LeBAHDs were phylogenetically classified into five clades likely to perform different functions, and were mainly expanded by dispersed and WGD/segmental duplication. The in vivo functional investigation of the key member LeBAHD1/LeSAT1 revealed that overexpression of LeBAHD1 in hairy roots significantly increased the content of acetylshikonin as well as the conversion rate of shikonin to acetylshikonin, whereas the CRISPR/Cas9-based knockout of LeBAHD1 in hairy roots displayed the opposite trend. Our results not only confirm the in vivo function of LeBAHD1/LeSAT1 in the biosynthesis of acetylshikonin, but also provide new insights for the biosynthetic pathway of shikonin and its derivatives.
Collapse
Affiliation(s)
- Xuan Wang
- State Key Laboratory of Pharmaceutical Biotechnology, Institute for Plant Molecular Biology, School of Life Sciences, Nanjing University, Nanjing 210023, China
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037, China
| | - Zhuoyu He
- State Key Laboratory of Pharmaceutical Biotechnology, Institute for Plant Molecular Biology, School of Life Sciences, Nanjing University, Nanjing 210023, China
| | - Huan Yang
- State Key Laboratory of Pharmaceutical Biotechnology, Institute for Plant Molecular Biology, School of Life Sciences, Nanjing University, Nanjing 210023, China
| | - Cong He
- State Key Laboratory of Pharmaceutical Biotechnology, Institute for Plant Molecular Biology, School of Life Sciences, Nanjing University, Nanjing 210023, China
| | - Changyi Wang
- State Key Laboratory of Pharmaceutical Biotechnology, Institute for Plant Molecular Biology, School of Life Sciences, Nanjing University, Nanjing 210023, China
| | - Aliya Fazal
- State Key Laboratory of Pharmaceutical Biotechnology, Institute for Plant Molecular Biology, School of Life Sciences, Nanjing University, Nanjing 210023, China
| | - Xiaohui Lai
- State Key Laboratory of Pharmaceutical Biotechnology, Institute for Plant Molecular Biology, School of Life Sciences, Nanjing University, Nanjing 210023, China
| | - Liangjie Yang
- Yili Key Laboratory of Applied Research and Development on Active Ingredients of Chinese Herbal Medicine, Yili National Agricultural Science and Technology Park at Xinjiang, Yili 835600, China
| | - Zhongling Wen
- State Key Laboratory of Pharmaceutical Biotechnology, Institute for Plant Molecular Biology, School of Life Sciences, Nanjing University, Nanjing 210023, China
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037, China
| | - Minkai Yang
- State Key Laboratory of Pharmaceutical Biotechnology, Institute for Plant Molecular Biology, School of Life Sciences, Nanjing University, Nanjing 210023, China
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037, China
| | - Shenglin Ma
- State Key Laboratory of Pharmaceutical Biotechnology, Institute for Plant Molecular Biology, School of Life Sciences, Nanjing University, Nanjing 210023, China
| | - Wencai Jie
- State Key Laboratory of Pharmaceutical Biotechnology, Institute for Plant Molecular Biology, School of Life Sciences, Nanjing University, Nanjing 210023, China
| | - Jinfeng Cai
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037, China
| | - Tongming Yin
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037, China
| | - Bao Liu
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, Changchun 130024, China
| | - Yonghua Yang
- State Key Laboratory of Pharmaceutical Biotechnology, Institute for Plant Molecular Biology, School of Life Sciences, Nanjing University, Nanjing 210023, China
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037, China
- Correspondence: (Y.Y.); (J.Q.)
| | - Jinliang Qi
- State Key Laboratory of Pharmaceutical Biotechnology, Institute for Plant Molecular Biology, School of Life Sciences, Nanjing University, Nanjing 210023, China
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037, China
- Correspondence: (Y.Y.); (J.Q.)
| |
Collapse
|
11
|
Zhang A, Xu J, Xu X, Wu J, Li P, Wang B, Fang H. Genome-wide identification and characterization of the KCS gene family in sorghum ( Sorghum bicolor (L.) Moench). PeerJ 2022; 10:e14156. [PMID: 36225907 PMCID: PMC9549899 DOI: 10.7717/peerj.14156] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Accepted: 09/08/2022] [Indexed: 01/21/2023] Open
Abstract
The aboveground parts of plants are covered with cuticle, a hydrophobic layer composed of cutin polyester and cuticular wax that can protect plants from various environmental stresses. β-Ketoacyl-CoA synthase (KCS) is the key rate-limiting enzyme in plant wax synthesis. Although the properties of KCS family genes have been investigated in many plant species, the understanding of this gene family in sorghum is still limited. Here, a total of 25 SbKCS genes were identified in the sorghum genome, which were named from SbKCS1 to SbKCS25. Evolutionary analysis among different species divided the KCS family into five subfamilies and the SbKCSs were more closely related to maize, implying a closer evolutionary relationship between sorghum and maize. All SbKCS genes were located on chromosomes 1, 2, 3, 4, 5, 6, 9 and 10, respectively, while Chr 1 and Chr 10 contained more KCS genes than other chromosomes. The prediction results of subcellular localization showed that SbKCSs were mainly expressed in the plasma membrane and mitochondria. Gene structure analysis revealed that there was 0-1 intron in the sorghum KCS family and SbKCSs within the same subgroup were similar. Multiple cis-acting elements related to abiotic stress, light and hormone response were enriched in the promoters of SbKCS genes, which indicated the functional diversity among these genes. The three-dimensional structure analysis showed that a compact spherical space structure was formed by various secondary bonds to maintain the stability of SbKCS proteins, which was necessary for their biological activity. qRT-PCR results revealed that nine randomly selected SbKCS genes expressed differently under drought and salt treatments, among which SbKCS8 showed the greatest fold of expression difference at 12 h after drought and salt stresses, which suggested that the SbKCS genes played a potential role in abiotic stress responses. Taken together, these results provided an insight into investigating the functions of KCS family in sorghum and in response to abiotic stress.
Collapse
Affiliation(s)
- Aixia Zhang
- Ministry of Agricultural Scientific Observing and Experimental Station of Maize in Plain Area of Southern Region, School of Life Sciences, Nantong University, Nantong, Jiangsu, China
| | - Jingjing Xu
- Ministry of Agricultural Scientific Observing and Experimental Station of Maize in Plain Area of Southern Region, School of Life Sciences, Nantong University, Nantong, Jiangsu, China
| | - Xin Xu
- Ministry of Agricultural Scientific Observing and Experimental Station of Maize in Plain Area of Southern Region, School of Life Sciences, Nantong University, Nantong, Jiangsu, China
| | - Junping Wu
- Nantong Changjiang Seed Co., Ltd, Nantong, Jiangsu, China
| | - Ping Li
- Ministry of Agricultural Scientific Observing and Experimental Station of Maize in Plain Area of Southern Region, School of Life Sciences, Nantong University, Nantong, Jiangsu, China
| | - Baohua Wang
- Ministry of Agricultural Scientific Observing and Experimental Station of Maize in Plain Area of Southern Region, School of Life Sciences, Nantong University, Nantong, Jiangsu, China
| | - Hui Fang
- Ministry of Agricultural Scientific Observing and Experimental Station of Maize in Plain Area of Southern Region, School of Life Sciences, Nantong University, Nantong, Jiangsu, China
| |
Collapse
|
12
|
Zhukov A, Popov V. Synthesis of C 20-38 Fatty Acids in Plant Tissues. Int J Mol Sci 2022; 23:ijms23094731. [PMID: 35563119 PMCID: PMC9101283 DOI: 10.3390/ijms23094731] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Revised: 04/18/2022] [Accepted: 04/22/2022] [Indexed: 02/06/2023] Open
Abstract
Very-long-chain fatty acids (VLCFA) are involved in a number of important plant physiological functions. Disorders in the expression of genes involved in the synthesis of VLCFA lead to a number of phenotypic consequences, ranging from growth retardation to the death of embryos. The elongation of VLCFA in the endoplasmic reticulum (ER) is carried out by multiple elongase complexes with different substrate specificities and adapted to the synthesis of a number of products required for a number of metabolic pathways. The information about the enzymes involved in the synthesis of VLCFA with more than 26 atoms of Carbon is rather poor. Recently, genes encoding enzymes involved in the synthesis of both regular-length fatty acids and VLCFA have been discovered and investigated. Polyunsaturated VLCFA in plants are formed mainly by 20:1 elongation into new monounsaturated acids, which are then imported into chloroplasts, where they are further desaturated. The formation of saturated VLCFA and their further transformation into a number of aliphatic compounds included in cuticular waxes and suberin require the coordinated activity of a large number of different enzymes.
Collapse
|
13
|
Huang H, Ayaz A, Zheng M, Yang X, Zaman W, Zhao H, Lü S. ArabidopsisKCS5 and KCS6 Play Redundant Roles in Wax Synthesis. Int J Mol Sci 2022; 23:ijms23084450. [PMID: 35457268 PMCID: PMC9027390 DOI: 10.3390/ijms23084450] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Revised: 04/11/2022] [Accepted: 04/14/2022] [Indexed: 01/09/2023] Open
Abstract
3-ketoacyl-CoA synthases (KCSs), as components of a fatty acid elongase (FAE) complex, play key roles in determining the chain length of very-long-chain fatty acids (VLCFAs). KCS6, taking a predominate role during the elongation from C26 to C28, is well known to play an important role in wax synthesis. KCS5 is one paralog of KCS6 and its role in wax synthesis remains unknown. Wax phenotype analysis showed that in kcs5 mutants, the total amounts of wax components derived from carbon 32 (C32) and C34 were apparently decreased in leaves, and those of C26 to C32 derivatives were obviously decreased in flowers. Heterologous yeast expression analysis showed that KCS5 alone displayed specificity towards C24 to C28 acids, and its coordination with CER2 and CER26 catalyzed the elongation of acids exceeding C28, especially displaying higher activity towards C28 acids than KCS6. BiLC experiments identified that KCS5 physically interacts with CER2 and CER26. Wax phenotype analysis of different organs in kcs5 and kcs6 single or double mutants showed that KCS6 mutation causes greater effects on the wax synthesis than KCS5 mutation in the tested organs, and simultaneous repression of both protein activities caused additive effects, suggesting that during the wax biosynthesis process, KCS5 and KCS6 play redundant roles, among which KCS6 plays a major role. In addition, simultaneous mutations of two genes nearly block drought-induced wax production, indicating that the reactions catalyzed by KCS5 and KCS6 play a critical role in the wax biosynthesis in response to drought.
Collapse
Affiliation(s)
- Haodong Huang
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan 430062, China; (H.H.); (A.A.); (M.Z.)
| | - Asma Ayaz
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan 430062, China; (H.H.); (A.A.); (M.Z.)
| | - Minglü Zheng
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan 430062, China; (H.H.); (A.A.); (M.Z.)
| | - Xianpeng Yang
- College of Life Sciences, Shandong Normal University, Jinan 250014, China;
| | - Wajid Zaman
- Department of Life Sciences, Yeungnam University, Gyeongsan 38541, Korea;
| | - Huayan Zhao
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan 430062, China; (H.H.); (A.A.); (M.Z.)
- Correspondence: (H.Z.); (S.L.); Tel.: +86-27-88663882 (S.L.)
| | - Shiyou Lü
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan 430062, China; (H.H.); (A.A.); (M.Z.)
- Hubei Hongshan Laboratory, Wuhan 430070, China
- Correspondence: (H.Z.); (S.L.); Tel.: +86-27-88663882 (S.L.)
| |
Collapse
|
14
|
Rui C, Chen X, Xu N, Wang J, Zhang H, Li S, Huang H, Fan Y, Zhang Y, Lu X, Wang D, Gao W, Ye W. Identification and Structure Analysis of KCS Family Genes Suggest Their Reponding to Regulate Fiber Development in Long-Staple Cotton Under Salt-Alkaline Stress. Front Genet 2022; 13:812449. [PMID: 35186036 PMCID: PMC8850988 DOI: 10.3389/fgene.2022.812449] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Accepted: 01/12/2022] [Indexed: 11/13/2022] Open
Abstract
Plant 3-ketoacyl-CoA synthase (KCS) gene family catalyzed a β ketoacyl-CoA synthase, which was the rate-limiting enzyme for the synthesis of very long chain fatty acids (VLCFAs). Gossypium barbadense was well-known not only for high-quality fiber, which was perceived as a cultivated species of Gossypium. In this study, a total of 131 KCS genes were identified in four cotton species, there were 38, 44, 26, 23 KCS genes in the G. barbadense, the G. hirsutum, the G. arboreum and G. raimondii, respectively. The gene structure and expression pattern were analyzed. GBKCS genes were divided into six subgroups, the chromosome distribution of members of the family were mapped. The prediction of cis-acting elements of the GBKCS gene promoters suggested that the GBKCS genes may be involved in hormone signaling, defense and the stress response. Collinearity analysis on the KCS genes of the four cotton species were formulated. Tandem duplication played an indispensable role in the evolution of the KCS gene family. Specific expression analysis of 20 GBKCS genes indicated that GBKCS gene were widely expressed in the first 25 days of fiber development. Among them, GBKCS3, GBKCS8, GBKCS20, GBKCS34 were expressed at a high level in the initial long-term level of the G. barbadense fiber. This study established a foundation to further understanding of the evolution of KCS genes and analyze the function of GBKCS genes.
