1
|
Balsinde J, Balboa MA. Plasmalogens in Innate Immune Cells: From Arachidonate Signaling to Ferroptosis. Biomolecules 2024; 14:1461. [PMID: 39595637 PMCID: PMC11592020 DOI: 10.3390/biom14111461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2024] [Revised: 11/13/2024] [Accepted: 11/16/2024] [Indexed: 11/28/2024] Open
Abstract
Polyunsaturated fatty acids such as arachidonic acid are indispensable components of innate immune signaling. Plasmalogens are glycerophospholipids with a vinyl ether bond in the sn-1 position of the glycerol backbone instead of the more common sn-1 ester bond present in "classical" glycerophospholipids. This kind of phospholipid is particularly rich in polyunsaturated fatty acids, especially arachidonic acid. In addition to or independently of the role of plasmalogens as major providers of free arachidonic acid for eicosanoid synthesis, plasmalogens also perform a varied number of functions. Membrane plasmalogen levels may determine parameters of the plasma membrane, such as fluidity and the formation of microdomains that are necessary for efficient signal transduction leading to optimal phagocytosis by macrophages. Also, plasmalogens may be instrumental for the execution of ferroptosis. This is a nonapoptotic form of cell death that is associated with oxidative stress. This review discusses recent data suggesting that, beyond their involvement in the cellular metabolism of arachidonic acid, the cells maintain stable pools of plasmalogens rich in polyunsaturated fatty acids for executing specific responses.
Collapse
Affiliation(s)
- Jesús Balsinde
- Instituto de Biología y Geneética Molecular, Consejo Superior de Investigaciones Científicas Uva, 47003 Valladolid, Spain
- Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - María A. Balboa
- Instituto de Biología y Geneética Molecular, Consejo Superior de Investigaciones Científicas Uva, 47003 Valladolid, Spain
- Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Instituto de Salud Carlos III, 28029 Madrid, Spain
| |
Collapse
|
2
|
Honsho M, Fujiki Y. Asymmetric Distribution of Plasmalogens and Their Roles-A Mini Review. MEMBRANES 2023; 13:764. [PMID: 37755186 PMCID: PMC10534842 DOI: 10.3390/membranes13090764] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 08/03/2023] [Accepted: 08/25/2023] [Indexed: 09/28/2023]
Abstract
Plasmalogens are a unique family of cellular glycerophospholipids that contain a vinyl-ether bond. The synthesis of plasmalogens is initiated in peroxisomes and completed in the endoplasmic reticulum. Plasmalogens are transported to the post-Golgi compartment, including endosomes and plasma membranes, in a manner dependent on ATP, but not vesicular transport. Plasmalogens are preferentially localized in the inner leaflet of the plasma membrane in a manner dependent on P4-type ATPase ATP8B2, that associates with the CDC50 subunit. Plasmalogen biosynthesis is spatiotemporally regulated by a feedback mechanism that senses the amount of plasmalogens in the inner leaflet of the plasma membrane and controls the stability of fatty acyl-CoA reductase 1 (FAR1), the rate-limiting enzyme for plasmalogen biosynthesis. The physiological consequences of such asymmetric localization and homeostasis of plasmalogens are discussed in this review.
Collapse
Affiliation(s)
- Masanori Honsho
- Department of Neuroinflammation and Brain Fatigue Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka 812-8581, Japan
| | - Yukio Fujiki
- Institute of Rheological Functions of Food-Kyushu University Collaboration Program, Kyushu University, Fukuoka 811-2501, Japan
- Graduate School of Science, University of Hyogo, Himeji 671-2280, Japan
| |
Collapse
|
3
|
Compartmentalized regulation of lipid signaling in oxidative stress and inflammation: Plasmalogens, oxidized lipids and ferroptosis as new paradigms of bioactive lipid research. Prog Lipid Res 2023; 89:101207. [PMID: 36464139 DOI: 10.1016/j.plipres.2022.101207] [Citation(s) in RCA: 34] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Revised: 11/24/2022] [Accepted: 11/27/2022] [Indexed: 12/03/2022]
Abstract
Perturbations in lipid homeostasis combined with conditions favoring oxidative stress constitute a hallmark of the inflammatory response. In this review we focus on the most recent results concerning lipid signaling in various oxidative stress-mediated responses and inflammation. These include phagocytosis and ferroptosis. The best characterized event, common to these responses, is the synthesis of oxygenated metabolites of arachidonic acid and other polyunsaturated fatty acids. Major developments in this area have highlighted the importance of compartmentalization of the enzymes and lipid substrates in shaping the appropriate response. In parallel, other relevant lipid metabolic pathways are also activated and, until recently, there has been a general lack of knowledge on the enzyme regulation and molecular mechanisms operating in these pathways. Specifically, data accumulated in recent years on the regulation and biological significance of plasmalogens and oxidized phospholipids have expanded our knowledge on the involvement of lipid metabolism in the progression of disease and the return to homeostasis. These recent major developments have helped to establish the concept of membrane phospholipids as cellular repositories for the compartmentalized production of bioactive lipids involved in cellular regulation. Importantly, an enzyme classically described as being involved in regulating the homeostatic turnover of phospholipids, namely the group VIA Ca2+-independent phospholipase A2 (iPLA2β), has taken center stage in oxidative stress and inflammation research owing to its key involvement in regulating metabolic and ferroptotic signals arising from membrane phospholipids. Understanding the role of iPLA2β in ferroptosis and metabolism not only broadens our knowledge of disease but also opens possible new horizons for this enzyme as a target for therapeutic intervention.
Collapse
|
4
|
Daniel N, Le Barz M, Mitchell PL, Varin TV, Julien IB, Farabos D, Pilon G, Gauthier J, Garofalo C, Kang JX, Trottier J, Barbier O, Roy D, Chassaing B, Levy E, Raymond F, Lamaziere A, Flamand N, Silvestri C, Jobin C, Di Marzo V, Marette A. Comparing Transgenic Production to Supplementation of ω-3 PUFA Reveals Distinct But Overlapping Mechanisms Underlying Protection Against Metabolic and Hepatic Disorders. FUNCTION 2022; 4:zqac069. [PMID: 36778746 PMCID: PMC9909367 DOI: 10.1093/function/zqac069] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 12/20/2022] [Accepted: 12/21/2022] [Indexed: 12/31/2022] Open
Abstract
We compared endogenous ω-3 PUFA production to supplementation for improving obesity-related metabolic dysfunction. Fat-1 transgenic mice, who endogenously convert exogenous ω-6 to ω-3 PUFA, and wild-type littermates were fed a high-fat diet and a daily dose of either ω-3 or ω-6 PUFA-rich oil for 12 wk. The endogenous ω-3 PUFA production improved glucose intolerance and insulin resistance but not hepatic steatosis. Conversely, ω-3 PUFA supplementation fully prevented hepatic steatosis but failed to improve insulin resistance. Both models increased hepatic levels of ω-3 PUFA-containing 2-monoacylglycerol and N-acylethanolamine congeners, and reduced levels of ω-6 PUFA-derived endocannabinoids with ω-3 PUFA supplementation being more efficacious. Reduced hepatic lipid accumulation associated with the endocannabinoidome metabolites EPEA and DHEA, which was causally demonstrated by lower lipid accumulation in oleic acid-treated hepatic cells treated with these metabolites. While both models induced a significant fecal enrichment of the beneficial Allobaculum genus, mice supplemented with ω-3 PUFA displayed additional changes in the gut microbiota functions with a significant reduction of fecal levels of the proinflammatory molecules lipopolysaccharide and flagellin. Multiple-factor analysis identify that the metabolic improvements induced by ω-3 PUFAs were accompanied by a reduced production of the proinflammatory cytokine TNFα, and that ω-3 PUFA supplementation had a stronger effect on improving the hepatic fatty acid profile than endogenous ω-3 PUFA. While endogenous ω-3 PUFA production preferably improves glucose tolerance and insulin resistance, ω-3 PUFA intake appears to be required to elicit selective changes in hepatic endocannabinoidome signaling that are essential to alleviate high-fat diet-induced hepatic steatosis.
