1
|
Puddu A, Montecucco F, Maggi D. Caveolin-1 and Atherosclerosis: Regulation of LDLs Fate in Endothelial Cells. Int J Mol Sci 2023; 24:8869. [PMID: 37240214 PMCID: PMC10219015 DOI: 10.3390/ijms24108869] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 04/28/2023] [Accepted: 05/15/2023] [Indexed: 05/28/2023] Open
Abstract
Caveolae are 50-100 nm cell surface plasma membrane invaginations observed in terminally differentiated cells. They are characterized by the presence of the protein marker caveolin-1. Caveolae and caveolin-1 are involved in regulating several signal transduction pathways and processes. It is well recognized that they have a central role as regulators of atherosclerosis. Caveolin-1 and caveolae are present in most of the cells involved in the development of atherosclerosis, including endothelial cells, macrophages, and smooth muscle cells, with evidence of either pro- or anti-atherogenic functions depending on the cell type examined. Here, we focused on the role of caveolin-1 in the regulation of the LDLs' fate in endothelial cells.
Collapse
Affiliation(s)
- Alessandra Puddu
- Department of Internal Medicine, University of Genoa, Viale Benedetto XV, 6, 16132 Genoa, Italy; (F.M.); (D.M.)
| | - Fabrizio Montecucco
- Department of Internal Medicine, University of Genoa, Viale Benedetto XV, 6, 16132 Genoa, Italy; (F.M.); (D.M.)
- IRCCS Ospedale Policlinico San Martino Genoa, Italian Cardiovascular Network, Largo Rosanna Benzi 10, 16132 Genoa, Italy
| | - Davide Maggi
- Department of Internal Medicine, University of Genoa, Viale Benedetto XV, 6, 16132 Genoa, Italy; (F.M.); (D.M.)
| |
Collapse
|
2
|
Trigatti BL. Pcpe2: A New Partner for the Scavenger Receptor Class B Type I in High-Density Lipoprotein Selective Lipid Uptake. Arterioscler Thromb Vasc Biol 2021; 41:2726-2729. [PMID: 34615373 DOI: 10.1161/atvbaha.121.316971] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Affiliation(s)
- Bernardo L Trigatti
- Department of Biochemistry and Biomedical Sciences, Thrombosis and Atherosclerosis Research Institute, McMaster University and Hamilton Health Sciences, Hamilton, Ontario, Canada
| |
Collapse
|
3
|
Rueda CM, Rodríguez-Perea AL, Moreno-Fernandez M, Jackson CM, Melchior JT, Davidson WS, Chougnet CA. High density lipoproteins selectively promote the survival of human regulatory T cells. J Lipid Res 2017; 58:1514-1523. [PMID: 28377425 DOI: 10.1194/jlr.m072835] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2016] [Revised: 04/03/2017] [Indexed: 01/05/2023] Open
Abstract
HDLs appear to affect regulatory T cell (Treg) homeostasis, as suggested by the increased Treg counts in HDL-treated mice and by the positive correlation between Treg frequency and HDL-cholesterol levels in statin-treated healthy adults. However, the underlying mechanisms remain unclear. Herein, we show that HDLs, not LDLs, significantly decreased the apoptosis of human Tregs in vitro, whereas they did not alter naïve or memory CD4+ T cell survival. Similarly, oleic acid bound to serum albumin increased Treg survival. Tregs bound and internalized high amounts of HDL compared with other subsets, which might arise from the higher expression of the scavenger receptor class B type I by Tregs; accordingly, blocking this receptor hindered HDL-mediated Treg survival. Mechanistically, we showed that HDL increased Treg ATP concentration and mitochondrial activity, enhancing basal respiration, maximal respiration, and spare respiratory capacity. Blockade of FA oxidation by etoxomir abolished the HDL-mediated enhanced survival and mitochondrial activity. Our findings thus suggest that Tregs can specifically internalize HDLs from their microenvironment and use them as an energy source. Furthermore, a novel implication of our data is that enhanced Treg survival may contribute to HDLs' anti-inflammatory properties.