Collapse
Affiliation(s)
- Cun Rui
- Engineering Research Centre of Cotton, Ministry of Education, College of Agriculture, Xinjiang Agricultural University, Urumqi, China
| | - Xiugui Chen
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Zhengzhou Research Base, School of Agricultural Sciences, Zhengzhou University, Key Laboratory for Cotton Genetic Improvement, MOA, Anyang, China
| | - Nan Xu
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Zhengzhou Research Base, School of Agricultural Sciences, Zhengzhou University, Key Laboratory for Cotton Genetic Improvement, MOA, Anyang, China
| | - Jing Wang
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Zhengzhou Research Base, School of Agricultural Sciences, Zhengzhou University, Key Laboratory for Cotton Genetic Improvement, MOA, Anyang, China
| | - Hong Zhang
- Engineering Research Centre of Cotton, Ministry of Education, College of Agriculture, Xinjiang Agricultural University, Urumqi, China
| | - Shengmei Li
- Engineering Research Centre of Cotton, Ministry of Education, College of Agriculture, Xinjiang Agricultural University, Urumqi, China
| | - Hui Huang
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Zhengzhou Research Base, School of Agricultural Sciences, Zhengzhou University, Key Laboratory for Cotton Genetic Improvement, MOA, Anyang, China
| | - Yapeng Fan
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Zhengzhou Research Base, School of Agricultural Sciences, Zhengzhou University, Key Laboratory for Cotton Genetic Improvement, MOA, Anyang, China
| | - Yuexin Zhang
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Zhengzhou Research Base, School of Agricultural Sciences, Zhengzhou University, Key Laboratory for Cotton Genetic Improvement, MOA, Anyang, China
| | - Xuke Lu
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Zhengzhou Research Base, School of Agricultural Sciences, Zhengzhou University, Key Laboratory for Cotton Genetic Improvement, MOA, Anyang, China
| | - Delong Wang
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Zhengzhou Research Base, School of Agricultural Sciences, Zhengzhou University, Key Laboratory for Cotton Genetic Improvement, MOA, Anyang, China
| | - Wenwei Gao
- Engineering Research Centre of Cotton, Ministry of Education, College of Agriculture, Xinjiang Agricultural University, Urumqi, China
| | - Wuwei Ye
- Engineering Research Centre of Cotton, Ministry of Education, College of Agriculture, Xinjiang Agricultural University, Urumqi, China.,State Key Laboratory of Cotton Biology, Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Zhengzhou Research Base, School of Agricultural Sciences, Zhengzhou University, Key Laboratory for Cotton Genetic Improvement, MOA, Anyang, China
| |
Collapse
|
15
|
Giwa AS, Ali N. Perspectives of nervonic acid production by Yarrowia lipolytica. Biotechnol Lett 2022; 44:193-202. [PMID: 35119573 DOI: 10.1007/s10529-022-03231-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Accepted: 01/26/2022] [Indexed: 11/02/2022]
Abstract
Nervonic acid (cis-15-tetracosenoic acid, 24:1Δ15) is a long chain monounsaturated fatty acid, mainly exists in white matt er of the human brains. It plays an important role in the development of nervous system and curing neurological diseases. The limited natural sources and high price are considered limiting factors for the extensive application of nervonic acid. Yarrowia lipolytica is a high lipid producing yeast and engineered strain which can produce nervonic acid. The biosynthesis of nervonic acid has yet to be investigated, although the metabolism has been examined for couple of years. Normally, oleic acid is considered the origin of nervonic acid synthesis through fatty acid prolongation, where malonyl-CoA and acyl-CoA are initially concise by 3-ketoacyl-CoA synthase (KCS). To meet the high requirement of industrial production, the optimization of fermentation and bioreactors configurations are necessary tools to be carried out. This review article summarizes the research literature on advancements and recent trends about the production, synthesis and properties of nervonic acid.
Collapse
Affiliation(s)
- Abdulmoseen Segun Giwa
- School of Human Settlements and Environment, Nanchang Institute of Science and Technology, Nanchang, 330108, China.,State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing, 100084, China
| | - Nasir Ali
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing, 100084, China.
| |
Collapse
|
16
|
Zhang Z, Zhan H, Lu J, Xiong S, Yang N, Yuan H, Yang ZN. Tapetal 3-Ketoacyl-Coenzyme A Synthases Are Involved in Pollen Coat Lipid Accumulation for Pollen-Stigma Interaction in Arabidopsis. FRONTIERS IN PLANT SCIENCE 2021; 12:770311. [PMID: 34887893 PMCID: PMC8650583 DOI: 10.3389/fpls.2021.770311] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Accepted: 10/26/2021] [Indexed: 06/01/2023]
Abstract
Pollen coat lipids form an outer barrier to protect pollen itself and play essential roles in pollen-stigma interaction. However, the precise molecular mechanisms underlying the production, deposition, regulation, and function of pollen coat lipids during anther development remain largely elusive. In lipid metabolism, 3-ketoacyl-coenzyme A synthases (KCS) are involved in fatty acid elongation or very-long-chain fatty acid (VLCFA) synthesis. In this study, we identified six members of the Arabidopsis KCS family expressed in anther. Among them, KCS7, KCS15, and KCS21 were expressed in tapetal cells at anther stages 8-10. Further analysis demonstrated that they act downstream of male sterility 1 (MS1), a regulator of late tapetum development. The kcs7/15/21 triple mutant is fertile. Both cellular observation and lipid staining showed pollen coat lipid was decreased in kcs7/15/21 triple mutant. After landing on stigma, the wild-type pollen grains were hydrated for about 5 min while the kcs7/15/21 triple mutant pollen took about 10 min to hydrate. Pollen tube growth of the triple mutant was also delayed. These results demonstrate that the tapetum-localized KCS proteins are involved in the accumulation of pollen coat lipid and reveal the roles of tapetal-derived pollen coat lipid for pollen-stigma interaction.
Collapse
Affiliation(s)
- Zaibao Zhang
- College of Life Science, Xinyang Normal University, Xinyang, China
- Shanghai Key Laboratory of Plant Molecular Sciences, College of Life Sciences, Shanghai Normal University, Shanghai, China
| | - Huadong Zhan
- Shanghai Key Laboratory of Plant Molecular Sciences, College of Life Sciences, Shanghai Normal University, Shanghai, China
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Agriculture, Nanjing Agricultural University, Nanjing, China
| | - Jieyang Lu
- Shanghai Key Laboratory of Plant Molecular Sciences, College of Life Sciences, Shanghai Normal University, Shanghai, China
| | - Shuangxi Xiong
- Shanghai Key Laboratory of Plant Molecular Sciences, College of Life Sciences, Shanghai Normal University, Shanghai, China
| | - Naiying Yang
- Shanghai Key Laboratory of Plant Molecular Sciences, College of Life Sciences, Shanghai Normal University, Shanghai, China
| | - Hongyu Yuan
- College of Life Science, Xinyang Normal University, Xinyang, China
| | - Zhong-Nan Yang
- Shanghai Key Laboratory of Plant Molecular Sciences, College of Life Sciences, Shanghai Normal University, Shanghai, China
| |
Collapse
|
17
|
Liu H, Yan XM, Wang XR, Zhang DX, Zhou Q, Shi TL, Jia KH, Tian XC, Zhou SS, Zhang RG, Yun QZ, Wang Q, Xiang Q, Mannapperuma C, Van Zalen E, Street NR, Porth I, El-Kassaby YA, Zhao W, Wang XR, Guan W, Mao JF. Centromere-Specific Retrotransposons and Very-Long-Chain Fatty Acid Biosynthesis in the Genome of Yellowhorn ( Xanthoceras sorbifolium, Sapindaceae), an Oil-Producing Tree With Significant Drought Resistance. FRONTIERS IN PLANT SCIENCE 2021; 12:766389. [PMID: 34880890 PMCID: PMC8647845 DOI: 10.3389/fpls.2021.766389] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Accepted: 10/18/2021] [Indexed: 05/17/2023]
Abstract
In-depth genome characterization is still lacking for most of biofuel crops, especially for centromeres, which play a fundamental role during nuclear division and in the maintenance of genome stability. This study applied long-read sequencing technologies to assemble a highly contiguous genome for yellowhorn (Xanthoceras sorbifolium), an oil-producing tree, and conducted extensive comparative analyses to understand centromere structure and evolution, and fatty acid biosynthesis. We produced a reference-level genome of yellowhorn, ∼470 Mb in length with ∼95% of contigs anchored onto 15 chromosomes. Genome annotation identified 22,049 protein-coding genes and 65.7% of the genome sequence as repetitive elements. Long terminal repeat retrotransposons (LTR-RTs) account for ∼30% of the yellowhorn genome, which is maintained by a moderate birth rate and a low removal rate. We identified the centromeric regions on each chromosome and found enrichment of centromere-specific retrotransposons of LINE1 and Gypsy in these regions, which have evolved recently (∼0.7 MYA). We compared the genomes of three cultivars and found frequent inversions. We analyzed the transcriptomes from different tissues and identified the candidate genes involved in very-long-chain fatty acid biosynthesis and their expression profiles. Collinear block analysis showed that yellowhorn shared the gamma (γ) hexaploidy event with Vitis vinifera but did not undergo any further whole-genome duplication. This study provides excellent genomic resources for understanding centromere structure and evolution and for functional studies in this important oil-producing plant.
Collapse
Affiliation(s)
- Hui Liu
- National Engineering Laboratory for Tree Breeding, Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, School of Ecology and Nature Conservation, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
| | - Xue-Mei Yan
- National Engineering Laboratory for Tree Breeding, Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, School of Ecology and Nature Conservation, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
| | - Xin-rui Wang
- National Engineering Laboratory for Tree Breeding, Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, School of Ecology and Nature Conservation, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
| | - Dong-Xu Zhang
- Protected Agricultural Technology, R&D Center, Shanxi Datong University, Datong, China
| | - Qingyuan Zhou
- Key Laboratory of Plant Resources, Institute of Botany, Chinese Academy of Sciences, Beijing, China
| | - Tian-Le Shi
- National Engineering Laboratory for Tree Breeding, Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, School of Ecology and Nature Conservation, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
| | - Kai-Hua Jia
- National Engineering Laboratory for Tree Breeding, Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, School of Ecology and Nature Conservation, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
| | - Xue-Chan Tian
- National Engineering Laboratory for Tree Breeding, Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, School of Ecology and Nature Conservation, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
| | - Shan-Shan Zhou
- National Engineering Laboratory for Tree Breeding, Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, School of Ecology and Nature Conservation, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
| | - Ren-Gang Zhang
- Department of Bioinformatics, Ori (Shandong) Gene Science and Technology Co., Ltd., Weifang, China
| | - Quan-Zheng Yun
- Department of Bioinformatics, Ori (Shandong) Gene Science and Technology Co., Ltd., Weifang, China
| | - Qing Wang
- Key Laboratory of Forest Ecology and Environment of the National Forestry and Grassland Administration, Research Institute of Forest Ecology, Environment and Protection, Chinese Academy of Forestry, Beijing, China
| | - Qiuhong Xiang
- National Engineering Laboratory for Tree Breeding, Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, School of Ecology and Nature Conservation, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
| | - Chanaka Mannapperuma
- Umeå Plant Science Centre, Department of Plant Physiology, Umeå University, Umeå, Sweden
| | - Elena Van Zalen
- Umeå Plant Science Centre, Department of Plant Physiology, Umeå University, Umeå, Sweden
| | - Nathaniel R. Street
- Umeå Plant Science Centre, Department of Plant Physiology, Umeå University, Umeå, Sweden
| | - Ilga Porth
- Départment des Sciences du Bois et de la Forêt, Faculté de Foresterie, de Géographie et de Géomatique, Université Laval Québec, Quebec City, QC, Canada
| | - Yousry A. El-Kassaby
- Department of Forest and Conservation Sciences, Faculty of Forestry, University of British Columbia, Vancouver, BC, Canada
| | - Wei Zhao
- National Engineering Laboratory for Tree Breeding, Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, School of Ecology and Nature Conservation, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
- Department of Ecology and Environmental Science, Umeå Plant Science Centre, Umeå University, Umeå, Sweden
| | - Xiao-Ru Wang
- National Engineering Laboratory for Tree Breeding, Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, School of Ecology and Nature Conservation, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
- Department of Ecology and Environmental Science, Umeå Plant Science Centre, Umeå University, Umeå, Sweden
| | - Wenbin Guan
- National Engineering Laboratory for Tree Breeding, Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, School of Ecology and Nature Conservation, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
| | - Jian-Feng Mao
- National Engineering Laboratory for Tree Breeding, Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, School of Ecology and Nature Conservation, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
| |
Collapse
|
18
|
Yang T, Li Y, Liu Y, He L, Liu A, Wen J, Mysore KS, Tadege M, Chen J. The 3-ketoacyl-CoA synthase WFL is involved in lateral organ development and cuticular wax synthesis in Medicago truncatula. PLANT MOLECULAR BIOLOGY 2021; 105:193-204. [PMID: 33037987 DOI: 10.1007/s11103-020-01080-1] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2019] [Accepted: 10/02/2020] [Indexed: 05/05/2023]
Abstract
A 3-ketoacyl-CoA synthase involved in biosynthesis of very long chain fatty acids and cuticular wax plays a vital role in aerial organ development in M. truncatula. Cuticular wax is composed of very long chain fatty acids and their derivatives. Defects in cuticular wax often result in organ fusion, but little is known about the role of cuticular wax in compound leaf and flower development in Medicago truncatula. In this study, through an extensive screen of a Tnt1 retrotransposon insertion population in M. truncatula, we identified four mutant lines, named wrinkled flower and leaf (wfl) for their phenotype. The phenotype of the wfl mutants is caused by a Tnt1 insertion in Medtr3g105550, encoding 3-ketoacyl-CoA synthase (KCS), which functions as a rate-limiting enzyme in very long chain fatty acid elongation. Reverse transcription-quantitative PCR showed that WFL was broadly expressed in aerial organs of the wild type, such as leaves, floral organs, and the shoot apical meristem, but was expressed at lower levels in roots. In situ hybridization showed a similar expression pattern, mainly detecting the WFL transcript in epidermal cells of the shoot apical meristem, leaf primordia, and floral organs. The wfl mutant leaves showed sparser epicuticular wax crystals on the surface and increased water permeability compared with wild type. Further analysis showed that in wfl leaves, the percentage of C20:0, C22:0, and C24:0 fatty acids was significantly increased, the amount of cuticular wax was markedly reduced, and wax constituents were altered compared to the wild type. The reduced formation of cuticular wax and wax composition changes on the leaf surface might lead to the developmental defects observed in the wfl mutants. These findings suggest that WFL plays a key role in cuticular wax formation and in the late stage of leaf and flower development in M. truncatula.
