1
|
Huang J, Che J, Kee MZL, Tan AP, Law EC, Silveira PP, Pokhvisneva I, Patel S, Godfrey KM, Daniel LM, Tan KH, Chong YS, Chan SY, Eriksson JG, Wang D, Huang JY. Linking obesity-associated genotype to child language development: the role of early-life neurology-related proteomics and brain myelination. EBioMedicine 2025; 113:105579. [PMID: 39938231 PMCID: PMC11868953 DOI: 10.1016/j.ebiom.2025.105579] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 01/06/2025] [Accepted: 01/17/2025] [Indexed: 02/14/2025] Open
Abstract
BACKGROUND The association between childhood obesity and language development may be confounded by socio-environmental factors and attributed to comorbid pathways. METHODS In a longitudinal Singaporean mother-offspring cohort, we leveraged trans-ancestry polygenic predictions of body mass index (BMI) to interrogate the causal effects of early-life BMI on child language development and its effects on molecular and neuroimaging measures. Leveraging large genome-wide association studies, we examined whether the link between obesity and language development is causal or due to a shared genetic basis. FINDINGS We found an inverse association between polygenic risk for obesity, which is less susceptible to confounding, and language ability assessed at age 9. Our findings suggested a shared genetic basis between obesity and language development rather than a causal effect of obesity on language development. Interrogating early-life mechanisms including neurology-related proteomics and language-related white matter microstructure, we found that EFNA4 and VWC2 expressions were associated with language ability as well as fractional anisotropy of language-related white matter tracts, suggesting a role in brain myelination. Additionally, the expression of the EPH-Ephrin signalling pathway in the hippocampus might contribute to language development. Polygenic risk for obesity was nominally associated with EFNA4 and VWC2 expression. However, we did not find support for mediating mechanisms via these proteins. INTERPRETATION This study demonstrates the potential of examining early-life proteomics in conjunction with deep genotyping and phenotyping and provides biological insights into the shared genomic links between obesity and language development. FUNDING Singapore National Research Foundation and Agency for Science, Technology and Research.
Collapse
Affiliation(s)
- Jian Huang
- Institute for Human Development and Potential (IHDP), Agency for Science, Technology and Research (A∗STAR), Singapore, Republic of Singapore; Bioinformatics Institute, Agency for Science, Technology and Research (A∗STAR), Singapore, Republic of Singapore; Human Potential Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore, Republic of Singapore; Department of Epidemiology and Biostatistics, School of Public Health, Imperial College London, Norfolk Place, London, UK.
| | - Jinyi Che
- Institute for Human Development and Potential (IHDP), Agency for Science, Technology and Research (A∗STAR), Singapore, Republic of Singapore; Bioinformatics Institute, Agency for Science, Technology and Research (A∗STAR), Singapore, Republic of Singapore; Department of Paediatrics, Yong Loo Lin School of Medicine, National University of Singapore, Republic of Singapore
| | - Michelle Z L Kee
- Institute for Human Development and Potential (IHDP), Agency for Science, Technology and Research (A∗STAR), Singapore, Republic of Singapore
| | - Ai Peng Tan
- Institute for Human Development and Potential (IHDP), Agency for Science, Technology and Research (A∗STAR), Singapore, Republic of Singapore; Department of Diagnostic Imaging, National University Hospital, Singapore, Republic of Singapore; Department of Diagnostic Radiology, Yong Loo Lin School of Medicine, NUS, Singapore, Republic of Singapore
| | - Evelyn C Law
- Institute for Human Development and Potential (IHDP), Agency for Science, Technology and Research (A∗STAR), Singapore, Republic of Singapore; Department of Paediatrics, Yong Loo Lin School of Medicine, National University of Singapore, Republic of Singapore; Department of Paediatrics, Khoo Teck Puat-National University Children's Medical Institute, National University Hospital, Singapore, Republic of Singapore
| | - Patricia Pelufo Silveira
- Department of Paediatrics, Yong Loo Lin School of Medicine, National University of Singapore, Republic of Singapore; Department of Psychiatry, Faculty of Medicine and Ludmer Centre for Neuroinformatics and Mental Health, Douglas Hospital Research Centre, McGill University, Montreal, Canada
| | - Irina Pokhvisneva
- Department of Psychiatry, Faculty of Medicine and Ludmer Centre for Neuroinformatics and Mental Health, Douglas Hospital Research Centre, McGill University, Montreal, Canada
| | - Sachin Patel
- Department of Psychiatry, Faculty of Medicine and Ludmer Centre for Neuroinformatics and Mental Health, Douglas Hospital Research Centre, McGill University, Montreal, Canada
