1
|
Yilmaz S, Cizmecioglu O. PI3K Signaling at the Crossroads of Lipid Metabolism and Cancer. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2025; 1479:139-164. [PMID: 39616584 DOI: 10.1007/5584_2024_832] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/23/2025]
Abstract
The proto-oncogenic PI3K pathway is crucial for the integration of growth factor signaling and metabolic pathways to facilitate the coordination for cell growth. Since transformed cells have the ability to upregulate their anabolic pathways and selectively modulate a subset of metabolites functioning as anti- or pro-tumorigenic signal mediators, the question of how the levels of these metabolites are regulated has also become the center of attention for cancer researchers. Apart from its well-defined roles in glucose metabolism and peptide anabolism, the PI3K pathway appears to be a significant regulator of lipid metabolism and a potentiator of proto-oncogenic bioactive lipid metabolite signaling. In this review, we aim to describe the crosstalk between the PI3K pathway and bioactive lipid species of the three main lipid classes.
Collapse
Affiliation(s)
- Sevval Yilmaz
- Department of Molecular Biology and Genetics, Bilkent University, Ankara, Turkey
| | - Onur Cizmecioglu
- Department of Molecular Biology and Genetics, Bilkent University, Ankara, Turkey.
| |
Collapse
|
2
|
Gyoten M, Luo Y, Fujiwara-Tani R, Mori S, Ogata R, Kishi S, Kuniyasu H. Lovastatin Treatment Inducing Apoptosis in Human Pancreatic Cancer Cells by Inhibiting Cholesterol Rafts in Plasma Membrane and Mitochondria. Int J Mol Sci 2023; 24:16814. [PMID: 38069135 PMCID: PMC10706654 DOI: 10.3390/ijms242316814] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 11/24/2023] [Accepted: 11/24/2023] [Indexed: 12/18/2023] Open
Abstract
Resistance to anticancer drugs is a problem in the treatment of pancreatic ductal carcinoma (PDAC) and overcoming it is an important issue. Recently, it has been reported that statins induce apoptosis in cancer cells but the mechanism has not been completely elucidated. We investigated the antitumor mechanisms of statins against PDAC and their impact on resistance to gemcitabine (GEM). Lovastatin (LOVA) increased mitochondrial oxidative stress in PDAC cells, leading to apoptosis. LOVA reduced lipid rafts in the plasma membrane and mitochondria, suppressed the activation of epithelial growth factor receptor (EGFR) and AKT in plasma membrane rafts, and reduced B-cell lymphoma 2 (BCL2)-Bcl-2-associated X protein (BAX) binding and the translocation of F1F0 ATPase in mitochondrial rafts. In the three GEM-resistant cell lines derived from MIA and PANC1, the lipid rafts in the cell membrane and the mitochondria were increased to activate EGFR and AKT and to increase BCL2-BAX binding, which suppressed apoptosis. LOVA abrogated these anti-apoptotic effects by reducing the rafts in the resistant cells. By treating the resistant cells with LOVA, GEM sensitivity improved to the level of the parental cells. Therefore, cholesterol rafts contribute to drug resistance in PDAC. Further clinical research is warranted on overcoming anticancer drug resistance by statin-mediated intracellular cholesterol regulation.
Collapse
Grants
- 19K16564 Ministry of Education, Culture, Sports, Science and Technology
- 20K21659 Ministry of Education, Culture, Sports, Science and Technology
- 23K16621 Ministry of Education, Culture, Sports, Science and Technology
- 23K19900 Ministry of Education, Culture, Sports, Science and Technology
Collapse
Affiliation(s)
- Momoko Gyoten
- Department of Molecular Pathology, Nara Medical University, 840 Shijo-cho, Kashihara 634-8521, Nara, Japan; (M.G.); (Y.L.); (S.M.); (R.O.); (S.K.)
| | - Yi Luo
- Department of Molecular Pathology, Nara Medical University, 840 Shijo-cho, Kashihara 634-8521, Nara, Japan; (M.G.); (Y.L.); (S.M.); (R.O.); (S.K.)
- Jiangsu Province Key Laboratory of Neuroregeneration, Nantong University, 19 Qixiu Road, Nantong 226001, China
| | - Rina Fujiwara-Tani
- Department of Molecular Pathology, Nara Medical University, 840 Shijo-cho, Kashihara 634-8521, Nara, Japan; (M.G.); (Y.L.); (S.M.); (R.O.); (S.K.)
| | - Shiori Mori
- Department of Molecular Pathology, Nara Medical University, 840 Shijo-cho, Kashihara 634-8521, Nara, Japan; (M.G.); (Y.L.); (S.M.); (R.O.); (S.K.)
| | - Ruiko Ogata
- Department of Molecular Pathology, Nara Medical University, 840 Shijo-cho, Kashihara 634-8521, Nara, Japan; (M.G.); (Y.L.); (S.M.); (R.O.); (S.K.)
| | - Shingo Kishi
- Department of Molecular Pathology, Nara Medical University, 840 Shijo-cho, Kashihara 634-8521, Nara, Japan; (M.G.); (Y.L.); (S.M.); (R.O.); (S.K.)
- Research Institute, Nozaki Tokushukai Hospital, 2-10-50 Tanigawa, Daito 574-0074, Osaka, Japan
| | - Hiroki Kuniyasu
- Department of Molecular Pathology, Nara Medical University, 840 Shijo-cho, Kashihara 634-8521, Nara, Japan; (M.G.); (Y.L.); (S.M.); (R.O.); (S.K.)
| |
Collapse
|
3
|
Bhowmick S, Biswas T, Ahmed M, Roy D, Mondal S. Caveolin-1 and lipids: Association and their dualism in oncogenic regulation. Biochim Biophys Acta Rev Cancer 2023; 1878:189002. [PMID: 37848094 DOI: 10.1016/j.bbcan.2023.189002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 10/11/2023] [Accepted: 10/12/2023] [Indexed: 10/19/2023]
Abstract
Caveolin-1 (Cav-1) is a structural protein of caveolae that functions as a molecular organizer for different cellular functions including endocytosis and cellular signaling. Cancer cells take advantage of the physical position of Cav-1, as it can communicate with extracellular matrix, help to organize growth factor receptors, redistribute cholesterol and glycosphingolipids, and finally transduce signals within the cells for oncogenesis. Recent studies emphasize the exceeding involvement of Cav-1 with different lipid bodies and in altering the metabolism, especially lipid metabolism. However, the association of Cav-1 with different lipid bodies like lipid rafts, lipid droplets, cholesterols, sphingolipids, and fatty acids is remarkably dynamic. The lipid-Cav-1 alliance plays a dual role in carcinogenesis. Both cancer progression and regression are modified and affected by the type of lipid molecule's association with Cav-1. Accordingly, this Cav-1-lipid cooperation exemplifies a cancer-type-specific treatment strategy for a better prognosis of the disease. In this review, we first present Cav-1 as an oncogenic molecule and its communication via lipid raft. We discussed the involvement of Cav-1 with lipid droplets, Cholesterol, sphingolipids, gangliosides, and ceramides. Further, we describe the Cav-1-mediated altered Fatty acid metabolism in cancer and the strategic therapeutic approaches toward Cav-1 targeting.
Collapse
Affiliation(s)
- Sramana Bhowmick
- Department of Life Sciences, Presidency University, 86/1 College Street, Kolkata 700073, West Bengal, India
| | - Tannishtha Biswas
- Department of Life Sciences, Presidency University, 86/1 College Street, Kolkata 700073, West Bengal, India
| | - Mehnaz Ahmed
- Department of Life Sciences, Presidency University, 86/1 College Street, Kolkata 700073, West Bengal, India
| | - Debarshi Roy
- Department of Biological Sciences, Alcorn State University, Lorman, MS 39096, USA
| | - Susmita Mondal
- Department of Life Sciences, Presidency University, 86/1 College Street, Kolkata 700073, West Bengal, India.
| |
Collapse
|
4
|
Korbecki J, Bosiacki M, Gutowska I, Chlubek D, Baranowska-Bosiacka I. Biosynthesis and Significance of Fatty Acids, Glycerophospholipids, and Triacylglycerol in the Processes of Glioblastoma Tumorigenesis. Cancers (Basel) 2023; 15:cancers15072183. [PMID: 37046844 PMCID: PMC10093493 DOI: 10.3390/cancers15072183] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 04/01/2023] [Accepted: 04/03/2023] [Indexed: 04/08/2023] Open
Abstract
One area of glioblastoma research is the metabolism of tumor cells and detecting differences between tumor and healthy brain tissue metabolism. Here, we review differences in fatty acid metabolism, with a particular focus on the biosynthesis of saturated fatty acids (SFA), monounsaturated fatty acids (MUFA), and polyunsaturated fatty acids (PUFA) by fatty acid synthase (FASN), elongases, and desaturases. We also describe the significance of individual fatty acids in glioblastoma tumorigenesis, as well as the importance of glycerophospholipid and triacylglycerol synthesis in this process. Specifically, we show the significance and function of various isoforms of glycerol-3-phosphate acyltransferases (GPAT), 1-acylglycerol-3-phosphate O-acyltransferases (AGPAT), lipins, as well as enzymes involved in the synthesis of phosphatidylcholine (PC), phosphatidylethanolamine (PE), phosphatidylserine (PS), phosphatidylinositol (PI), and cardiolipin (CL). This review also highlights the involvement of diacylglycerol O-acyltransferase (DGAT) in triacylglycerol biosynthesis. Due to significant gaps in knowledge, the GEPIA database was utilized to demonstrate the significance of individual enzymes in glioblastoma tumorigenesis. Finally, we also describe the significance of lipid droplets in glioblastoma and the impact of fatty acid synthesis, particularly docosahexaenoic acid (DHA), on cell membrane fluidity and signal transduction from the epidermal growth factor receptor (EGFR).
