1
|
Wang Q, Liu JL, Liu J. CTPS cytoophidia in Drosophila: distribution, regulation, and physiological roles. Exp Cell Res 2025; 447:114536. [PMID: 40122502 DOI: 10.1016/j.yexcr.2025.114536] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2025] [Revised: 03/20/2025] [Accepted: 03/21/2025] [Indexed: 03/25/2025]
Abstract
Intracellular compartmentalization plays a critical role in maintaining cellular homeostasis and regulating metabolic processes. A growing body of evidence suggests that various metabolic enzymes, including CTP synthase (CTPS), can dynamically assemble into membraneless filamentous structures. The formation of these membraneless organelles is precisely regulated by the cellular metabolic state. CTPS, a rate-limiting enzyme in the de novo biosynthesis of CTP, has been shown to assemble into filamentous structures known as cytoophidium. First identified in 2010 by three independent research groups, cytoophidia are evolutionarily conserved across diverse organisms, including bacteria, archaea, yeast, mammals, and plants, suggesting a fundamental biological function. Given the well-established advantages of Drosophila melanogaster as a genetic model, this organism provides a powerful system for investigating the physiological roles of cytoophidia. This review synthesizes current findings on CTPS cytoophidia in Drosophila, with a particular focus on their spatiotemporal distribution in tissues and their regulatory roles in three key biological processes: intestinal homeostasis, lipid metabolism, and reproductive physiology. Furthermore, we discuss the challenges and future directions in cytoophidia research, offering insights into their broader implications in cellular metabolism and physiology.
Collapse
Affiliation(s)
- Qingyi Wang
- College of Life Sciences, Shanghai Normal University, Shanghai, 200234, China
| | - Ji-Long Liu
- School of Life Science and Technology, ShanghaiTech University, Shanghai, 201210, China
| | - Jingnan Liu
- College of Life Sciences, Shanghai Normal University, Shanghai, 200234, China.
| |
Collapse
|
2
|
Drosophila intestinal homeostasis requires CTP synthase. Exp Cell Res 2021; 408:112838. [PMID: 34560103 DOI: 10.1016/j.yexcr.2021.112838] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Revised: 09/12/2021] [Accepted: 09/17/2021] [Indexed: 11/22/2022]
Abstract
CTP synthase (CTPS) senses all four nucleotides and forms filamentous structures termed cytoophidia in all three domains of life. How CTPS and cytoophidia function in a developmental context, however, remains underexplored. We report that CTPS forms cytoophidia in a subset of cells in the Drosophila midgut. We found that cytoophidia exist in intestinal stem cells (ISC) and enteroblasts in similar proportions. Both refeeding after starvation and feeding with dextran sulfate sodium (DSS) induce ISC proliferation and elongate cytoophidia. Knockdown of CTPS inhibits ISC proliferation. Remarkably, disruption of CTPS cytoophidia inhibits DSS-induced ISC proliferation. Taken together, these data suggest that both the expression level and the filament-form property of CTPS are crucial for intestinal homeostasis in Drosophila.
Collapse
|
3
|
Heier C, Klishch S, Stilbytska O, Semaniuk U, Lushchak O. The Drosophila model to interrogate triacylglycerol biology. Biochim Biophys Acta Mol Cell Biol Lipids 2021; 1866:158924. [PMID: 33716135 DOI: 10.1016/j.bbalip.2021.158924] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2020] [Revised: 02/24/2021] [Accepted: 03/05/2021] [Indexed: 12/21/2022]
Abstract
The deposition of storage fat in the form of triacylglycerol (TAG) is an evolutionarily conserved strategy to cope with fluctuations in energy availability and metabolic stress. Organismal TAG storage in specialized adipose tissues provides animals a metabolic reserve that sustains survival during development and starvation. On the other hand, excessive accumulation of adipose TAG, defined as obesity, is associated with an increasing prevalence of human metabolic diseases. During the past decade, the fruit fly Drosophila melanogaster, traditionally used in genetics and developmental biology, has been established as a versatile model system to study TAG metabolism and the etiology of lipid-associated metabolic diseases. Similar to humans, Drosophila TAG homeostasis relies on the interplay of organ systems specialized in lipid uptake, synthesis, and processing, which are integrated by an endocrine network of hormones and messenger molecules. Enzymatic formation of TAG from sugar or dietary lipid, its storage in lipid droplets, and its mobilization by lipolysis occur via mechanisms largely conserved between Drosophila and humans. Notably, dysfunctional Drosophila TAG homeostasis occurs in the context of aging, overnutrition, or defective gene function, and entails tissue-specific and organismal pathologies that resemble human disease. In this review, we summarize the physiology and biochemistry of TAG in Drosophila and outline the potential of this organism as a model system to understand the genetic and dietary basis of TAG storage and TAG-related metabolic disorders.