| | - Keith M Godfrey
- MRC Lifecourse Epidemiology Centre and NIHR Southampton Biomedical Research Centre, University of Southampton & University Hospital Southampton NHS Foundation Trust, Southampton, United Kingdom
| | - Lourdes Mary Daniel
- Department of Child Development, KK Women's and Children's Hospital, Singapore, Republic of Singapore
| | - Kok Hian Tan
- Department of Maternal Fetal Medicine, KK Women's and Children's Hospital, Singapore, Republic of Singapore
| | - Yap Seng Chong
- Institute for Human Development and Potential (IHDP), Agency for Science, Technology and Research (A∗STAR), Singapore, Republic of Singapore; Department of Obstetrics & Gynaecology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Republic of Singapore
| | - Shiao-Yng Chan
- Institute for Human Development and Potential (IHDP), Agency for Science, Technology and Research (A∗STAR), Singapore, Republic of Singapore; Human Potential Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore, Republic of Singapore; Department of Obstetrics & Gynaecology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Republic of Singapore
| | - Johan G Eriksson
- Institute for Human Development and Potential (IHDP), Agency for Science, Technology and Research (A∗STAR), Singapore, Republic of Singapore; Human Potential Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore, Republic of Singapore; Department of Obstetrics & Gynaecology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Republic of Singapore; Department of General Practice and Primary Health Care, University of Helsinki, Helsinki, Finland; Folkhälsan Research Center, Helsinki, Finland
| | - Dennis Wang
- Institute for Human Development and Potential (IHDP), Agency for Science, Technology and Research (A∗STAR), Singapore, Republic of Singapore; Bioinformatics Institute, Agency for Science, Technology and Research (A∗STAR), Singapore, Republic of Singapore; Human Potential Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore, Republic of Singapore; Department of Paediatrics, Yong Loo Lin School of Medicine, National University of Singapore, Republic of Singapore; National Heart and Lung Institute, Imperial College London, London, UK; Department of Computer Science, University of Sheffield, Sheffield, UK
| | - Jonathan Yinhao Huang
- Centre for Quantitative Medicine, Duke-NUS Medical School, Singapore, Republic of Singapore; Thompson School of Social Work & Public Health, Office of Public Health Studies, University of Hawai'i at Mānoa, Honolulu, Hawaii, USA
| |
Collapse
|
2
|
Liu N, Tian J, Steer CJ, Han Q, Song G. MicroRNA-206-3p suppresses hepatic lipogenesis and cholesterol synthesis while driving cholesterol efflux. Hepatology 2025; 81:111-125. [PMID: 37943861 DOI: 10.1097/hep.0000000000000672] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Accepted: 10/29/2023] [Indexed: 11/12/2023]
Abstract
BACKGROUND AND AIMS Hepatosteatosis, hypertriglyceridemia, and hypercholesterolemia are interconnected metabolic disorders. This study is designed to characterize how microRNA-206-3p (miR-206) simultaneously prevents de novo lipogenesis (DNL), cholesterol synthesis, and VLDL production in hepatocytes while promoting cholesterol efflux in macrophages. APPROACH AND RESULTS MiR-206 levels were reduced in hepatocytes and macrophages of mice subjected to a high-fat, high-cholesterol diet. A negative feedback between LXRα (liver X receptor alpha) and miR-206 is formed to maintain high LXRα and low miR-206 in hepatocytes. Systemic administration of miR-206 alleviated hepatosteatosis, hypertriglyceridemia, and hypercholesterolemia in mice. A significant reduction in LDL cholesterol and VLDL cholesterol but unaltered HDL cholesterol was observed in miR-206-treated mice. Mirroring these findings, miR-206 reprogrammed the transcriptome of hepatocytes towards the inhibition of DNL, cholesterol synthesis, and assembly and secretion of VLDL. In macrophages, miR-206 activated the expression of genes regulating cholesterol efflux. Hepatocyte-specific expression of miR-206 reduced hepatic and circulating triglycerides and cholesterol, as well as VLDL production, while transplantation of macrophages bearing miR-206 facilitated cholesterol efflux. Mechanistically, miR-206 directly targeted Lxrα and Hmgcr in hepatocytes but facilitated expression of Lxrα in macrophages by targeting macrophage-specific tricho-rhino-phalangeal syndrome 1 (TRPS1), a transcription repressor of Lxrα . By targeting Hmgc r and Lxrα , miR-206 inhibited DNL, VLDL production, and cholesterol synthesis in hepatocytes, whereas it drove cholesterol efflux by activating the TRPS1-LXRα axis. CONCLUSIONS MiR-206, through differentially modulating LXRα signaling in hepatocytes and macrophages, inhibits DNL, promotes cholesterol efflux, and concurrently hinders cholesterol synthesis and VLDL production. MiR-206 simulates the functions of lipid-lowering medications, statins, and LXRα agonists.