Collapse
Affiliation(s)
| | | | - Patricia L Mitchell
- Quebec Heart and Lung Institute Research Centre, Laval University, Quebec, QC G1V 4G5, Canada,Institute of Nutrition and Functional Foods (INAF), Centre NUTRISS, Quebec, QC G1V 0A6, Canada
| | - Thibault V Varin
- Quebec Heart and Lung Institute Research Centre, Laval University, Quebec, QC G1V 4G5, Canada,Institute of Nutrition and Functional Foods (INAF), Centre NUTRISS, Quebec, QC G1V 0A6, Canada
| | - Isabelle Bourdeau Julien
- Institute of Nutrition and Functional Foods (INAF), Centre NUTRISS, Quebec, QC G1V 0A6, Canada,Canada Excellence Research Chair on the Microbiome-Endocannabinoidome Axis in Metabolic Health (CERC-MEND), Laval University, Quebec, QC G1V 0A6, Canada
| | - Dominique Farabos
- Saint Antoine Research Center, Sorbonne University INSERM UMR 938; Assistance Publique - Hôpitaux de Paris, Clinical Metabolomics department, Hôpital Saint Antoine, Paris, 75571, France
| | - Geneviève Pilon
- Quebec Heart and Lung Institute Research Centre, Laval University, Quebec, QC G1V 4G5, Canada,Institute of Nutrition and Functional Foods (INAF), Centre NUTRISS, Quebec, QC G1V 0A6, Canada
| | - Josée Gauthier
- Department of Medicine, Department of Infectious Diseases and Immunology, and Department of Anatomy and Cell Physiology, University of Florida, Gainesville FL, 32608, USA
| | - Carole Garofalo
- Department of Nutrition, University of Montreal, Montreal QC H3T 1A8, Canada and Research Centre, Sainte-Justine Hospital, Montreal, QC H3T 1C5, Canada
| | - Jing X Kang
- Laboratory for Lipid Medicine and Technology, Department of Medicine, Massachusetts General Hospital and Harvard Medical School, Charlestown MA 02129, USA
| | - Jocelyn Trottier
- Laboratory of Molecular Pharmacology, CHU-Quebec Research Centre, and Faculty of Pharmacy, Laval University, Quebec, QC G1V 0A6, Canada
| | - Olivier Barbier
- Laboratory of Molecular Pharmacology, CHU-Quebec Research Centre, and Faculty of Pharmacy, Laval University, Quebec, QC G1V 0A6, Canada
| | - Denis Roy
- Faculty of Agricultural and Food Sciences, School of Nutrition, Laval University, Quebec, QC G1V 0A6, Canada,Institute of Nutrition and Functional Foods (INAF), Centre NUTRISS, Quebec, QC G1V 0A6, Canada
| | - Benoit Chassaing
- INSERM U1016, Mucosal Microbiota in Chronic Inflammatory Diseases’ Team, CNRS UMR 8104, University of Paris, Paris, 75014, France
| | - Emile Levy
- Department of Nutrition, University of Montreal, Montreal QC H3T 1A8, Canada and Research Centre, Sainte-Justine Hospital, Montreal, QC H3T 1C5, Canada
| | - Frédéric Raymond
- Institute of Nutrition and Functional Foods (INAF), Centre NUTRISS, Quebec, QC G1V 0A6, Canada,Canada Excellence Research Chair on the Microbiome-Endocannabinoidome Axis in Metabolic Health (CERC-MEND), Laval University, Quebec, QC G1V 0A6, Canada
| | - Antonin Lamaziere
- Saint Antoine Research Center, Sorbonne University INSERM UMR 938; Assistance Publique - Hôpitaux de Paris, Clinical Metabolomics department, Hôpital Saint Antoine, Paris, 75571, France
| | - Nicolas Flamand
- Quebec Heart and Lung Institute Research Centre, Laval University, Quebec, QC G1V 4G5, Canada,Faculty of Medicine, Department of Medicine, Laval University, QC G1V 0A6, Canada,Canada Excellence Research Chair on the Microbiome-Endocannabinoidome Axis in Metabolic Health (CERC-MEND), Laval University, Quebec, QC G1V 0A6, Canada
| | - Cristoforo Silvestri
- Quebec Heart and Lung Institute Research Centre, Laval University, Quebec, QC G1V 4G5, Canada,Institute of Nutrition and Functional Foods (INAF), Centre NUTRISS, Quebec, QC G1V 0A6, Canada,Faculty of Medicine, Department of Medicine, Laval University, QC G1V 0A6, Canada,Canada Excellence Research Chair on the Microbiome-Endocannabinoidome Axis in Metabolic Health (CERC-MEND), Laval University, Quebec, QC G1V 0A6, Canada
| | - Christian Jobin
- Department of Medicine, Department of Infectious Diseases and Immunology, and Department of Anatomy and Cell Physiology, University of Florida, Gainesville FL, 32608, USA
| | - Vincenzo Di Marzo
- Quebec Heart and Lung Institute Research Centre, Laval University, Quebec, QC G1V 4G5, Canada,Institute of Nutrition and Functional Foods (INAF), Centre NUTRISS, Quebec, QC G1V 0A6, Canada,Faculty of Medicine, Department of Medicine, Laval University, QC G1V 0A6, Canada,Canada Excellence Research Chair on the Microbiome-Endocannabinoidome Axis in Metabolic Health (CERC-MEND), Laval University, Quebec, QC G1V 0A6, Canada,Joint International Research Unit on Chemical and Biomolecular Research on the Microbiome and its Impact on Metabolic Health and Nutrition between Laval University and Consiglio Nazionale delle Ricerche, Institute of Biomolecular Chemistry, Campania, 80078, Italy
| | | |
Collapse
|
5
|
Differential Mobilization of the Phospholipid and Triacylglycerol Pools of Arachidonic Acid in Murine Macrophages. Biomolecules 2022; 12:biom12121851. [PMID: 36551279 PMCID: PMC9775050 DOI: 10.3390/biom12121851] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 12/06/2022] [Accepted: 12/09/2022] [Indexed: 12/14/2022] Open
Abstract
Innate immune cells such as monocytes and macrophages contain high levels of arachidonic acid (AA), part of which can be mobilized during cellular activation for the formation of a vast array of bioactive oxygenated metabolites. Monocytes and macrophages present in inflammatory foci typically incorporate large amounts of AA, not only in membrane phospholipids, but also in neutral lipids such as triacylglycerol. Thus, it was of interest to investigate the metabolic fate of these two AA pools in macrophages. Utilizing a variety of radiolabeling techniques to distinguish the phospholipid and triacylglycerol pools, we show in this paper that during an acute stimulation of the macrophages with yeast-derived zymosan, the membrane phospholipid AA pool acts as the major, if not the only, source of releasable AA. On the contrary, the AA pool in triacylglycerol appears to be used at a later stage, when the zymosan-stimulated response has declined, as a source to replenish the phospholipid pools that were consumed during the activation process. Thus, phospholipids and triacylglycerol play different in roles AA metabolism and dynamics during macrophage activation.
Collapse
|
6
|
Niinistö S, Miettinen ME, Cuthbertson D, Honkanen J, Hakola L, Autio R, Erlund I, Arohonka P, Vuorela A, Härkönen T, Hyöty H, Krischer JP, Vaarala O, Knip M, Virtanen SM. Associations Between Serum Fatty Acids and Immunological Markers in Children Developing Islet Autoimmunity-The TRIGR Nested Case-Control Study. Front Immunol 2022; 13:858875. [PMID: 35693790 PMCID: PMC9175567 DOI: 10.3389/fimmu.2022.858875] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Accepted: 04/27/2022] [Indexed: 12/03/2022] Open
Abstract
Aims Altered immune functions as well as fatty acid intake and status have been associated with the development of type 1 diabetes. We aimed to study the relationship between fatty acids and immunological markers in young children with increased genetic risk for type 1 diabetes in order to define putative mechanisms related to development of islet autoimmunity. Methods Serum samples for fatty acid and immunological marker measurements were obtained in the Trial to Reduce IDDM in the Genetically at Risk (TRIGR) ancillary study (Divia) from children born between 2002 and 2007 in 15 countries. Case children (n = 95) were defined as having repeated positivity for at least two out of four diabetes-associated autoantibodies. For each case child, control children were selected matched for country and date of birth (n = 173). Serum fatty acids and immunological markers were measured from cord serum and at the age of 6 and 12 months. Spearman correlation coefficients were calculated between fatty acids and immunological markers. Results Correlations between circulating fatty acids and immunological markers were different in case children who developed islet autoimmunity than in control children already at birth continuing across the first year of life. In case children, saturated fatty acids (SFAs) showed stronger correlations with immunological markers, while in controls, polyunsaturated fatty acids (PUFAs) showed stronger correlations. Conclusions In cases, SFAs were associated with several immunological markers (CXCL10, IL-6, IL-9, IL-17, and CM-CSF) previously linked to the type 1 diabetes disease process. Findings indicate that fatty acids could have immunomodulatory potential in the early phase of the disease development, although causality between fatty acids and the immunological pathways remains to be explored. Trial registry number NCT00179777.