Collapse
Affiliation(s)
- Christoph Heier
- Institute of Molecular Biosciences, University of Graz, NAWI Graz, Humboldtstrasse 50, A-8010 Graz, Austria; BioTechMed-Graz, Graz, Austria.
| | - Svitlana Klishch
- Department of Biochemistry and Biotechnology, Department Biochemistry 1, Faculty of Natural Sciences, Vasyl Stefanyk Precarpathian National University, 57 Shevchenka str, Ivano-Frankivsk 76018, Ukraine
| | - Olha Stilbytska
- Department of Biochemistry and Biotechnology, Department Biochemistry 1, Faculty of Natural Sciences, Vasyl Stefanyk Precarpathian National University, 57 Shevchenka str, Ivano-Frankivsk 76018, Ukraine
| | - Uliana Semaniuk
- Department of Biochemistry and Biotechnology, Department Biochemistry 1, Faculty of Natural Sciences, Vasyl Stefanyk Precarpathian National University, 57 Shevchenka str, Ivano-Frankivsk 76018, Ukraine
| | - Oleh Lushchak
- Department of Biochemistry and Biotechnology, Department Biochemistry 1, Faculty of Natural Sciences, Vasyl Stefanyk Precarpathian National University, 57 Shevchenka str, Ivano-Frankivsk 76018, Ukraine.
| |
Collapse
|
4
|
Zhang SZ, Yu HZ, Deng MJ, Ma Y, Fei DQ, Wang J, Li Z, Meng Y, Xu JP. Comparative transcriptome analysis reveals significant metabolic alterations in eri-silkworm (Samia cynthia ricini) haemolymph in response to 1-deoxynojirimycin. PLoS One 2018; 13:e0191080. [PMID: 29324893 PMCID: PMC5764371 DOI: 10.1371/journal.pone.0191080] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2017] [Accepted: 12/27/2017] [Indexed: 02/07/2023] Open
Abstract
Samia cynthia ricini (Lepidoptera: Saturniidae) is an important commercial silk-producing insect; however, in contrast to the silkworm, mulberry leaves are toxic to this insect because the leaves contain the component 1-deoxynojirimycin (DNJ). A transcriptomic analysis of eri-silkworm haemolymph was conducted to examine the genes related to different metabolic pathways and to elucidate the molecular mechanism underlying eri-silkworm haemolymph responses to DNJ. Eight hundred sixty-five differentially expressed genes (DEGs) were identified, among which 577 DEGs were up-regulated and 288 DEGs were down-regulated in the 2% DNJ group compared to control (ddH2O) after 12h. Based on the results of the functional analysis, these DEGs were associated with ribosomes, glycolysis, N-glycan biosynthesis, and oxidative phosphorylation. In particular, according to the KEGG analysis, 138 DEGs were involved in energy metabolism, glycometabolism and lipid metabolism, and the changes in the expression of nine DEGs were confirmed by reverse transcription quantitative PCR (RT-qPCR). Thus, DNJ induced significant metabolic alterations in eri-silkworm haemolymph. These results will lay the foundation for research into the toxic effects of DNJ on eri-silkworm as a model and provide a reference for the exploitation of new drugs in humans.