Collapse
Affiliation(s)
- Ningning Liu
- Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
- Department of Medicine, University of Minnesota Medical School, Minneapolis, Minnesota, USA
| | - Jing Tian
- Department of Cardiology, the First Hospital of Shanxi Medical University, Taiyuan City, China
| | - Clifford J Steer
- Department of Medicine, University of Minnesota Medical School, Minneapolis, Minnesota, USA
- Department of Genetics, Cell Biology, and Development, University of Minnesota, Minneapolis, Minnesota, USA
| | - Qinghua Han
- Department of Cardiology, the First Hospital of Shanxi Medical University, Taiyuan City, China
| | - Guisheng Song
- Department of Medicine, University of Minnesota Medical School, Minneapolis, Minnesota, USA
- Department of Genetics, Cell Biology, and Development, University of Minnesota, Minneapolis, Minnesota, USA
| |
Collapse
|
3
|
Sheng W, Ji G, Zhang L. Role of macrophage scavenger receptor MSR1 in the progression of non-alcoholic steatohepatitis. Front Immunol 2022; 13:1050984. [PMID: 36591228 PMCID: PMC9797536 DOI: 10.3389/fimmu.2022.1050984] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Accepted: 11/28/2022] [Indexed: 12/23/2022] Open
Abstract
Nonalcoholic steatohepatitis (NASH) is the progressive form of nonalcoholic fatty liver disease (NAFLD), and the dysregulation of lipid metabolism and oxidative stress are the typical features. Subsequent dyslipidemia and oxygen radical production may render the formation of modified lipids. Macrophage scavenger receptor 1 (MSR1) is responsible for the uptake of modified lipoprotein and is one of the key molecules in atherosclerosis. However, the unrestricted uptake of modified lipoproteins by MSR1 and the formation of cholesterol-rich foamy macrophages also can be observed in NASH patients and mouse models. In this review, we highlight the dysregulation of lipid metabolism and oxidative stress in NASH, the alteration of MSR1 expression in physiological and pathological conditions, the formation of modified lipoproteins, and the role of MSR1 on macrophage foaming and NASH development and progression.
Collapse
Affiliation(s)
| | | | - Li Zhang
- Institute of Digestive Diseases, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| |
Collapse
|
4
|
Xiang P, Blanchard V, Francis GA. Smooth Muscle Cell—Macrophage Interactions Leading to Foam Cell Formation in Atherosclerosis: Location, Location, Location. Front Physiol 2022; 13:921597. [PMID: 35795646 PMCID: PMC9251363 DOI: 10.3389/fphys.2022.921597] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2022] [Accepted: 05/30/2022] [Indexed: 11/13/2022] Open
Abstract
Cholesterol-overloaded cells or “foam cells” in the artery wall are the biochemical hallmark of atherosclerosis, and are responsible for much of the growth, inflammation and susceptibility to rupture of atherosclerotic lesions. While it has previously been thought that macrophages are the main contributor to the foam cell population, recent evidence indicates arterial smooth muscle cells (SMCs) are the source of the majority of foam cells in both human and murine atherosclerosis. This review outlines the timeline, site of appearance and proximity of SMCs and macrophages with lipids in human and mouse atherosclerosis, and likely interactions between SMCs and macrophages that promote foam cell formation and removal by both cell types. An understanding of these SMC-macrophage interactions in foam cell formation and regression is expected to provide new therapeutic targets to reduce the burden of atherosclerosis for the prevention of coronary heart disease, stroke and peripheral vascular disease.
Collapse
|
5
|
Alahmadi A, Ramji DP. Monitoring Modified Lipoprotein Uptake and Macropinocytosis Associated with Macrophage Foam Cell Formation. METHODS IN MOLECULAR BIOLOGY (CLIFTON, N.J.) 2022; 2419:247-255. [PMID: 35237968 DOI: 10.1007/978-1-0716-1924-7_14] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
Macrophage foam cell formation plays a crucial role in the initiation and progression of atherosclerosis. Macrophages uptake native and modified low density lipoprotein (LDL) through either receptor-dependent or receptor-independent mechanisms to transform into lipid laden foam cells. Foam cells are involved in the formation of fatty streak that is seen during the early stages of atherosclerosis development and therefore represents a promising therapeutic target. Normal or modified lipoproteins labeled with fluorescent dyes such as 1,1'-dioctadecyl-3-3-3',3'-tetramethylindocarbocyanine perchlorate (Dil) are often used to monitor their internalization during foam cell formation. In addition, the fluorescent dye Lucifer Yellow (LY) is widely used as a marker for macropinocytosis activity. In this chapter, we describe established methods for monitoring modified lipoprotein uptake and macropinocytosis during macrophage foam cell formation.