Collapse
Affiliation(s)
- Sari Niinistö
- Department of Public Health and Welfare, Finnish Institute for Health and Welfare, Helsinki, Finland
| | - Maija E. Miettinen
- Department of Public Health and Welfare, Finnish Institute for Health and Welfare, Helsinki, Finland
| | - David Cuthbertson
- Health Informatics Institute, Morsani College of Medicine, University of South Florida, Tampa, FL, United States
| | - Jarno Honkanen
- Research Program for Clinical and Molecular Metabolism, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Leena Hakola
- Unit of Health Sciences, Faculty of Social Sciences, Tampere University, Tampere, Finland
- Tampere University Hospital, Research, Development and Innovation Center, Tampere, Finland
| | - Reija Autio
- Unit of Health Sciences, Faculty of Social Sciences, Tampere University, Tampere, Finland
| | - Iris Erlund
- Department of Government Services, Finnish Institute for Health and Welfare, Helsinki, Finland
| | - Petra Arohonka
- Department of Government Services, Finnish Institute for Health and Welfare, Helsinki, Finland
| | - Arja Vuorela
- Research Program for Clinical and Molecular Metabolism, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Taina Härkönen
- Research Program for Clinical and Molecular Metabolism, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Heikki Hyöty
- Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
- Fimlab Laboratories, Pirkanmaa Hospital District, Tampere, Finland
| | - Jeffrey P. Krischer
- Health Informatics Institute, Morsani College of Medicine, University of South Florida, Tampa, FL, United States
| | - Outi Vaarala
- Research Program for Clinical and Molecular Metabolism, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Mikael Knip
- Pediatric Research Center, Children’s Hospital, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
- Research Program for Clinical and Molecular Metabolism, University of Helsinki, Helsinki, Finland
- Center for Child Health Research, Tampere University and Tampere University Hospital, Tampere, Finland
| | - Suvi M. Virtanen
- Department of Public Health and Welfare, Finnish Institute for Health and Welfare, Helsinki, Finland
- Unit of Health Sciences, Faculty of Social Sciences, Tampere University, Tampere, Finland
- Tampere University Hospital, Research, Development and Innovation Center, Tampere, Finland
- Center for Child Health Research, Tampere University and Tampere University Hospital, Tampere, Finland
| | | |
Collapse
|
7
|
Jurkowitz MS, Azad AK, Monsma PC, Keiser TL, Kanyo J, Lam TT, Bell CE, Schlesinger LS. Mycobacterium tuberculosis encodes a YhhN family membrane protein with lysoplasmalogenase activity that protects against toxic host lysolipids. J Biol Chem 2022; 298:101849. [PMID: 35314194 PMCID: PMC9052158 DOI: 10.1016/j.jbc.2022.101849] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Revised: 03/07/2022] [Accepted: 03/10/2022] [Indexed: 11/09/2022] Open
Abstract
The pathogen Mycobacterium tuberculosis (M.tb) resides in human macrophages, wherein it exploits host lipids for survival. However, little is known about the interaction between M.tb and macrophage plasmalogens, a subclass of glycerophospholipids with a vinyl ether bond at the sn-1 position of the glycerol backbone. Lysoplasmalogens, produced from plasmalogens by hydrolysis at the sn-2 carbon by phospholipase A2, are potentially toxic but can be broken down by host lysoplasmalogenase, an integral membrane protein of the YhhN family that hydrolyzes the vinyl ether bond to release a fatty aldehyde and glycerophospho-ethanolamine or glycerophospho-choline. Curiously, M.tb encodes its own YhhN protein (MtbYhhN), despite having no endogenous plasmalogens. To understand the purpose of this protein, the gene for MtbYhhN (Rv1401) was cloned and expressed in Mycobacterium smegmatis (M.smeg). We found the partially purified protein exhibited abundant lysoplasmalogenase activity specific for lysoplasmenylethanolamine or lysoplasmenylcholine (pLPC) (Vmax∼15.5 μmol/min/mg; Km∼83 μM). Based on cell density, we determined that lysoplasmenylethanolamine, pLPC, lysophosphatidylcholine, and lysophosphatidylethanolamine were not toxic to M.smeg cells, but pLPC and LPC were highly toxic to M.smeg spheroplasts, which are cell wall-deficient mycobacterial forms. Importantly, spheroplasts prepared from M.smeg cells overexpressing MtbYhhN were protected from membrane disruption/lysis by pLPC, which was rapidly depleted from the media. Finally, we found that overexpression of full-length MtbYhhN in M.smeg increased its survival within human macrophages by 2.6-fold compared to vector controls. These data support the hypothesis that MtbYhhN protein confers a growth advantage for mycobacteria in macrophages by cleaving toxic host pLPC into potentially energy-producing products.
Collapse
Affiliation(s)
- Marianne S Jurkowitz
- Department of Biological Chemistry and Pharmacology, The Ohio State University, Columbus, Ohio, USA.
| | - Abul K Azad
- Host Pathogen Interactions Program, Texas Biomedical Research Institute, San Antonio, Texas, USA
| | - Paula C Monsma
- Department of Neuroscience, Ohio State University, Columbus, Ohio, USA
| | - Tracy L Keiser
- Department of Moleculaire Microbiologie, Vrije Universiteit, Amsterdam, the Netherlands
| | - Jean Kanyo
- Keck MS & Proteomics Resource, Yale University, New Haven, Connecticut, USA
| | - TuKiet T Lam
- Keck MS & Proteomics Resource, Yale University, New Haven, Connecticut, USA; Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, Connecticut, USA
| | - Charles E Bell
- Department of Biological Chemistry and Pharmacology, The Ohio State University, Columbus, Ohio, USA; Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio, USA
| | - Larry S Schlesinger
- Host Pathogen Interactions Program, Texas Biomedical Research Institute, San Antonio, Texas, USA.
| |
Collapse
|
8
|
Schooneveldt YL, Paul S, Calkin AC, Meikle PJ. Ether Lipids in Obesity: From Cells to Population Studies. Front Physiol 2022; 13:841278. [PMID: 35309067 PMCID: PMC8927733 DOI: 10.3389/fphys.2022.841278] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Accepted: 01/20/2022] [Indexed: 12/12/2022] Open
Abstract
Ether lipids are a unique class of glycero- and glycerophospho-lipid that carry an ether or vinyl ether linked fatty alcohol at the sn-1 position of the glycerol backbone. These specialised lipids are important endogenous anti-oxidants with additional roles in regulating membrane fluidity and dynamics, intracellular signalling, immunomodulation and cholesterol metabolism. Lipidomic profiling of human population cohorts has identified new associations between reduced circulatory plasmalogen levels, an abundant and biologically active sub-class of ether lipids, with obesity and body-mass index. These findings align with the growing body of work exploring novel roles for ether lipids within adipose tissue. In this regard, ether lipids have now been linked to facilitating lipid droplet formation, regulating thermogenesis and mediating beiging of white adipose tissue in early life. This review will assess recent findings in both population studies and studies using cell and animal models to delineate the functional and protective roles of ether lipids in the setting of obesity. We will also discuss the therapeutic potential of ether lipid supplementation to attenuate diet-induced obesity.
Collapse
Affiliation(s)
- Yvette L. Schooneveldt
- Baker Heart and Diabetes Institute, Melbourne, VIC, Australia
- Central Clinical School, Faculty of Medicine, Nursing & Health Sciences, Monash University, Melbourne, VIC, Australia
| | - Sudip Paul
- Baker Heart and Diabetes Institute, Melbourne, VIC, Australia
- Baker Department of Cardiometabolic Health, University of Melbourne, Parkville, VIC, Australia
| | - Anna C. Calkin
- Baker Heart and Diabetes Institute, Melbourne, VIC, Australia
- Central Clinical School, Faculty of Medicine, Nursing & Health Sciences, Monash University, Melbourne, VIC, Australia
- Baker Department of Cardiometabolic Health, University of Melbourne, Parkville, VIC, Australia
- *Correspondence: Anna C. Calkin,
| | - Peter J. Meikle
- Baker Heart and Diabetes Institute, Melbourne, VIC, Australia
- Central Clinical School, Faculty of Medicine, Nursing & Health Sciences, Monash University, Melbourne, VIC, Australia
- Baker Department of Cardiometabolic Health, University of Melbourne, Parkville, VIC, Australia
- Peter J. Meikle,
| |
Collapse
|
9
|
Hayashi D, Mouchlis VD, Dennis EA. Each phospholipase A 2 type exhibits distinct selectivity toward sn-1 ester, alkyl ether, and vinyl ether phospholipids. Biochim Biophys Acta Mol Cell Biol Lipids 2022; 1867:159067. [PMID: 34634490 PMCID: PMC9188868 DOI: 10.1016/j.bbalip.2021.159067] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Revised: 09/28/2021] [Accepted: 10/05/2021] [Indexed: 01/03/2023]
Abstract
Glycerophospholipids are major components of cell membranes and have enormous variation in the composition of fatty acyl chains esterified on the sn-1 and sn-2 position as well as the polar head groups on the sn-3 position of the glycerol backbone. Phospholipase A2 (PLA2) enzymes constitute a superfamily of enzymes which play a critical role in metabolism and signal transduction by hydrolyzing the sn-2 acyl chains of glycerophospholipids. In human cell membranes, in addition to the conventional diester phospholipids, a significant amount is the sn-1 ether-linked phospholipids which play a critical role in numerous biological activities. However, precisely how PLA2s distinguish the sn-1 acyl chain linkage is not understood. In the present study, we expanded the technique of lipidomics to determine the unique in vitro specificity of three major human PLA2s, including Group IVA cytosolic cPLA2, Group VIA calcium-independent iPLA2, and Group V secreted sPLA2 toward the linkage at the sn-1 position. Interestingly, cPLA2 prefers sn-1 vinyl ether phospholipids known as plasmalogens over conventional ester phospholipids and the sn-1 alkyl ether phospholipids. iPLA2 showed similar activity toward vinyl ether and ester phospholipids at the sn-1 position. Surprisingly, sPLA2 preferred ester phospholipids over alkyl and vinyl ether phospholipids. By taking advantage of molecular dynamics simulations, we found that Trp30 in the sPLA2 active site dominates its specificity for diester phospholipids.