Collapse
Affiliation(s)
- Shang-Zhi Zhang
- School of Life Sciences, Anhui Agricultural University, Hefei, Anhui, People’s Republic of China
| | - Hai-Zhong Yu
- School of Life Sciences, Anhui Agricultural University, Hefei, Anhui, People’s Republic of China
| | - Ming-Jie Deng
- School of Life Sciences, Anhui Agricultural University, Hefei, Anhui, People’s Republic of China
- Analytical and Testing Center of Wenzhou Medical University, Wenzhou, Zhejiang, People’s Republic of China
| | - Yan Ma
- School of Life Sciences, Anhui Agricultural University, Hefei, Anhui, People’s Republic of China
| | - Dong-Qiong Fei
- School of Life Sciences, Anhui Agricultural University, Hefei, Anhui, People’s Republic of China
| | - Jie Wang
- School of Life Sciences, Anhui Agricultural University, Hefei, Anhui, People’s Republic of China
| | - Zhen Li
- School of Life Sciences, Anhui Agricultural University, Hefei, Anhui, People’s Republic of China
| | - Yan Meng
- School of Life Sciences, Anhui Agricultural University, Hefei, Anhui, People’s Republic of China
| | - Jia-Ping Xu
- School of Life Sciences, Anhui Agricultural University, Hefei, Anhui, People’s Republic of China
- * E-mail:
| |
Collapse
|
5
|
Welte MA. As the fat flies: The dynamic lipid droplets of Drosophila embryos. Biochim Biophys Acta Mol Cell Biol Lipids 2015; 1851:1156-85. [PMID: 25882628 DOI: 10.1016/j.bbalip.2015.04.002] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2014] [Revised: 03/31/2015] [Accepted: 04/06/2015] [Indexed: 01/09/2023]
Abstract
Research into lipid droplets is rapidly expanding, and new cellular and organismal roles for these lipid-storage organelles are continually being discovered. The early Drosophila embryo is particularly well suited for addressing certain questions in lipid-droplet biology and combines technical advantages with unique biological phenomena. This review summarizes key features of this experimental system and the techniques available to study it, in order to make it accessible to researchers outside this field. It then describes the two topics most heavily studied in this system, lipid-droplet motility and protein sequestration on droplets, discusses what is known about the molecular players involved, points to open questions, and compares the results from Drosophila embryo studies to what it is known about lipid droplets in other systems.
Collapse
Affiliation(s)
- Michael A Welte
- Department of Biology University of Rochester, RC Box 270211, 317 Hutchison Hall, Rochester, NY 14627, USA.
| |
Collapse
|
6
|
Of flies and men: insights on organismal metabolism from fruit flies. BMC Biol 2013; 11:38. [PMID: 23587196 PMCID: PMC3626883 DOI: 10.1186/1741-7007-11-38] [Citation(s) in RCA: 68] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2013] [Accepted: 04/11/2013] [Indexed: 12/21/2022] Open
Abstract
The fruit fly Drosophila has contributed significantly to our general understanding of the basic principles of signaling, cell and developmental biology, and neurobiology. However, answers to questions pertaining to energy metabolism have been so far mostly addressed in more complex model organisms such as mice. We review in this article recent studies that show how the genetic tractability and simplicity of Drosophila are being used to identify novel regulatory mechanisms at the organismal level, and to query the co-ordination between energy metabolism and other processes such as neurodegeneration, circadian rhythms, immunity, and tumor biology.
Collapse
|
7
|
Piya MK, McTernan PG, Kumar S. Adipokine inflammation and insulin resistance: the role of glucose, lipids and endotoxin. J Endocrinol 2013; 216:T1-T15. [PMID: 23160966 DOI: 10.1530/joe-12-0498] [Citation(s) in RCA: 167] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Adipose tissue is an active endocrine organ, and our knowledge of this secretory tissue, in recent years, has led us to completely rethink how our body functions and becomes dysregulated with weight gain. Human adipose tissue appears to act as a multifunctional secretory organ with the capacity to control energy homoeostasis through peripheral and central regulation of energy homoeostasis. It also plays an important role in innate immunity. However, the capability to more than double its original mass to cope with positive energy balance in obesity leads to many pathogenic changes. These changes arise within the adipose tissue as well as inducing secondary detrimental effects on other organs like muscle and liver, including chronic low-grade inflammation mediated by adipocytokines (adipokine inflammation). This inflammation is modulated by dietary factors and nutrients including glucose and lipids, as well as gut bacteria in the form of endotoxin or LPS. The aim of this current review is to consider the impact of nutrients such as glucose and lipids on inflammatory pathways, specifically within adipose tissue. Furthermore, how nutrients such as these can influence adipokine inflammation and consequently insulin resistance directly through their effects on secretion of adipocytokines (TNFα, IL6 and resistin) as well as indirectly through increases in endotoxin is discussed.