Collapse
Affiliation(s)
- Alaa Alahmadi
- Cardiff School of Biosciences, Cardiff University, Cardiff, UK.
| | - Dipak P Ramji
- Cardiff School of Biosciences, Cardiff University, Cardiff, UK
| |
Collapse
|
6
|
Zhang K, Liu C, Yang T, Li X, Wei L, Chen D, Zhou J, Yin Y, Yu X, Li F. Systematically explore the potential hepatotoxic material basis and molecular mechanism of Radix Aconiti Lateralis based on the concept of toxicological evidence chain (TEC). ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2020; 205:111342. [PMID: 32971455 DOI: 10.1016/j.ecoenv.2020.111342] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2020] [Revised: 09/09/2020] [Accepted: 09/10/2020] [Indexed: 06/11/2023]
Abstract
Radix aconiti lateralis (Fuzi) is widely used in China as a traditional Chinese medicine for the treatment of asthenia, pain and inflammation. However, its toxic alkaloids often lead to adverse reactions. Currently, most of the toxicity studies on Fuzi are focused on the heart and nervous system, and more comprehensive toxicity studies are needed. In this study, based on the previous reports of Fuzi hepatotoxicity, serum pharmacochemistry and network toxicology were used to screen the potential toxic components of Heishunpian(HSP), a processed product of Fuzi, and to explore the possible mechanism of HSP-induced hepatotoxicity. The results obtained are expressed based on the toxicological evidence chain (TEC). It was found that 22 potential toxic components screened can affect Th17 cell differentiation, Jak-STAT signaling pathway, glutathione metabolism, and other related pathways by regulating AKT1, IL2, F2, GSR, EGFR and other related targets, which induces oxidative stress, metabolic disorders, cell apoptosis, immune response, and excessive release of inflammatory factors, eventually inducing liver damage in rats. This is the first study on HSP-induced hepatotoxicity based on the TEC concept, providing references for further studies on the toxicity mechanism of Fuzi.
Collapse
Affiliation(s)
- Kai Zhang
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Liangxiang Town, Fangshan District, Beijing, 102488, China
| | - Chuanxin Liu
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Liangxiang Town, Fangshan District, Beijing, 102488, China
| | - Tiange Yang
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Liangxiang Town, Fangshan District, Beijing, 102488, China
| | - Xinxin Li
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Liangxiang Town, Fangshan District, Beijing, 102488, China
| | - Longyin Wei
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Liangxiang Town, Fangshan District, Beijing, 102488, China
| | - Dongling Chen
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Liangxiang Town, Fangshan District, Beijing, 102488, China
| | - Jiali Zhou
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Liangxiang Town, Fangshan District, Beijing, 102488, China
| | - Yihui Yin
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Liangxiang Town, Fangshan District, Beijing, 102488, China
| | - Xinyu Yu
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Liangxiang Town, Fangshan District, Beijing, 102488, China
| | - Fei Li
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Liangxiang Town, Fangshan District, Beijing, 102488, China.
| |
Collapse
|
7
|
Lack of mitochondrial NADP(H)-transhydrogenase expression in macrophages exacerbates atherosclerosis in hypercholesterolemic mice. Biochem J 2020; 476:3769-3789. [PMID: 31803904 DOI: 10.1042/bcj20190543] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2019] [Revised: 12/04/2019] [Accepted: 12/04/2019] [Indexed: 02/02/2023]
Abstract
The atherosclerosis prone LDL receptor knockout mice (Ldlr-/-, C57BL/6J background) carry a deletion of the NADP(H)-transhydrogenase gene (Nnt) encoding the mitochondrial enzyme that catalyzes NADPH synthesis. Here we hypothesize that both increased NADPH consumption (due to increased steroidogenesis) and decreased NADPH generation (due to Nnt deficiency) in Ldlr-/- mice contribute to establish a macrophage oxidative stress and increase atherosclerosis development. Thus, we compared peritoneal macrophages and liver mitochondria from three C57BL/6J mice lines: Ldlr and Nnt double mutant, single Nnt mutant and wild-type. We found increased oxidants production in both mitochondria and macrophages according to a gradient: double mutant > single mutant > wild-type. We also observed a parallel up-regulation of mitochondrial biogenesis (PGC1a, TFAM and respiratory complexes levels) and inflammatory (iNOS, IL6 and IL1b) markers in single and double mutant macrophages. When exposed to modified LDL, the single and double mutant cells exhibited significant increases in lipid accumulation leading to foam cell formation, the hallmark of atherosclerosis. Nnt deficiency cells showed up-regulation of CD36 and down-regulation of ABCA1 transporters what may explain lipid accumulation in macrophages. Finally, Nnt wild-type bone marrow transplantation into LDLr-/- mice resulted in reduced diet-induced atherosclerosis. Therefore, Nnt plays a critical role in the maintenance of macrophage redox, inflammatory and cholesterol homeostasis, which is relevant for delaying the atherogenesis process.