Collapse
|
10
|
Magny R, Auzeil N, Olivier E, Kessal K, Regazzetti A, Dutot M, Mélik-Parsadaniantz S, Rat P, Baudouin C, Laprévote O, Brignole-Baudouin F. Lipidomic analysis of human corneal epithelial cells exposed to ocular irritants highlights the role of phospholipid and sphingolipid metabolisms in detergent toxicity mechanisms. Biochimie 2020; 178:148-157. [PMID: 32758686 DOI: 10.1016/j.biochi.2020.07.015] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Revised: 07/20/2020] [Accepted: 07/24/2020] [Indexed: 02/08/2023]
Abstract
Detergent chemicals, widely used in household products, in pharmaceutical, medical, cosmetic and industrial fields, have been linked to side effects and involved in several eye diseases. On the ocular surface, detergents can interfere with the corneal epithelium, the most superficial layer of the cornea, representing a line of defence against external aggression. Despite its major role in numerous biological functions, there is still little data regarding disruption of lipid homeostasis induced by ocular irritants. To this purpose, a lipidomic analysis using UPLC-HRMS/MS-ESI ± was performed on human corneal epithelial (HCE) cells incubated with three widely known ocular irritants: benzalkonium chloride (BAK), sodium lauryl sulfate (SLS) and Triton X-100 (TXT). We found that these ocular irritants lead to a profound modification of the HCE cell lipidome. Indeed, the cell content of ceramide species increased widely while plasmalogens containing polyunsaturated fatty acid species, especially docosahexaenoic acids, decreased. Furthermore, these irritants upregulated the activity of phospholipase A2. The present study demonstrates that BAK, SLS and TXT induced disruption of the cell lipid homeostasis, highlighting that lipids mediate inflammatory and cell death processes induced by detergents in the cornea. Lipidomics may thus be regarded as a valuable tool to investigate new markers of corneal damage.
Collapse
Affiliation(s)
- Romain Magny
- Sorbonne Université UM80, INSERM UMR 968, CNRS UMR 7210, Institut de la Vision, IHU Foresight, Paris, France; UMR CNRS 8038 CiTCoM, Chimie Toxicologie Analytique et Cellulaire, Université de Paris, Faculté de Pharmacie, Paris, France.
| | - Nicolas Auzeil
- UMR CNRS 8038 CiTCoM, Chimie Toxicologie Analytique et Cellulaire, Université de Paris, Faculté de Pharmacie, Paris, France
| | - Elodie Olivier
- UMR CNRS 8038 CiTCoM, Chimie Toxicologie Analytique et Cellulaire, Université de Paris, Faculté de Pharmacie, Paris, France
| | - Karima Kessal
- Sorbonne Université UM80, INSERM UMR 968, CNRS UMR 7210, Institut de la Vision, IHU Foresight, Paris, France; Centre Hospitalier National d'Ophtalmologie des Quinze-Vingts, Paris, France
| | - Anne Regazzetti
- UMR CNRS 8038 CiTCoM, Chimie Toxicologie Analytique et Cellulaire, Université de Paris, Faculté de Pharmacie, Paris, France
| | - Mélody Dutot
- UMR CNRS 8038 CiTCoM, Chimie Toxicologie Analytique et Cellulaire, Université de Paris, Faculté de Pharmacie, Paris, France; Recherche et Développement, Laboratoire d'Evaluation Physiologique, Yslab, 2 rue Félix le Dantec, 29000 Quimper, France
| | | | - Patrice Rat
- UMR CNRS 8038 CiTCoM, Chimie Toxicologie Analytique et Cellulaire, Université de Paris, Faculté de Pharmacie, Paris, France
| | - Christophe Baudouin
- Sorbonne Université UM80, INSERM UMR 968, CNRS UMR 7210, Institut de la Vision, IHU Foresight, Paris, France; Centre Hospitalier National d'Ophtalmologie des Quinze-Vingts, Paris, France; Department of Ophthalmology, Hôpital Ambroise Paré, AP HP, 92100, Boulogne, France; Université Versailles St Quentin en Yvelines, Paris Saclay, 78180, Montigny-Le-Bretonneux, France
| | - Olivier Laprévote
- UMR CNRS 8038 CiTCoM, Chimie Toxicologie Analytique et Cellulaire, Université de Paris, Faculté de Pharmacie, Paris, France; Hôpital Européen Georges Pompidou, AP-HP, Service de Biochimie, Paris, France
| | - Françoise Brignole-Baudouin
- Sorbonne Université UM80, INSERM UMR 968, CNRS UMR 7210, Institut de la Vision, IHU Foresight, Paris, France; UMR CNRS 8038 CiTCoM, Chimie Toxicologie Analytique et Cellulaire, Université de Paris, Faculté de Pharmacie, Paris, France; Centre Hospitalier National d'Ophtalmologie des Quinze-Vingts, Paris, France
| |
Collapse
|
11
|
Cellular Plasmalogen Content Does Not Influence Arachidonic Acid Levels or Distribution in Macrophages: A Role for Cytosolic Phospholipase A 2γ in Phospholipid Remodeling. Cells 2019; 8:cells8080799. [PMID: 31370188 PMCID: PMC6721556 DOI: 10.3390/cells8080799] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2019] [Revised: 07/26/2019] [Accepted: 07/30/2019] [Indexed: 12/12/2022] Open
Abstract
Availability of free arachidonic acid (AA) constitutes a rate limiting factor for cellular eicosanoid synthesis. AA distributes differentially across membrane phospholipids, which is largely due to the action of coenzyme A-independent transacylase (CoA-IT), an enzyme that moves the fatty acid primarily from diacyl phospholipid species to ether-containing species, particularly the ethanolamine plasmalogens. In this work, we examined the dependence of AA remodeling on plasmalogen content using the murine macrophage cell line RAW264.7 and its plasmalogen-deficient variants RAW.12 and RAW.108. All three strains remodeled AA between phospholipids with similar magnitude and kinetics, thus demonstrating that cellular plasmalogen content does not influence the process. Cell stimulation with yeast-derived zymosan also had no effect on AA remodeling, but incubating the cells in AA-rich media markedly slowed down the process. Further, knockdown of cytosolic-group IVC phospholipase A2γ (cPLA2γ) by RNA silencing significantly reduced AA remodeling, while inhibition of other major phospholipase A2 forms such as cytosolic phospholipase A2α, calcium-independent phospholipase A2β, or secreted phospholipase A2 had no effect. These results uncover new regulatory features of CoA-IT-mediated transacylation reactions in cellular AA homeostasis and suggest a hitherto unrecognized role for cPLA2γ in maintaining membrane phospholipid composition via regulation of AA remodeling.
Collapse
|
12
|
Rubio JM, Astudillo AM, Casas J, Balboa MA, Balsinde J. Regulation of Phagocytosis in Macrophages by Membrane Ethanolamine Plasmalogens. Front Immunol 2018; 9:1723. [PMID: 30087680 PMCID: PMC6066501 DOI: 10.3389/fimmu.2018.01723] [Citation(s) in RCA: 60] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2018] [Accepted: 07/12/2018] [Indexed: 12/15/2022] Open
Abstract
Macrophages, as professional phagocytes of the immune system, possess the ability to detect and clear invading pathogens and apoptotic cells through phagocytosis. Phagocytosis involves membrane reorganization and remodeling events on the cell surface, which play an essential role in innate immunity and tissue homeostasis and the control of inflammation. In this work, we report that cells deficient in membrane ethanolamine plasmalogen demonstrate a reduced capacity to phagocytize opsonized zymosan particles. Amelioration of plasmalogen deficiency in these cells by incubation with lysoplasmalogen results in a significant augmentation of the phagocytic capacity of the cells. In parallel with these increases, restoration of plasmalogen levels in the cells also increases the number and size of lipid rafts in the membrane, reduces membrane fluidity down to levels found in cells containing normal plasmalogen levels, and improves receptor-mediated signaling. Collectively, these results suggest that membrane plasmalogen level determines characteristics of the plasma membrane such as fluidity and the formation of microdomains that are necessary for efficient signal transduction leading to optimal phagocytosis by macrophages.
Collapse
Affiliation(s)
- Julio M Rubio
- Instituto de Biología y Genética Molecular, Consejo Superior de Investigaciones Científicas (CSIC), Universidad de Valladolid, Valladolid, Spain.,Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Madrid, Spain
| | - Alma M Astudillo
- Instituto de Biología y Genética Molecular, Consejo Superior de Investigaciones Científicas (CSIC), Universidad de Valladolid, Valladolid, Spain.,Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Madrid, Spain
| | - Javier Casas
- Instituto de Biología y Genética Molecular, Consejo Superior de Investigaciones Científicas (CSIC), Universidad de Valladolid, Valladolid, Spain.,Departamento de Bioquímica y Fisiología, Universidad de Valladolid, Valladolid, Spain
| | - María A Balboa
- Instituto de Biología y Genética Molecular, Consejo Superior de Investigaciones Científicas (CSIC), Universidad de Valladolid, Valladolid, Spain.,Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Madrid, Spain
| | - Jesús Balsinde
- Instituto de Biología y Genética Molecular, Consejo Superior de Investigaciones Científicas (CSIC), Universidad de Valladolid, Valladolid, Spain.,Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Madrid, Spain
| |
Collapse
|
13
|
Thomas C, Jalil A, Magnani C, Ishibashi M, Queré R, Bourgeois T, Bergas V, Ménégaut L, Patoli D, Le Guern N, Labbé J, Gautier T, de Barros JPP, Lagrost L, Masson D. LPCAT3 deficiency in hematopoietic cells alters cholesterol and phospholipid homeostasis and promotes atherosclerosis. Atherosclerosis 2018; 275:409-418. [PMID: 29866392 DOI: 10.1016/j.atherosclerosis.2018.05.023] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/06/2018] [Revised: 05/04/2018] [Accepted: 05/16/2018] [Indexed: 12/29/2022]
Abstract
BACKGROUND AND AIMS LPCAT3 plays a major role in phospholipid metabolism in the liver and intestine. However, the impact of LPCAT3 on hematopoietic cell and macrophage functions has yet to be described. Our aim was to understand the functions of LPCAT3 in macrophages and to investigate whether LPCAT3 deficiency in hematopoietic cells may affect atherosclerosis development. METHODS Mice with constitutive Lpcat3 deficiency (Lpcat3-/-) were generated. We used fetal hematopoietic liver cells to generate WT and Lpcat3-/- macrophages in vitro and to perform hematopoietic cell transplantation in recipient Ldlr-/- mice. RESULTS Lpcat3-deficient macrophages displayed major reductions in the arachidonate content of phosphatidylcholines, phosphatidylethanolamines and, unexpectedly, plasmalogens. These changes were associated with altered cholesterol homeostasis, including an increase in the ratio of free to esterified cholesterol and a reduction in cholesterol efflux in Lpcat3-/- macrophages. This correlated with the inhibition of some LXR-regulated pathways, related to altered cellular availability of the arachidonic acid. Indeed, LPCAT3 deficiency was associated with decreased Abca1, Abcg1 and ApoE mRNA levels in fetal liver cells derived macrophages. In vivo, these changes translated into a significant increase in atherosclerotic lesions in Ldlr-/- mice with hematopoietic LPCAT3 deficiency. CONCLUSIONS This study identifies LPCAT3 as a key factor in the control of phospholipid homeostasis and arachidonate availability in myeloid cells and underlines a new role for LPCAT3 in plasmalogen metabolism. Moreover, our work strengthens the link between phospholipid and sterol metabolism in hematopoietic cells, with significant consequences on nuclear receptor-regulated pathways and atherosclerosis development.