Collapse
Affiliation(s)
- M K Piya
- Division of Metabolic and Vascular Health, Clinical Sciences Research Laboratories, Warwick Medical School, University Hospital Site, University of Warwick, Coventry CV2 2DX, UK.
| | | | | |
Collapse
|
8
|
Kühnlein RP. Thematic review series: Lipid droplet synthesis and metabolism: from yeast to man. Lipid droplet-based storage fat metabolism in Drosophila. J Lipid Res 2012; 53:1430-6. [PMID: 22566574 DOI: 10.1194/jlr.r024299] [Citation(s) in RCA: 104] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
The fruit fly Drosophila melanogaster is an emerging model system in lipid metabolism research. Lipid droplets are omnipresent and dynamically regulated organelles found in various cell types throughout the complex life cycle of this insect. The vital importance of lipid droplets as energy resources and storage compartments for lipoanabolic components has recently attracted research attention to the basic enzymatic machinery, which controls the delicate balance between triacylglycerol deposition and mobilization in flies. This review aims to present current insights in experimentally supported and inferred biological functions of lipogenic and lipolytic enzymes as well as regulatory proteins, which control the lipid droplet-based storage fat turnover in Drosophila.
Collapse
Affiliation(s)
- Ronald P Kühnlein
- Research Group Molecular Physiology, Department of Molecular Developmental Biology, Max Planck Institute for Biophysical Chemistry, 37077 Göttingen, Germany.
| |
Collapse
|
9
|
Rab32 is important for autophagy and lipid storage in Drosophila. PLoS One 2012; 7:e32086. [PMID: 22348149 PMCID: PMC3279429 DOI: 10.1371/journal.pone.0032086] [Citation(s) in RCA: 78] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2011] [Accepted: 01/23/2012] [Indexed: 12/12/2022] Open
Abstract
Lipids are essential components of all organisms. Within cells, lipids are mainly stored in a specific type of organelle, called the lipid droplet. The molecular mechanisms governing the dynamics of lipid droplets have been little explored. The protein composition of lipid droplets has been analyzed in numerous proteomic studies, and a large number of lipid droplet-associated proteins have been identified, including Rab small GTPases. Rab proteins are known to participate in many intracellular membranous events; however, their exact role in lipid droplets is largely unexplored. Here we systematically investigate the roles of Drosophila Rab family proteins in lipid storage in the larval adipose tissue, fat body. Rab32 and several other Rabs were found to affect the size of lipid droplets as well as lipid levels. Further studies showed that Rab32 and Rab32 GEF/Claret may be involved in autophagy, consequently affecting lipid storage. Loss-of-function mutants of several components in the autophagy pathway result in similar effects on lipid storage. These results highlight the potential functions of Rabs in regulating lipid metabolism.