Collapse
|
8
|
Liu C, Zhang C, He T, Sun L, Wang Q, Han S, Wang W, Kong J, Yuan F, Huang J. Study on potential toxic material base and mechanisms of hepatotoxicity induced by Dysosma versipellis based on toxicological evidence chain (TEC) concept. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2020; 190:110073. [PMID: 31851898 DOI: 10.1016/j.ecoenv.2019.110073] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2019] [Revised: 12/03/2019] [Accepted: 12/07/2019] [Indexed: 06/10/2023]
Abstract
Dysosma Versipellis (DV), a traditional Chinese medicine, has the functions of eliminating phlegm, detoxification, dispersing knots . However, its serious toxicity limits its further use. Therefore, it is necessary to conduct a comprehensive toxicity study of DV, screen the basis of potential toxic substances and understand its toxic mechanism. Based on the concept of toxicological evidence chain (TEC), this study utilizes the technologies and means of chemomics, metabolomics, molecular docking and network toxicology flexibly, step by step to find the evidence of potential toxic components in the development of hepatotoxicity induced by DV, evidence of critical toxicity events, evidence of adverse outcomes, thus, a chain of toxicity evidence with reference and directivity can be organized. It further confirmed the toxic damage and potential molecular mechanism of DV. 5 potential toxic components were identified, namely, Podophyllotoxin-4-O-D-glucoside, Podorhizol, Podophyllotoxin, Podophyllotoxone and 3',4'-O,O-Didemethylpophyllotoxin. These chemical constituents affect phenylalanine metabolism, glycerophospholipid metabolism, energy metabolism and other related pathways by regulating PAH, SOD1, SOD2 and other related targets, then it induces oxidative stress, cell apoptosis, inflammatory reaction and energy consumption, which ultimately induces the occurrence of liver injury. The results of this study provide some reference for the follow-up analysis of toxicity mechanism of DV.
Collapse
Affiliation(s)
- Chuanxin Liu
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Liangxiang Town, Fangshan District, Beijing, 102488, China
| | - Chenning Zhang
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Liangxiang Town, Fangshan District, Beijing, 102488, China; Institute of Wudang Traditional Chinese Medicine, Taihe Hospital, Hubei University of Medicine, Remmin South Road 32, Shiyan City, Hubei Province, 442000, China
| | - Tao He
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Liangxiang Town, Fangshan District, Beijing, 102488, China
| | - Lu Sun
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Liangxiang Town, Fangshan District, Beijing, 102488, China
| | - Qiang Wang
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Liangxiang Town, Fangshan District, Beijing, 102488, China
| | - Shuang Han
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Liangxiang Town, Fangshan District, Beijing, 102488, China
| | - Wenxin Wang
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Liangxiang Town, Fangshan District, Beijing, 102488, China
| | - Jiao Kong
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Liangxiang Town, Fangshan District, Beijing, 102488, China
| | - Fuli Yuan
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Liangxiang Town, Fangshan District, Beijing, 102488, China
| | - Jianmei Huang
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Liangxiang Town, Fangshan District, Beijing, 102488, China.
| |
Collapse
|
9
|
Nahon JE, Hoekstra M, van Hulst S, Manta C, Goerdt S, Geerling JJ, Géraud C, Van Eck M. Hematopoietic Stabilin-1 deficiency does not influence atherosclerosis susceptibility in LDL receptor knockout mice. Atherosclerosis 2019; 281:47-55. [PMID: 30658191 DOI: 10.1016/j.atherosclerosis.2018.12.020] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/20/2018] [Revised: 12/02/2018] [Accepted: 12/05/2018] [Indexed: 12/11/2022]
Abstract
BACKGROUND AND AIMS Stabilin-1 (STAB1) is a scavenger receptor expressed on alternatively activated macrophages and sinusoidal endothelial cells. Its ligands include oxidized low-density lipoprotein (LDL) and the extracellular matrix glycoprotein SPARC and it is present in both human and murine atherosclerotic lesions. We aimed to investigate the effect of specific deletion of STAB1 in bone marrow-derived cells, including macrophages on atherosclerotic lesion formation in mice. METHODS Lethally irradiated hypercholesterolemic LDL receptor knockout mice received either wildtype (WT) or STAB1 knockout (STAB1 KO) bone marrow. Bone marrow transplanted mice were fed a Western-type diet for 9 weeks to induce atherosclerotic lesion formation. RESULTS Interestingly, LDL receptor knockout mice reconstituted with STAB1 KO bone marrow showed increased body weight gain (two-way ANOVA: p < 0.001) and larger white adipocyte cell sizes (43% increase in cell area; p < 0.05) as compared to WT bone marrow transplanted mice, which correlated positively (r = 0.82; p < 0.001). This was paralleled by a significant increase in white adipose tissue relative mRNA expression levels of the adipokine leptin (+94% p < 0.05). Despite these changes, no differences in serum lipid levels, the extent of in vivo macrophage foam cell formation or circulating leukocyte concentrations were observed. Moreover, the size and composition of atherosclerotic lesions was not different between the two experimental groups. CONCLUSIONS Bone marrow-specific Stabilin-1 deletion does not affect the susceptibility for atherosclerosis in mice. However, the increased body weight gain and adipocyte cell size highlight a potential role for leukocyte STAB1 in the development of metabolic disorders.