Collapse
Affiliation(s)
- Charles Thomas
- Univ. Bourgogne Franche-Comté, LNC UMR1231, F-21000, Dijon, France; INSERM, LNC UMR 1231, F-21000, Dijon, France; FCS Bourgogne-Franche Comté, LipSTIC LabEx, F-21000, Dijon, France
| | - Antoine Jalil
- Univ. Bourgogne Franche-Comté, LNC UMR1231, F-21000, Dijon, France; INSERM, LNC UMR 1231, F-21000, Dijon, France; FCS Bourgogne-Franche Comté, LipSTIC LabEx, F-21000, Dijon, France
| | - Charlène Magnani
- Univ. Bourgogne Franche-Comté, LNC UMR1231, F-21000, Dijon, France; INSERM, LNC UMR 1231, F-21000, Dijon, France; FCS Bourgogne-Franche Comté, LipSTIC LabEx, F-21000, Dijon, France
| | - Minako Ishibashi
- Univ. Bourgogne Franche-Comté, LNC UMR1231, F-21000, Dijon, France; INSERM, LNC UMR 1231, F-21000, Dijon, France; FCS Bourgogne-Franche Comté, LipSTIC LabEx, F-21000, Dijon, France
| | - Ronan Queré
- Univ. Bourgogne Franche-Comté, LNC UMR1231, F-21000, Dijon, France; INSERM, LNC UMR 1231, F-21000, Dijon, France; FCS Bourgogne-Franche Comté, LipSTIC LabEx, F-21000, Dijon, France
| | - Thibaut Bourgeois
- Univ. Bourgogne Franche-Comté, LNC UMR1231, F-21000, Dijon, France; INSERM, LNC UMR 1231, F-21000, Dijon, France; FCS Bourgogne-Franche Comté, LipSTIC LabEx, F-21000, Dijon, France
| | - Victoria Bergas
- Lipidomic analytic plate-forme, UBFC, Batiment B3, Bvd Maréchal de Lattre de Tassigny, 21000, Dijon, France
| | - Louise Ménégaut
- Univ. Bourgogne Franche-Comté, LNC UMR1231, F-21000, Dijon, France; INSERM, LNC UMR 1231, F-21000, Dijon, France; FCS Bourgogne-Franche Comté, LipSTIC LabEx, F-21000, Dijon, France; CHU Dijon, laboratoire de Biochimie, F-21000, Dijon, France
| | - Danish Patoli
- Univ. Bourgogne Franche-Comté, LNC UMR1231, F-21000, Dijon, France; INSERM, LNC UMR 1231, F-21000, Dijon, France; FCS Bourgogne-Franche Comté, LipSTIC LabEx, F-21000, Dijon, France
| | - Naig Le Guern
- Univ. Bourgogne Franche-Comté, LNC UMR1231, F-21000, Dijon, France; INSERM, LNC UMR 1231, F-21000, Dijon, France; FCS Bourgogne-Franche Comté, LipSTIC LabEx, F-21000, Dijon, France
| | - Jérôme Labbé
- Univ. Bourgogne Franche-Comté, LNC UMR1231, F-21000, Dijon, France; INSERM, LNC UMR 1231, F-21000, Dijon, France; FCS Bourgogne-Franche Comté, LipSTIC LabEx, F-21000, Dijon, France
| | - Thomas Gautier
- Univ. Bourgogne Franche-Comté, LNC UMR1231, F-21000, Dijon, France; INSERM, LNC UMR 1231, F-21000, Dijon, France; FCS Bourgogne-Franche Comté, LipSTIC LabEx, F-21000, Dijon, France
| | - Jean Paul Pais de Barros
- Univ. Bourgogne Franche-Comté, LNC UMR1231, F-21000, Dijon, France; INSERM, LNC UMR 1231, F-21000, Dijon, France; FCS Bourgogne-Franche Comté, LipSTIC LabEx, F-21000, Dijon, France; Lipidomic analytic plate-forme, UBFC, Batiment B3, Bvd Maréchal de Lattre de Tassigny, 21000, Dijon, France
| | - Laurent Lagrost
- Univ. Bourgogne Franche-Comté, LNC UMR1231, F-21000, Dijon, France; INSERM, LNC UMR 1231, F-21000, Dijon, France; FCS Bourgogne-Franche Comté, LipSTIC LabEx, F-21000, Dijon, France; CHU Dijon, laboratoire de Biochimie, F-21000, Dijon, France
| | - David Masson
- Univ. Bourgogne Franche-Comté, LNC UMR1231, F-21000, Dijon, France; INSERM, LNC UMR 1231, F-21000, Dijon, France; FCS Bourgogne-Franche Comté, LipSTIC LabEx, F-21000, Dijon, France; CHU Dijon, laboratoire de Biochimie, F-21000, Dijon, France.
| |
Collapse
|
14
|
Gil-de-Gómez L, Astudillo AM, Lebrero P, Balboa MA, Balsinde J. Essential Role for Ethanolamine Plasmalogen Hydrolysis in Bacterial Lipopolysaccharide Priming of Macrophages for Enhanced Arachidonic Acid Release. Front Immunol 2017; 8:1251. [PMID: 29033952 PMCID: PMC5626835 DOI: 10.3389/fimmu.2017.01251] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2017] [Accepted: 09/20/2017] [Indexed: 12/16/2022] Open
Abstract
Due to their high content in esterified arachidonic acid (AA), macrophages provide large amounts of eicosanoids during innate immune reactions. Bacterial lipopolysaccharide (LPS) is a poor trigger of AA mobilization in macrophages but does have the capacity to prime these cells for greatly increased AA release upon subsequent stimulation. In this work, we have studied molecular mechanisms underlying this phenomenon. By using mass spectrometry-based lipidomic analyses, we show in this work that LPS-primed zymosan-stimulated macrophages exhibit an elevated consumption of a particular phospholipid species, i.e., the ethanolamine plasmalogens, which results from reduced remodeling of phospholipids via coenzyme A-independent transacylation reactions. Importantly however, LPS-primed macrophages show no changes in their capacity to directly incorporate AA into phospholipids via CoA-dependent acylation reactions. The essential role for ethanolamine plasmalogen hydrolysis in LPS priming is further demonstrated by the use of plasmalogen-deficient cells. These cells, while responding normally to zymosan by releasing quantities of AA similar to those released by cells expressing normal plasmalogen levels under the same conditions, fail to show an LPS-primed response to the same stimulus, thus unambiguously demonstrating a cause–effect relationship between LPS priming and plasmalogen hydrolysis. Collectively, these results suggest a hitherto unrecognized role for ethanolamine plasmalogen hydrolysis and CoA-independent transacylation reactions in modulating the eicosanoid biosynthetic response.