Collapse
Affiliation(s)
- Jan Korbecki
- Department of Biochemistry and Medical Chemistry, Pomeranian Medical University in Szczecin, Powstańców Wlkp. 72, 70-111 Szczecin, Poland
- Department of Anatomy and Histology, Collegium Medicum, University of Zielona Góra, Zyty 28 Str., 65-046 Zielona Góra, Poland
| | - Mateusz Bosiacki
- Department of Biochemistry and Medical Chemistry, Pomeranian Medical University in Szczecin, Powstańców Wlkp. 72, 70-111 Szczecin, Poland
- Department of Functional Diagnostics and Physical Medicine, Faculty of Health Sciences, Pomeranian Medical University in Szczecin, Żołnierska 54 Str., 71-210 Szczecin, Poland
| | - Izabela Gutowska
- Department of Biochemistry and Medical Chemistry, Pomeranian Medical University in Szczecin, Powstańców Wlkp. 72, 70-111 Szczecin, Poland
| | - Dariusz Chlubek
- Department of Biochemistry and Medical Chemistry, Pomeranian Medical University in Szczecin, Powstańców Wlkp. 72, 70-111 Szczecin, Poland
| | - Irena Baranowska-Bosiacka
- Department of Biochemistry and Medical Chemistry, Pomeranian Medical University in Szczecin, Powstańców Wlkp. 72, 70-111 Szczecin, Poland
| |
Collapse
|
5
|
Samakovli D, Roka L, Plitsi PK, Drakakaki G, Haralampidis K, Stravopodis DJ, Hatzopoulos P, Milioni D. BRI1 and BAK1 Canonical Distribution in Plasma Membrane Is HSP90 Dependent. Cells 2022; 11:3341. [PMID: 36359737 PMCID: PMC9656807 DOI: 10.3390/cells11213341] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 10/16/2022] [Accepted: 10/18/2022] [Indexed: 10/22/2023] Open
Abstract
The activation of BRASSINOSTEROID INSENSITIVE1 (BRI1) and its association with the BRI1 ASSOCIATED RECEPTOR KINASE1 (BAK1) are key steps for the initiation of the BR signaling cascade mediating hypocotyl elongation. Heat shock protein 90 (HSP90) is crucial in the regulation of signaling processes and the activation of hormonal receptors. We report that HSP90 is required for the maintenance of the BRI1 receptor at the plasma membrane (PM) and its association with the BAK1 co-receptor during BL-ligand stimulation. HSP90 mediates BR perception and signal transduction through physical interactions with BRI1 and BAK1, while chaperone depletion resulted in lower levels of BRI1 and BAK1 receptors at the PM and affected the spatial partitioning and organization of BRI1/BAK1 heterocomplexes at the PM. The BRI1/BAK1 interaction relies on the HSP90-dependent activation of the kinase domain of BRI1 which leads to the confinement of the spatial dynamics of the membrane resident BRI1 and the attenuation of the downstream signaling. This is evident by the impaired activation and transcriptional activity of BRI1 EMS SUPPRESSOR 1 (BES1) upon HSP90 depletion. Our findings provide conclusive evidence that further expands the commitment of HSP90 in BR signaling through the HSP90-mediated activation of BRI1 in the control of the BR signaling cascade in plants.
Collapse
Affiliation(s)
- Despina Samakovli
- Biotechnology Department, Agricultural University of Athens, Iera Odos 75, 11855 Athens, Greece
| | - Loukia Roka
- Biotechnology Department, Agricultural University of Athens, Iera Odos 75, 11855 Athens, Greece
| | | | - Georgia Drakakaki
- Department of Plant Sciences, University of California, Davis, CA 95616, USA
| | - Kosmas Haralampidis
- Biology Department, National and Kapodistrian University of Athens, 15701 Athens, Greece
| | | | - Polydefkis Hatzopoulos
- Biotechnology Department, Agricultural University of Athens, Iera Odos 75, 11855 Athens, Greece
| | - Dimitra Milioni
- Biotechnology Department, Agricultural University of Athens, Iera Odos 75, 11855 Athens, Greece
| |
Collapse
|
6
|
Newell M, Goruk S, Schueler J, Mazurak V, Postovit LM, Field CJ. Docosahexaenoic acid enrichment of tumor phospholipid membranes increases tumor necroptosis in mice bearing triple negative breast cancer patient-derived xenografts. J Nutr Biochem 2022; 107:109018. [PMID: 35489658 DOI: 10.1016/j.jnutbio.2022.109018] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2020] [Revised: 10/04/2021] [Accepted: 03/18/2022] [Indexed: 11/24/2022]
Abstract
Docosahexaenoic acid (DHA) reduces breast cancer tumor growth in preclinical models. To better understand how DHA amplifies the actions of docetaxel (TXT) chemotherapy, we examined the effects of two doses of dietary DHA on tumor size, membrane DHA content and necroptosis using a drug resistant triple negative breast cancer (TNBC) patient derived xenograft (PDX) model. Female NSG mice bearing TNBC PDXs were randomized to one of three nutritionally complete diets (20% w/w fat): control (0% DHA), high DHA (3.8% HDHA), or low DHA (1.6% LDHA) with or without intraperitoneal injections of 5 mg/kg TXT, twice weekly for 6 weeks (n=8 per group). Tumors from mice fed either HDHA+TXT or LDHA+TXT were similar in size to each other, but were 36% and 32% smaller than tumors from mice fed control+TXT, respectively (P<0.05). A dose effect of DHA incorporation was observed in plasma total phospholipids and in phosphatidylethanolamine and phosphatidylinositol. Both doses of DHA resulted in similarly increased necrotic tissue and decreased NFκB protein expression compared to control tumors, however only the HDHA+TXT had increased expression of necroptosis related proteins: RIPK1, RIPK3 and MLKL (P<0.05). Increased MLKL was observed in the lipid raft portion of HDHA+TXT tumor extracts. This work confirms the efficacy of a combination therapy consisting of DHA supplementation and TXT chemotherapy using two doses of DHA as indicated by reduced tumor growth in a TNBC PDX model. Moreover, the results suggest that decreased growth may occur through increased DHA incorporation into tumor phospholipid membranes and necroptosis.
Collapse
Affiliation(s)
- Marnie Newell
- Department of Agricultural, Food and Nutritional Science, Faculty of Agricultural, Life and Environmental Sciences, University of Alberta, Edmonton, Alberta, Canada, T6G 2E1
| | - Susan Goruk
- Department of Agricultural, Food and Nutritional Science, Faculty of Agricultural, Life and Environmental Sciences, University of Alberta, Edmonton, Alberta, Canada, T6G 2E1
| | - Julia Schueler
- Charles River Discovery Research Services Germany, Freiburg, Germany
| | - Vera Mazurak
- Department of Agricultural, Food and Nutritional Science, Faculty of Agricultural, Life and Environmental Sciences, University of Alberta, Edmonton, Alberta, Canada, T6G 2E1
| | - Lynne-Marie Postovit
- Department of Oncology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB, T6G 2R7; Department of Biomedical and Molecular Sciences, Queen's University, Kingston, ON, K7L 3N6
| | - Catherine J Field
- Department of Agricultural, Food and Nutritional Science, Faculty of Agricultural, Life and Environmental Sciences, University of Alberta, Edmonton, Alberta, Canada, T6G 2E1.
| |
Collapse
|
7
|
Halaby R. Natural Products Induce Lysosomal Membrane Permeabilization as an Anticancer Strategy. MEDICINES 2021; 8:medicines8110069. [PMID: 34822366 PMCID: PMC8624533 DOI: 10.3390/medicines8110069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 11/03/2021] [Accepted: 11/08/2021] [Indexed: 11/26/2022]
Abstract
Cancer is a global health and economic issue. The majority of anticancer therapies become ineffective due to frequent genomic turnover and chemoresistance. Furthermore, chemotherapy and radiation are non-specific, killing all rapidly dividing cells including healthy cells. In this review, we examine the ability of some natural products to induce lysosomal-mediated cell death in neoplastic cells as a way to kill them more specifically than conventional therapies. This list is by no means exhaustive. We postulate mechanisms to explain lysosomal membrane permeabilization and its role in triggering cell death in cancer cells.
Collapse
Affiliation(s)
- Reginald Halaby
- Department of Biology, Montclair State University, Montclair, NJ 07043, USA
| |
Collapse
|
8
|
Al Mamun A, Mimi AA, Aziz MA, Zaeem M, Ahmed T, Munir F, Xiao J. Role of pyroptosis in cancer and its therapeutic regulation. Eur J Pharmacol 2021; 910:174444. [PMID: 34453928 DOI: 10.1016/j.ejphar.2021.174444] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Revised: 07/26/2021] [Accepted: 08/24/2021] [Indexed: 02/07/2023]
Abstract
Pyroptosis is mainly considered a gasdermin-regulated cell death mechanism characterized by cellular lysis and the release of several pro-inflammatory factors. Nowadays, pyroptosis has notably been gained extensive attention from clinicians and researchers. However, current studies report that downregulation of pyroptosis-mediated cell death plays a significant role in developing multiple cancers. Increasing studies also suggest that pyroptosis can impact all stages of carcinogenesis. Inducing pyroptotic cellular death could be a promising therapeutic option for managing and regulating multiple cancers in the near future. Our current review highlights the molecular and morphological features of pyroptosis and its potential roles in various cancers. In addition, we have also highlighted the biological characteristics and significances of GSDMD and GSDME and their critical functions in cancer progression, management and regulation.