Collapse
Affiliation(s)
- Tianquan Yang
- CAS Key Laboratory of Tropical Plant Resources and Sustainable Use, CAS Center for Excellence in Molecular Plant Sciences, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Kunming, 650223, China
- Germplasm Bank of Wild Species, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650204, China
| | - Youhan Li
- CAS Key Laboratory of Tropical Plant Resources and Sustainable Use, CAS Center for Excellence in Molecular Plant Sciences, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Kunming, 650223, China
| | - Yu Liu
- CAS Key Laboratory of Tropical Plant Resources and Sustainable Use, CAS Center for Excellence in Molecular Plant Sciences, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Kunming, 650223, China
| | - Liangliang He
- CAS Key Laboratory of Tropical Plant Resources and Sustainable Use, CAS Center for Excellence in Molecular Plant Sciences, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Kunming, 650223, China
| | - Aizhong Liu
- Key Laboratory for Forest Resource Conservation and Utilization in the Southwest Mountains of China, Ministry of Education, Southwest Forestry University, Kunming, 650224, China
| | - Jiangqi Wen
- Noble Research Institute, LLC, 2510 Sam Noble Parkway, Ardmore, OK, 73401, USA
| | - Kirankumar S Mysore
- Department of Plant and Soil Sciences, Institute for Agricultural Biosciences, Oklahoma State University, 3210 Sam Noble Parkway, Ardmore, OK, 73401, USA
| | - Million Tadege
- Department of Plant and Soil Sciences, Institute for Agricultural Biosciences, Oklahoma State University, 3210 Sam Noble Parkway, Ardmore, OK, 73401, USA
| | - Jianghua Chen
- CAS Key Laboratory of Tropical Plant Resources and Sustainable Use, CAS Center for Excellence in Molecular Plant Sciences, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Kunming, 650223, China.
| |
Collapse
|
19
|
Liu X, Bourgault R, Galli M, Strable J, Chen Z, Feng F, Dong J, Molina I, Gallavotti A. The FUSED LEAVES1-ADHERENT1 regulatory module is required for maize cuticle development and organ separation. THE NEW PHYTOLOGIST 2021; 229:388-402. [PMID: 32738820 DOI: 10.1101/2020.02.11.943787] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Accepted: 07/22/2020] [Indexed: 05/27/2023]
Abstract
All aerial epidermal cells in land plants are covered by the cuticle, an extracellular hydrophobic layer that provides protection against abiotic and biotic stresses and prevents organ fusion during development. Genetic and morphological analysis of the classic maize adherent1 (ad1) mutant was combined with genome-wide binding analysis of the maize MYB transcription factor FUSED LEAVES1 (FDL1), coupled with transcriptional profiling of fdl1 mutants. We show that AD1 encodes an epidermally-expressed 3-KETOACYL-CoA SYNTHASE (KCS) belonging to a functionally uncharacterized clade of KCS enzymes involved in cuticular wax biosynthesis. Wax analysis in ad1 mutants indicates that AD1 functions in the formation of very-long-chain wax components. We demonstrate that FDL1 directly binds to CCAACC core motifs present in AD1 regulatory regions to activate its expression. Over 2000 additional target genes of FDL1, including many involved in cuticle formation, drought response and cell wall organization, were also identified. Our results identify a regulatory module of cuticle biosynthesis in maize that is conserved across monocots and eudicots, and highlight previously undescribed factors in lipid metabolism, transport and signaling that coordinate organ development and cuticle formation.
Collapse
Affiliation(s)
- Xue Liu
- Waksman Institute of Microbiology, Rutgers University, Piscataway, NJ, 08854-8020, USA
| | - Richard Bourgault
- Department of Biology, Algoma University, Sault Ste. Marie, ON, P6A 2G4, Canada
| | - Mary Galli
- Waksman Institute of Microbiology, Rutgers University, Piscataway, NJ, 08854-8020, USA
| | - Josh Strable
- School of Integrative Plant Science, Plant Biology Section, Cornell University, Ithaca, NY, 14853, USA
| | - Zongliang Chen
- Waksman Institute of Microbiology, Rutgers University, Piscataway, NJ, 08854-8020, USA
| | - Fan Feng
- Waksman Institute of Microbiology, Rutgers University, Piscataway, NJ, 08854-8020, USA
| | - Jiaqiang Dong
- Waksman Institute of Microbiology, Rutgers University, Piscataway, NJ, 08854-8020, USA
| | - Isabel Molina
- Department of Biology, Algoma University, Sault Ste. Marie, ON, P6A 2G4, Canada
| | - Andrea Gallavotti
- Waksman Institute of Microbiology, Rutgers University, Piscataway, NJ, 08854-8020, USA
- Department of Plant Biology, Rutgers University, New Brunswick, NJ, 08901, USA
| |
Collapse
|
20
|
Lian XY, Wang X, Gao HN, Jiang H, Mao K, You CX, Li YY, Hao YJ. Genome wide analysis and functional identification of MdKCS genes in apple. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2020; 151:299-312. [PMID: 32251955 DOI: 10.1016/j.plaphy.2020.03.034] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Revised: 03/25/2020] [Accepted: 03/25/2020] [Indexed: 05/05/2023]
Abstract
Apple fruit is covered by cuticle wax, which plays important roles protecting fruits from adverse environmental conditions. β-Ketoacyl-CoA synthase (KCS) is the key rate-limiting enzyme in plant wax synthesis. In this study, we identified 28 KCS gene family members from apple (Malus × domestica Borkh.) by homology analysis. Multi-sequence alignment and phylogenetic analyses revealed that the 28 MdKCS genes were divided into four subgroups, including KCS1-like, FAE1-like, FDH-like, and CER6. A chromosomal localization analysis revealed that 27 apple KCS genes were located on 11 chromosomes, while MdKCS28 was localized to the unassembled genomic scaffold. Most of the MdKCS proteins were hydrophilic proteins and they had similar secondary and tertiary structures. The prediction of cis-acting elements of the MdKCS gene promoters suggested that the MdKCS genes may be widely involved in hormone signaling and the stress response. Furthermore, the quantitative real-time polymerase chain reaction results showed that eight MdKCS genes were highly expressed in the apple pericarp, and were significantly induced by drought, abscisic acid (ABA), and NaCl treatments. We transformed the MdKCS21 gene into apple calli, and found the MdKCS21 overexpressing transgenic apple calli exhibited higher tolerance to ABA treatment. Finally, the MdKCS proteins were localized to the endoplasmic reticulum and vacuolar membrane by confocal laser microscopy. This study established a foundation to further analyze the function of KCS genes and provided candidate genes for molecular improvement of wax content in apple.
Collapse
Affiliation(s)
- Xin-Yu Lian
- State Key Laboratory of Crop Biology, Shandong Collaborative Innovation Center of Fruit & Vegetable Quality and Efficient Production, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai'an, China
| | - Xun Wang
- State Key Laboratory of Crop Biology, Shandong Collaborative Innovation Center of Fruit & Vegetable Quality and Efficient Production, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai'an, China
| | - Huai-Na Gao
- State Key Laboratory of Crop Biology, Shandong Collaborative Innovation Center of Fruit & Vegetable Quality and Efficient Production, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai'an, China
| | - Han Jiang
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Horticulture, Northwest A&F University, Yangling, China
| | - Ke Mao
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Horticulture, Northwest A&F University, Yangling, China
| | - Chun-Xiang You
- State Key Laboratory of Crop Biology, Shandong Collaborative Innovation Center of Fruit & Vegetable Quality and Efficient Production, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai'an, China
| | - Yuan-Yuan Li
- State Key Laboratory of Crop Biology, Shandong Collaborative Innovation Center of Fruit & Vegetable Quality and Efficient Production, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai'an, China.
| | - Yu-Jin Hao
- State Key Laboratory of Crop Biology, Shandong Collaborative Innovation Center of Fruit & Vegetable Quality and Efficient Production, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai'an, China.
| |
Collapse
|
21
|
Wang B, Li N, Wang J, Huang S, Tang Y, Yang S, Yang T, Wang Q, Yu Q, Gao J. iTRAQ-Based Proteomics Reveals that the Tomato ms10 35 Gene Causes Male Sterility through Compromising Fat Acid Metabolism. Proteomics 2020; 20:e1900213. [PMID: 32104964 DOI: 10.1002/pmic.201900213] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2019] [Revised: 02/16/2020] [Indexed: 11/11/2022]
Abstract
So far, over 50 spontaneous male sterile mutants of tomato have been described and most of them are categorized as genetic male sterility. To date, the mechanism of tomato genetic male sterility remained unclear. In this study, differential proteomic analysis is performed between genetic male sterile line (2-517), which carries the male sterility (ms1035 ) gene, and its wild-type (VF-11) using isobaric tags for relative and absolute quantification-based strategy. A total of 8272 proteins are quantified in the 2-517 and VF-11 lines at the floral bud and florescence stages. These proteins are involved in different cellular and metabolic processes, which express obvious functional tendencies toward the hydroxylation of the ω-carbon in fatty acids, the tricarboxylic acid cycle, the glycolytic, and pentose phosphate pathways. Based on the results, a protein network explaining the mechanisms of tomato genetic male sterility is proposed, finding the compromising fat acid metabolism may cause the male sterility. These results are confirmed by parallel reaction monitoring, quantitative Real-time PCR (qRT-PCR), and physiological assays. Taken together, these results provide new insights into the metabolic pathway of anther abortion induced by ms1035 and offer useful clues to identify the crucial proteins involved in genetic male sterility in tomato.
Collapse
Affiliation(s)
- Baike Wang
- Institute of Horticulture Crops, Xinjiang Academy of Agricultural Sciences, Urumqi, 830091, P. R. China.,College of Forestry and Horticulture, Xinjiang Agricultural University, Urumqi, 830052, P. R. China
| | - Ning Li
- Institute of Horticulture Crops, Xinjiang Academy of Agricultural Sciences, Urumqi, 830091, P. R. China.,College of Forestry and Horticulture, Xinjiang Agricultural University, Urumqi, 830052, P. R. China
| | - Juan Wang
- Institute of Horticulture Crops, Xinjiang Academy of Agricultural Sciences, Urumqi, 830091, P. R. China
| | - Shaoyong Huang
- College of Forestry and Horticulture, Xinjiang Agricultural University, Urumqi, 830052, P. R. China
| | - Yaping Tang
- Institute of Horticulture Crops, Xinjiang Academy of Agricultural Sciences, Urumqi, 830091, P. R. China
| | - Shengbao Yang
- Institute of Horticulture Crops, Xinjiang Academy of Agricultural Sciences, Urumqi, 830091, P. R. China
| | - Tao Yang
- Institute of Horticulture Crops, Xinjiang Academy of Agricultural Sciences, Urumqi, 830091, P. R. China
| | - Qiang Wang
- Institute of Horticulture Crops, Xinjiang Academy of Agricultural Sciences, Urumqi, 830091, P. R. China.,College of Forestry and Horticulture, Xinjiang Agricultural University, Urumqi, 830052, P. R. China
| | - Qinghui Yu
- Institute of Horticulture Crops, Xinjiang Academy of Agricultural Sciences, Urumqi, 830091, P. R. China
| | - Jie Gao
- College of Forestry and Horticulture, Xinjiang Agricultural University, Urumqi, 830052, P. R. China
| |
Collapse
|
22
|
Kassab E, Mehlmer N, Brueck T. GFP Scaffold-Based Engineering for the Production of Unbranched Very Long Chain Fatty Acids in Escherichia coli With Oleic Acid and Cerulenin Supplementation. Front Bioeng Biotechnol 2020; 7:408. [PMID: 31921813 PMCID: PMC6914682 DOI: 10.3389/fbioe.2019.00408] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2019] [Accepted: 11/27/2019] [Indexed: 11/13/2022] Open
Abstract
Currently, very long chain fatty acids (VLCFAs) for oleochemical, pharmaceutical, cosmetic, or food applications are extracted from plant or marine organism resources, which is associated with a negative environmental impact. Therefore, there is an industrial demand to develop sustainable, microbial resources. Due to its ease of genetic modification and well-characterized metabolism, Escherichia coli has established itself as a model organism to study and tailor microbial fatty acid biosynthesis using a concerted genetic engineering approach. In this study, we systematically implemented a plant-derived (Arabidopsis thaliana) enzymatic cascade in Escherichia coli to enable unbranched VLCFA biosynthesis. The four Arabidopsis thaliana membrane-bound VLCFA enzymes were expressed using a synthetic expression cassette. To facilitate enzyme solubilization and interaction of the synthetic VLCFA synthase complex, we applied a self-assembly GFP scaffold. In order to initiate VLCFA biosynthesis, external oleic acid and cerulenin were supplemented to cultures. In this context, we detected the generation of arachidic (20:0), cis-11-eicosenoic (20:1) and cis-13-eicosenoic acid (20:1).