Collapse
Affiliation(s)
- Joya E Nahon
- Division of BioTherapeutics, Leiden Academic Centre for Drug Research (LACDR), Gorlaeus Laboratories, Einsteinweg 55, 2333CC, Leiden, the Netherlands
| | - Menno Hoekstra
- Division of BioTherapeutics, Leiden Academic Centre for Drug Research (LACDR), Gorlaeus Laboratories, Einsteinweg 55, 2333CC, Leiden, the Netherlands.
| | - Silvia van Hulst
- Division of BioTherapeutics, Leiden Academic Centre for Drug Research (LACDR), Gorlaeus Laboratories, Einsteinweg 55, 2333CC, Leiden, the Netherlands
| | - Calin Manta
- Department of Dermatology, Venereology, and Allergology, University Medical Center and Medical Faculty Mannheim, Heidelberg University, And Center of Excellence in Dermatology, Mannheim, Germany
| | - Sergij Goerdt
- Department of Dermatology, Venereology, and Allergology, University Medical Center and Medical Faculty Mannheim, Heidelberg University, And Center of Excellence in Dermatology, Mannheim, Germany; European Center for Angioscience, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Janine J Geerling
- Division of BioTherapeutics, Leiden Academic Centre for Drug Research (LACDR), Gorlaeus Laboratories, Einsteinweg 55, 2333CC, Leiden, the Netherlands
| | - Cyrill Géraud
- Department of Dermatology, Venereology, and Allergology, University Medical Center and Medical Faculty Mannheim, Heidelberg University, And Center of Excellence in Dermatology, Mannheim, Germany; European Center for Angioscience, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany; Section of Clinical and Molecular Dermatology, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Miranda Van Eck
- Division of BioTherapeutics, Leiden Academic Centre for Drug Research (LACDR), Gorlaeus Laboratories, Einsteinweg 55, 2333CC, Leiden, the Netherlands
| |
Collapse
|
10
|
Hematopoietic arginase 1 deficiency results in decreased leukocytosis and increased foam cell formation but does not affect atherosclerosis. Atherosclerosis 2017; 256:35-46. [DOI: 10.1016/j.atherosclerosis.2016.11.018] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/03/2016] [Revised: 11/04/2016] [Accepted: 11/15/2016] [Indexed: 01/20/2023]
|
11
|
Higashi Y, Sukhanov S, Shai SY, Danchuk S, Tang R, Snarski P, Li Z, Lobelle-Rich P, Wang M, Wang D, Yu H, Korthuis R, Delafontaine P. Insulin-Like Growth Factor-1 Receptor Deficiency in Macrophages Accelerates Atherosclerosis and Induces an Unstable Plaque Phenotype in Apolipoprotein E-Deficient Mice. Circulation 2016; 133:2263-78. [PMID: 27154724 DOI: 10.1161/circulationaha.116.021805] [Citation(s) in RCA: 94] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/13/2015] [Accepted: 04/27/2016] [Indexed: 02/06/2023]
Abstract
BACKGROUND We have previously shown that systemic infusion of insulin-like growth factor-1 (IGF-1) exerts anti-inflammatory and antioxidant effects and reduces atherosclerotic burden in apolipoprotein E (Apoe)-deficient mice. Monocytes/macrophages express high levels of IGF-1 receptor (IGF1R) and play a pivotal role in atherogenesis, but the potential effects of IGF-1 on their function are unknown. METHODS AND RESULTS To determine mechanisms whereby IGF-1 reduces atherosclerosis and to explore the potential involvement of monocytes/macrophages, we created monocyte/macrophage-specific IGF1R knockout (MΦ-IGF1R-KO) mice on an Apoe(-/-) background. We assessed atherosclerotic burden, plaque features of stability, and monocyte recruitment to atherosclerotic lesions. Phenotypic changes of IGF1R-deficient macrophages were investigated in culture. MΦ-IGF1R-KO significantly increased atherosclerotic lesion formation, as assessed by Oil Red O staining of en face aortas and aortic root cross-sections, and changed plaque composition to a less stable phenotype, characterized by increased macrophage and decreased α-smooth muscle actin-positive cell population, fibrous cap thinning, and decreased collagen content. Brachiocephalic artery lesions of MΦ-IGF1R-KO mice had histological features implying plaque vulnerability. Macrophages isolated from MΦ-IGF1R-KO mice showed enhanced proinflammatory responses on stimulation by interferon-γ and oxidized low-density lipoprotein and elevated antioxidant gene expression levels. Moreover, IGF1R-deficient macrophages had decreased expression of ABCA1 and ABCG1 and reduced lipid efflux. CONCLUSIONS Our data indicate that macrophage IGF1R signaling suppresses macrophage and foam cell accumulation in lesions and reduces plaque vulnerability, providing a novel mechanism whereby IGF-1 exerts antiatherogenic effects.