Collapse
Affiliation(s)
- Abdullah Al Mamun
- Molecular Pharmacology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, 325035, Zhejiang Province, China.
| | - Anjuman Ara Mimi
- Department of Pharmacy, Daffodil International University, Dhanmondi-27, Dhaka, 1209, Bangladesh
| | - Md Abdul Aziz
- Department of Pharmacy, Faculty of Science, Noakhali Science and Technology University, Noakhali, 3814, Bangladesh; Laboratory of Pharmacogenomics and Molecular Biology, Department of Pharmacy, Noakhali Science and Technology University, Noakhali, 3814, Bangladesh
| | - Muhammad Zaeem
- Molecular Pharmacology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, 325035, Zhejiang Province, China
| | - Tanvir Ahmed
- Department of Nutrition, Chung Shan Medical University, 110, Section 1, Jianguo North Road, Taichung, 40201, Taiwan
| | - Fahad Munir
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, Zhejiang Province, China
| | - Jian Xiao
- Molecular Pharmacology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, 325035, Zhejiang Province, China; Department of Hand Surgery and Peripheral Neurosurgery, The First Affiliated Hospital Wenzhou Medical University, Wenzhou, 325035, Zhejiang Province, China.
| |
Collapse
|
9
|
Kumar N, Mandal CC. Cholesterol-Lowering Drugs on Akt Signaling for Prevention of Tumorigenesis. Front Genet 2021; 12:724149. [PMID: 34603386 PMCID: PMC8483559 DOI: 10.3389/fgene.2021.724149] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2021] [Accepted: 08/23/2021] [Indexed: 12/12/2022] Open
Abstract
Cholesterol has been reported to be accumulated in cancer cells. The metabolic dysregulation of the cholesterol is associated with tumor development and progression. The cholesterol-lowering drugs have been found to be involved in the prevention and treatment of various cancers. Akt, a serine/threonine kinase, can modulate the role of several downstream proteins involved in cell proliferation, migration, invasion, metabolism, and apoptosis. Since its involvement in several signaling pathways, its dysregulation is commonly reported in several cancers. Thus, targeting Akt could be an effective approach for cancer prevention and therapy. Cholesterol-lowering drugs have been found to affect the expression of Akt, and its activation in the cancer cells and thus have shown anticancer activity in different type of cancers. These drugs act on various signaling pathways such as PTEN/Akt, PI3k/Akt, Akt/NF-κB, Akt/FOXO1, Akt/mTOR, etc., which will be discussed in this article. This review article will discuss the significance of cholesterol in cancer cells, cholesterol-lowering drugs, the role of Akt in cancer cells, and the effects of cholesterol-lowering drugs on Akt in the prevention of therapy resistance and metastasis.
Collapse
Affiliation(s)
- Navneet Kumar
- Department of Biochemistry, All India Institute of Medical Sciences, Bhopal, India
| | - Chandi C Mandal
- Department of Biochemistry, School of Life Sciences, Central University of Rajasthan, Ajmer, India
| |
Collapse
|
10
|
Mukerjee S, Saeedan AS, Ansari MN, Singh M. Polyunsaturated Fatty Acids Mediated Regulation of Membrane Biochemistry and Tumor Cell Membrane Integrity. MEMBRANES 2021; 11:479. [PMID: 34203433 PMCID: PMC8304949 DOI: 10.3390/membranes11070479] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Revised: 06/05/2021] [Accepted: 06/24/2021] [Indexed: 12/25/2022]
Abstract
Particular dramatic macromolecule proteins are responsible for various cellular events in our body system. Lipids have recently recognized a lot more attention of scientists for understanding the relationship between lipid and cellular function and human health However, a biological membrane is formed with a lipid bilayer, which is called a P-L-P design. Our body system is balanced through various communicative signaling pathways derived from biological membrane proteins and lipids. In the case of any fatal disease such as cancer, the biological membrane compositions are altered. To repair the biological membrane composition and prevent cancer, dietary fatty acids, such as omega-3 polyunsaturated fatty acids, are essential in human health but are not directly synthesized in our body system. In this review, we will discuss the alteration of the biological membrane composition in breast cancer. We will highlight the role of dietary fatty acids in altering cellular composition in the P-L-P bilayer. We will also address the importance of omega-3 polyunsaturated fatty acids to regulate the membrane fluidity of cancer cells.
Collapse
Affiliation(s)
- Souvik Mukerjee
- Department of Pharmaceutical Sciences, Guru Ghasidas Vishwavidyalaya (A Central University), Bilaspur 495009, Chhattisgarh, India;
| | - Abdulaziz S. Saeedan
- Department of Pharmacology & Toxicology, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia;
| | - Mohd. Nazam Ansari
- Department of Pharmacology & Toxicology, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia;
| | - Manjari Singh
- Department of Pharmaceutical Sciences, Assam University, Silchar 788011, Assam, India
| |
Collapse
|
11
|
Her-2 Breast Cancer Outcomes Are Mitigated by Consuming n-3 Polyunsaturated, Saturated, and Monounsaturated Fatty Acids Compared to n-6 Polyunsaturated Fatty Acids. Nutrients 2020; 12:nu12123901. [PMID: 33419361 PMCID: PMC7766940 DOI: 10.3390/nu12123901] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2020] [Revised: 12/11/2020] [Accepted: 12/15/2020] [Indexed: 12/22/2022] Open
Abstract
Lifestyle habits, such as the consumption of a healthy diet, may prevent up to 30–50% of breast cancer (BC) cases. Dietary fats are of specific interest, as research provides strong evidence regarding the association of dietary fats and BC. However, there is limited research on the role of different types of fats including polyunsaturated (PUFA), monounsaturated (MUFA), and saturated fatty acids (SFA). The objective of this study was to determine the effects of lifelong exposure to various dietary fats on mammary tumour development over a 20-week period. Female heterozygous MMTV-neu (ndl) YD5 mouse models were fed five maternal diets containing (1) 10% safflower oil (n-6 PUFA, control), (2) 3% menhaden oil + 7% safflower oil (marine n-3 PUFA, control), (3) 3% flaxseed + 7% safflower oil (plant-based n-3 PUFA), (4) 10% olive oil (MUFA), or (5) 10% lard (SFA). The primary measures, tumour latency, volume, and multiplicity differed by diet treatment in the following general order, n-6 PUFA > plant n-3 PUFA, SFA, MUFA > marine n-3 PUFA. Overall, these findings show that the quality of the diet plays a significant role influencing mammary tumour outcomes.
Collapse
|
12
|
Story MJ. Zinc, ω-3 polyunsaturated fatty acids and vitamin D: An essential combination for prevention and treatment of cancers. Biochimie 2020; 181:100-122. [PMID: 33307154 DOI: 10.1016/j.biochi.2020.11.019] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2020] [Revised: 11/14/2020] [Accepted: 11/25/2020] [Indexed: 02/07/2023]
Abstract
Zinc, ω-3 polyunsaturated fatty acids (PUFAs) and vitamin D are essential nutrients for health, maturation and general wellbeing. Extensive literature searches have revealed the widespread similarity in molecular biological properties of zinc, ω-3 PUFAs and vitamin D, and their similar anti-cancer properties, even though they have different modes of action. These three nutrients are separately essential for good health, especially in the aged. Zinc, ω-3 PUFAs and vitamin D are inexpensive and safe as they are fundamentally natural and have the properties of correcting and inhibiting undesirable actions without disturbing the normal functions of cells or their extracellular environment. This review of the anticancer properties of zinc, ω-3 PUFAs and vitamin D is made in the context of the hallmarks of cancer. The anticancer properties of zinc, ω-3 PUFAs and vitamin D can therefore be used beneficially through combined treatment or supplementation. It is proposed that sufficiency of zinc, ω-3 PUFAs and vitamin D is a necessary requirement during chemotherapy treatment and that clinical trials can have questionable integrity if this sufficiency is not checked and maintained during efficacy trials.
Collapse
Affiliation(s)
- Michael J Story
- Story Pharmaceutics Pty Ltd, PO Box 6086, Linden Park, South Australia, 5065, Australia.
| |
Collapse
|
13
|
Wu J, Guo L, Qiu X, Ren Y, Li F, Cui W, Song S. Genkwadaphnin inhibits growth and invasion in hepatocellular carcinoma by blocking DHCR24-mediated cholesterol biosynthesis and lipid rafts formation. Br J Cancer 2020; 123:1673-1685. [PMID: 32958824 PMCID: PMC7686505 DOI: 10.1038/s41416-020-01085-z] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2019] [Revised: 07/23/2020] [Accepted: 09/02/2020] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND The liver is the central organ for cholesterol homoeostasis, and its dysfunction might cause liver pathological alterations including hepatocellular carcinomas (HCCs). 3β-hydroxysteroid-Δ24 reductase (DHCR24), a crucial enzyme of cholesterol biosynthetic pathway, is involved in lipid rafts formation. Genkwadaphnin (GD) is a daphnane diterpene isolated from the flower buds of Daphne genkwa Siebold et Zuccarini (Thymelaeaceae). METHODS We evaluated in vitro and in vivo effect of GD using HCC cells and BALB/c nude mice. Microarray assays were used to identify the differential genes by GD. DHCR24 expression and activity, cholesterol level, lipid rafts structure and the role of DHCR24 in human HCC specimens were tested by various molecular biology techniques. RESULTS High expression of DHCR24 in human HCC specimens was correlated with poor clinical outcome. Interfering DHCR24 altered growth and migration of HCC cells. GD inhibited growth and metastasis of HCC cells both in vivo and in vitro. GD suppressed DHCR24 expression and activity, as well as DHCR24-mediated cholesterol biosynthesis and lipid rafts formation, then further inhibited HCC cell invasion and migration. CONCLUSIONS Our data suggest that DHCR24-mediated cholesterol metabolism might be an effective therapeutic strategy in HCC, and natural product GD might be a promising agent for HCC therapy.
Collapse
Affiliation(s)
- Jie Wu
- Key Laboratory of Computational Chemistry-Based Natural Antitumor Drug Research & Development, Liaoning Province, Shenyang Pharmaceutical University, Shenyang, 110016, People's Republic of China
- School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang, 110016, People's Republic of China
| | - Ling Guo
- School of Life Science and Biopharmaceutics, Shenyang Pharmaceutical University, Shenyang, 110016, People's Republic of China
| | - Xiaoran Qiu
- School of Life Science and Biopharmaceutics, Shenyang Pharmaceutical University, Shenyang, 110016, People's Republic of China
| | - Yong Ren
- Department of Pathology, Central Theater Command General Hospital PLA, Wuhan, Hubei, 430070, People's Republic of China
| | - Feifei Li
- Key Laboratory of Computational Chemistry-Based Natural Antitumor Drug Research & Development, Liaoning Province, Shenyang Pharmaceutical University, Shenyang, 110016, People's Republic of China
- School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang, 110016, People's Republic of China
| | - Wei Cui
- School of Life Science and Biopharmaceutics, Shenyang Pharmaceutical University, Shenyang, 110016, People's Republic of China.
| | - Shaojiang Song
- Key Laboratory of Computational Chemistry-Based Natural Antitumor Drug Research & Development, Liaoning Province, Shenyang Pharmaceutical University, Shenyang, 110016, People's Republic of China.