Collapse
Affiliation(s)
- Elias Kassab
- Werner Siemens-Chair of Synthetic Biotechnology, Department of Chemistry, Technical University of Munich, Garching, Germany
| | - Norbert Mehlmer
- Werner Siemens-Chair of Synthetic Biotechnology, Department of Chemistry, Technical University of Munich, Garching, Germany
| | - Thomas Brueck
- Werner Siemens-Chair of Synthetic Biotechnology, Department of Chemistry, Technical University of Munich, Garching, Germany
| |
Collapse
|
23
|
Evaluation of the Foliar Damage That Threatens a Millennial-Age Tree, Araucaria araucana (Molina) K. Koch, Using Leaf Waxes. FORESTS 2020. [DOI: 10.3390/f11010059] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
A. araucana is an endemic species of the temperate forests from Chile and Argentina; protected in both countries and categorized as in danger of extinction. Individuals of this species have begun to show foliar damage (i.e., discoloration) in branches and upper parts. The discoloration begins from the base to the top and from the trunk to the branches with necrotic rings appearing; in some cases causing death; and is currently attributed to an as yet unknown disease. This study focuses on the first protective layer of plants against environmental stress and pathogens; known as leaf waxes. The abundance and distribution of three classes of leaf waxes (long chain fatty acids; alkanes and alcohols) were measured in healthy individuals of A. araucana from different sites and individuals that present foliar damage (sick individuals). In the case of sick individuals; their leaf waxes were measured considering the level of leaf damage; that is; leaves without; medium and full foliar damage. The most abundant class of leaf wax in both sick and healthy individuals was fatty acids; followed by alkanes and then alcohols; with common dominant chains; C28 fatty acid; C29 alkane and C24 alcohol. Sick individuals have higher abundances of alkanes and alcohols than healthy individuals. The leaves of sick individuals have lower values of distribution indices (the carbon preference index of fatty acids and average chain length of alkanes) as foliar damage increases that are interpreted as a reduction of in vivo biosynthesis of waxes. This is the first evidence of A. araucana response to a still unknown disease that is killing individuals of this endemic species.
Collapse
|
24
|
Guo W, Wu Q, Yang L, Hu W, Liu D, Liu Y. Ectopic Expression of CsKCS6 From Navel Orange Promotes the Production of Very-Long-Chain Fatty Acids (VLCFAs) and Increases the Abiotic Stress Tolerance of Arabidopsis thaliana. FRONTIERS IN PLANT SCIENCE 2020; 11:564656. [PMID: 33123179 PMCID: PMC7573159 DOI: 10.3389/fpls.2020.564656] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Accepted: 09/14/2020] [Indexed: 05/04/2023]
Abstract
Cuticular wax is closely related to plant resistance to abiotic stress. 3-Ketoacyl-CoA synthase (KCS) catalyzes the biosynthesis of very-long-chain fatty acid (VLCFA) wax precursors. In this study, a novel KCS family gene was isolated from Newhall navel orange and subsequently named CsKCS6. The CsKCS6 protein has two main domains that belong to the thiolase-like superfamily, the FAE1-CUT1-RppA and ACP_syn_III_C domains, which exist at amino acid positions 80-368 and 384-466, respectively. CsKCS6 was expressed in all tissues, with the highest expression detected in the stigma; in addition, the transcription of CsKCS6 was changed in response to drought stress, salt stress and abscisic acid (ABA) treatment. Heterologous expression of CsKCS6 in Arabidopsis significantly increased the amount of VLCFAs in the cuticular wax on the stems and leaves, but there were no significant changes in total wax content. Compared with that of the wild-type (WT) plants, the leaf permeability of the transgenic plants was lower. Further research showed that, compared with the WT plants, the transgenic lines experienced less water loss and ion leakage after dehydration stress, displayed increased survival under drought stress treatment and presented significantly longer root lengths and survival under salt stress treatment. Our results indicate that CsKCS6 not only plays an important role in the synthesis of fatty acid precursors involved in wax synthesis but also enhances the tolerance of transgenic Arabidopsis plants to abiotic stress. Thus, the identification of CsKSC6 could help to increase the abiotic stress tolerance of Citrus in future breeding programs.
Collapse
|
25
|
Dossa K, Li D, Zhou R, Yu J, Wang L, Zhang Y, You J, Liu A, Mmadi MA, Fonceka D, Diouf D, Cissé N, Wei X, Zhang X. The genetic basis of drought tolerance in the high oil crop Sesamum indicum. PLANT BIOTECHNOLOGY JOURNAL 2019; 17:1788-1803. [PMID: 30801874 PMCID: PMC6686131 DOI: 10.1111/pbi.13100] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2018] [Revised: 02/13/2019] [Accepted: 02/15/2019] [Indexed: 05/18/2023]
Abstract
Unlike most of the important food crops, sesame can survive drought but severe and repeated drought episodes, especially occurring during the reproductive stage, significantly curtail the productivity of this high oil crop. Genome-wide association study was conducted for traits related to drought tolerance using 400 diverse sesame accessions, including landraces and modern cultivars. Ten stable QTLs explaining more than 40% of the phenotypic variation and located on four linkage groups were significantly associated with drought tolerance related traits. Accessions from the tropical area harboured higher numbers of drought tolerance alleles at the peak loci and were found to be more tolerant than those from the northern area, indicating a long-term genetic adaptation to drought-prone environments. We found that sesame has already fixed important alleles conferring survival to drought which may explain its relative high drought tolerance. However, most of the alleles crucial for productivity and yield maintenance under drought conditions are far from been fixed. This study also revealed that pyramiding the favourable alleles observed at the peak loci is of high potential for enhancing drought tolerance in sesame. In addition, our results highlighted two important pleiotropic QTLs harbouring known and unreported drought tolerance genes such as SiABI4, SiTTM3, SiGOLS1, SiNIMIN1 and SiSAM. By integrating candidate gene association study, gene expression and transgenic experiments, we demonstrated that SiSAM confers drought tolerance by modulating polyamine levels and ROS homeostasis, and a missense mutation in the coding region partly contributes to the natural variation of drought tolerance in sesame.
Collapse
Affiliation(s)
- Komivi Dossa
- Oil Crops Research Institute of the Chinese Academy of Agricultural SciencesKey Laboratory of Biology and Genetic Improvement of Oil CropsMinistry of AgricultureWuhanHubeiChina
- Centre d'Etude Régional pour l'Amélioration de l'Adaptation à la Sécheresse (CERAAS)ThièsSénégal
- Laboratoire Campus de Biotechnologies VégétalesDépartement de Biologie VégétaleFaculté des Sciences et TechniquesUniversité Cheikh Anta DiopDakarSénégal
| | - Donghua Li
- Oil Crops Research Institute of the Chinese Academy of Agricultural SciencesKey Laboratory of Biology and Genetic Improvement of Oil CropsMinistry of AgricultureWuhanHubeiChina
| | - Rong Zhou
- Oil Crops Research Institute of the Chinese Academy of Agricultural SciencesKey Laboratory of Biology and Genetic Improvement of Oil CropsMinistry of AgricultureWuhanHubeiChina
| | - Jingyin Yu
- Oil Crops Research Institute of the Chinese Academy of Agricultural SciencesKey Laboratory of Biology and Genetic Improvement of Oil CropsMinistry of AgricultureWuhanHubeiChina
| | - Linhai Wang
- Oil Crops Research Institute of the Chinese Academy of Agricultural SciencesKey Laboratory of Biology and Genetic Improvement of Oil CropsMinistry of AgricultureWuhanHubeiChina
| | - Yanxin Zhang
- Oil Crops Research Institute of the Chinese Academy of Agricultural SciencesKey Laboratory of Biology and Genetic Improvement of Oil CropsMinistry of AgricultureWuhanHubeiChina
| | - Jun You
- Oil Crops Research Institute of the Chinese Academy of Agricultural SciencesKey Laboratory of Biology and Genetic Improvement of Oil CropsMinistry of AgricultureWuhanHubeiChina
| | - Aili Liu
- Oil Crops Research Institute of the Chinese Academy of Agricultural SciencesKey Laboratory of Biology and Genetic Improvement of Oil CropsMinistry of AgricultureWuhanHubeiChina
| | - Marie A. Mmadi
- Oil Crops Research Institute of the Chinese Academy of Agricultural SciencesKey Laboratory of Biology and Genetic Improvement of Oil CropsMinistry of AgricultureWuhanHubeiChina
- Centre d'Etude Régional pour l'Amélioration de l'Adaptation à la Sécheresse (CERAAS)ThièsSénégal
- Laboratoire Campus de Biotechnologies VégétalesDépartement de Biologie VégétaleFaculté des Sciences et TechniquesUniversité Cheikh Anta DiopDakarSénégal
| | - Daniel Fonceka
- Centre d'Etude Régional pour l'Amélioration de l'Adaptation à la Sécheresse (CERAAS)ThièsSénégal
| | - Diaga Diouf
- Laboratoire Campus de Biotechnologies VégétalesDépartement de Biologie VégétaleFaculté des Sciences et TechniquesUniversité Cheikh Anta DiopDakarSénégal
| | - Ndiaga Cissé
- Centre d'Etude Régional pour l'Amélioration de l'Adaptation à la Sécheresse (CERAAS)ThièsSénégal
| | - Xin Wei
- Oil Crops Research Institute of the Chinese Academy of Agricultural SciencesKey Laboratory of Biology and Genetic Improvement of Oil CropsMinistry of AgricultureWuhanHubeiChina
- College of Life SciencesShanghai Normal UniversityShanghaiChina
| | - Xiurong Zhang
- Oil Crops Research Institute of the Chinese Academy of Agricultural SciencesKey Laboratory of Biology and Genetic Improvement of Oil CropsMinistry of AgricultureWuhanHubeiChina
| |
Collapse
|
26
|
González-Mellado D, Salas JJ, Venegas-Calerón M, Moreno-Pérez AJ, Garcés R, Martínez-Force E. Functional characterization and structural modelling of Helianthus annuus (sunflower) ketoacyl-CoA synthases and their role in seed oil composition. PLANTA 2019; 249:1823-1836. [PMID: 30847571 DOI: 10.1007/s00425-019-03126-1] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2019] [Accepted: 03/04/2019] [Indexed: 05/05/2023]
Abstract
The enzymes HaKCS1 and HaKCS2 are expressed in sunflower seeds and contribute to elongation of C18 fatty acids, resulting in the C20-C24 fatty acids in sunflower oil. Most plant fatty acids are produced by plastidial soluble fatty acid synthases that produce fatty acids of up to 18 carbon atoms. However, further acyl chain elongations can take place in the endoplasmic reticulum, catalysed by membrane-bound synthases that act on acyl-CoAs. The condensing enzymes of these complexes are the ketoacyl-CoA synthase (KCSs), responsible for the synthesis of very long chain fatty acids (VLCFAs) and their derivatives in plants, these including waxes and cuticle hydrocarbons, as well as fatty aldehydes. Sunflower seeds accumulate oil that contains around 2-3% of VLCFAs and studies of the fatty acid elongase activity in developing sunflower embryos indicate that two different KCS isoforms drive the synthesis of these fatty acids. Here, two cDNAs encoding distinct KCSs were amplified from RNAs extracted from developing sunflower embryos and named HaKCS1 and HaKCS2. These genes are expressed in developing seeds during the period of oil accumulation and they are clear candidates to condition sunflower oil synthesis. These two KCS cDNAs complement a yeast elongase null mutant and when expressed in yeast, they alter the host's fatty acid profile, proving the encoded KCSs are functional. The structure of these enzymes was modelled and their contribution to the presence of VLCFAs in sunflower oil is discussed based on the results obtained.