Collapse
Affiliation(s)
- Luis Gil-de-Gómez
- Instituto de Biología y Genética Molecular, Consejo Superior de Investigaciones Científicas (CSIC), Universidad de Valladolid, Valladolid, Spain
| | - Alma M Astudillo
- Instituto de Biología y Genética Molecular, Consejo Superior de Investigaciones Científicas (CSIC), Universidad de Valladolid, Valladolid, Spain.,Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Madrid, Spain
| | - Patricia Lebrero
- Instituto de Biología y Genética Molecular, Consejo Superior de Investigaciones Científicas (CSIC), Universidad de Valladolid, Valladolid, Spain.,Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Madrid, Spain
| | - María A Balboa
- Instituto de Biología y Genética Molecular, Consejo Superior de Investigaciones Científicas (CSIC), Universidad de Valladolid, Valladolid, Spain.,Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Madrid, Spain
| | - Jesús Balsinde
- Instituto de Biología y Genética Molecular, Consejo Superior de Investigaciones Científicas (CSIC), Universidad de Valladolid, Valladolid, Spain.,Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Madrid, Spain
| |
Collapse
|
15
|
Jang JE, Park HS, Yoo HJ, Baek IJ, Yoon JE, Ko MS, Kim AR, Kim HS, Park HS, Lee SE, Kim SW, Kim SJ, Leem J, Kang YM, Jung MK, Pack CG, Kim CJ, Sung CO, Lee IK, Park JY, Fernández-Checa JC, Koh EH, Lee KU. Protective role of endogenous plasmalogens against hepatic steatosis and steatohepatitis in mice. Hepatology 2017; 66:416-431. [PMID: 28073164 PMCID: PMC5503808 DOI: 10.1002/hep.29039] [Citation(s) in RCA: 58] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/29/2016] [Revised: 12/15/2016] [Accepted: 12/26/2016] [Indexed: 12/16/2022]
Abstract
UNLABELLED Free cholesterol (FC) accumulation in the liver is an important pathogenic mechanism of nonalcoholic steatohepatitis (NASH). Plasmalogens, key structural components of the cell membrane, act as endogenous antioxidants and are primarily synthesized in the liver. However, the role of hepatic plasmalogens in metabolic liver disease is unclear. In this study, we found that hepatic levels of docosahexaenoic acid (DHA)-containing plasmalogens, expression of glyceronephosphate O-acyltransferase (Gnpat; the rate-limiting enzyme in plasmalogen biosynthesis), and expression of Pparα were lower in mice with NASH caused by accumulation of FC in the liver. Cyclodextrin-induced depletion of FC transactivated Δ-6 desaturase by increasing sterol regulatory element-binding protein 2 expression in cultured hepatocytes. DHA, the major product of Δ-6 desaturase activation, activated GNPAT, thereby explaining the association between high hepatic FC and decreased Gnpat expression. Gnpat small interfering RNA treatment significantly decreased peroxisome proliferator-activated receptor α (Pparα) expression in cultured hepatocytes. In addition to GNPAT, DHA activated PPARα and increased expression of Pparα and its target genes, suggesting that DHA in the DHA-containing plasmalogens contributed to activation of PPARα. Accordingly, administration of the plasmalogen precursor, alkyl glycerol (AG), prevented hepatic steatosis and NASH through a PPARα-dependent increase in fatty acid oxidation. Gnpat+/- mice were more susceptible to hepatic lipid accumulation and less responsive to the preventive effect of fluvastatin on NASH development, suggesting that endogenous plasmalogens prevent hepatic steatosis and NASH. CONCLUSION Increased hepatic FC in animals with NASH decreased plasmalogens, thereby sensitizing animals to hepatocyte injury and NASH. Our findings uncover a novel link between hepatic FC and plasmalogen homeostasis through GNPAT regulation. Further study of AG or other agents that increase hepatic plasmalogen levels may identify novel therapeutic strategies against NASH. (Hepatology 2017;66:416-431).
Collapse
Affiliation(s)
- Jung Eun Jang
- Department of Internal Medicine, University of Ulsan College of Medicine, Seoul 05505, Republic of Korea,Asan Institute for Life Sciences, University of Ulsan College of Medicine, Seoul 05505, Republic of Korea
| | - Han-Sol Park
- Asan Institute for Life Sciences, University of Ulsan College of Medicine, Seoul 05505, Republic of Korea
| | - Hyun Ju Yoo
- Asan Institute for Life Sciences, University of Ulsan College of Medicine, Seoul 05505, Republic of Korea
| | - In-Jeoung Baek
- Asan Institute for Life Sciences, University of Ulsan College of Medicine, Seoul 05505, Republic of Korea
| | - Ji Eun Yoon
- Asan Institute for Life Sciences, University of Ulsan College of Medicine, Seoul 05505, Republic of Korea
| | - Myoung Seok Ko
- Asan Institute for Life Sciences, University of Ulsan College of Medicine, Seoul 05505, Republic of Korea
| | - Ah-Ram Kim
- Asan Institute for Life Sciences, University of Ulsan College of Medicine, Seoul 05505, Republic of Korea
| | - Hyoun Sik Kim
- Asan Institute for Life Sciences, University of Ulsan College of Medicine, Seoul 05505, Republic of Korea
| | - Hye-Sun Park
- Asan Institute for Life Sciences, University of Ulsan College of Medicine, Seoul 05505, Republic of Korea
| | - Seung Eun Lee
- Department of Internal Medicine, University of Ulsan College of Medicine, Seoul 05505, Republic of Korea,Asan Institute for Life Sciences, University of Ulsan College of Medicine, Seoul 05505, Republic of Korea
| | - Seung-Whan Kim
- Department of Pharmacology, University of Ulsan College of Medicine, Seoul 05505, Republic of Korea
| | - Su Jung Kim
- Asan Institute for Life Sciences, University of Ulsan College of Medicine, Seoul 05505, Republic of Korea
| | - Jaechan Leem
- Department of Internal Medicine, University of Ulsan College of Medicine, Seoul 05505, Republic of Korea
| | - Yu Mi Kang
- Department of Internal Medicine, University of Ulsan College of Medicine, Seoul 05505, Republic of Korea
| | - Min Kyo Jung
- Asan Institute for Life Sciences, University of Ulsan College of Medicine, Seoul 05505, Republic of Korea
| | - Chan-Gi Pack
- Asan Institute for Life Sciences, University of Ulsan College of Medicine, Seoul 05505, Republic of Korea
| | - Chong Jai Kim
- Asan Institute for Life Sciences, University of Ulsan College of Medicine, Seoul 05505, Republic of Korea,Department of Pathology, University of Ulsan College of Medicine, Seoul 05505, Republic of Korea
| | - Chang Ohk Sung
- Department of Pathology, University of Ulsan College of Medicine, Seoul 05505, Republic of Korea
| | - In-Kyu Lee
- Department of Internal Medicine, Kyungpook National University School of Medicine, Daegu 700-721, Republic of Korea
| | - Joong-Yeol Park
- Department of Internal Medicine, University of Ulsan College of Medicine, Seoul 05505, Republic of Korea
| | - José C. Fernández-Checa
- Department of Cell Death and Proliferation, Instituto Investigaciones Biomédicas de Barcelona, CSIC, Barcelona and Liver Unit-Hospital Clinic-IDIBAPS and Centro de Investigación Biomédica en Red (CIBERehd), Barcelona, Spain,University of Southern California Research Center for Alcoholic Liver and Pancreatic Diseases and Cirrhosis, Keck School of Medicine, USC, Los Angeles, CA, USA
| | - Eun Hee Koh
- Department of Internal Medicine, University of Ulsan College of Medicine, Seoul 05505, Republic of Korea,Asan Institute for Life Sciences, University of Ulsan College of Medicine, Seoul 05505, Republic of Korea,Contact information: Ki-Up Lee and Eun Hee Koh, Department of Internal Medicine, Asan Institute for Life Sciences, Asan Medical Center, University of Ulsan College of Medicine, 88 Olympic-ro 43 gil, Songpa-gu, Seoul 05505, Republic of Korea. Phone: +82-2-3010-3243 (K.-U.L.), +82-2-3010-3248 (E.H.K.); Fax: +82-2-3010-6962; (K.-U.L.), (E.H.K.)
| | - Ki-Up Lee
- Department of Internal Medicine, University of Ulsan College of Medicine, Seoul 05505, Republic of Korea,Asan Institute for Life Sciences, University of Ulsan College of Medicine, Seoul 05505, Republic of Korea,Contact information: Ki-Up Lee and Eun Hee Koh, Department of Internal Medicine, Asan Institute for Life Sciences, Asan Medical Center, University of Ulsan College of Medicine, 88 Olympic-ro 43 gil, Songpa-gu, Seoul 05505, Republic of Korea. Phone: +82-2-3010-3243 (K.-U.L.), +82-2-3010-3248 (E.H.K.); Fax: +82-2-3010-6962; (K.-U.L.), (E.H.K.)
| |
Collapse
|
16
|
Drechsler R, Chen SW, Dancy BCR, Mehrabkhani L, Olsen CP. HPLC-Based Mass Spectrometry Characterizes the Phospholipid Alterations in Ether-Linked Lipid Deficiency Models Following Oxidative Stress. PLoS One 2016; 11:e0167229. [PMID: 27893806 PMCID: PMC5125691 DOI: 10.1371/journal.pone.0167229] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2016] [Accepted: 11/10/2016] [Indexed: 11/18/2022] Open
Abstract
Despite the fact that the discovery of ether-linked phospholipids occurred nearly a century ago, many unanswered questions remain concerning these unique lipids. Here, we characterize the ether-linked lipids of the nematode with HPLC-MS/MS and find that more than half of the phosphoethanolamine-containing lipids are ether-linked, a distribution similar to that found in mammalian membranes. To explore the biological role of ether lipids in vivo, we target fatty acyl-CoA reductase (fard-1), an essential enzyme in ether lipid synthesis, with two distinct RNAi strategies. First, when fard-1 RNAi is initiated at the start of development, the treated animals have severely reduced ether lipid abundance, resulting in a shift in the phosphatidylethanolamine lipid population to include more saturated fatty acid chains. Thus, the absence of ether lipids during development drives a significant remodeling of the membrane landscape. A later initiation of fard-1 RNAi in adulthood results in a dramatic reduction of new ether lipid synthesis as quantified with 15N-tracers; however, there is only a slight decrease in total ether lipid abundance with this adult-only fard-1 RNAi. The two RNAi strategies permit the examination of synthesis and ether lipid abundance to reveal a relationship between the amount of ether lipids and stress survival. We tested whether these species function as sacrificial antioxidants by directly examining the phospholipid population with HPLC-MS/MS after oxidative stress treatment. While there are significant changes in other phospholipids, including polyunsaturated fatty acid-containing species, we did not find any change in ether-linked lipids, suggesting that the role of ether lipids in stress resistance is not through their general consumption as free radical sinks. Our work shows that the nematode will be a useful model for future interrogation of ether lipid biosynthesis and the characterization of phospholipid changes in various stress conditions.