- School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang, 110016, People's Republic of China.
| |
Collapse
|
14
|
Sonnessa M, Cioffi A, Brunetti O, Silvestris N, Zito FA, Saponaro C, Mangia A. NLRP3 Inflammasome From Bench to Bedside: New Perspectives for Triple Negative Breast Cancer. Front Oncol 2020; 10:1587. [PMID: 33014808 PMCID: PMC7498644 DOI: 10.3389/fonc.2020.01587] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Accepted: 07/23/2020] [Indexed: 12/17/2022] Open
Abstract
The tumor microenvironment (TME) is crucial in cancer onset, progression and response to treatment. It is characterized by an intricate interaction of immune cells and cytokines involved in tumor development. Among these, inflammasomes are oligomeric molecular platforms and play a key role in inflammatory response and immunity. Inflammasome activation is initiated upon triggering of pattern recognition receptors (Toll-like receptors, NOD-like receptors, and Absent in melanoma like receptors), on the surface of immune cells with the recruitment of caspase-1 by an adaptor apoptosis-associated speck-like protein. This structure leads to the activation of the pro-inflammatory cytokines interleukin (IL)-1β and IL-18 and participates in different biological processes exerting its effects. To date, the Nod-Like Receptor Protein 3 (NLRP3) inflammasome has been well studied and its involvement has been established in different cancer diseases. In this review, we discuss the structure, biology and mechanisms of inflammasomes with a special focus on the specific role of NLRP3 in breast cancer (BC) and in the sub-group of triple negative BC. The NLRP3 inflammasome and its down-stream pathways could be considered novel potential tumor biomarkers and could open new frontiers in BC treatment.
Collapse
Affiliation(s)
- Margherita Sonnessa
- Functional Biomorphology Laboratory, IRCCS Istituto Tumori “Giovanni Paolo II”, Bari, Italy
| | - Antonella Cioffi
- Functional Biomorphology Laboratory, IRCCS Istituto Tumori “Giovanni Paolo II”, Bari, Italy
| | - Oronzo Brunetti
- Medical Oncology Unit, IRCCS Istituto Tumori “Giovanni Paolo II”, Bari, Italy
| | - Nicola Silvestris
- Medical Oncology Unit, IRCCS Istituto Tumori “Giovanni Paolo II”, Bari, Italy
- Department of Biomedical Sciences and Human Oncology, University of Bari Aldo Moro, Bari, Italy
| | - Francesco A. Zito
- Pathology Department, IRCCS Istituto Tumori “Giovanni Paolo II”, Bari, Italy
| | - Concetta Saponaro
- Functional Biomorphology Laboratory, IRCCS Istituto Tumori “Giovanni Paolo II”, Bari, Italy
| | - Anita Mangia
- Functional Biomorphology Laboratory, IRCCS Istituto Tumori “Giovanni Paolo II”, Bari, Italy
| |
Collapse
|
15
|
Newell M, Patel D, Goruk S, Field CJ. Docosahexaenoic Acid Incorporation Is Not Affected by Doxorubicin Chemotherapy in either Whole Cell or Lipid Raft Phospholipids of Breast Cancer Cells in vitro and Tumor Phospholipids in vivo. Lipids 2020; 55:549-565. [PMID: 32588470 DOI: 10.1002/lipd.12252] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2020] [Revised: 05/04/2020] [Accepted: 05/06/2020] [Indexed: 11/07/2022]
Abstract
To better understand how docosahexaenoic acid (DHA) improves the effects of doxorubicin (DOX), we examined DHA ± DOX on changes in whole cell and lipid raft phospholipids (PL) of MDA-MB-231 and MCF-7 breast cancer cells. We sought to confirm whether the relative changes in PL DHA content of MDA-MB-231 cells could be extended to PL from MDA-MB-231 tumors grown in mice fed a DHA supplemented diet ±DOX. Treatment with DHA did not change PL composition yet DOX increased the proportion of phosphatidylserine in MCF-7 cell lipid rafts by two-fold (p < 0.001). Regardless of DOX, the relative percent incorporation of DHA was higher in MDA-MB-231 cells compared to MCF-7 cells in phosphatidylserine, phosphatidylethanolamine, and phosphatidylcholine (whole cell and lipid rafts); and higher in phosphatidylethanolamine vs. phosphatidylcholine (4.4-fold in MCF-7 and 6-fold in MDA-MB-231 cells respectively). DHA treatment increased eicosapentaenoic acid and docosapentaenoic acid in MDA-MB-231 cells but not MCF-7 cells. Increased DHA content in MDA-MB-231 cells, MCF-7 cells, and MDA-MB-231 tumors in all PL moieties (except sphingomyelin) corresponded with reduced arachidonic acid (p < 0.05). Feeding mice 2.8% (w/w of fat) DHA ± DOX increased tumor necrotic regions (p < 0.05). This study established differential incorporation of DHA into whole cell and lipid rafts between human breast cancer cell lines. However, within each cell line, this incorporation was not altered by DOX confirming that DOX does not change membrane lipid composition. Furthermore, our findings indicate that membrane changes observed in vitro are translatable to in vivo changes and that DHA + DOX could contribute to the anticancer effects through increased necrosis.
Collapse
Affiliation(s)
- Marnie Newell
- Department of Agricultural, Food and Nutritional Science, Faculty of Agricultural, Life and Environmental Sciences, University of Alberta, Edmonton, AB, T6G 2E1, Canada
| | - Dhruvesh Patel
- Department of Agricultural, Food and Nutritional Science, Faculty of Agricultural, Life and Environmental Sciences, University of Alberta, Edmonton, AB, T6G 2E1, Canada
| | - Susan Goruk
- Department of Agricultural, Food and Nutritional Science, Faculty of Agricultural, Life and Environmental Sciences, University of Alberta, Edmonton, AB, T6G 2E1, Canada
| | - Catherine J Field
- Department of Agricultural, Food and Nutritional Science, Faculty of Agricultural, Life and Environmental Sciences, University of Alberta, Edmonton, AB, T6G 2E1, Canada
| |
Collapse
|
16
|
Ma Y, Wang J, Li Q, Cao B. The Effect of Omega-3 Polyunsaturated Fatty Acid Supplementations on anti-Tumor Drugs in Triple Negative Breast Cancer. Nutr Cancer 2020; 73:196-205. [PMID: 32223441 DOI: 10.1080/01635581.2020.1743873] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Triple-negative breast cancer (TNBC) comprises about 10-20% of all diagnosed breast cancers. Increasing evidence shows that the omega-3 polyunsaturated fatty acids (ω-3PUFAs), docosahexaenoic acid and eicosapentaenoic acid, can influence the development, progression, and prognosis of TNBC In Vivo and In Vitro; however, clinical evidence supporting the effect of ω-3PUFAs on TNBC is lacking. Research has demonstrated that ω-3PUFAs can induce apoptosis in breast cancer cells by inhibiting the PI3K/AKT signal transduction pathway, and that ω-3PUFAs can improve the effectiveness of chemotherapy drugs. Using ω-3PUFA supplementation in addition to pharmacotherapy in the treatment of breast cancer may result in enhanced anti-tumor effects that will be particularly applicable to difficult to treat phenotypes such as TNBC. The aim of the current review was to summarize the evidence-base supporting the antitumor effects of omega-3 PUFAs in TNBC.
Collapse
Affiliation(s)
- Yingjie Ma
- Department of Cancer Center, Beijing Friendship Hospital, Capital Medical University, Beijing, P.R. China
| | - Jing Wang
- Department of Cancer Center, Beijing Friendship Hospital, Capital Medical University, Beijing, P.R. China
| | - Qin Li
- Department of Cancer Center, Beijing Friendship Hospital, Capital Medical University, Beijing, P.R. China
| | - Bangwei Cao
- Department of Cancer Center, Beijing Friendship Hospital, Capital Medical University, Beijing, P.R. China
| |
Collapse
|
17
|
Newell M, Mackey JR, Bigras G, Alvarez-Camacho M, Goruk S, Ghosh S, Schmidt A, Miede D, Chisotti A, Postovit L, Baker K, Mazurak V, Courneya K, Berendt R, Dong WF, Wood G, Basi SK, Joy AA, King K, Meza-Junco J, Zhu X, Field C. Comparing docosahexaenoic acid (DHA) concomitant with neoadjuvant chemotherapy versus neoadjuvant chemotherapy alone in the treatment of breast cancer (DHA WIN): protocol of a double-blind, phase II, randomised controlled trial. BMJ Open 2019; 9:e030502. [PMID: 31530611 PMCID: PMC6756327 DOI: 10.1136/bmjopen-2019-030502] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
INTRODUCTION Neoadjuvant chemotherapy for breast cancer treatment is prescribed to facilitate surgery and provide confirmation of drug-sensitive disease, and the achievement of pathological complete response (pCR) predicts improved long-term outcomes. Docosahexaenoic acid (DHA) has been shown to reduce tumour growth in preclinical models when combined with chemotherapy and is known to beneficially modulate systemic immune function. The purpose of this trial is to investigate the benefit of DHA supplementation in combination with neoadjuvant chemotherapy in patients with breast cancer. METHODS AND ANALYSIS This is a double-blind, phase II, randomised controlled trial of 52 women prescribed neoadjuvant chemotherapy to test if DHA supplementation enhances chemotherapy efficacy. The DHA supplementation group will take 4.4 g/day DHA orally, and the placebo group will take an equal fat supplement of vegetable oil. The primary outcome will be change in Ki67 labelling index from prechemotherapy core needle biopsy to definitive surgical specimen. The secondary endpoints include assessment of (1) DHA plasma phospholipid content; (2) systemic immune cell types, plasma cytokines and inflammatory markers; (3) tumour markers for apoptosis and tumour infiltrating lymphocytes; (4) rate of pCR in breast and in axillary nodes; (5) frequency of grade 3 and 4 chemotherapy-associated toxicities; and (6) patient-perceived quality of life. The trial has 81% power to detect a significant between-group difference in Ki67 index with a two-sided t-test of less than 0.0497, and accounts for 10% dropout rate. ETHICS AND DISSEMINATION This study has full approval from the Health Research Ethics Board of Alberta - Cancer Committee (Protocol #: HREBA.CC-18-0381). We expect to present the findings of this study to the scientific community in peer-reviewed journals and at conferences. The results of this study will provide evidence for supplementing with DHA during neoadjuvant chemotherapy treatment for breast cancer. TRIAL REGISTRATION NUMBER NCT03831178.