Collapse
Affiliation(s)
- Damián González-Mellado
- Instituto de la Grasa (CSIC), Edificio 46, Campus Universitario Pablo de Olavide, Ctra. de Utrera Km 1, 41013, Seville, Spain
| | - Joaquín J Salas
- Instituto de la Grasa (CSIC), Edificio 46, Campus Universitario Pablo de Olavide, Ctra. de Utrera Km 1, 41013, Seville, Spain.
| | - Mónica Venegas-Calerón
- Departamento de Genética, Facultad de Biología, Universidad de Sevilla, 41012, Seville, Spain
| | - Antonio J Moreno-Pérez
- Instituto de la Grasa (CSIC), Edificio 46, Campus Universitario Pablo de Olavide, Ctra. de Utrera Km 1, 41013, Seville, Spain
| | - Rafael Garcés
- Instituto de la Grasa (CSIC), Edificio 46, Campus Universitario Pablo de Olavide, Ctra. de Utrera Km 1, 41013, Seville, Spain
| | - Enrique Martínez-Force
- Instituto de la Grasa (CSIC), Edificio 46, Campus Universitario Pablo de Olavide, Ctra. de Utrera Km 1, 41013, Seville, Spain
| |
Collapse
|
27
|
Heydarian Z, Gruber M, Glick BR, Hegedus DD. Gene Expression Patterns in Roots of Camelina sativa With Enhanced Salinity Tolerance Arising From Inoculation of Soil With Plant Growth Promoting Bacteria Producing 1-Aminocyclopropane-1-Carboxylate Deaminase or Expression the Corresponding acdS Gene. Front Microbiol 2018; 9:1297. [PMID: 30013518 PMCID: PMC6036250 DOI: 10.3389/fmicb.2018.01297] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2017] [Accepted: 05/28/2018] [Indexed: 12/19/2022] Open
Abstract
Camelina sativa treated with plant growth-promoting bacteria (PGPB) producing 1-aminocyclopropane-1-carboxylate deaminase (acdS) or transgenic lines expressing acdS exhibit increased salinity tolerance. AcdS reduces the level of stress ethylene to below the point where it is inhibitory to plant growth. The study determined that several mechanisms appear to be responsible for the increased salinity tolerance and that the effect of acdS on gene expression patterns in C. sativa roots during salt stress is a function of how it is delivered. Growth in soil treated with the PGPB (Pseudomonas migulae 8R6) mostly affected ethylene- and abscisic acid-dependent signaling in a positive way, while expression of acdS in transgenic lines under the control of the broadly active CaMV 35S promoter or the root-specific rolD promoter affected auxin, jasmonic acid and brassinosteroid signaling and/biosynthesis. The expression of genes involved in minor carbohydrate metabolism were also up-regulated, mainly in roots of lines expressing acdS. Expression of acdS also affected the expression of genes involved in modulating the level of reactive oxygen species (ROS) to prevent cellular damage, while permitting ROS-dependent signal transduction. Though the root is not a photosynthetic tissue, acdS had a positive effect on the expression of genes involved in photosynthesis.
Collapse
Affiliation(s)
- Zohreh Heydarian
- Agriculture and Agri-Food Canada, Saskatoon, SK, Canada.,Department of Biotechnology, School of Agriculture, Shiraz University, Shiraz, Iran
| | | | - Bernard R Glick
- Department of Biology, University of Waterloo, Waterloo, ON, Canada
| | - Dwayne D Hegedus
- Agriculture and Agri-Food Canada, Saskatoon, SK, Canada.,Department of Food and Bioproduct Sciences, University of Saskatchewan, Saskatoon, SK, Canada
| |
Collapse
|
28
|
Gustafsson C, Willforss J, Lopes-Pinto F, Ortiz R, Geleta M. Identification of genes regulating traits targeted for domestication of field cress (Lepidium campestre) as a biennial and perennial oilseed crop. BMC Genet 2018; 19:36. [PMID: 29843613 PMCID: PMC5975587 DOI: 10.1186/s12863-018-0624-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2017] [Accepted: 05/18/2018] [Indexed: 01/16/2023] Open
Abstract
BACKGROUND The changing climate and the desire to use renewable oil sources necessitate the development of new oilseed crops. Field cress (Lepidium campestre) is a species in the Brassicaceae family that has been targeted for domestication not only as an oilseed crop that produces seeds with a desirable industrial oil quality but also as a cover/catch crop that provides valuable ecosystem services. Lepidium is closely related to Arabidopsis and display significant proportions of syntenic regions in their genomes. Arabidopsis genes are among the most characterized genes in the plant kingdom and, hence, comparative genomics of Lepidium-Arabidopsis would facilitate the identification of Lepidium candidate genes regulating various desirable traits. RESULTS Homologues of 30 genes known to regulate vernalization, flowering time, pod shattering, oil content and quality in Arabidopsis were identified and partially characterized in Lepidium. Alignments of sequences representing field cress and two of its closely related perennial relatives: L. heterophyllum and L. hirtum revealed 243 polymorphic sites across the partial sequences of the 30 genes, of which 95 were within the predicted coding regions and 40 led to a change in amino acids of the target proteins. Within field cress, 34 polymorphic sites including nine non-synonymous substitutions were identified. The phylogenetic analysis of the data revealed that field cress is more closely related to L. heterophyllum than to L. hirtum. CONCLUSIONS There is significant variation within and among Lepidium species within partial sequences of the 30 genes known to regulate traits targeted in the present study. The variation within these genes are potentially useful to speed-up the process of domesticating field cress as future oil crop. The phylogenetic relationship between the Lepidium species revealed in this study does not only shed some light on Lepidium genome evolution but also provides important information to develop efficient schemes for interspecific hybridization between different Lepidium species as part of the domestication efforts.
Collapse
Affiliation(s)
- Cecilia Gustafsson
- Department of Plant Breeding, Swedish University of Agricultural Sciences, Box 101, SE-23053, Alnarp, Sweden
| | - Jakob Willforss
- Department of Plant Protection Biology, Swedish University of Agricultural Sciences, Box 102, SE-23053, Alnarp, Sweden
| | - Fernando Lopes-Pinto
- Department of Animal Breeding and Genetics, Swedish University of Agricultural Sciences, Box 7023, SE-750 07, Uppsala, Sweden
| | - Rodomiro Ortiz
- Department of Plant Breeding, Swedish University of Agricultural Sciences, Box 101, SE-23053, Alnarp, Sweden
| | - Mulatu Geleta
- Department of Plant Breeding, Swedish University of Agricultural Sciences, Box 101, SE-23053, Alnarp, Sweden.
| |
Collapse
|
29
|
Singh S, Das S, Geeta R. A segmental duplication in the common ancestor of Brassicaceae is responsible for the origin of the paralogs KCS6-KCS5, which are not shared with other angiosperms. Mol Phylogenet Evol 2018; 126:331-345. [PMID: 29698723 DOI: 10.1016/j.ympev.2018.04.018] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2018] [Revised: 04/11/2018] [Accepted: 04/11/2018] [Indexed: 12/14/2022]
Abstract
Novel morphological structures allowed adaptation to dry conditions in early land plants. The cuticle, one such novelty, plays diverse roles in tolerance to abiotic and biotic stresses and plant development. Cuticular waxes represent a major constituent of the cuticle and are comprised of an assortment of chemicals that include, among others, very long chain fatty acids (VLCFAs). Members of the β-ketoacyl coenzyme A synthases (KCS) gene family code for enzymes that are essential for fatty acid biosynthesis. The gene KCS6 (CUT1) is known to be a key player in the production of VLCFA precursors essential for the synthesis of cuticular waxes in the model plant Arabidopsis thaliana (Brassicaceae). Despite its functional importance, relatively little is known about the evolutionary history of KCS6 or its paralog KCS5 in Brassicaceae or beyond. This lacuna becomes important when we extrapolate understanding of mechanisms gained from the model plant to its containing clades Brassicaceae, flowering plants, or beyond. The Brassicaceae, with several sequenced genomes and a known history of paleoploidy, mesopolyploidy and neopolyploidy, offer a system in which to study the evolution and diversification of the KCS6-KCS5 paralogy. Our phylogenetic analyses across green plants, combined with comparative genomic, microsynteny and evolutionary rates analyses across nine genomes of Brassicaceae, reveal that (1) the KCS6-KCS5 paralogy arose as the result of a large segmental duplication in the ancestral Brassicaceae, (2) the KCS6-KCS5 lineage is represented by a single copy in other flowering plant lineages, (3) the duplicated segments undergo different degrees of retention and loss, and (4) most of the genes in the KCS6 and KCS5 gene blocks (including KCS6 and KCS5 themselves) are under purifying selection. The last also true for most members of the KCS gene family in Brassicaceae, except for KCS8, KCS9 and KCS17, which are under positive selection and may be undergoing functional evolution, meriting further investigation. Overall, our results clearly establish that the ancestral KCS6/5 gene duplicated in the Brassicaceae lineage. It is possible that any specialized functions of KCS5 found in Brassicaceae are either part of a set of KCS6/5 gene functions in the rest of the flowering plants, or unique to Brassicaceae.
Collapse
Affiliation(s)
- Swati Singh
- Department of Botany, University of Delhi, Delhi 110007, India
| | - Sandip Das
- Department of Botany, University of Delhi, Delhi 110007, India
| | - R Geeta
- Department of Botany, University of Delhi, Delhi 110007, India.
| |
Collapse
|
30
|
Fan Y, Meng HM, Hu GR, Li FL. Biosynthesis of nervonic acid and perspectives for its production by microalgae and other microorganisms. Appl Microbiol Biotechnol 2018; 102:3027-3035. [PMID: 29478140 DOI: 10.1007/s00253-018-8859-y] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2017] [Revised: 02/11/2018] [Accepted: 02/12/2018] [Indexed: 12/15/2022]
Abstract
Nervonic acid (NA) is a major very long-chain monounsaturated fatty acid found in the white matter of mammalian brains, which plays a critical role in the treatment of psychotic disorders and neurological development. In the nature, NA has been synthesized by a handful plants, fungi, and microalgae. Although the metabolism of fatty acid has been studied for decades, the biosynthesis of NA has yet to be illustrated. Generally, the biosynthesis of NA is considered starting from oleic acid through fatty acid elongation, in which malonyl-CoA and long-chain acyl-CoA are firstly condensed by a rate-limiting enzyme 3-ketoacyl-CoA synthase (KCS). Heterologous expression of kcs gene from high NA producing species in plants and yeast has led to synthesis of NA. Nevertheless, it has also been reported that desaturases in a few plants can catalyze very long-chain saturated fatty acid into NA. This review highlights recent advances in the biosynthesis, the sources, and the biotechnological aspects of NA.
Collapse
Affiliation(s)
- Yong Fan
- Key Laboratory of Biofuels, Shandong Provincial Key Laboratory of Synthetic Biology, Qingdao Engineering Laboratory of Single Cell Oil, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, 189 Songling Road, Qingdao, 266101, People's Republic of China
| | - Hui-Min Meng
- Key Laboratory of Biofuels, Shandong Provincial Key Laboratory of Synthetic Biology, Qingdao Engineering Laboratory of Single Cell Oil, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, 189 Songling Road, Qingdao, 266101, People's Republic of China
| | - Guang-Rong Hu
- Key Laboratory of Biofuels, Shandong Provincial Key Laboratory of Synthetic Biology, Qingdao Engineering Laboratory of Single Cell Oil, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, 189 Songling Road, Qingdao, 266101, People's Republic of China
| | - Fu-Li Li
- Key Laboratory of Biofuels, Shandong Provincial Key Laboratory of Synthetic Biology, Qingdao Engineering Laboratory of Single Cell Oil, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, 189 Songling Road, Qingdao, 266101, People's Republic of China.
| |
Collapse
|
31
|
Mustafa R, Hamza M, Kamal H, Mansoor S, Scheffler J, Amin I. Tobacco Rattle Virus-Based Silencing of Enoyl-CoA Reductase Gene and Its Role in Resistance Against Cotton Wilt Disease. Mol Biotechnol 2017; 59:241-250. [DOI: 10.1007/s12033-017-0014-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
32
|
Li C, Zhao Z, Liu Y, Liang B, Guan S, Lan H, Wang J, Lu Y, Cao M. Comparative transcriptome analysis of isonuclear-alloplasmic lines unmask key transcription factor genes and metabolic pathways involved in sterility of maize CMS-C. PeerJ 2017; 5:e3408. [PMID: 28584730 PMCID: PMC5452966 DOI: 10.7717/peerj.3408] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2017] [Accepted: 05/11/2017] [Indexed: 11/23/2022] Open
Abstract
Although C-type cytoplasmic male sterility (CMS-C) is one of the most attractive tools for maize hybrid seed production, the detailed regulation network of the male sterility remains unclear. In order to identify the CMS-C sterility associated genes and/or pathways, the comparison of the transcriptomes between the CMS-C line C48-2 and its isonuclear-alloplasmic maintainer line N48-2 at pollen mother cell stage (PS), an early development stage of microspore, and mononuclear stage (MS), an abortive stage of microspore, were analyzed. 2,069 differentially expressed genes (DEGs) between the two stages were detected and thought to be essential for the spikelet development of N48-2. 453 of the 2,069 DEGs were differentially expressed at MS stage between the two lines and thought to be participated in the process or the causes of microspore abortion. Among the 453 DEGs, 385 (84.99%) genes were down-regulated and only 68 (15.01%) genes were up-regulated in C48-2 at MS stage. The dramatic decreased expression of the four DEGs encoding MYB transcription factors and the DEGs involved in "polyamine metabolic process", "Cutin, suberine and wax biosynthesis", "Fatty acid elongation", "Biosynthesis of unsaturated fatty acids" and "Proline metabolism" might play an important role in the sterility of C48-2. This study will point out some directions for detailed molecular analysis and better understanding of sterility of CMS-C in maize.