Collapse
Affiliation(s)
- Cesar M Rueda
- Division of Immunobiology, Cincinnati Children's Hospital Research Foundation, Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH
| | | | - Maria Moreno-Fernandez
- Division of Immunobiology, Cincinnati Children's Hospital Research Foundation, Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH
| | - Courtney M Jackson
- Division of Immunobiology, Cincinnati Children's Hospital Research Foundation, Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH
| | - John T Melchior
- Division of Experimental Pathology, Department of Pathology and Laboratory Medicine, University of Cincinnati, Cincinnati, OH
| | - W Sean Davidson
- Division of Experimental Pathology, Department of Pathology and Laboratory Medicine, University of Cincinnati, Cincinnati, OH
| | - Claire A Chougnet
- Division of Immunobiology, Cincinnati Children's Hospital Research Foundation, Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH.
| |
Collapse
|
4
|
Caveolin-1 Function in Liver Physiology and Disease. Trends Mol Med 2016; 22:889-904. [DOI: 10.1016/j.molmed.2016.08.007] [Citation(s) in RCA: 56] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2016] [Revised: 08/14/2016] [Accepted: 08/17/2016] [Indexed: 12/18/2022]
|
5
|
Niesman IR, Schilling JM, Shapiro LA, Kellerhals SE, Bonds JA, Kleschevnikov AM, Cui W, Voong A, Krajewski S, Ali SS, Roth DM, Patel HH, Patel PM, Head BP. Traumatic brain injury enhances neuroinflammation and lesion volume in caveolin deficient mice. J Neuroinflammation 2014; 11:39. [PMID: 24593993 PMCID: PMC3975903 DOI: 10.1186/1742-2094-11-39] [Citation(s) in RCA: 77] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2013] [Accepted: 02/10/2014] [Indexed: 11/30/2022] Open
Abstract
Background Traumatic brain injury (TBI) enhances pro-inflammatory responses, neuronal loss and long-term behavioral deficits. Caveolins (Cavs) are regulators of neuronal and glial survival signaling. Previously we showed that astrocyte and microglial activation is increased in Cav-1 knock-out (KO) mice and that Cav-1 and Cav-3 modulate microglial morphology. We hypothesized that Cavs may regulate cytokine production after TBI. Methods Controlled cortical impact (CCI) model of TBI (3 m/second; 1.0 mm depth; parietal cortex) was performed on wild-type (WT; C57Bl/6), Cav-1 KO, and Cav-3 KO mice. Histology and immunofluorescence microscopy (lesion volume, glia activation), behavioral tests (open field, balance beam, wire grip, T-maze), electrophysiology, electron paramagnetic resonance, membrane fractionation, and multiplex assays were performed. Data were analyzed by unpaired t tests or analysis of variance (ANOVA) with post-hoc Bonferroni’s multiple comparison. Results CCI increased cortical and hippocampal injury and decreased expression of MLR-localized synaptic proteins (24 hours), enhanced NADPH oxidase (Nox) activity (24 hours and 1 week), enhanced polysynaptic responses (1 week), and caused hippocampal-dependent learning deficits (3 months). CCI increased brain lesion volume in both Cav-3 and Cav-1 KO mice after 24 hours (P < 0.0001, n = 4; one-way ANOVA). Multiplex array revealed a significant increase in expression of IL-1β, IL-9, IL-10, KC (keratinocyte chemoattractant), and monocyte chemoattractant protein 1 (MCP-1) in ipsilateral hemisphere and IL-9, IL-10, IL-17, and macrophage inflammatory protein 1 alpha (MIP-1α) in contralateral hemisphere of WT mice after 4 hours. CCI increased IL-2, IL-6, KC and MCP-1 in ipsilateral and IL-6, IL-9, IL-17 and KC in contralateral hemispheres in Cav-1 KO and increased all 10 cytokines/chemokines in both hemispheres except for IL-17 (ipsilateral) and MIP-1α (contralateral) in Cav-3 KO (versus WT CCI). Cav-3 KO CCI showed increased IL-1β, IL-9, KC, MCP-1, MIP-1α, and granulocyte-macrophage colony-stimulating factor in ipsilateral and IL-1β, IL-2, IL-9, IL-10, and IL-17 in contralateral hemispheres (P = 0.0005, n = 6; two-way ANOVA) compared to Cav-1 KO CCI. Conclusion CCI caused astrocyte and microglial activation and hippocampal neuronal injury. Cav-1 and Cav-3 KO exhibited enhanced lesion volume and cytokine/chemokine production after CCI. These findings suggest that Cav isoforms may regulate neuroinflammatory responses and neuroprotection following TBI.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | | | | | - Brian P Head
- Veterans Affairs San Diego Healthcare System, 3350 La Jolla Village Drive, San Diego, CA 92161, USA.