Collapse
Affiliation(s)
- Marnie Newell
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, Alberta, Canada
| | - John R Mackey
- Department of Oncology, University of Alberta, Edmonton, Alberta, Canada
- Alberta Health Services, Edmonton, Alberta, Canada
| | - Gilbert Bigras
- Department of Laboratory Medicine and Pathology, University of Alberta, Edmonton, Alberta, Canada
| | | | - Susan Goruk
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, Alberta, Canada
| | - Sunita Ghosh
- Alberta Health Services, Edmonton, Alberta, Canada
| | | | | | - Ann Chisotti
- Alberta Health Services, Edmonton, Alberta, Canada
| | - Lynne Postovit
- Department of Oncology, University of Alberta, Edmonton, Alberta, Canada
| | - Kristi Baker
- Department of Oncology, University of Alberta, Edmonton, Alberta, Canada
| | - Vera Mazurak
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, Alberta, Canada
| | - Kerry Courneya
- Faculty of Kinesiology, Sport and Recreation, University of Alberta, Edmonton, Alberta, Canada
| | - Richard Berendt
- Department of Laboratory Medicine and Pathology, University of Alberta, Edmonton, Alberta, Canada
| | - Wei-Feng Dong
- Department of Laboratory Medicine and Pathology, University of Alberta, Edmonton, Alberta, Canada
| | - George Wood
- Department of Laboratory Medicine and Pathology, University of Alberta, Edmonton, Alberta, Canada
| | | | - Anil Abraham Joy
- Department of Oncology, University of Alberta, Edmonton, Alberta, Canada
| | - Karen King
- Alberta Health Services, Edmonton, Alberta, Canada
| | | | - Xiaofu Zhu
- Alberta Health Services, Edmonton, Alberta, Canada
| | - Catherine Field
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, Alberta, Canada
| |
Collapse
|
18
|
Toxicological Effects of Traumatic Acid and Selected Herbicides on Human Breast Cancer Cells: In Vitro Cytotoxicity Assessment of Analyzed Compounds. Molecules 2019; 24:molecules24091710. [PMID: 31052542 PMCID: PMC6539929 DOI: 10.3390/molecules24091710] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2019] [Revised: 04/23/2019] [Accepted: 04/30/2019] [Indexed: 01/18/2023] Open
Abstract
The main consequence of herbicides use is the presence of their residues in food of plant origin. A growing body of evidence indicates that herbicides cause detrimental effects upon human health while demonstrating a direct link of pesticides exposure with the occurrence of human chronic diseases, including cancer. There is a pressing need to develop our knowledge regarding interactions of food contaminants and food components both in vitro and in vivo. Pesticides are highly undesirable food contaminants, and traumatic acid (TA) is a very beneficial food ingredient, therefore we decided to study if TA may act as a compound that delays the stimulatory effect of pesticides on breast cancer cells. To analyze the potential effects that selected herbicides (MCPA, mesotrione, bifenox and dichlobenil) may have upon cancerous cells, we conducted studies of the cytotoxicity of physiological concentrations of four pesticides and the mix of TA with tested herbicides in three different breast cancer cell lines (MCF-7, ZR-75-1 and MDA-MB-231) and one normal healthy breast cell line MCF-12A. Based on the obtained results we conclude that TA in a concentration-dependent manner might influence selected effects of the studied herbicides for particular cancer cells lines.
Collapse
|
19
|
Serini S, Cassano R, Trombino S, Calviello G. Nanomedicine-based formulations containing ω-3 polyunsaturated fatty acids: potential application in cardiovascular and neoplastic diseases. Int J Nanomedicine 2019; 14:2809-2828. [PMID: 31114196 PMCID: PMC6488162 DOI: 10.2147/ijn.s197499] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Omega-3 polyunsaturated fatty acids (ω-3 PUFAs) are dietary factors involved in the prevention of cardiovascular, inflammatory, and neoplastic diseases. A multidisciplinary approach – based on recent findings in nutritional science, lipid biochemistry, biotechnology, and biology of inflammation and cancer – has been recently employed to develop ω-3 PUFA-containing nanoformulations with an aim to protect these fatty acids from degradation, increase their bioavailability and delivery to target tissues, and, thus, enhance their bioactivity. In some cases, these nanoformulations were designed to administer ω-3 PUFAs in combination with other nutraceuticals or conventional/innovative drugs. The aim of this strategy was to increase the activities of the compounds contained in the nanoformulation and to reduce the adverse effects often induced by drugs. We herein analyze the results of papers evaluating the potential use of ω-3 PUFA-containing nanomaterials in fighting cardiovascular diseases and cancer. Future directions in this field of research are also provided.
Collapse
Affiliation(s)
- Simona Serini
- Institute of General Pathology, Università Cattolica del Sacro Cuore, 00168 Roma, Italy, .,Fondazione Policlinico Universitario A, Gemelli 00168 Roma, Italy,
| | - Roberta Cassano
- Department of Pharmacy, Health and Nutritional Sciences, Università della Calabria, 87036 Cosenza, Italy,
| | - Sonia Trombino
- Department of Pharmacy, Health and Nutritional Sciences, Università della Calabria, 87036 Cosenza, Italy,
| | - Gabriella Calviello
- Institute of General Pathology, Università Cattolica del Sacro Cuore, 00168 Roma, Italy, .,Fondazione Policlinico Universitario A, Gemelli 00168 Roma, Italy,
| |
Collapse
|
20
|
Qian XL, Pan YH, Huang QY, Shi YB, Huang QY, Hu ZZ, Xiong LX. Caveolin-1: a multifaceted driver of breast cancer progression and its application in clinical treatment. Onco Targets Ther 2019; 12:1539-1552. [PMID: 30881011 PMCID: PMC6398418 DOI: 10.2147/ott.s191317] [Citation(s) in RCA: 56] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Human breast cancer is one of the most frequent cancer diseases and causes of death among female population worldwide. It appears at a high incidence and has a high malignancy, mortality, recurrence rate and poor prognosis. Caveolin-1 (Cav1) is the main component of caveolae and participates in various biological events. More and more experimental studies have shown that Cav1 plays a critical role in the progression of breast cancer including cell proliferation, apoptosis, autophagy, invasion, migration and breast cancer metastasis. Besides, Cav1 has been found to be involved in chemotherapeutics and radiotherapy resistance, which are still the principal problems encountered in clinical breast cancer treatment. In addition, stromal Cav1 may be a potential indicator for breast cancer patients' prognosis. In the current review, we cover the state-of-the-art study, development and progress on Cav1 and breast cancer, altogether describing the role of Cav1 in breast cancer progression and application in clinical treatment, in the hope of providing a basis for further research and promoting CAV1 gene as a potential target to diagnose and treat aggressive breast cancers.
Collapse
Affiliation(s)
- Xian-Ling Qian
- Department of Pathophysiology, Basic Medical College, Nanchang University, Nanchang 330006, China, ;
- First Clinical Medical College, Nanchang University, Nanchang 330006, China
| | - Yi-Hang Pan
- Department of Pathophysiology, Basic Medical College, Nanchang University, Nanchang 330006, China, ;
- First Clinical Medical College, Nanchang University, Nanchang 330006, China
| | - Qi-Yuan Huang
- Department of Pathophysiology, Basic Medical College, Nanchang University, Nanchang 330006, China, ;
- Second Clinical Medical College, Nanchang University, Nanchang 330006, China
| | - Yu-Bo Shi
- Department of Pathophysiology, Basic Medical College, Nanchang University, Nanchang 330006, China, ;
| | - Qing-Yun Huang
- Department of Pathophysiology, Basic Medical College, Nanchang University, Nanchang 330006, China, ;
| | - Zhen-Zhen Hu
- Department of Pathophysiology, Basic Medical College, Nanchang University, Nanchang 330006, China, ;
- Jiangxi Province Key Laboratory of Tumor Pathogenesis and Molecular Pathology, Nanchang 330006, China, ;
| | - Li-Xia Xiong
- Department of Pathophysiology, Basic Medical College, Nanchang University, Nanchang 330006, China, ;
- Jiangxi Province Key Laboratory of Tumor Pathogenesis and Molecular Pathology, Nanchang 330006, China, ;
| |
Collapse
|
21
|
Bernardes N, Garizo AR, Pinto SN, Caniço B, Perdigão C, Fernandes F, Fialho AM. Azurin interaction with the lipid raft components ganglioside GM-1 and caveolin-1 increases membrane fluidity and sensitivity to anti-cancer drugs. Cell Cycle 2018; 17:1649-1666. [PMID: 29963969 DOI: 10.1080/15384101.2018.1489178] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
Membrane lipid rafts are highly ordered microdomains and essential components of plasma membranes. In this work, we demonstrate that azurin uptake by cancer cells is, in part, mediated by caveolin-1 and GM-1, lipid rafts' markers. This recognition is mediated by a surface exposed hydrophobic core displayed by azurin since the substitution of a phenylalanine residue in position 114 facing the hydrophobic cavity by alanine impacts such interactions, debilitating the uptake of azurin by cancer cells. Treating of cancer cells with azurin leads to a sequence of events: alters the lipid raft exposure at plasma membranes, causes a decrease in the plasma membrane order as examined by Laurdan two-photon imaging and leads to a decrease in the levels of caveolin-1. Caveolae, a subset of lipid rafts characterized by the presence of caveolin-1, are gaining increasing recognition as mediators in tumor progression and resistance to standard therapies. We show that azurin inhibits growth of cancer cells expressing caveolin-1, and this inhibition is only partially observed with mutant azurin. Finally, the simultaneous administration of azurin with anticancer therapeutic drugs (paclitaxel and doxorubicin) results in an enhancement in their activity, contrary to the mutated protein.