Collapse
Affiliation(s)
- Chuan Li
- Maize Research Institute, Sichuan Agricultural University, Chengdu, Sichuan, P.R. China
- Key Laboratory of Biology and Genetic Improvement of Maize in Southwest Region, Ministry of Agriculture, Chengdu, Sichuan, P.R. China
| | - Zhuofan Zhao
- Maize Research Institute, Sichuan Agricultural University, Chengdu, Sichuan, P.R. China
- Key Laboratory of Biology and Genetic Improvement of Maize in Southwest Region, Ministry of Agriculture, Chengdu, Sichuan, P.R. China
| | - Yongming Liu
- Maize Research Institute, Sichuan Agricultural University, Chengdu, Sichuan, P.R. China
- Key Laboratory of Biology and Genetic Improvement of Maize in Southwest Region, Ministry of Agriculture, Chengdu, Sichuan, P.R. China
| | - Bing Liang
- Maize Research Institute, Sichuan Agricultural University, Chengdu, Sichuan, P.R. China
- Key Laboratory of Biology and Genetic Improvement of Maize in Southwest Region, Ministry of Agriculture, Chengdu, Sichuan, P.R. China
| | - Shuxian Guan
- Maize Research Institute, Sichuan Agricultural University, Chengdu, Sichuan, P.R. China
- Key Laboratory of Biology and Genetic Improvement of Maize in Southwest Region, Ministry of Agriculture, Chengdu, Sichuan, P.R. China
| | - Hai Lan
- Maize Research Institute, Sichuan Agricultural University, Chengdu, Sichuan, P.R. China
- Key Laboratory of Biology and Genetic Improvement of Maize in Southwest Region, Ministry of Agriculture, Chengdu, Sichuan, P.R. China
| | - Jing Wang
- Maize Research Institute, Sichuan Agricultural University, Chengdu, Sichuan, P.R. China
- Key Laboratory of Biology and Genetic Improvement of Maize in Southwest Region, Ministry of Agriculture, Chengdu, Sichuan, P.R. China
| | - Yanli Lu
- Maize Research Institute, Sichuan Agricultural University, Chengdu, Sichuan, P.R. China
- Key Laboratory of Biology and Genetic Improvement of Maize in Southwest Region, Ministry of Agriculture, Chengdu, Sichuan, P.R. China
| | - Moju Cao
- Maize Research Institute, Sichuan Agricultural University, Chengdu, Sichuan, P.R. China
- Key Laboratory of Biology and Genetic Improvement of Maize in Southwest Region, Ministry of Agriculture, Chengdu, Sichuan, P.R. China
| |
Collapse
|
33
|
Xiao GH, Wang K, Huang G, Zhu YX. Genome-scale analysis of the cotton KCS gene family revealed a binary mode of action for gibberellin A regulated fiber growth. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2016; 58:577-89. [PMID: 26399709 PMCID: PMC5061104 DOI: 10.1111/jipb.12429] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2015] [Accepted: 09/22/2015] [Indexed: 05/05/2023]
Abstract
Production of β-ketoacyl-CoA, which is catalyzed by 3-ketoacyl-CoA synthase (KCS), is the first step in very long chain fatty acid (VLCFA) biosynthesis. Here we identified 58 KCS genes from Gossypium hirsutum, 31 from G. arboreum and 33 from G. raimondii by searching the assembled cotton genomes. The gene family was divided into the plant-specific FAE1-type and the more general ELO-type. KCS transcripts were widely expressed and 32 of them showed distinct subgenome-specific expressions in one or more cotton tissues/organs studied. Six GhKCS genes rescued the lethality of elo2Δelo3Δ yeast double mutant, indicating that this gene family possesses diversified functions. Most KCS genes with GA-responsive elements (GAREs) in the promoters were significantly upregulated by gibberellin A3 (GA). Exogenous GA3 not only promoted fiber length, but also increased the thickness of cell walls significantly. GAREs present also in the promoters of several cellulose synthase (CesA) genes required for cell wall biosynthesis and they were all induced significantly by GA3 . Because GA treatment resulted in longer cotton fibers with thicker cell walls and higher dry weight per unit cell length, we suggest that it may regulate fiber elongation upstream of the VLCFA-ethylene pathway and also in the downstream steps towards cell wall synthesis.
Collapse
Affiliation(s)
- Guang-Hui Xiao
- The State Key Laboratory of Protein and Plant Gene Research, College of Life Sciences, Peking University, Beijing, 100871, China
- College of Life Sciences, Shaanxi Normal University, Xi'an, 710062, China
| | - Kun Wang
- Institute for Advanced Studies/College of Life Sciences, Wuhan University, Wuhan, 430072, China
| | - Gai Huang
- The State Key Laboratory of Protein and Plant Gene Research, College of Life Sciences, Peking University, Beijing, 100871, China
| | - Yu-Xian Zhu
- The State Key Laboratory of Protein and Plant Gene Research, College of Life Sciences, Peking University, Beijing, 100871, China
- Institute for Advanced Studies/College of Life Sciences, Wuhan University, Wuhan, 430072, China
| |
Collapse
|
34
|
Ni Y, Guo N, Zhao Q, Guo Y. Identification of candidate genes involved in wax deposition in Poa pratensis by RNA-seq. BMC Genomics 2016; 17:314. [PMID: 27129471 PMCID: PMC4850629 DOI: 10.1186/s12864-016-2641-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2016] [Accepted: 04/22/2016] [Indexed: 12/02/2022] Open
Abstract
Background The cuticular wax plays important roles in plant resistance to various biotic and abiotic stresses. Understanding the synthesis and secretion of cuticular waxes is necessary in utilizing cuticular waxes to improve crop productivity and plant ecological adaptation. Due to the lack of genomic resources, little genetic research on cuticular wax deposition has been focused on Poa pratensis, a perennial forage and turf grass species that is widely distributed under various habitats. In this study, we performed de novo transcriptome sequencing to explore differentially expressed genes between the leaf non-elongation zone (NEZm) and the emerged blade zone (EBZ) and to identify genes related to cuticular wax deposition. Results A total of 77,707,414 high quality reads were obtained from llumina HiSeq 2500 platform, which were then assembled into 106,766 unigenes. Among them, 6019 unigenes showed significant differences in expression between NEZm and EBZ. In our assembled sequences, 3087 SSRs molecular markers were discovered. All the unigenes were searched against the NR, Swissprot, GO, COG, and KEGG databases using BLAST program for functional annotation. From 3156 unigenes with more expression in NEZm compared to EBZ, a number of unigenes involved in very long chain fatty acids (VLCFAs) and cuticular wax biosynthesis, transportation and regulation were identified. Several unigenes related to defense response and epidermal patterning were also found. Twelve putative genes involved in VLCFAs and cuticular wax biosynthesis were further analyzed for their expressions using qRT-PCR. Conclusions The transcriptome of P. pratensis leaf was deep sequenced, de novo assembled and annotated, and the candidate genes potentially involved in VLCFAs and cuticular wax biosynthesis, secretion and regulation in P. pratensis were identified. This provides fundamental genetic resources in improving plant adaptation to abiotic and biotic stresses. Electronic supplementary material The online version of this article (doi:10.1186/s12864-016-2641-2) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Yu Ni
- College of Agronomy and Biotechnology, Southwest University, Chongqing, 400716, China
| | - Na Guo
- College of Agronomy and Biotechnology, Southwest University, Chongqing, 400716, China
| | - Qiuling Zhao
- College of Agronomy and Biotechnology, Southwest University, Chongqing, 400716, China
| | - Yanjun Guo
- College of Agronomy and Biotechnology, Southwest University, Chongqing, 400716, China.
| |
Collapse
|
35
|
Abstract
Sphingolipids, a once overlooked class of lipids in plants, are now recognized as abundant and essential components of plasma membrane and other endomembranes of plant cells. In addition to providing structural integrity to plant membranes, sphingolipids contribute to Golgi trafficking and protein organizational domains in the plasma membrane. Sphingolipid metabolites have also been linked to the regulation of cellular processes, including programmed cell death. Advances in mass spectrometry-based sphingolipid profiling and analyses of Arabidopsis mutants have enabled fundamental discoveries in sphingolipid structural diversity, metabolism, and function that are reviewed here. These discoveries are laying the groundwork for the tailoring of sphingolipid biosynthesis and catabolism for improved tolerance of plants to biotic and abiotic stresses.
Collapse
Affiliation(s)
- Kyle D Luttgeharm
- Center for Plant Science Innovation and Department of Biochemistry, University of Nebraska-Lincoln, E318 Beadle Center, 1901 Vine Street, Lincoln, NE, 68588, USA
| | - Athen N Kimberlin
- Center for Plant Science Innovation and Department of Biochemistry, University of Nebraska-Lincoln, E318 Beadle Center, 1901 Vine Street, Lincoln, NE, 68588, USA
| | - Edgar B Cahoon
- Center for Plant Science Innovation and Department of Biochemistry, University of Nebraska-Lincoln, E318 Beadle Center, 1901 Vine Street, Lincoln, NE, 68588, USA.
| |
Collapse
|
36
|
Evolution of the KCS gene family in plants: the history of gene duplication, sub/neofunctionalization and redundancy. Mol Genet Genomics 2015; 291:739-52. [DOI: 10.1007/s00438-015-1142-3] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2015] [Accepted: 10/28/2015] [Indexed: 12/27/2022]
|
37
|
Zhu YN, Shi DQ, Ruan MB, Zhang LL, Meng ZH, Liu J, Yang WC. Transcriptome analysis reveals crosstalk of responsive genes to multiple abiotic stresses in cotton (Gossypium hirsutum L.). PLoS One 2013; 8:e80218. [PMID: 24224045 PMCID: PMC3818253 DOI: 10.1371/journal.pone.0080218] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2013] [Accepted: 09/28/2013] [Indexed: 12/15/2022] Open
Abstract
Abiotic stress is a major environmental factor that limits cotton growth and yield, moreover, this problem has become more and more serious recently, as multiple stresses often occur simultaneously due to the global climate change and environmental pollution. In this study, we sought to identify genes involved in diverse stresses including abscisic acid (ABA), cold, drought, salinity and alkalinity by comparative microarray analysis. Our result showed that 5790, 3067, 5608, 778 and 6148 transcripts, were differentially expressed in cotton seedlings under treatment of ABA (1 μM ABA), cold (4°C), drought (200 mM mannitol), salinity (200 mM NaCl) and alkalinity (pH=11) respectively. Among the induced or suppressed genes, 126 transcripts were shared by all of the five kinds of abiotic stresses, with 64 up-regulated and 62 down-regulated. These common members are grouped as stress signal transduction, transcription factors (TFs), stress response/defense proteins, metabolism, transport facilitation, as well as cell wall/structure, according to the function annotation. We also noticed that large proportion of significant differentially expressed genes specifically regulated in response to different stress. Nine of the common transcripts of multiple stresses were selected for further validation with quantitative real time RT-PCR (qRT-PCR). Furthermore, several well characterized TF families, for example, WRKY, MYB, NAC, AP2/ERF and zinc finger were shown to be involved in different stresses. As an original report using comparative microarray to analyze transcriptome of cotton under five abiotic stresses, valuable information about functional genes and related pathways of anti-stress, and/or stress tolerance in cotton seedlings was unveiled in our result. Besides this, some important common factors were focused for detailed identification and characterization. According to our analysis, it suggested that there was crosstalk of responsive genes or pathways to multiple abiotic or even biotic stresses, in cotton. These candidate genes will be worthy of functional study under diverse stresses.
Collapse
Affiliation(s)
- Ya-Na Zhu
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Dong-Qiao Shi
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
- * E-mail: (WCY); (DQS)
| | - Meng-Bin Ruan
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Li-Li Zhang
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Zhao-Hong Meng
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Jie Liu
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Wei-Cai Yang
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
- * E-mail: (WCY); (DQS)
| |
Collapse
|
38
|
Le Provost G, Domergue F, Lalanne C, Ramos Campos P, Grosbois A, Bert D, Meredieu C, Danjon F, Plomion C, Gion JM. Soil water stress affects both cuticular wax content and cuticle-related gene expression in young saplings of maritime pine (Pinus pinaster Ait). BMC PLANT BIOLOGY 2013; 13:95. [PMID: 23815794 PMCID: PMC3728238 DOI: 10.1186/1471-2229-13-95] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2012] [Accepted: 06/28/2013] [Indexed: 05/25/2023]
Abstract
BACKGROUND The cuticle is a hydrophobic barrier located at the aerial surface of all terrestrial plants. Recent studies performed on model plants, such as Arabidopsis thaliana, have suggested that the cuticle may be involved in drought stress adaptation, preventing non-stomatal water loss. Although forest trees will face more intense drought stresses (in duration and intensity) with global warming, very few studies on the role of the cuticle in drought stress adaptation in these long-lived organisms have been so far reported. RESULTS This aspect was investigated in a conifer, maritime pine (Pinus pinaster Ait.), in a factorial design with two genetic units (two half-sib families with different growth rates) and two treatments (irrigated vs non-irrigated), in field conditions. Saplings were grown in an open-sided greenhouse and half were irrigated three times per week for two growing seasons. Needles were sampled three times per year for cuticular wax (composition and content) and transcriptome (of 11 genes involved in cuticle biosynthesis) analysis. Non-irrigated saplings (i) had a higher cuticular wax content than irrigated saplings and (ii) overexpressed most of the genes studied. Both these trends were more marked in the faster growing family. CONCLUSIONS The higher cuticular wax content observed in the non-irrigated treatment associated with strong modifications in products from the decarbonylation pathway suggest that cuticular wax may be involved in drought stress adaptation in maritime pine. This study provides also a set of promising candidate genes for future forward genetic studies in conifers.