Collapse
Affiliation(s)
- Robin Drechsler
- Division of Basic Sciences, Fred Hutchinson Cancer Research Center, Seattle, Washington, United States of America
| | - Shaw-Wen Chen
- Division of Basic Sciences, Fred Hutchinson Cancer Research Center, Seattle, Washington, United States of America
| | - Blair C R Dancy
- Division of Basic Sciences, Fred Hutchinson Cancer Research Center, Seattle, Washington, United States of America
| | - Lena Mehrabkhani
- Division of Basic Sciences, Fred Hutchinson Cancer Research Center, Seattle, Washington, United States of America
| | - Carissa Perez Olsen
- Division of Basic Sciences, Fred Hutchinson Cancer Research Center, Seattle, Washington, United States of America
| |
Collapse
|
17
|
Jurkowitz MS, Patel A, Wu LC, Krautwater A, Pfeiffer DR, Bell CE. The YhhN protein of Legionella pneumophila is a Lysoplasmalogenase. BIOCHIMICA ET BIOPHYSICA ACTA 2015; 1848:742-51. [PMID: 25445671 PMCID: PMC4282143 DOI: 10.1016/j.bbamem.2014.11.011] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2014] [Revised: 10/25/2014] [Accepted: 11/10/2014] [Indexed: 10/24/2022]
Abstract
Lysoplasmalogenase catalyzes hydrolytic cleavage of the vinyl-ether bond of lysoplasmalogen to yield fatty aldehyde and glycerophospho-ethanolamine or glycerophospho-choline. We recently purified lysoplasmalogenase from rat liver microsomes and identified the protein as TMEM86B, an integral membrane protein that is a member of the YhhN family found in numerous species of eukaryotes and bacteria. To test the hypothesis that bacterial YhhN proteins also function as lysoplasmalogenase enzymes, we cloned the Lpg1991 gene of Legionella pneumophila, which encodes a 216 amino acid YhhN protein (LpYhhN), and expressed it in Escherichia coli as a C-terminal-GFP-His8-fusion. Membranes were solubilized and the fusion protein was purified by nickel-affinity chromatography, cleaved with Tobacco Etch Virus protease, and subjected to a reverse nickel column to purify the un-tagged LpYhhN. Both the fusion protein and un-tagged LpYhhN exhibit robust lysoplasmalogenase activity, cleaving the vinyl-ether bond of lysoplasmalogen with a Vmax of 12 µmol/min/mg protein and a Km of 45 μM. LpYhhN has no activity on diradyl plasmalogen, 1-alkenyl-glycerol, and monoacylglycerophospho-ethanolamine or monoacylglycerophospho-choline; the pH optimum is 6.5-7.0. These properties are very similar to mammalian TMEM86B. Sequence analysis suggests that YhhN proteins contain eight transmembrane helices, an N-in/C-in topology, and about 5 highly conserved amino acid residues that may form an active site. This work is the first to demonstrate a function for a bacterial YhhN protein, as a vinyl ether bond hydrolase specific for lysoplasmalogen. Since L. pneumophila does not contain endogenous plasmalogens, we hypothesize that LpYhhN may serve to protect the bacterium from lysis by lysoplasmalogen derived from plasmalogens of the host.
Collapse
Affiliation(s)
- Marianne S Jurkowitz
- Department of Molecular and Cellular Biochemistry, The Ohio State University, Columbus, OH 43210, USA.
| | - Aalapi Patel
- Department of Molecular and Cellular Biochemistry, The Ohio State University, Columbus, OH 43210, USA
| | - Lai-Chu Wu
- Department of Molecular and Cellular Biochemistry, The Ohio State University, Columbus, OH 43210, USA; The Comprehensive Cancer Center, The Ohio State University, Columbus, OH 43210, USA
| | - Annalise Krautwater
- Department of Molecular and Cellular Biochemistry, The Ohio State University, Columbus, OH 43210, USA
| | - Douglas R Pfeiffer
- Department of Molecular and Cellular Biochemistry, The Ohio State University, Columbus, OH 43210, USA
| | - Charles E Bell
- Department of Molecular and Cellular Biochemistry, The Ohio State University, Columbus, OH 43210, USA; Department of Chemistry and Biochemistry, The Ohio State University, Columbus, OH 43210, USA
| |
Collapse
|
18
|
Dorninger F, Brodde A, Braverman NE, Moser AB, Just WW, Forss-Petter S, Brügger B, Berger J. Homeostasis of phospholipids - The level of phosphatidylethanolamine tightly adapts to changes in ethanolamine plasmalogens. Biochim Biophys Acta Mol Cell Biol Lipids 2014; 1851:117-28. [PMID: 25463479 PMCID: PMC4331674 DOI: 10.1016/j.bbalip.2014.11.005] [Citation(s) in RCA: 74] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2014] [Revised: 11/04/2014] [Accepted: 11/10/2014] [Indexed: 01/19/2023]
Abstract
Ethanolamine plasmalogens constitute a group of ether glycerophospholipids that, due to their unique biophysical and biochemical properties, are essential components of mammalian cellular membranes. Their importance is emphasized by the consequences of defects in plasmalogen biosynthesis, which in humans cause the fatal disease rhizomelic chondrodysplasia punctata (RCDP). In the present lipidomic study, we used fibroblasts derived from RCDP patients, as well as brain tissue from plasmalogen-deficient mice, to examine the compensatory mechanisms of lipid homeostasis in response to plasmalogen deficiency. Our results show that phosphatidylethanolamine (PE), a diacyl glycerophospholipid, which like ethanolamine plasmalogens carries the head group ethanolamine, is the main player in the adaptation to plasmalogen insufficiency. PE levels were tightly adjusted to the amount of ethanolamine plasmalogens so that their combined levels were kept constant. Similarly, the total amount of polyunsaturated fatty acids (PUFAs) in ethanolamine phospholipids was maintained upon plasmalogen deficiency. However, we found an increased incorporation of arachidonic acid at the expense of docosahexaenoic acid in the PE fraction of plasmalogen-deficient tissues. These data show that under conditions of reduced plasmalogen levels, the amount of total ethanolamine phospholipids is precisely maintained by a rise in PE. At the same time, a shift in the ratio between ω-6 and ω-3 PUFAs occurs, which might have unfavorable, long-term biological consequences. Therefore, our findings are not only of interest for RCDP but may have more widespread implications also for other disease conditions, as for example Alzheimer's disease, that have been associated with a decline in plasmalogens. PE accurately compensates for the lack of plasmalogens in vitro and in vivo. PE levels decrease to adapt to excess of ethanolamine plasmalogens (PlsEtn). Plasmalogen deficiency favors incorporation of arachidonic acid into PE. Docosahexaenoic acid in ethanolamine phospholipids decreases upon PlsEtn depletion.
Collapse
Affiliation(s)
- Fabian Dorninger
- Department of Pathobiology of the Nervous System, Center for Brain Research, Medical University of Vienna, Spitalgasse 4, 1090 Vienna, Austria.
| | - Alexander Brodde
- Heidelberg University Biochemistry Center, Im Neuenheimer Feld 328, 69120 Heidelberg, Germany.
| | - Nancy E Braverman
- Department of Human Genetics and Pediatrics, McGill University-Montreal Children's Hospital, 4060 Ste-Catherine West, PT-406.2, Montreal, QC H3Z 2Z3, Canada.
| | - Ann B Moser
- Peroxisomal Diseases Laboratory, The Hugo W Moser Research Institute, The Kennedy Krieger Institute, 707 N. Broadway, Baltimore, MD 21205, USA.
| | - Wilhelm W Just
- Heidelberg University Biochemistry Center, Im Neuenheimer Feld 328, 69120 Heidelberg, Germany.
| | - Sonja Forss-Petter
- Department of Pathobiology of the Nervous System, Center for Brain Research, Medical University of Vienna, Spitalgasse 4, 1090 Vienna, Austria.
| | - Britta Brügger
- Heidelberg University Biochemistry Center, Im Neuenheimer Feld 328, 69120 Heidelberg, Germany.
| | - Johannes Berger
- Department of Pathobiology of the Nervous System, Center for Brain Research, Medical University of Vienna, Spitalgasse 4, 1090 Vienna, Austria.