Collapse
Affiliation(s)
- Nuno Bernardes
- a iBB-Institute for Bioengineering and Biosciences , Biological Sciences Research Group , Lisbon , Portugal
| | - Ana Rita Garizo
- a iBB-Institute for Bioengineering and Biosciences , Biological Sciences Research Group , Lisbon , Portugal
| | - Sandra N Pinto
- b Centro de Química-Física Molecular and Institute of Nanoscience and Nanotechnology, Instituto Superior Técnico , Lisbon , Portugal
| | - Bernardo Caniço
- a iBB-Institute for Bioengineering and Biosciences , Biological Sciences Research Group , Lisbon , Portugal
| | - Catarina Perdigão
- a iBB-Institute for Bioengineering and Biosciences , Biological Sciences Research Group , Lisbon , Portugal
| | - Fábio Fernandes
- b Centro de Química-Física Molecular and Institute of Nanoscience and Nanotechnology, Instituto Superior Técnico , Lisbon , Portugal.,c UCIBIO, REQUIMTE, Departamento de Química, Faculdade de Ciências e Tecnologia , Universidade Nova de Lisboa , Caparica , Portugal
| | - Arsenio M Fialho
- a iBB-Institute for Bioengineering and Biosciences , Biological Sciences Research Group , Lisbon , Portugal.,d Department of Bioengineering , Instituto Superior Técnico, University of Lisbon , Lisbon , Portugal
| |
Collapse
|
22
|
Pizato N, Luzete BC, Kiffer LFMV, Corrêa LH, de Oliveira Santos I, Assumpção JAF, Ito MK, Magalhães KG. Omega-3 docosahexaenoic acid induces pyroptosis cell death in triple-negative breast cancer cells. Sci Rep 2018; 8:1952. [PMID: 29386662 PMCID: PMC5792438 DOI: 10.1038/s41598-018-20422-0] [Citation(s) in RCA: 158] [Impact Index Per Article: 22.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2017] [Accepted: 01/18/2018] [Indexed: 02/07/2023] Open
Abstract
The implication of inflammation in pathophysiology of several type of cancers has been under intense investigation. Omega-3 fatty acids can modulate inflammation and present anticancer effects, promoting cancer cell death. Pyroptosis is an inflammation related cell death and so far, the function of docosahexaenoic acid (DHA) in pyroptosis cell death has not been described. This study investigated the role of DHA in triggering pyroptosis activation in breast cancer cells. MDA-MB-231 breast cancer cells were supplemented with DHA and inflammation cell death was analyzed. DHA-treated breast cancer cells triggered increased caspase-1and gasdermin D activation, enhanced IL-1β secretion, translocated HMGB1 towards the cytoplasm, and membrane pore formation when compared to untreated cells, suggesting DHA induces pyroptosis programmed cell death in breast cancer cells. Moreover, caspase-1 inhibitor (YVAD) could protect breast cancer cells from DHA-induced pyroptotic cell death. In addition, membrane pore formation showed to be a lysosomal damage and ROS formation-depended event in breast cancer cells. DHA triggered pyroptosis cell death in MDA-MB-231by activating several pyroptosis markers in these cells. This is the first study that shows the effect of DHA triggering pyroptosis programmed cell death in breast cancer cells and it could improve the understanding of the omega-3 supplementation during breast cancer treatment.
Collapse
Affiliation(s)
- Nathalia Pizato
- Department of Nutrition, University of Brasilia, Brasilia, 70910-900, Brazil
| | | | | | - Luís Henrique Corrêa
- Laboratory of Immunology and Inflammation, University of Brasilia, Brasilia, 70910-900, Brazil
| | - Igor de Oliveira Santos
- Laboratory of Immunology and Inflammation, University of Brasilia, Brasilia, 70910-900, Brazil
| | | | - Marina Kiyomi Ito
- Department of Nutrition, University of Brasilia, Brasilia, 70910-900, Brazil
| | - Kelly Grace Magalhães
- Laboratory of Immunology and Inflammation, University of Brasilia, Brasilia, 70910-900, Brazil.
| |
Collapse
|
23
|
VanderSluis L, Mazurak VC, Damaraju S, Field CJ. Determination of the Relative Efficacy of Eicosapentaenoic Acid and Docosahexaenoic Acid for Anti-Cancer Effects in Human Breast Cancer Models. Int J Mol Sci 2017; 18:E2607. [PMID: 29207553 PMCID: PMC5751210 DOI: 10.3390/ijms18122607] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2017] [Revised: 11/20/2017] [Accepted: 11/27/2017] [Indexed: 12/21/2022] Open
Abstract
Epidemiological studies have associated high fish oil consumption with decreased risk of breast cancer (BC). n-3 long chain polyunsaturated fatty acids (n-3 LCPUFA), eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) found in fish and fish oils exert anti-cancer effects. However, few studies have examined the relative efficacy of EPA and DHA alone and in mixtures on BC subtypes. This was the objective of the present review, as this research is a necessity for the translation of findings to human health and disease. The literature suggests that DHA has a greater anti-cancer effect in triple negative BC (TNBC). In estrogen positive (ER+) BC, DHA has a greater effect on cell viability, while both fatty acids have similar effects on apoptosis and proliferation. These effects are associated with preferential uptake of DHA into TNBC lipid rafts and EPA in ER+ BC. EPA:DHA mixtures have anti-cancer activity; however, the ratio of EPA:DHA does not predict the relative incorporation of these two fatty acids into membrane lipids as EPA appears to be preferentially incorporated. In summary, DHA and EPA should be considered separately in the context of BC prevention. The elucidation of optimal EPA:DHA ratios will be important for designing targeted n-3 LCPUFA treatments.
Collapse
Affiliation(s)
- Laura VanderSluis
- Department of Agricultural, Food and Nutritional Science, Faculty of Agricultural, Life and Environmental Sciences, Li Ka Shing Center for Health Research Innovation, University of Alberta, Edmonton, AB T6G 2E1, Canada.
| | - Vera C Mazurak
- Department of Agricultural, Food and Nutritional Science, Faculty of Agricultural, Life and Environmental Sciences, Li Ka Shing Center for Health Research Innovation, University of Alberta, Edmonton, AB T6G 2E1, Canada.
| | - Sambasivarao Damaraju
- Department of Laboratory Medicine and Pathology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB T6G 2R3, Canada.
| | - Catherine J Field
- Department of Agricultural, Food and Nutritional Science, Faculty of Agricultural, Life and Environmental Sciences, Li Ka Shing Center for Health Research Innovation, University of Alberta, Edmonton, AB T6G 2E1, Canada.
| |
Collapse
|
24
|
Russell J, Du Toit EF, Peart JN, Patel HH, Headrick JP. Myocyte membrane and microdomain modifications in diabetes: determinants of ischemic tolerance and cardioprotection. Cardiovasc Diabetol 2017; 16:155. [PMID: 29202762 PMCID: PMC5716308 DOI: 10.1186/s12933-017-0638-z] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/08/2017] [Accepted: 11/22/2017] [Indexed: 02/06/2023] Open
Abstract
Cardiovascular disease, predominantly ischemic heart disease (IHD), is the leading cause of death in diabetes mellitus (DM). In addition to eliciting cardiomyopathy, DM induces a ‘wicked triumvirate’: (i) increasing the risk and incidence of IHD and myocardial ischemia; (ii) decreasing myocardial tolerance to ischemia–reperfusion (I–R) injury; and (iii) inhibiting or eliminating responses to cardioprotective stimuli. Changes in ischemic tolerance and cardioprotective signaling may contribute to substantially higher mortality and morbidity following ischemic insult in DM patients. Among the diverse mechanisms implicated in diabetic impairment of ischemic tolerance and cardioprotection, changes in sarcolemmal makeup may play an overarching role and are considered in detail in the current review. Observations predominantly in animal models reveal DM-dependent changes in membrane lipid composition (cholesterol and triglyceride accumulation, fatty acid saturation vs. reduced desaturation, phospholipid remodeling) that contribute to modulation of caveolar domains, gap junctions and T-tubules. These modifications influence sarcolemmal biophysical properties, receptor and phospholipid signaling, ion channel and transporter functions, contributing to contractile and electrophysiological dysfunction, cardiomyopathy, ischemic intolerance and suppression of protective signaling. A better understanding of these sarcolemmal abnormalities in types I and II DM (T1DM, T2DM) can inform approaches to limiting cardiomyopathy, associated IHD and their consequences. Key knowledge gaps include details of sarcolemmal changes in models of T2DM, temporal patterns of lipid, microdomain and T-tubule changes during disease development, and the precise impacts of these diverse sarcolemmal modifications. Importantly, exercise, dietary, pharmacological and gene approaches have potential for improving sarcolemmal makeup, and thus myocyte function and stress-resistance in this ubiquitous metabolic disorder.