Collapse
Affiliation(s)
- Grégoire Le Provost
- INRA, UMR 1202, BIOGECO, F-33610, Cestas, France
- Univ. Bordeaux, BIOGECO, UMR 1202, F-33400, Talence, France
| | - Frédéric Domergue
- Univ. Bordeaux, Laboratoire de Biogenèse Membranaire, UMR5200, F-33000, Bordeaux, France
- CNRS, Laboratoire de Biogenèse Membranaire, UMR5200, F-33000, Bordeaux, France
| | - Céline Lalanne
- INRA, UMR 1202, BIOGECO, F-33610, Cestas, France
- Univ. Bordeaux, BIOGECO, UMR 1202, F-33400, Talence, France
| | - Patricio Ramos Campos
- Instituto Biología Vegetal y Biotecnología, Universidad de Talca, 2 Norte 685, Talca, Chile
| | - Antoine Grosbois
- INRA, UMR 1202, BIOGECO, F-33610, Cestas, France
- Univ. Bordeaux, BIOGECO, UMR 1202, F-33400, Talence, France
| | - Didier Bert
- INRA, UMR 1202, BIOGECO, F-33610, Cestas, France
- Univ. Bordeaux, BIOGECO, UMR 1202, F-33400, Talence, France
| | - Céline Meredieu
- INRA, UMR 1202, BIOGECO, F-33610, Cestas, France
- Univ. Bordeaux, BIOGECO, UMR 1202, F-33400, Talence, France
| | - Frédéric Danjon
- INRA, UMR 1202, BIOGECO, F-33610, Cestas, France
- Univ. Bordeaux, BIOGECO, UMR 1202, F-33400, Talence, France
| | - Christophe Plomion
- INRA, UMR 1202, BIOGECO, F-33610, Cestas, France
- Univ. Bordeaux, BIOGECO, UMR 1202, F-33400, Talence, France
| | - Jean-Marc Gion
- INRA, UMR 1202, BIOGECO, F-33610, Cestas, France
- Univ. Bordeaux, BIOGECO, UMR 1202, F-33400, Talence, France
- CIRAD, UMR AGAP, Campus de Baillarguet TA 10C, F-34398, Montpellier Cedex 5, France
| |
Collapse
|
39
|
Jiang J, Zhang Z, Cao J. Pollen wall development: the associated enzymes and metabolic pathways. PLANT BIOLOGY (STUTTGART, GERMANY) 2013; 15:249-63. [PMID: 23252839 DOI: 10.1111/j.1438-8677.2012.00706.x] [Citation(s) in RCA: 117] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2012] [Accepted: 10/22/2012] [Indexed: 05/18/2023]
Abstract
Pollen grains are surrounded by a sculpted wall, which protects male gametophytes from various environmental stresses and microbial attacks, and also facilitates pollination. Pollen wall development requires lipid and polysaccharide metabolism, and some key genes and proteins that participate in these processes have recently been identified. Here, we summarise the genes and describe their functions during pollen wall development via several metabolic pathways. A working model involving substances and catalytic enzyme reactions that occur during pollen development is also presented. This model provides information on the complete process of pollen wall development with respect to metabolic pathways.
Collapse
Affiliation(s)
- J Jiang
- Laboratory of Cell & Molecular Biology, Institute of Vegetable Science, Zhejiang University, Hangzhou, China
| | | | | |
Collapse
|
40
|
Jasinski S, Lécureuil A, Miquel M, Loudet O, Raffaele S, Froissard M, Guerche P. Natural variation in seed very long chain fatty acid content is controlled by a new isoform of KCS18 in Arabidopsis thaliana. PLoS One 2012; 7:e49261. [PMID: 23145136 PMCID: PMC3493540 DOI: 10.1371/journal.pone.0049261] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2012] [Accepted: 10/05/2012] [Indexed: 12/30/2022] Open
Abstract
Oil from oleaginous seeds is mainly composed of triacylglycerols. Very long chain fatty acids (VLCFAs) are major constituents of triacylglycerols in many seed oils and represent valuable feedstock for industrial purposes. To identify genetic factors governing natural variability in VLCFA biosynthesis, a quantitative trait loci (QTL) analysis using a recombinant inbred line population derived from a cross between accessions Bay-0 and Shahdara was performed in Arabidopsis thaliana. Two fatty acid chain length ratio (CLR) QTL were identified, with one major locus, CLR.2, accounting for 77% of the observed phenotypic variation. A fine mapping and candidate gene approach showed that a key enzyme of the fatty acid elongation pathway, the β-ketoacyl-CoA synthase 18 (KCS18), was responsible for the CLR.2 QTL detected between Bay-0 and Shahdara. Association genetics and heterologous expression in yeast cells identified a single point mutation associated with an alteration of KCS18 activity, uncovering the molecular bases for the modulation of VLCFA content in these two natural populations of Arabidopsis. Identification of this kcs18 mutant with altered activity opens new perspectives for the modulation of oil composition in crop plants.
Collapse
Affiliation(s)
- Sophie Jasinski
- INRA, UMR1318, Institut Jean-Pierre Bourgin, RD10, Versailles, France.
| | | | | | | | | | | | | |
Collapse
|
41
|
Yang P, Zhu JY, Gong ZJ, Xu DL, Chen XM, Liu WW, Lin XD, Li YF. Transcriptome analysis of the Chinese white wax scale Ericerus pela with focus on genes involved in wax biosynthesis. PLoS One 2012; 7:e35719. [PMID: 22536429 PMCID: PMC3334986 DOI: 10.1371/journal.pone.0035719] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2012] [Accepted: 03/20/2012] [Indexed: 11/18/2022] Open
Abstract
Background The Chinese white wax scale, Ericerus pela Chavannes is economically significant for its role in wax production. This insect has been bred in China for over a thousand years. The wax secreted by the male scale insect during the second-instar larval stage has been widespread used in wax candle production, wax printing, engraving, Chinese medicine, and more recently in the chemical, pharmaceutical, food, and cosmetics industries. However, little is known about the mechanisms responsible for white wax biosynthesis. The characterization of its larval transcriptome may promote better understanding of wax biosynthesis. Methodology/Principal Findings In this study, characterization of the transcriptome of E. pela during peak wax secretion was performed using Illumina sequencing technology. Illumina sequencing produced 41,839 unigenes. These unigenes were annotated by blastx alignment against the NCBI Non-Redundant (NR), Swiss-Prot, KEGG, and COG databases. A total of 104 unigenes related to white wax biosynthesis were identified, and 15 of them were selected for quantitative real-time PCR analysis. We evaluated the variations in gene expression across different development stages, including egg, first/second instar larvae, male pupae, and male and female adults. Then we identified five genes involved in white wax biosynthesis. These genes were expressed most strongly during the second-instar larval stage of male E. pela. Conclusion/Significance The transcriptome analysis of E. pela during peak wax secretion provided an overview of gene expression information at the transcriptional level and a resource for gene mining. Five genes related to white wax biosynthesis were identified.
Collapse
Affiliation(s)
- Pu Yang
- Research Institute of Resources Insects, Chinese Academy of Forestry, Key Laboratory of Cultivating and Utilization of Resources Insects of State Forestry Administration, Kunming, China
| | - Jia-Ying Zhu
- Key Laboratory of Forest Disaster Warning and Control of Yunnan Province, College of Forestry, Southwest Forestry University, Kunming, China
| | - Zhong-Jun Gong
- Institute of Plant Protection, Henan Academy of Agricultural Science, Key Laboratory of Crop Pest Control of Henan Province, Zhengzhou, China
| | - Dong-Li Xu
- Research Institute of Resources Insects, Chinese Academy of Forestry, Key Laboratory of Cultivating and Utilization of Resources Insects of State Forestry Administration, Kunming, China
| | - Xiao-Ming Chen
- Research Institute of Resources Insects, Chinese Academy of Forestry, Key Laboratory of Cultivating and Utilization of Resources Insects of State Forestry Administration, Kunming, China
- * E-mail:
| | - Wei-Wei Liu
- Research Institute of Resources Insects, Chinese Academy of Forestry, Key Laboratory of Cultivating and Utilization of Resources Insects of State Forestry Administration, Kunming, China
| | - Xin-Da Lin
- College of Life Sciences, China Jiliang University, Hangzhou, China
| | - Yan-Fei Li
- Research Institute of Resources Insects, Chinese Academy of Forestry, Key Laboratory of Cultivating and Utilization of Resources Insects of State Forestry Administration, Kunming, China
| |
Collapse
|
42
|
Lucca N, León G. Arabidopsis ACA7, encoding a putative auto-regulated Ca(2+)-ATPase, is required for normal pollen development. PLANT CELL REPORTS 2012; 31:651-9. [PMID: 22044965 DOI: 10.1007/s00299-011-1182-z] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2011] [Revised: 10/14/2011] [Accepted: 10/17/2011] [Indexed: 05/31/2023]
Abstract
Microgametogenesis is a complex process that involves numerous well-coordinated cell activities, ending with the production of pollen grains. Pollen development has been studied at the cytological level in Arabidopsis and other plant species, where its temporal time course has been defined. However, the molecular mechanism underlying this process is still unclear, since a relative small number of genes and/or processes have been identified as essential for pollen development. We have designed a methodology to select candidate genes for functional analysis, based on transcriptomic data obtained from different stages of pollen development. From our analyses, we selected At2g22950 as a candidate gene; this gene encodes a protein belonging to the auto-regulated Ca(2+)-ATPase family, ACA7. Microarray data indicate that ACA7 is expressed exclusively in developing pollen grains, with the highest level of mRNA at the time of the second pollen mitosis. Our RT-PCR experiments showed that ACA7 mRNA is detected exclusively in developing flowers. Confocal microscopy experiments showed a plasma membrane localization for the recombinant GFP:ACA7 protein. We identified two different insertional mutant lines, aca7-1 and aca7-2; plants from both mutant lines displayed a normal vegetative development but showed large amounts of dead pollen grains in mature flowers assayed by Alexander's staining. Histological analysis indicated that abnormalities are detected after the first pollen mitosis and we found a strong correlation between ACA7 mRNA accumulation and the severity of the phenotype. Our results indicate that ACA7 is a plasma membrane protein that has an important role during pollen development, possibly through regulation of Ca(2+) homeostasis.
Collapse
Affiliation(s)
- Noel Lucca
- Laboratorio de Reproducción y Desarrollo de Plantas, Centro de Biotecnología Vegetal, Universidad Andres Bello, República 217, Santiago, Chile
| | | |
Collapse
|
43
|
Cloning and Functional Analysis of Enoyl-CoA Reductase Gene BnECR from Oilseed Rape (Brassica napus L.). ACTA AGRONOMICA SINICA 2011. [DOI: 10.1016/s1875-2780(11)60012-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
44
|
Javelle M, Vernoud V, Rogowsky PM, Ingram GC. Epidermis: the formation and functions of a fundamental plant tissue. THE NEW PHYTOLOGIST 2011; 189:17-39. [PMID: 21054411 DOI: 10.1111/j.1469-8137.2010.03514.x] [Citation(s) in RCA: 166] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Epidermis differentiation and maintenance are essential for plant survival. Constant cross-talk between epidermal cells and their immediate environment is at the heart of epidermal cell fate, and regulates epidermis-specific transcription factors. These factors in turn direct epidermal differentiation involving a whole array of epidermis-specific pathways including specialized lipid metabolism necessary to build the protective cuticle layer. An intact epidermis is crucial for certain key processes in plant development, shoot growth and plant defence. Here, we discuss the control of epidermal cell fate and the function of the epidermal cell layer in the light of recent advances in the field.