| |
Collapse
|
6
|
Multimolecular signaling complexes enable Syk-mediated signaling of CD36 internalization. Dev Cell 2013; 24:372-83. [PMID: 23395392 DOI: 10.1016/j.devcel.2013.01.007] [Citation(s) in RCA: 89] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2011] [Revised: 12/20/2012] [Accepted: 01/10/2013] [Indexed: 12/16/2022]
Abstract
CD36 is a versatile receptor known to play a central role in the development of atherosclerosis, the pathogenesis of malaria, and the removal of apoptotic cells. Remarkably, the short cytosolically exposed regions of CD36 lack identifiable motifs, which has hampered elucidation of its mode of signaling. Using a combination of phosphoprotein isolation, mass spectrometry, superresolution imaging, and gene silencing, we have determined that the receptor induces ligand internalization through a heteromeric complex consisting of CD36, β1 and/or β2 integrins, and the tetraspanins CD9 and/or CD81. This receptor complex serves to link CD36 to the adaptor FcRγ, which bears an immunoreceptor tyrosine activation motif. By coupling to FcRγ, CD36 is able to engage Src-family kinases and Syk, which in turn drives the internalization of CD36 and its bound ligands.
Collapse
|
7
|
Le Lay S, Rodriguez M, Jessup W, Rentero C, Li Q, Cartland S, Grewal T, Gaus K. Caveolin-1-mediated apolipoprotein A-I membrane binding sites are not required for cholesterol efflux. PLoS One 2011; 6:e23353. [PMID: 21858084 PMCID: PMC3155548 DOI: 10.1371/journal.pone.0023353] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2011] [Accepted: 07/13/2011] [Indexed: 11/18/2022] Open
Abstract
Caveolin-1 (Cav1), a structural protein required for the formation of invaginated membrane domains known as caveolae, has been implicated in cholesterol trafficking and homeostasis. Here we investigated the contribution of Cav1 to apolipoprotein A-I (apoA-I) cell surface binding and intracellular processing using mouse embryonic fibroblasts (MEFs) derived from wild type (WT) or Cav1-deficient (Cav1(-/-)) animals. We found that cells expressing Cav1 have 2.6-fold more apoA-I binding sites than Cav1(-/-) cells although these additional binding sites are not associated with detergent-free lipid rafts. Further, Cav1-mediated binding targets apoA-I for internalization and degradation and these processes are not correlated to cholesterol efflux. Despite lower apoA-I binding, cholesterol efflux from Cav1(-/-) MEFs is 1.7-fold higher than from WT MEFs. Stimulation of ABCA1 expression with an LXR agonist enhances cholesterol efflux from both WT and Cav1(-/-) cells without increasing apoA-I surface binding or affecting apoA-I processing. Our results indicate that there are at least two independent lipid binding sites for apoA-I; Cav1-mediated apoA-I surface binding and uptake is not linked to cholesterol efflux, indicating that membrane domains other than caveolae regulate ABCA1-mediated cholesterol efflux.