Collapse
Affiliation(s)
- Jake Russell
- Menzies Health Institute Queensland, Griffith University, Southport, QLD, Australia
| | - Eugene F Du Toit
- Menzies Health Institute Queensland, Griffith University, Southport, QLD, Australia
| | - Jason N Peart
- Menzies Health Institute Queensland, Griffith University, Southport, QLD, Australia
| | - Hemal H Patel
- VA San Diego Healthcare System and Department of Anesthesiology, University of California San Diego, San Diego, USA
| | - John P Headrick
- Menzies Health Institute Queensland, Griffith University, Southport, QLD, Australia. .,School of Medical Science, Griffith University, Southport, QLD, 4217, Australia.
| |
Collapse
|
25
|
Liu J, Li G, Chen C, Chen D, Zhou Q. MiR-6835 promoted LPS-induced inflammation of HUVECs associated with the interaction between TLR-4 and AdipoR1 in lipid rafts. PLoS One 2017; 12:e0188604. [PMID: 29190778 PMCID: PMC5708807 DOI: 10.1371/journal.pone.0188604] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2017] [Accepted: 11/09/2017] [Indexed: 02/07/2023] Open
Abstract
Background High mortality rate of critically-ill patients could be induced by sepsis and septic shock, which is the extremely life threatening. The purpose of this work is to identify and evaluate the potential regulatory mechanism of LPS-induced inflammation associated with miR-6835 and lipid rafts in HUVECs. Methods The 3’ UTR luciferase activity of AdipoR1 was detected, which was predicted the potential target gene of miR-6835. Moreover, the treated HUVECs with or without inhibitors or mimics of miR-6835 were used. Furthermore, the bio-functions of HUVECs were explored. The protein expression levels of SIRT-1, AMPK, and AdipoR1 were assessed, which were involved in the AdipoR1 signaling pathway. Then, the interaction between TLR-4 and AdipoR1 in lipid rafts and its mediation role on LPS-induced inflammation was investigated in HUVECs. Results MiR-6835 targeted directly on AdipoR1, and suppressed its expression in mRNA (mimics of miR-6835: 0.731±0.016 vs control: 1.527±0.015, P<0.001) and proteins levels, then regulated protein expression of SIRT-1 and AMPK, which were the downstream target genes of AdipoR1 signaling pathway. MiR-6835 enhanced LPS-induced inflammation process in HUVECs (TNF-α: LPS+mimics of miR-6835: 1638.51±78.43 vs LPS: 918.73±39.73, P<0.001; IL-6: LPS+mimics of miR-6835: 1249.35±69.51 vs LPS: 687.52±43.64, P<0.001), which was associated with the interaction between TLR-4 and AdipoR1 in lipid rafts. Conclusions MiR-6835 is the key regulator of LPS-induced inflammation process in HUVECs. The interaction between TLR-4 and AdipoR1 mediated by lipid rafts at membrane of HUVECs with inflammation process induced by miR-6835. Our results demonstrated a hopeful strategy for treatment on sepsis by aiming at lipid rafts and miR-6835.
Collapse
Affiliation(s)
- Jiao Liu
- Department of Critical Care Medicine, Renmin Hospital of Wuhan University, Wuhan, Hubei, People’s Republic of China
| | - Guang Li
- Department of Critical Care Medicine, Renmin Hospital of Wuhan University, Wuhan, Hubei, People’s Republic of China
| | - Chuang Chen
- Department of Breast and Thyroid Surgery, Renmin Hospital of Wuhan University, Wuhan, Hubei, People’s Republic of China
| | - Dechang Chen
- Department of Emergency and Critical Care Medicine, Shanghai Changzheng Hospital, Second Military Medical University, Shanghai, People’s Republic of China
| | - Qingshan Zhou
- Department of Critical Care Medicine, Renmin Hospital of Wuhan University, Wuhan, Hubei, People’s Republic of China
- * E-mail:
| |
Collapse
|
26
|
Lee JY, Sim TB, Lee JE, Na HK. Chemopreventive and Chemotherapeutic Effects of Fish Oil derived Omega-3 Polyunsaturated Fatty Acids on Colon Carcinogenesis. Clin Nutr Res 2017; 6:147-160. [PMID: 28770178 PMCID: PMC5539209 DOI: 10.7762/cnr.2017.6.3.147] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2017] [Revised: 07/13/2017] [Accepted: 07/17/2017] [Indexed: 02/06/2023] Open
Abstract
Colorectal cancer is the third most common cause of cancer related death in the world. Multiple lines of evidence suggest that there is an association between consumption of dietary fat and colon cancer risk. Not only the amount but also the type and the ratio of fatty acids comprising dietary fats consumed have been implicated in the etiology and pathogenesis of colon cancer. Omega-3 (n-3) polyunsaturated fatty acids (PUFAs), such as docosahexaenoic acid (DHA) and eicosapentaenoic acid (EPA), have been known to inhibit development of colon cancer by downregulating the expression of genes involved in colon carcinogenesis and also by altering the membrane lipid composition. Data from laboratory, epidemiological, and clinical studies substantiate the beneficial role of n-3 PUFAs in preventing colitis and subsequent development of colon cancer. In addition, recent studies suggest that some n-3 PUFAs can be effective as an adjuvant with chemotherapeutic agents and other natural anticancer compounds in the management of colon cancer. In this review, we discuss chemopreventive and therapeutic effects of fish oil derived long chain n-3 PUFAs, particularly EPA and DHA, with focus on synergetic effects of which they exert when combined with chemotherapeutic agents and other natural compounds.
Collapse
Affiliation(s)
- Ja Young Lee
- Department of Food and Nutrition, College of Health and Wellness, Sungshin Women's University, Seoul 01133, Korea
| | - Tae-Bu Sim
- Department of Food and Nutrition, College of Health and Wellness, Sungshin Women's University, Seoul 01133, Korea
| | - Jeong-Eun Lee
- Department of Food and Nutrition, College of Health and Wellness, Sungshin Women's University, Seoul 01133, Korea
| | - Hye-Kyung Na
- Department of Food and Nutrition, College of Health and Wellness, Sungshin Women's University, Seoul 01133, Korea.,Department of Food Science and Biotechnology, College of Knowledge-Based Services Engineering, Sungshin Women's University, Seoul 01133, Korea
| |
Collapse
|
27
|
Yu J, Yang H, Fang B, Zhang Z, Wang Y, Dai Y. mfat-1transgene protects cultured adult neural stem cells against cobalt chloride-mediated hypoxic injury by activatingNrf2/AREpathways. J Neurosci Res 2017. [DOI: 10.1002/jnr.24096] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Junfeng Yu
- Jiangsu Key Laboratory of Xenotransplantation; Nanjing Medical University; Nanjing People's Republic of China
| | - Haiyuan Yang
- Jiangsu Key Laboratory of Xenotransplantation; Nanjing Medical University; Nanjing People's Republic of China
| | - Bin Fang
- Jiangsu Key Laboratory of Xenotransplantation; Nanjing Medical University; Nanjing People's Republic of China
| | - Zhengwei Zhang
- Huaian First Hospital Affiliated to Nanjing Medical University; Huai'an People's Republic of China
| | - Ying Wang
- Jiangsu Key Laboratory of Xenotransplantation; Nanjing Medical University; Nanjing People's Republic of China
| | - Yifan Dai
- Jiangsu Key Laboratory of Xenotransplantation; Nanjing Medical University; Nanjing People's Republic of China
| |
Collapse
|
28
|
Li G, Chen Z, Bhat OM, Zhang Q, Abais-Battad JM, Conley SM, Ritter JK, Li PL. NLRP3 inflammasome as a novel target for docosahexaenoic acid metabolites to abrogate glomerular injury. J Lipid Res 2017; 58:1080-1090. [PMID: 28404641 PMCID: PMC5454504 DOI: 10.1194/jlr.m072587] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2016] [Revised: 03/31/2017] [Indexed: 01/09/2023] Open
Abstract
The nucleotide-binding oligomerization domain-like receptor containing pyrin domain 3 (NLRP3) inflammasome has been implicated in podocyte injury and glomerular sclerosis during hyperhomocysteinemia (hHcys). However, it remains unclear whether the NLRP3 inflammasome can be a therapeutic target for treatment of hHcys-induced kidney injury. Given that DHA metabolites-resolvins have potent anti-inflammatory effects, the present study tested whether the prototype, resolvin D1 (RvD1), and 17S-hydroxy DHA (17S-HDHA), an intermediate product, abrogate hHcys-induced podocyte injury by targeting the NLRP3 inflammasome. In vitro, confocal microscopy demonstrated that 17S-HDHA (100 nM) and RvD1 (60 nM) prevented Hcys-induced formation of NLRP3 inflammasomes, as shown by reduced colocalization of NLRP3 with apoptosis-associated speck-like protein containing a caspase recruitment domain (ASC) or caspase-1. Both DHA metabolites inhibited Hcys-induced caspase-1 activation and interleukin-1β production. However, DHA had no significant effect on these Hcys-induced changes in podocytes. In vivo, DHA lipoxygenase metabolites substantially inhibited podocyte NLRP3 inflammasome formation and activation and consequent glomerular sclerosis in mice with hHcys. Mechanistically, RvD1 and 17S-HDHA were shown to suppress Hcys-induced formation of lipid raft redox signaling platforms and subsequent O2·- production in podocytes. It is concluded that inhibition of NLRP3 inflammasome activation is one of the important mechanisms mediating the beneficial action of RvD1 and 17S-HDHA on Hcys-induced podocyte injury and glomerular sclerosis.
Collapse
Affiliation(s)
- Guangbi Li
- Department of Pharmacology and Toxicology, School of Medicine, Virginia Commonwealth University, Richmond, VA
| | - Zhida Chen
- Department of Pharmacology and Toxicology, School of Medicine, Virginia Commonwealth University, Richmond, VA
| | - Owais M Bhat
- Department of Pharmacology and Toxicology, School of Medicine, Virginia Commonwealth University, Richmond, VA
| | - Qinghua Zhang
- Department of Pharmacology and Toxicology, School of Medicine, Virginia Commonwealth University, Richmond, VA
| | - Justine M Abais-Battad
- Department of Pharmacology and Toxicology, School of Medicine, Virginia Commonwealth University, Richmond, VA
| | - Sabena M Conley
- Department of Pharmacology and Toxicology, School of Medicine, Virginia Commonwealth University, Richmond, VA
| | - Joseph K Ritter
- Department of Pharmacology and Toxicology, School of Medicine, Virginia Commonwealth University, Richmond, VA
| | - Pin-Lan Li
- Department of Pharmacology and Toxicology, School of Medicine, Virginia Commonwealth University, Richmond, VA
| |
Collapse
|
29
|
Li Y, Shan F, Chen J. Lipid raft-mediated miR-3908 inhibition of migration of breast cancer cell line MCF-7 by regulating the interactions between AdipoR1 and Flotillin-1. World J Surg Oncol 2017; 15:69. [PMID: 28327197 PMCID: PMC5361711 DOI: 10.1186/s12957-017-1120-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2016] [Accepted: 02/14/2017] [Indexed: 02/01/2023] Open
Abstract
Background The mechanisms of lipid raft regulation by microRNAs in breast cancer are not fully understood. This work focused on the evaluation and identification of miR-3908, which may be a potential biomarker related to the migration of breast cancer cells, and elucidates lipid-raft-regulating cell migration in breast cancer. Methods To confirm the prediction that miR-3908 is matched with AdipoR1, we used 3’-UTR luciferase activity of AdipoR1 to assess this. Then, human breast cancer cell line MCF-7 was cultured in the absence or presence of the mimics or inhibitors of miR-3908, after which the biological functions of MCF-7 cells were analyzed. The protein expression of AdipoR1, AMPK, and SIRT-1 were examined. The interaction between AdipoR1 and Flotillin-1, or its effects on lipid rafts on regulating cell migration of MCF-7, was also investigated. Results AdipoR1 is a direct target of miR-3908. miR-3908 suppresses the expression of AdipoR1 and its downstream pathway genes, including AMPK, p-AMPK, and SIRT-1. miR-3908 enhances the process of breast cancer cell clonogenicity. miR-3908 exerts its effects on the proliferation and migration of MCF-7 cells, which are mediated by lipid rafts regulating AdipoR1’s ability to bind Flotillin-1. Conclusions miR-3908 is a crucial mediator of the migration process in breast cancer cells. Lipid rafts regulate the interactions between AdipoR1 and Flotillin-1 and then the migration process associated with miR-3908 in MCF-7 cells. Our findings suggest that targeting miR-3908 and the lipid raft, may be a promising strategy for the treatment and prevention of breast cancer.