Collapse
Affiliation(s)
- Marie Javelle
- Ecole Normale Supérieure de Lyon, UMR 5667, ENS/CNRS/INRA/Université Lyon 1, Lyon, France
| | | | | | | |
Collapse
|
45
|
Javelle M, Vernoud V, Depège-Fargeix N, Arnould C, Oursel D, Domergue F, Sarda X, Rogowsky PM. Overexpression of the epidermis-specific homeodomain-leucine zipper IV transcription factor Outer Cell Layer1 in maize identifies target genes involved in lipid metabolism and cuticle biosynthesis. PLANT PHYSIOLOGY 2010; 154:273-86. [PMID: 20605912 PMCID: PMC2938141 DOI: 10.1104/pp.109.150540] [Citation(s) in RCA: 88] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2009] [Accepted: 07/02/2010] [Indexed: 05/18/2023]
Abstract
Transcription factors of the homeodomain-leucine zipper IV (HD-ZIP IV) family play crucial roles in epidermis-related processes. To gain further insight into the molecular function of OUTER CELL LAYER1 (OCL1), 14 target genes up- or down-regulated in transgenic maize (Zea mays) plants overexpressing OCL1 were identified. The 14 genes all showed partial coexpression with OCL1 in maize organs, and several of them shared preferential expression in the epidermis with OCL1. They encoded proteins involved in lipid metabolism, defense, envelope-related functions, or cuticle biosynthesis and include ZmWBC11a (for white brown complex 11a), an ortholog of AtWBC11 involved in the transport of wax and cutin molecules. In support of the annotations, OCL1-overexpressing plants showed quantitative and qualitative changes of cuticular wax compounds in comparison with wild-type plants. An increase in C24 to C28 alcohols was correlated with the transcriptional up-regulation of ZmFAR1, coding for a fatty acyl-coenzyme A reductase. Transcriptional activation of ZmWBC11a by OCL1 was likely direct, since transactivation in transiently transformed maize kernels was abolished by a deletion of the activation domain in OCL1 or mutations in the L1 box, a cis-element bound by HD-ZIP IV transcription factors. Our data demonstrate that, in addition to AP2/EREBP and MYB-type transcription factors, members of the HD-ZIP IV family contribute to the transcriptional regulation of genes involved in cuticle biosynthesis.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Peter M. Rogowsky
- Université de Lyon, Ecole Normale Supérieure de Lyon, Université Lyon 1, Institut Fédératif de Recherche 128 BioSciences Lyon Gerland, Unité Reproduction et Développement des Plantes, F–69364 Lyon, France (M.J., V.V., N.D.-F., P.M.R.); INRA, UMR879 Reproduction et Développement des Plantes, F–69364 Lyon, France (M.J., V.V., N.D.-F., P.M.R.); CNRS, UMR5667 Reproduction et Développement des Plantes, F–69364 Lyon, France (M.J., V.V., N.D.-F., P.M.R.); Centre de Microscopie INRA/Université de Bourgogne, INRA, Centre de Microbiologie du Sol et de l'Environnement, F–21065 Dijon, France (C.A.); Laboratoire de Biogenèse Membranaire, Université Bordeaux II, CNRS-UMR5200, F–33076 Bordeaux, France (D.O., F.D.); Biogemma, Laboratoire de Biologie Cellulaire et Moléculaire, F–63028 Clermont-Ferrand, France (X.S.)
| |
Collapse
|
46
|
Eckert AJ, van Heerwaarden J, Wegrzyn JL, Nelson CD, Ross-Ibarra J, González-Martínez SC, Neale DB. Patterns of population structure and environmental associations to aridity across the range of loblolly pine (Pinus taeda L., Pinaceae). Genetics 2010; 185:969-82. [PMID: 20439779 PMCID: PMC2907212 DOI: 10.1534/genetics.110.115543] [Citation(s) in RCA: 242] [Impact Index Per Article: 16.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2010] [Accepted: 04/20/2010] [Indexed: 12/21/2022] Open
Abstract
Natural populations of forest trees exhibit striking phenotypic adaptations to diverse environmental gradients, thereby making them appealing subjects for the study of genes underlying ecologically relevant phenotypes. Here, we use a genome-wide data set of single nucleotide polymorphisms genotyped across 3059 functional genes to study patterns of population structure and identify loci associated with aridity across the natural range of loblolly pine (Pinus taeda L.). Overall patterns of population structure, as inferred using principal components and Bayesian cluster analyses, were consistent with three genetic clusters likely resulting from expansions out of Pleistocene refugia located in Mexico and Florida. A novel application of association analysis, which removes the confounding effects of shared ancestry on correlations between genetic and environmental variation, identified five loci correlated with aridity. These loci were primarily involved with abiotic stress response to temperature and drought. A unique set of 24 loci was identified as F(ST) outliers on the basis of the genetic clusters identified previously and after accounting for expansions out of Pleistocene refugia. These loci were involved with a diversity of physiological processes. Identification of nonoverlapping sets of loci highlights the fundamental differences implicit in the use of either method and suggests a pluralistic, yet complementary, approach to the identification of genes underlying ecologically relevant phenotypes.
Collapse
Affiliation(s)
- Andrew J. Eckert
- Section of Evolution and Ecology, Center for Population Biology, and Department of Plant Sciences, University of California, Davis, California 95616, Southern Institute of Forest Genetics, U. S. Department of Agriculture Forest Service, Saucier, Mississippi 39574, Department of Forest Systems and Resources, Forest Research Institute, Center of Forest Research, Institito Nacional de Investigacion y Tecnologia Agraria y Alimentaria, 28040 Madrid, Spain, and Institute of Forest Genetics, Pacific Southwest Research Station, U. S. Department of Agriculture, Davis, California 95616
| | - Joost van Heerwaarden
- Section of Evolution and Ecology, Center for Population Biology, and Department of Plant Sciences, University of California, Davis, California 95616, Southern Institute of Forest Genetics, U. S. Department of Agriculture Forest Service, Saucier, Mississippi 39574, Department of Forest Systems and Resources, Forest Research Institute, Center of Forest Research, Institito Nacional de Investigacion y Tecnologia Agraria y Alimentaria, 28040 Madrid, Spain, and Institute of Forest Genetics, Pacific Southwest Research Station, U. S. Department of Agriculture, Davis, California 95616
| | - Jill L. Wegrzyn
- Section of Evolution and Ecology, Center for Population Biology, and Department of Plant Sciences, University of California, Davis, California 95616, Southern Institute of Forest Genetics, U. S. Department of Agriculture Forest Service, Saucier, Mississippi 39574, Department of Forest Systems and Resources, Forest Research Institute, Center of Forest Research, Institito Nacional de Investigacion y Tecnologia Agraria y Alimentaria, 28040 Madrid, Spain, and Institute of Forest Genetics, Pacific Southwest Research Station, U. S. Department of Agriculture, Davis, California 95616
| | - C. Dana Nelson
- Section of Evolution and Ecology, Center for Population Biology, and Department of Plant Sciences, University of California, Davis, California 95616, Southern Institute of Forest Genetics, U. S. Department of Agriculture Forest Service, Saucier, Mississippi 39574, Department of Forest Systems and Resources, Forest Research Institute, Center of Forest Research, Institito Nacional de Investigacion y Tecnologia Agraria y Alimentaria, 28040 Madrid, Spain, and Institute of Forest Genetics, Pacific Southwest Research Station, U. S. Department of Agriculture, Davis, California 95616
| | - Jeffrey Ross-Ibarra
- Section of Evolution and Ecology, Center for Population Biology, and Department of Plant Sciences, University of California, Davis, California 95616, Southern Institute of Forest Genetics, U. S. Department of Agriculture Forest Service, Saucier, Mississippi 39574, Department of Forest Systems and Resources, Forest Research Institute, Center of Forest Research, Institito Nacional de Investigacion y Tecnologia Agraria y Alimentaria, 28040 Madrid, Spain, and Institute of Forest Genetics, Pacific Southwest Research Station, U. S. Department of Agriculture, Davis, California 95616
| | - Santíago C. González-Martínez
- Section of Evolution and Ecology, Center for Population Biology, and Department of Plant Sciences, University of California, Davis, California 95616, Southern Institute of Forest Genetics, U. S. Department of Agriculture Forest Service, Saucier, Mississippi 39574, Department of Forest Systems and Resources, Forest Research Institute, Center of Forest Research, Institito Nacional de Investigacion y Tecnologia Agraria y Alimentaria, 28040 Madrid, Spain, and Institute of Forest Genetics, Pacific Southwest Research Station, U. S. Department of Agriculture, Davis, California 95616
| | - David. B. Neale
- Section of Evolution and Ecology, Center for Population Biology, and Department of Plant Sciences, University of California, Davis, California 95616, Southern Institute of Forest Genetics, U. S. Department of Agriculture Forest Service, Saucier, Mississippi 39574, Department of Forest Systems and Resources, Forest Research Institute, Center of Forest Research, Institito Nacional de Investigacion y Tecnologia Agraria y Alimentaria, 28040 Madrid, Spain, and Institute of Forest Genetics, Pacific Southwest Research Station, U. S. Department of Agriculture, Davis, California 95616
| |
Collapse
|
47
|
|
48
|
Yu XH, Chen MH, Liu CJ. Nucleocytoplasmic-localized acyltransferases catalyze the malonylation of 7-O-glycosidic (iso)flavones in Medicago truncatula. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2008; 55:382-396. [PMID: 18419782 DOI: 10.1111/j.1365-313x.2008.03509.x] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
(Iso)flavonoids are commonly accumulated as malonylated or acetylated glycoconjugates in legumes. Sequence analysis on EST database of the model legume Medicago truncatula enabled us to identify nine cDNA sequences encoding BAHD super-family enzymes that are distinct from the most of the characterized anthocyanin/flavonol acyltransferase genes in other species. Functional characterization revealed that three of these corresponding enzymes, MtMaT1, 2 and 3, specifically recognize malonyl CoA as an acyl donor and catalyze the malonylation of a range of isoflavone 7-O-glucosides in vitro. These malonyltransferase genes displayed distinct tissue-specific expression patterns and responded differentially to biotic and abiotic stresses. Consistent with gene expression, the level of the accumulated malonyl isoflavone glucoside was altered in the roots of M. truncatula grown under normal and drought-stressed conditions. Overexpression of the MtMaT1 gene in a previously engineered Arabidopsis line that accumulates genistein glycosides (Proc. Natl Acad. Sci. USA, 99, 2002:14578) led to a malonylated product. Confocal microscopy of the transiently expressed MtMaT1-GFP fusion revealed strong fluorescence in both the cytoplasm and nucleus of M. truncatula and tobacco leaf cells. A truncated MtMaT1 lacking the C-terminal polypeptide of 110 amino acid residues that include the DFGWG motif, the single conserved sequence signature of BAHD super-family members, retained considerable catalytic efficiency, but showed an altered optimum pH preference for maximum activity. Such C-terminal polypeptide deletion or deletion of the DFGWG motif alone led to improper folding of the transiently expressed GFP fusion protein in living cells, and impaired nuclear localization of the enzyme.
Collapse
Affiliation(s)
- Xiao-Hong Yu
- Biology Department, Brookhaven National Laboratory, Upton, NY 11973, USA
| | | | | |
Collapse
|
49
|
Minto RE, Blacklock BJ. Biosynthesis and function of polyacetylenes and allied natural products. Prog Lipid Res 2008; 47:233-306. [PMID: 18387369 PMCID: PMC2515280 DOI: 10.1016/j.plipres.2008.02.002] [Citation(s) in RCA: 220] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2007] [Revised: 02/25/2008] [Accepted: 02/28/2008] [Indexed: 11/19/2022]
Abstract
Polyacetylenic natural products are a substantial class of often unstable compounds containing a unique carbon-carbon triple bond functionality, that are intriguing for their wide variety of biochemical and ecological functions, economic potential, and surprising mode of biosynthesis. Isotopic tracer experiments between 1960 and 1990 demonstrated that the majority of these compounds are derived from fatty acid and polyketide precursors. During the past decade, research into the metabolism of polyacetylenes has swiftly advanced, driven by the cloning of the first genes responsible for polyacetylene biosynthesis in plants, moss, fungi, and actinomycetes and the initial characterization of the gene products. The current state of knowledge of the biochemistry and molecular genetics of polyacetylenic secondary metabolic pathways will be presented together with an up-to-date survey of new terrestrial and marine natural products, their known biological activities, and a discussion of their likely metabolic origins.
Collapse
Affiliation(s)
- Robert E Minto
- Department of Chemistry and Chemical Biology, Indiana University-Purdue University Indianapolis, 402 North Blackford Street, Indianapolis, IN 46202, United States.
| | | |
Collapse
|
50
|
Joubès J, Raffaele S, Bourdenx B, Garcia C, Laroche-Traineau J, Moreau P, Domergue F, Lessire R. The VLCFA elongase gene family in Arabidopsis thaliana: phylogenetic analysis, 3D modelling and expression profiling. PLANT MOLECULAR BIOLOGY 2008; 67:547-66. [PMID: 18465198 DOI: 10.1007/s11103-008-9339-z] [Citation(s) in RCA: 233] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2008] [Accepted: 04/13/2008] [Indexed: 05/18/2023]
Abstract
As precursors of wax compounds, very long chain fatty acids participate in the limitation of non-stomatal water loss and the prevention of pathogen attacks. They also serve as energy storage in seeds and as membrane building blocks. Their biosynthesis is catalyzed by the acyl-CoA elongase, a membrane-bound enzymatic complex containing four distinct enzymes (KCS, KCR, HCD and ECR). Twenty-one 3-ketoacyl-CoA synthase (KCS) genes have been identified in Arabidopsis thaliana genome. In this paper we present an overview of the acyl-CoA elongase genes in Arabidopsis focusing on the entire KCS family. We show that the KCS family is made up of 8 distinct subclasses, according to their phylogeny, duplication history, genomic organization, protein topology and 3D modelling. The analysis of the subcellular localization in tobacco cells of the different subunits of the acyl-CoA elongase shows that all these proteins are localized in the endoplasmic reticulum demonstrating that VLCFA production occurs in this compartment. The expression patterns in Arabidopsis of the acyl-CoA elongase genes suggest several levels of regulations at the tissular or organ level but also under stress conditions suggesting a complex organization of this multigenic family.
Collapse
Affiliation(s)
- Jérôme Joubès
- Laboratoire de Biogenèse Membranaire, Université Victor Ségalen Bordeaux 2, CNRS, UMR5200, 146 rue Léo Saignat, Case 92, 33076 Bordeaux Cedex, France.
| | | | | | | | | | | | | | | |
Collapse
|