Collapse
Affiliation(s)
- Soazig Le Lay
- Centre de Recherche des Cordeliers, INSERM, U872, Paris, France
| | - Macarena Rodriguez
- Centre for Vascular Research, University of New South Wales, Sydney, Australia
| | - Wendy Jessup
- Centre for Vascular Research, University of New South Wales, Sydney, Australia
| | - Carles Rentero
- Centre for Vascular Research, University of New South Wales, Sydney, Australia
| | - Qiong Li
- Centre for Vascular Research, University of New South Wales, Sydney, Australia
| | - Siân Cartland
- Centre for Vascular Research, University of New South Wales, Sydney, Australia
| | - Thomas Grewal
- Faculty of Pharmacy, University of Sydney, Sydney, Australia
| | - Katharina Gaus
- Centre for Vascular Research, University of New South Wales, Sydney, Australia
- * E-mail:
| |
Collapse
|
8
|
Kent AP, Stylianou IM. Scavenger receptor class B member 1 protein: hepatic regulation and its effects on lipids, reverse cholesterol transport, and atherosclerosis. Hepat Med 2011; 3:29-44. [PMID: 24367219 PMCID: PMC3846864 DOI: 10.2147/hmer.s7860] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Scavenger receptor class B member 1 (SR-BI, also known as SCARB1) is the primary receptor for the selective uptake of cholesterol from high-density lipoprotein (HDL). SR-BI is present in several key tissues; however, its presence and function in the liver is deemed the most relevant for protection against atherosclerosis. Cholesterol is transferred from HDL via SR-BI to the liver, which ultimately results in the excretion of cholesterol via bile and feces in what is known as the reverse cholesterol transport pathway. Much of our knowledge of SR-BI hepatic function and regulation is derived from mouse models and in vitro characterization. Multiple independent regulatory mechanisms of SR-BI have been discovered that operate at the transcriptional and post-transcriptional levels. In this review we summarize the critical discoveries relating to hepatic SR-BI cholesterol metabolism, atherosclerosis, and regulation of SR-BI, as well as alternative functions that may indirectly affect atherosclerosis.
Collapse
Affiliation(s)
- Anthony P Kent
- Department of Medicine and Institute for Translational Medicine and Therapeutics, University of Pennsylvania School of Medicine, Philadelphia, PA, USA
| | - Ioannis M Stylianou
- Department of Medicine and Institute for Translational Medicine and Therapeutics, University of Pennsylvania School of Medicine, Philadelphia, PA, USA
| |
Collapse
|
9
|
Truong TQ, Aubin D, Falstrault L, Brodeur MR, Brissette L. SR-BI, CD36, and caveolin-1 contribute positively to cholesterol efflux in hepatic cells. Cell Biochem Funct 2010; 28:480-9. [DOI: 10.1002/cbf.1680] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
10
|
Truong TQ, Brodeur MR, Falstrault L, Rhainds D, Brissette L. Expression of caveolin-1 in hepatic cells increases oxidized LDL uptake and preserves the expression of lipoprotein receptors. J Cell Biochem 2009; 108:906-15. [DOI: 10.1002/jcb.22321] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
11
|
Majkova Z, Oesterling E, Toborek M, Hennig B. Impact of nutrition on PCB toxicity. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2008; 25:192-196. [PMID: 21783859 DOI: 10.1016/j.etap.2007.10.015] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
Studies are evolving which suggest that nutritional intervention can modify pathologies of diseases associated with environmental toxic insults. The diet is a major route of exposure to environmental toxins, such as persistent organic pollutants and heavy metals. Many persistent organics, such as polychlorinated biphenyls (PCBs), bioaccumulate in our bodies and "bioremediation" is extremely difficult. Furthermore, many environmental toxins induce signaling pathways that are oxidative stress-sensitive and similar or the same as the ones associated with the etiology and early pathology of many chronic diseases. There is now increasing evidence that exposure to PCBs can contribute to the development of inflammatory diseases such as atherosclerosis. Activation, chronic inflammation, and dysfunction of the vascular endothelium are critical events in the initiation and acceleration of atherosclerotic lesion formation. Our studies indicate that an increase in cellular oxidative stress and an imbalance in antioxidant status are critical events in PCB-mediated induction of inflammatory genes and endothelial cell dysfunction. We also have evidence that the plasma membrane microdomains called caveolae play an important role in endothelial activation and toxicity mediated by coplanar PCBs. Caveolae are particularly abundant in endothelial cells and play a major role in endothelial trafficking and the regulation of signaling pathways associated with the pathology of vascular diseases. There is a great need to further explore this nutritional paradigm in environmental toxicology and to improve our understanding of the relationship between nutrition and lifestyle, exposure to environmental toxins and disease. Our studies suggest that certain dietary fats can increase the risk of environmental insult induced by PCBs, while other dietary factors may provide protection. Nutrition may provide the most sensible means to develop primary intervention and prevention strategies of diseases associated with many environmental toxic insults.