| |
Collapse
|
19
|
Jenkins CM, Yang J, Gross RW. Mechanism-based inhibition of iPLA2β demonstrates a highly reactive cysteine residue (C651) that interacts with the active site: mass spectrometric elucidation of the mechanisms underlying inhibition. Biochemistry 2013; 52:4250-63. [PMID: 23701211 DOI: 10.1021/bi4004233] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The multifaceted roles of calcium-independent phospholipase A2β (iPLA2β) in numerous cellular processes have been extensively examined through utilization of the iPLA2-selective inhibitor (E)-6-(bromomethylene)-3-(1-naphthalenyl)-2H-tetrahydropyran-2-one (BEL). Herein, we employed accurate mass/high resolution mass spectrometry to demonstrate that the active site serine (S465) and C651 of iPLA2β are covalently cross-linked during incubations with BEL demonstrating their close spatial proximity. This cross-link results in macroscopic alterations in enzyme molecular geometry evidenced by anomalous migration of the cross-linked enzyme by SDS-PAGE. Molecular models of iPLA2β constructed from the crystal structure of iPLA2α (patatin) indicate that the distance between S465 and C651 is approximately 10 Å within the active site of iPLA2β. Kinetic analysis of the formation of the 75 kDa iPLA2β-BEL species with the (R) and (S) enantiomers of BEL demonstrated that the reaction of (S)-BEL with iPLA2β was more rapid than for (R)-BEL paralleling the enantioselectivity for the inhibition of catalysis by each inhibitor with iPLA2β. Moreover, we demonstrate that the previously identified selective acylation of iPLA2β by oleoyl-CoA occurs at C651 thereby indicating the importance of active site architecture for acylation of this enzyme. Collectively, these results identify C651 as a highly reactive nucleophilic residue within the active site of iPLA2β which is thioesterified by BEL, acylated by oleoyl-CoA, and located in close spatial proximity to the catalytic serine thereby providing important chemical insights on the mechanisms through which BEL inhibits iPLA2β and the topology of the active site.
Collapse
Affiliation(s)
- Christopher M Jenkins
- Division of Bioorganic Chemistry and Molecular Pharmacology, Washington University School of Medicine , St. Louis, Missouri 63110, USA
| | | | | |
Collapse
|
20
|
Nagy K, Brahmbhatt VV, Berdeaux O, Bretillon L, Destaillats F, Acar N. Comparative study of serine-plasmalogens in human retina and optic nerve: identification of atypical species with odd carbon chains. J Lipid Res 2012; 53:776-83. [PMID: 22266369 DOI: 10.1194/jlr.d022962] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
The objective of this work was to detect and identify phosphatidylserine plasmalogen species in human ocular neurons represented by the retina and the optic nerve. Plasmalogens (vinyl-ether bearing phospholipids) are commonly found in the forms of phosphatidylcholine and phosphatidylethanolamine in numerous mammalian cell types, including the retina. Although their biological functions are unclear, the alteration of cellular plasmalogen content has been associated with several human disorders such as rhizomelic chondrodysplasia punctata Type 2 and primary open-angle glaucoma. By using liquid chromatography coupled to high-resolution and tandem mass spectrometry, we have identified for the first time several species of phosphatidylserine plasmalogens, including atypical forms having moieties with odd numbers of carbons and unsaturation in sn-2 position. Structural elucidation of the potential phosphatidylserine ether linked species was pursued by performing MS(3) experiments, and three fragments are proposed as marker ions to deduce which fatty acid is linked as ether or ester on the glycerol backbone. Interpretation of the fragmentation patterns based on this scheme enabled the assignment of structures to the m/z values, thereby identifying the phosphatidylserine plasmalogens.
Collapse
Affiliation(s)
- Kornél Nagy
- Nestlé Research Center, Vers-chez-les-Blanc, Lausanne, Switzerland
| | | | | | | | | | | |
Collapse
|
21
|
Plasmalogens the neglected regulatory and scavenging lipid species. Chem Phys Lipids 2011; 164:573-89. [PMID: 21723266 DOI: 10.1016/j.chemphyslip.2011.06.008] [Citation(s) in RCA: 232] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2011] [Revised: 06/08/2011] [Accepted: 06/14/2011] [Indexed: 12/17/2022]
Abstract
Plasmalogens are a class of phospholipids carrying a vinyl ether bond in sn-1 and an ester bond in sn-2 position of the glycerol backbone. Although they are widespread in all tissues and represent up to 18% of the total phospholipid mass in humans, their physiological function is still poorly understood. The aim of this review is to give an overview over the current knowledge in plasmalogen biology and pathology with an emphasis on neglected aspects of their involvement in neurological and metabolic diseases. Furthermore a better understanding of plasmalogen biology in health and disease could also lead to the development of better diagnostic and prognostic biomarkers for vascular and metabolic diseases such as obesity and diabetes mellitus, inflammation, neuro-degeneration and cancer.
Collapse
|
22
|
Moser AB, Steinberg SJ, Watkins PA, Moser HW, Ramaswamy K, Siegmund KD, Lee DR, Ely JJ, Ryder OA, Hacia JG. Human and great ape red blood cells differ in plasmalogen levels and composition. Lipids Health Dis 2011; 10:101. [PMID: 21679470 PMCID: PMC3129581 DOI: 10.1186/1476-511x-10-101] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2011] [Accepted: 06/17/2011] [Indexed: 02/06/2023] Open
Abstract
Background Plasmalogens are ether phospholipids required for normal mammalian developmental, physiological, and cognitive functions. They have been proposed to act as membrane antioxidants and reservoirs of polyunsaturated fatty acids as well as influence intracellular signaling and membrane dynamics. Plasmalogens are particularly enriched in cells and tissues of the human nervous, immune, and cardiovascular systems. Humans with severely reduced plasmalogen levels have reduced life spans, abnormal neurological development, skeletal dysplasia, impaired respiration, and cataracts. Plasmalogen deficiency is also found in the brain tissue of individuals with Alzheimer disease. Results In a human and great ape cohort, we measured the red blood cell (RBC) levels of the most abundant types of plasmalogens. Total RBC plasmalogen levels were lower in humans than bonobos, chimpanzees, and gorillas, but higher than orangutans. There were especially pronounced cross-species differences in the levels of plasmalogens with a C16:0 moiety at the sn-1 position. Humans on Western or vegan diets had comparable total RBC plasmalogen levels, but the latter group showed moderately higher levels of plasmalogens with a C18:1 moiety at the sn-1 position. We did not find robust sex-specific differences in human or chimpanzee RBC plasmalogen levels or composition. Furthermore, human and great ape skin fibroblasts showed only modest differences in peroxisomal plasmalogen biosynthetic activity. Human and chimpanzee microarray data indicated that genes involved in plasmalogen biosynthesis show cross-species differential expression in multiple tissues. Conclusion We propose that the observed differences in human and great ape RBC plasmalogens are primarily caused by their rates of biosynthesis and/or turnover. Gene expression data raise the possibility that other human and great ape cells and tissues differ in plasmalogen levels. Based on the phenotypes of humans and rodents with plasmalogen disorders, we propose that cross-species differences in tissue plasmalogen levels could influence organ functions and processes ranging from cognition to reproduction to aging.
Collapse
Affiliation(s)
- Ann B Moser
- Hugo W. Moser Research Institute at Kennedy Krieger, and Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Andreyev AY, Fahy E, Guan Z, Kelly S, Li X, McDonald JG, Milne S, Myers D, Park H, Ryan A, Thompson BM, Wang E, Zhao Y, Brown HA, Merrill AH, Raetz CRH, Russell DW, Subramaniam S, Dennis EA. Subcellular organelle lipidomics in TLR-4-activated macrophages. J Lipid Res 2010; 51:2785-97. [PMID: 20574076 DOI: 10.1194/jlr.m008748] [Citation(s) in RCA: 163] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Lipids orchestrate biological processes by acting remotely as signaling molecules or locally as membrane components that modulate protein function. Detailed insight into lipid function requires knowledge of the subcellular localization of individual lipids. We report an analysis of the subcellular lipidome of the mammalian macrophage, a cell type that plays key roles in inflammation, immune responses, and phagocytosis. Nuclei, mitochondria, endoplasmic reticulum (ER), plasmalemma, and cytoplasm were isolated from RAW 264.7 macrophages in basal and activated states. Subsequent lipidomic analyses of major membrane lipid categories identified 229 individual/isobaric species, including 163 glycerophospholipids, 48 sphingolipids, 13 sterols, and 5 prenols. Major subcellular compartments exhibited substantially divergent glycerophospholipid profiles. Activation of macrophages by the Toll-like receptor 4-specific lipopolysaccharide Kdo(2)-lipid A caused significant remodeling of the subcellular lipidome. Some changes in lipid composition occurred in all compartments (e.g., increases in the levels of ceramides and the cholesterol precursors desmosterol and lanosterol). Other changes were manifest in specific organelles. For example, oxidized sterols increased and unsaturated cardiolipins decreased in mitochondria, whereas unsaturated ether-linked phosphatidylethanolamines decreased in the ER. We speculate that these changes may reflect mitochondrial oxidative stress and the release of arachidonic acid from the ER in response to cell activation.
Collapse
Affiliation(s)
- Alexander Y Andreyev
- Department of Chemistry and Biochemistry and Department of Pharmacology, University of California, San Diego, CA 92093, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Dragonas C, Bertsch T, Sieber CC, Brosche T. Plasmalogens as a marker of elevated systemic oxidative stress in Parkinson's disease. Clin Chem Lab Med 2009; 47:894-7. [DOI: 10.1515/cclm.2009.205] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|