Collapse
Affiliation(s)
- Yusuke Higashi
- From Departments of Medicine (Y.H., S.S., S.D., P.S., Z.L., P.D.) and Medical Pharmacology and Physiology (Y.H., S.S., M.W., D.W., H.Y., R.K.), University of Missouri School of Medicine, Columbia; and Department of Medicine, Tulane University School of Medicine, New Orleans, LA (S.-Y.S., R.T., P.L.-R.).
| | - Sergiy Sukhanov
- From Departments of Medicine (Y.H., S.S., S.D., P.S., Z.L., P.D.) and Medical Pharmacology and Physiology (Y.H., S.S., M.W., D.W., H.Y., R.K.), University of Missouri School of Medicine, Columbia; and Department of Medicine, Tulane University School of Medicine, New Orleans, LA (S.-Y.S., R.T., P.L.-R.)
| | - Shaw-Yung Shai
- From Departments of Medicine (Y.H., S.S., S.D., P.S., Z.L., P.D.) and Medical Pharmacology and Physiology (Y.H., S.S., M.W., D.W., H.Y., R.K.), University of Missouri School of Medicine, Columbia; and Department of Medicine, Tulane University School of Medicine, New Orleans, LA (S.-Y.S., R.T., P.L.-R.)
| | - Svitlana Danchuk
- From Departments of Medicine (Y.H., S.S., S.D., P.S., Z.L., P.D.) and Medical Pharmacology and Physiology (Y.H., S.S., M.W., D.W., H.Y., R.K.), University of Missouri School of Medicine, Columbia; and Department of Medicine, Tulane University School of Medicine, New Orleans, LA (S.-Y.S., R.T., P.L.-R.)
| | - Richard Tang
- From Departments of Medicine (Y.H., S.S., S.D., P.S., Z.L., P.D.) and Medical Pharmacology and Physiology (Y.H., S.S., M.W., D.W., H.Y., R.K.), University of Missouri School of Medicine, Columbia; and Department of Medicine, Tulane University School of Medicine, New Orleans, LA (S.-Y.S., R.T., P.L.-R.)
| | - Patricia Snarski
- From Departments of Medicine (Y.H., S.S., S.D., P.S., Z.L., P.D.) and Medical Pharmacology and Physiology (Y.H., S.S., M.W., D.W., H.Y., R.K.), University of Missouri School of Medicine, Columbia; and Department of Medicine, Tulane University School of Medicine, New Orleans, LA (S.-Y.S., R.T., P.L.-R.)
| | - Zhaohui Li
- From Departments of Medicine (Y.H., S.S., S.D., P.S., Z.L., P.D.) and Medical Pharmacology and Physiology (Y.H., S.S., M.W., D.W., H.Y., R.K.), University of Missouri School of Medicine, Columbia; and Department of Medicine, Tulane University School of Medicine, New Orleans, LA (S.-Y.S., R.T., P.L.-R.)
| | - Patricia Lobelle-Rich
- From Departments of Medicine (Y.H., S.S., S.D., P.S., Z.L., P.D.) and Medical Pharmacology and Physiology (Y.H., S.S., M.W., D.W., H.Y., R.K.), University of Missouri School of Medicine, Columbia; and Department of Medicine, Tulane University School of Medicine, New Orleans, LA (S.-Y.S., R.T., P.L.-R.)
| | - Meifang Wang
- From Departments of Medicine (Y.H., S.S., S.D., P.S., Z.L., P.D.) and Medical Pharmacology and Physiology (Y.H., S.S., M.W., D.W., H.Y., R.K.), University of Missouri School of Medicine, Columbia; and Department of Medicine, Tulane University School of Medicine, New Orleans, LA (S.-Y.S., R.T., P.L.-R.)
| | - Derek Wang
- From Departments of Medicine (Y.H., S.S., S.D., P.S., Z.L., P.D.) and Medical Pharmacology and Physiology (Y.H., S.S., M.W., D.W., H.Y., R.K.), University of Missouri School of Medicine, Columbia; and Department of Medicine, Tulane University School of Medicine, New Orleans, LA (S.-Y.S., R.T., P.L.-R.)
| | - Hong Yu
- From Departments of Medicine (Y.H., S.S., S.D., P.S., Z.L., P.D.) and Medical Pharmacology and Physiology (Y.H., S.S., M.W., D.W., H.Y., R.K.), University of Missouri School of Medicine, Columbia; and Department of Medicine, Tulane University School of Medicine, New Orleans, LA (S.-Y.S., R.T., P.L.-R.)
| | - Ronald Korthuis
- From Departments of Medicine (Y.H., S.S., S.D., P.S., Z.L., P.D.) and Medical Pharmacology and Physiology (Y.H., S.S., M.W., D.W., H.Y., R.K.), University of Missouri School of Medicine, Columbia; and Department of Medicine, Tulane University School of Medicine, New Orleans, LA (S.-Y.S., R.T., P.L.-R.)
| | - Patrice Delafontaine
- From Departments of Medicine (Y.H., S.S., S.D., P.S., Z.L., P.D.) and Medical Pharmacology and Physiology (Y.H., S.S., M.W., D.W., H.Y., R.K.), University of Missouri School of Medicine, Columbia; and Department of Medicine, Tulane University School of Medicine, New Orleans, LA (S.-Y.S., R.T., P.L.-R.)