Collapse
Affiliation(s)
- Zuzana Majkova
- Graduate Center for Toxicology, University of Kentucky, Lexington, KY 40536-0200, United States
| | | | | | | |
Collapse
|
12
|
Heimerl S, Liebisch G, Lay SL, Böttcher A, Wiesner P, Lindtner S, Kurzchalia TV, Simons K, Schmitz G. Caveolin-1 deficiency alters plasma lipid and lipoprotein profiles in mice. Biochem Biophys Res Commun 2008; 367:826-33. [DOI: 10.1016/j.bbrc.2008.01.010] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2008] [Accepted: 01/03/2008] [Indexed: 11/30/2022]
|
13
|
Abstract
Studies on the structure and function of caveolae have revealed how this versatile subcellular organelle can influence numerous signalling pathways. This brief review will discuss a few of the key features of caveolae as it relates to signalling and disease processes.
Collapse
Affiliation(s)
- Candice M Thomas
- Department of Pediatrics and the Kentucky Pediatric Research Institute, University of Kentucky, Lexington, KY, USA
| | | |
Collapse
|
14
|
Ortegren U, Aboulaich N, Ost A, Strålfors P. A new role for caveolae as metabolic platforms. Trends Endocrinol Metab 2007; 18:344-9. [PMID: 17936007 DOI: 10.1016/j.tem.2007.08.007] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/31/2007] [Revised: 08/14/2007] [Accepted: 08/14/2007] [Indexed: 11/19/2022]
Abstract
The plasma membrane of cells functions as a barrier to the environment. Caveolae are minute invaginations of the membrane that selectively carry out the exchange of information and materials with the environment, by functioning as organizers of signal transduction and through endocytosis. Recent findings of uptake of different metabolites and of lipid metabolism occurring in caveolae, point to a new general function of caveolae. As gateways for the uptake of nutrients across the plasma membrane, and as platforms for the metabolic conversion of nutrients, especially in adipocytes, caveolae are now emerging as active centers for many aspects of intermediary metabolism, with implications for our understanding of obesity, diabetes and other metabolic disorders.
Collapse
Affiliation(s)
- Unn Ortegren
- Department of Cell Biology and Diabetes Research Centre, Linköping University, SE58185, Linköping, Sweden
| | | | | | | |
Collapse
|
15
|
Orlowski S, Coméra C, Tercé F, Collet X. Lipid rafts: dream or reality for cholesterol transporters? EUROPEAN BIOPHYSICS JOURNAL: EBJ 2007; 36:869-85. [PMID: 17576551 DOI: 10.1007/s00249-007-0193-8] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2007] [Revised: 05/11/2007] [Accepted: 05/15/2007] [Indexed: 01/12/2023]
Abstract
As a key constituent of the cell membranes, cholesterol is an endogenous component of mammalian cells of primary importance, and is thus subjected to highly regulated homeostasis at the cellular level as well as at the level of the whole body. This regulation requires adapted mechanisms favoring the handling of cholesterol in aqueous compartments, as well as its transfer into or out of membranes, involving membrane proteins. A membrane exhibits functional properties largely depending on its lipid composition and on its structural organization, which very often involves cholesterol-rich microdomains. Then there is the appealing possibility that cholesterol may regulate its own transmembrane transport at a purely functional level, independently of any transcriptional regulation based on cholesterol-sensitive nuclear factors controling the expression level of lipid transport proteins. Indeed, the main cholesterol "transporters" presently believed to mediate for instance the intestinal absorption of cholesterol, that are SR-BI, NPC1L1, ABCA1, ABCG1, ABCG5/G8 and even P-glycoprotein, all present privileged functional relationships with membrane cholesterol-containing microdomains. In particular, they all more or less clearly induce membrane disorganization, supposed to facilitate cholesterol exchanges with the close aqueous medium. The actual lipid substrates handled by these transporters are not yet unambiguously determined, but they likely concern the components of membrane microdomains. Conversely, raft alterations may provide specific modulations of the transporter activities, as well as they can induce indirect effects via local perturbations of the membrane. Finally, these cholesterol transporters undergo regulated intracellular trafficking, with presumably some relationships to rafts which remain to be clarified.
Collapse
Affiliation(s)
- Stéphane Orlowski
- SB2SM/IBTS and URA 2096 CNRS, CEA, Centre de Saclay, 91191, Gif-sur-Yvette cedex, France.
| | | | | | | |
Collapse
|