Collapse
|
10
|
Kühnlein RP. The contribution of the Drosophila model to lipid droplet research. Prog Lipid Res 2011; 50:348-56. [DOI: 10.1016/j.plipres.2011.04.001] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2011] [Revised: 04/20/2011] [Accepted: 04/28/2011] [Indexed: 12/18/2022]
|
11
|
Hildebrandt A, Bickmeyer I, Kühnlein RP. Reliable Drosophila body fat quantification by a coupled colorimetric assay. PLoS One 2011; 6:e23796. [PMID: 21931614 PMCID: PMC3170289 DOI: 10.1371/journal.pone.0023796] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2011] [Accepted: 07/26/2011] [Indexed: 12/22/2022] Open
Abstract
Factors and mechanisms controlling lipometabolism homeostasis share a remarkable evolutionary conservation between humans and Drosophila flies. Accordingly, the Drosophila model has been successfully used to understand the pathophysiology of human metabolic diseases such as obesity. Body fat stores in species as different as humans and flies consist of neutral lipids, mainly triacylglycerols. Changes in body fat storage are a diagnostic phenotype of lipometabolism imbalances of genetic or environmental origin. Various methods have been developed to quantify Drosophila body fat storage. The most widely used method adopts a commercial coupled colorimetric assay designed for human serum triacylglycerol quantification, which is based on glycerol content determination after enzymatic conversion of glycerides into glycerol. The coupled colorimetric assay is compatible with large-scale genetic screen approaches and has been successfully applied to characterize central regulators of Drosophila lipometabolism. Recently, the applicability of the coupled colorimetric assay for Drosophila storage fat quantification has been questioned in principle. Here we compare the performance of the coupled colorimetric assay on Drosophila samples with thin layer chromatography, the “gold standard” in storage lipid analysis. Our data show that the presented variant of the coupled colorimetric assay reliably discriminates between lean and fat flies and allows robust, quick and cost-effective quantification of Drosophila body fat stores.
Collapse
Affiliation(s)
- Anja Hildebrandt
- Forschungsgruppe Molekulare Physiologie, Abteilung Molekulare Entwicklungsbiologie, Max-Planck-Institut für biophysikalische Chemie, Göttingen, Germany
| | - Iris Bickmeyer
- Forschungsgruppe Molekulare Physiologie, Abteilung Molekulare Entwicklungsbiologie, Max-Planck-Institut für biophysikalische Chemie, Göttingen, Germany
| | - Ronald P. Kühnlein
- Forschungsgruppe Molekulare Physiologie, Abteilung Molekulare Entwicklungsbiologie, Max-Planck-Institut für biophysikalische Chemie, Göttingen, Germany
- * E-mail:
| |
Collapse
|
12
|
Tissue- and paralogue-specific functions of acyl-CoA-binding proteins in lipid metabolism in Caenorhabditis elegans. Biochem J 2011; 437:231-41. [PMID: 21539519 DOI: 10.1042/bj20102099] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
ACBP (acyl-CoA-binding protein) is a small primarily cytosolic protein that binds acyl-CoA esters with high specificity and affinity. ACBP has been identified in all eukaryotic species, indicating that it performs a basal cellular function. However, differential tissue expression and the existence of several ACBP paralogues in many eukaryotic species indicate that these proteins serve distinct functions. The nematode Caenorhabditis elegans expresses seven ACBPs: four basal forms and three ACBP domain proteins. We find that each of these paralogues is capable of complementing the growth of ACBP-deficient yeast cells, and that they exhibit distinct temporal and tissue expression patterns in C. elegans. We have obtained loss-of-function mutants for six of these forms. All single mutants display relatively subtle phenotypes; however, we find that functional loss of ACBP-1 leads to reduced triacylglycerol (triglyceride) levels and aberrant lipid droplet morphology and number in the intestine. We also show that worms lacking ACBP-2 show a severe decrease in the β-oxidation of unsaturated fatty acids. A quadruple mutant, lacking all basal ACBPs, is slightly developmentally delayed, displays abnormal intestinal lipid storage, and increased β-oxidation. Collectively, the present results suggest that each of the ACBP paralogues serves a distinct function in C. elegans.