| |
Collapse
|
12
|
The excreted polysaccharide of Pleurotus eryngii inhibits the foam-cell formation via down-regulation of CD36. Carbohydr Polym 2014; 112:16-23. [DOI: 10.1016/j.carbpol.2014.05.068] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2014] [Revised: 05/20/2014] [Accepted: 05/21/2014] [Indexed: 11/19/2022]
|
13
|
Activated human mast cells induce LOX-1-specific scavenger receptor expression in human monocyte-derived macrophages. PLoS One 2014; 9:e108352. [PMID: 25250731 PMCID: PMC4176973 DOI: 10.1371/journal.pone.0108352] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2014] [Accepted: 08/27/2014] [Indexed: 12/05/2022] Open
Abstract
Objective Activated mast cells in atherosclerotic lesions degranulate and release bioactive compounds capable of regulating atherogenesis. Here we examined the ability of activated human primary mast cells to regulate the expression of the major scavenger receptors in cultured human primary monocyte-derived macrophages (HMDMs). Results Components released by immunologically activated human primary mast cells induced a transient expression of lectin-like oxidized LDL receptor (LOX-1) mRNA in HMDMs, while the expression of two other scavenger receptors, MSR1 and CD36, remained unaffected. The LOX-1-inducing secretory components were identified as histamine, tumor necrosis factor alpha (TNF-α), and transforming growth factor beta (TGF-β1), which exhibited a synergistic effect on LOX-1 mRNA expression. Histamine induced a transient expression of LOX-1 protein. Mast cell –induced increase in LOX-1 expression was not associated with increased uptake of oxidized LDL by the macrophages. Conclusions Mast cell-derived histamine, TNF-α, and TGF-β1 act in concert to induce a transient increase in LOX-1 expression in human primary monocyte-derived macrophages. The LOX-1-inducing activity potentially endows mast cells a hitherto unrecognized role in the regulation of innate immune reactions in atherogenesis.
Collapse
|
14
|
Wang R, Chen W, Ma Z, Li L, Chen X. M1/M2 macrophages and associated mechanisms in congenital bicuspid aortic valve stenosis. Exp Ther Med 2014; 7:935-940. [PMID: 24669254 PMCID: PMC3965126 DOI: 10.3892/etm.2014.1529] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2013] [Accepted: 01/28/2014] [Indexed: 01/09/2023] Open
Abstract
The aim of this study was to observe macrophage infiltration in congenital bicuspid aortic valve (CBAV) stenosis. M1/M2 macrophage distribution, inflammatory cytokine expression and the role of M1 macrophages during CBAV stenosis were also explored. The experimental and control groups comprised 30 severely stenotic CBAVs and 30 severely stenotic tricuspid aortic valves (TAVs), respectively. Histological and morphological changes were assessed using hematoxylin-eosin (HE) staining and mRNA levels of vascular endothelial growth factor (VEGF) were examined using the quantitative polymerase chain reaction. Nonspecific, M1 and M2 macrophages were monitored using cluster of differentiation (CD)68, inducible nitric oxide synthase (iNOS) and CD163 staining, respectively. Endothelial nitric oxide synthase (eNOS), interleukin (IL)-10, arginase (Arg)-1 and macrophage colony-stimulating factor (M-CSF) were also examined using immunohistochemical staining. Of note, HE staining revealed a higher cell density and neovascularization was more common in CBAVs than TAVs. At the mRNA level, VEGF expression was two-fold higher in CBAVs relative to that in TAVs (P=0.02). Furthermore, CD68 and iNOS were significantly higher in CBAVs compared with TAVs (P=0.029 and 0.021, respectively), while CD163 expression was lower in CBAVs (P=0.033). In addition, eNOS expression was higher and Arg-1, IL-10 and M-CSF expression were lower in CBAVs compared with TAVs (all P<0.0001). The present study suggested that CBAVs are associated with a higher total and M1 macrophage density and a lower M2 macrophage density than TAVs, and that M1 macrophage infiltration may contribute to calcification of CBAVs.
Collapse
Affiliation(s)
- Rui Wang
- Department of Thoracic and Cardiovascular Surgery, Nanjing Hospital Affiliated to Nanjing Medical University, Nanjing, Jiangsu 210006, P.R. China
| | - Wen Chen
- Department of Thoracic and Cardiovascular Surgery, Nanjing Hospital Affiliated to Nanjing Medical University, Nanjing, Jiangsu 210006, P.R. China
| | - Zhifei Ma
- Department of Thoracic and Cardiovascular Surgery, Nanjing Hospital Affiliated to Nanjing Medical University, Nanjing, Jiangsu 210006, P.R. China
| | - Liangpeng Li
- Department of Thoracic and Cardiovascular Surgery, Nanjing Hospital Affiliated to Nanjing Medical University, Nanjing, Jiangsu 210006, P.R. China
| | - Xin Chen
- Department of Thoracic and Cardiovascular Surgery, Nanjing Hospital Affiliated to Nanjing Medical University, Nanjing, Jiangsu 210006, P.R. China
| |
Collapse
|