Collapse
|
13
|
Hu Y, Flockhart I, Vinayagam A, Bergwitz C, Berger B, Perrimon N, Mohr SE. An integrative approach to ortholog prediction for disease-focused and other functional studies. BMC Bioinformatics 2011; 12:357. [PMID: 21880147 PMCID: PMC3179972 DOI: 10.1186/1471-2105-12-357] [Citation(s) in RCA: 562] [Impact Index Per Article: 40.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2011] [Accepted: 08/31/2011] [Indexed: 12/12/2022] Open
Abstract
Background Mapping of orthologous genes among species serves an important role in functional genomics by allowing researchers to develop hypotheses about gene function in one species based on what is known about the functions of orthologs in other species. Several tools for predicting orthologous gene relationships are available. However, these tools can give different results and identification of predicted orthologs is not always straightforward. Results We report a simple but effective tool, the Drosophila RNAi Screening Center Integrative Ortholog Prediction Tool (DIOPT; http://www.flyrnai.org/diopt), for rapid identification of orthologs. DIOPT integrates existing approaches, facilitating rapid identification of orthologs among human, mouse, zebrafish, C. elegans, Drosophila, and S. cerevisiae. As compared to individual tools, DIOPT shows increased sensitivity with only a modest decrease in specificity. Moreover, the flexibility built into the DIOPT graphical user interface allows researchers with different goals to appropriately 'cast a wide net' or limit results to highest confidence predictions. DIOPT also displays protein and domain alignments, including percent amino acid identity, for predicted ortholog pairs. This helps users identify the most appropriate matches among multiple possible orthologs. To facilitate using model organisms for functional analysis of human disease-associated genes, we used DIOPT to predict high-confidence orthologs of disease genes in Online Mendelian Inheritance in Man (OMIM) and genes in genome-wide association study (GWAS) data sets. The results are accessible through the DIOPT diseases and traits query tool (DIOPT-DIST; http://www.flyrnai.org/diopt-dist). Conclusions DIOPT and DIOPT-DIST are useful resources for researchers working with model organisms, especially those who are interested in exploiting model organisms such as Drosophila to study the functions of human disease genes.
Collapse
Affiliation(s)
- Yanhui Hu
- Drosophila RNAi Screening Center, Department of Genetics, Harvard Medical School, 77 Avenue Louis Pasteur, Boston, MA 02115, USA
| | | | | | | | | | | | | |
Collapse
|
14
|
Matzkin LM, Johnson S, Paight C, Bozinovic G, Markow TA. Dietary protein and sugar differentially affect development and metabolic pools in ecologically diverse Drosophila. J Nutr 2011; 141:1127-33. [PMID: 21525254 DOI: 10.3945/jn.111.138438] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
We examined the effects of 3 diets differing in their relative levels of sugar and protein on development and metabolic pools (protein, TG, and glycogen) among sets of isofemale lines of 2 ecologically distinct Drosophila species, D. melanogaster and D. mojavensis. Our high protein:sugar ratio diet contained 7.1% protein and 17.9% carbohydrate, the EPS diet was 4.3% protein and 21.2% carbohydrate, and the LPS was only 2.5% protein and 24.6% carbohydrate. Larvae of D. melanogaster, a generalist fruit breeder, were able to survive on all 3 diets, although all 3 metabolic pools responded with significant diet and diet × line interactions. Development was delayed by the diet with the most sugar relative to protein. The other species, D. mojavensis, a cactus breeder ecologically unaccustomed to encountering simple sugars, completely failed to survive when fed the diet with the highest sugar and showed very poor survival even with the diet with equal parts of protein and sugar. Furthermore, the D. mojavensis adult metabolic pools of protein, TG, and glycogen significantly differed from those of D. melanogaster adults fed the identical diet. Thus, considerable within- and between-species differences exist in how diets are metabolized. Given that the genomes of both of these Drosophila species have been sequenced, these differences and their genetic underpinnings hold promise for understanding human responses to nutrition and for developing strategies for dealing with metabolic disease.
Collapse
Affiliation(s)
- Luciano M Matzkin
- Section of Ecology, Behavior and Evolution, Division of Biological Sciences, University of California at San Diego, La Jolla, CA 92093, USA
| | | | | | | | | |
Collapse
|
15
|
Tissue-autonomous function of Drosophila seipin in preventing ectopic lipid droplet formation. PLoS Genet 2011; 7:e1001364. [PMID: 21533227 PMCID: PMC3077376 DOI: 10.1371/journal.pgen.1001364] [Citation(s) in RCA: 114] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2010] [Accepted: 03/07/2011] [Indexed: 01/14/2023] Open
Abstract
Obesity is characterized by accumulation of excess body fat, while lipodystrophy is characterized by loss or absence of body fat. Despite their opposite phenotypes, these two conditions both cause ectopic lipid storage in non-adipose tissues, leading to lipotoxicity, which has health-threatening consequences. The exact mechanisms underlying ectopic lipid storage remain elusive. Here we report the analysis of a Drosophila model of the most severe form of human lipodystrophy, Berardinelli-Seip Congenital Lipodystrophy 2, which is caused by mutations in the BSCL2/Seipin gene. In addition to reduced lipid storage in the fat body, dSeipin mutant flies accumulate ectopic lipid droplets in the salivary gland, a non-adipose tissue. This phenotype was suppressed by expressing dSeipin specifically within the salivary gland. dSeipin mutants display synergistic genetic interactions with lipogenic genes in the formation of ectopic lipid droplets. Our data suggest that dSeipin may participate in phosphatidic acid metabolism and subsequently down-regulate lipogenesis to prevent ectopic lipid droplet formation. In summary, we have demonstrated a tissue-autonomous role of dSeipin in ectopic lipid storage in lipodystrophy. Obesity and lipodystrophy are medical conditions characterized by excess body fat or too little body fat, respectively. Interestingly, a common feature of both conditions is ectopic accumulation of lipids (fat) in cells where fat is not normally stored. This can cause tissue damage with health-threatening consequences. We are trying to understand how these two very different diseases lead to lipid storage in non-fat tissues. In this study, we used fruit flies (Drosophila melanogaster) with a mutation in the dSeipin gene as a lipodystrophy model to explore the mechanism of ectopic lipid storage. In dSeipin mutant flies, we found numerous lipid droplets in the salivary gland, a non-fat storage tissue, and reduced lipid storage in the fat body, an adipose tissue. Furthermore, we proved that dSeipin functions within salivary gland cells to prevent the formation of ectopic lipid droplets. We also found that dSeipin genetically interacts with other fat synthesis and metabolism genes in the formation of ectopic lipid droplets. The fruit fly dSeipin mutant provides an excellent model system for dissecting the mechanisms that regulate the storage of excess lipids.
Collapse
|
16
|
Oldham S. Obesity and nutrient sensing TOR pathway in flies and vertebrates: Functional conservation of genetic mechanisms. Trends Endocrinol Metab 2011; 22:45-52. [PMID: 21216618 PMCID: PMC3035994 DOI: 10.1016/j.tem.2010.11.002] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/09/2010] [Revised: 11/12/2010] [Accepted: 11/15/2010] [Indexed: 12/19/2022]
Abstract
The global prevalence of obesity has grown to epidemic proportions, and 400 million people are now considered to be obese. Excessive accumulation of dietary lipids (obesity) is a known risk factor for the development of deleterious metabolic conditions and has been strongly linked to the progression of heart disease and type 2 diabetes. Investigating the origin and effects of high-fat diet (HFD)-induced obesity and its genetic mediators is an important step in understanding the mechanisms that contribute to obesity. However, the mechanisms that underlie HFD pathophysiology have yet to be elucidated fully. Here we describe recent work in a Drosophila model to investigate the origin and genetic mechanisms that could underlie HFD-induced obesity, type 2 diabetes and cardiac dysfunction.
Collapse
Affiliation(s)
- Sean Oldham
- Sanford-Burnham Medical Research Institute, 10901 North Torrey Pines Road, La Jolla, CA 92037, USA.
| |
Collapse
|
17
|
Abstract
The fruit fly Drosophila is a centenarian in research service, but a novice as an invertebrate model system for energy homeostasis research. The last couple of years, however, witnessed numerous technical advances driving the rise of this model organism in central areas of energy balance research such as food perception, feeding control, energy flux and lipometabolism. These studies demonstrate an unanticipated evolutionary conservation of genes and mechanisms governing central aspects of energy homeostasis. Accordingly, research on Drosophila promises both, a systems biology view on the regulatory network, which governs lifelong energy control in a complex eukaryotic organism as well as, important insights into the mammalian energy balance control with a potential impact on the diagnostic and therapeutic strategies in the treatment of human lipopathologies such as obesity.
Collapse
Affiliation(s)
- Ronald P Kühnlein
- Forschungsgruppe Molekulare Physiologie, Max-Planck-Institut für biophysikalische Chemie, Am Fassberg 11, 37077 Göttingen, Germany.
| |
Collapse
|