Collapse
Affiliation(s)
- Yuan Li
- Department of Obstetrics and Gynecology, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing, 100048, China
| | - Fei Shan
- Department of Cardiac Surgery, Affiliated Hospital of Medical College of Yan'an University, Yan'an, Shanxi, 716000, China
| | - Jinglong Chen
- Department of Oncology, Beijing Ditan Hospital, Capital Medical University, Beijing, 100015, China.
| |
Collapse
|
30
|
Modulation of Ras/ERK and Phosphoinositide Signaling by Long-Chain n-3 PUFA in Breast Cancer and Their Potential Complementary Role in Combination with Targeted Drugs. Nutrients 2017; 9:nu9030185. [PMID: 28241486 PMCID: PMC5372848 DOI: 10.3390/nu9030185] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2017] [Revised: 02/16/2017] [Accepted: 02/19/2017] [Indexed: 12/14/2022] Open
Abstract
A potential complementary role of the dietary long-chain n-3 polyunsaturated fatty acids (LCn-3 PUFA) in combination with innovative mono-targeted therapies has recently been proposed. These compounds are thought to act pleiotropically to prevent the development and progression of a variety of cancers, including breast cancer. We hereinafter critically analyze the reports investigating the ability of LCn-3 PUFA to modulate the Ras/ERK and the phosphoinositide survival signaling pathways often aberrantly activated in breast cancer and representing the main targets of innovative therapies. The in vitro or in vivo animal and human interventional studies published up to January 2017 investigating the effects of LCn-3 PUFA on these pathways in normal and cancerous breast cells or tissues were identified through a systematic search of literature in the PubMed database. We found that, in most cases, both the in vitro and in vivo studies demonstrated the ability of LCn-3 PUFA to inhibit the activation of these pro-survival pathways. Altogether, the analyzed results strongly suggest a potential role of LCn-3 PUFA as complementary agents in combination with mono-targeted therapies. Moreover, the results indicate the need for further in vitro and human interventional studies designed to unequivocally prove the potential adjuvant role of these fatty acids.
Collapse
|
31
|
Checkley LA, Rudolph MC, Wellberg EA, Giles ED, Wahdan-Alaswad RS, Houck JA, Edgerton SM, Thor AD, Schedin P, Anderson SM, MacLean PS. Metformin Accumulation Correlates with Organic Cation Transporter 2 Protein Expression and Predicts Mammary Tumor Regression In Vivo. Cancer Prev Res (Phila) 2017; 10:198-207. [PMID: 28154203 DOI: 10.1158/1940-6207.capr-16-0211-t] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2016] [Revised: 01/19/2017] [Accepted: 01/20/2017] [Indexed: 02/07/2023]
Abstract
Several epidemiologic studies have associated metformin treatment with a reduction in breast cancer incidence in prediabetic and type II diabetic populations. Uncertainty exists regarding which patient populations and/or tumor subtypes will benefit from metformin treatment, and most preclinical in vivo studies have given little attention to the cellular pharmacology of intratumoral metformin uptake. Epidemiologic reports consistently link western-style high fat diets (HFD), which drive overweight and obesity, with increased risk of breast cancer. We used a rat model of HFD-induced overweight and mammary carcinogenesis to define intratumoral factors that confer metformin sensitivity. Mammary tumors were initiated with 1-methyl-1-nitrosourea, and rats were randomized into metformin-treated (2 mg/mL drinking water) or control groups (water only) for 8 weeks. Two-thirds of existing mammary tumors responded to metformin treatment with decreased tumor volumes (P < 0.05), reduced proliferative index (P < 0.01), and activated AMPK (P < 0.05). Highly responsive tumors accumulated 3-fold greater metformin amounts (P < 0.05) that were positively correlated with organic cation transporter-2 (OCT2) protein expression (r = 0.57; P = 0.038). Importantly, intratumoral metformin concentration negatively associated with tumor volume (P = 0.03), and each 10 pmol increase in intratumoral metformin predicted >0.11 cm3 reduction in tumor volume. Metformin treatment also decreased proinflammatory arachidonic acid >1.5-fold in responsive tumors (P = 0.023). Collectively, these preclinical data provide evidence for a direct effect of metformin in vivo and suggest that OCT2 expression may predict metformin uptake and tumor response. Cancer Prev Res; 10(3); 198-207. ©2017 AACR.
Collapse
Affiliation(s)
- L Allyson Checkley
- Division of Endocrinology, Metabolism and Diabetes, University of Colorado Denver Anschutz Medical Campus, Aurora, Colorado
| | - Michael C Rudolph
- Division of Endocrinology, Metabolism and Diabetes, University of Colorado Denver Anschutz Medical Campus, Aurora, Colorado
| | - Elizabeth A Wellberg
- Department of Pathology, University of Colorado Denver Anschutz Medical Campus, Aurora, Colorado
| | - Erin D Giles
- Department of Nutrition and Food Science, Texas A&M University, College Station, Texas
| | - Reema S Wahdan-Alaswad
- Department of Pathology, University of Colorado Denver Anschutz Medical Campus, Aurora, Colorado
| | - Julie A Houck
- Division of Endocrinology, Metabolism and Diabetes, University of Colorado Denver Anschutz Medical Campus, Aurora, Colorado
| | - Susan M Edgerton
- Department of Pathology, University of Colorado Denver Anschutz Medical Campus, Aurora, Colorado
| | - Ann D Thor
- Department of Pathology, University of Colorado Denver Anschutz Medical Campus, Aurora, Colorado
| | - Pepper Schedin
- Department of Cell, Developmental and Cancer Biology, Oregon Health & Science University, Portland, Oregon.,Knight Cancer Institute, Oregon Health & Science University, Portland, Oregon
| | - Steven M Anderson
- Department of Pathology, University of Colorado Denver Anschutz Medical Campus, Aurora, Colorado
| | - Paul S MacLean
- Division of Endocrinology, Metabolism and Diabetes, University of Colorado Denver Anschutz Medical Campus, Aurora, Colorado. .,Department of Pathology, University of Colorado Denver Anschutz Medical Campus, Aurora, Colorado.,Center for Human Nutrition, University of Colorado Denver Anschutz Medical Campus, Aurora, Colorado
| |
Collapse
|
32
|
Mouradian M, Ma IV, Vicente ED, Kikawa KD, Pardini RS. Docosahexaenoic Acid-mediated Inhibition of Heat Shock Protein 90-p23 Chaperone Complex and Downstream Client Proteins in Lung and Breast Cancer. Nutr Cancer 2016; 69:92-104. [PMID: 27880046 DOI: 10.1080/01635581.2017.1247886] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The molecular chaperone, heat shock protein 90 (Hsp90), is a critical regulator for the proper folding and stabilization of several client proteins, and is a major contributor to carcinogenesis. Specific Hsp90 inhibitors have been designed to target the ATP-binding site in order to prevent Hsp90 chaperone maturation. The current study investigated the effects of docosahexaenoic acid (DHA; C22:6 n-3) on Hsp90 function and downstream client protein expression. In vitro analyses of BT-474 human breast carcinoma and A549 human lung adenocarcinoma cell lines revealed dose-dependent decreases in intracellular ATP levels by DHA treatment, resulting in a significant reduction of Hsp90 and p23 association in both cell lines. Attenuation of the Hsp90-p23 complex led to the inhibition of Hsp90 client proteins, epidermal growth factor receptor 2 (ErbB2), and hypoxia-inducible factor 1α (HIF-1α). Similar results were observed when employing 2-deoxyglucose (2-DG), confirming that DHA and 2-DG, both independently and combined, can disturb Hsp90 molecular chaperone function. In vivo A549 xenograft analysis also demonstrated decreased expression levels of Hsp90-p23 association and diminished protein levels of ErbB2 and HIF-1α in mice supplemented with dietary DHA. These data support a role for dietary intervention to improve cancer therapy in tumors overexpressing Hsp90 and its client proteins.
Collapse
Affiliation(s)
- Michael Mouradian
- a Department of Biochemistry and Molecular Biology , University of Nevada , Reno , NV , USA
| | - Irvin V Ma
- a Department of Biochemistry and Molecular Biology , University of Nevada , Reno , NV , USA
| | - Erika D Vicente
- a Department of Biochemistry and Molecular Biology , University of Nevada , Reno , NV , USA
| | - Keith D Kikawa
- a Department of Biochemistry and Molecular Biology , University of Nevada , Reno , NV , USA
| | - Ronald S Pardini
- a Department of Biochemistry and Molecular Biology , University of Nevada , Reno , NV , USA
| |
Collapse
|
33
|
Nwosu ZC, Ebert MP, Dooley S, Meyer C. Caveolin-1 in the regulation of cell metabolism: a cancer perspective. Mol Cancer 2016; 15:71. [PMID: 27852311 PMCID: PMC5112640 DOI: 10.1186/s12943-016-0558-7] [Citation(s) in RCA: 164] [Impact Index Per Article: 18.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2016] [Accepted: 11/03/2016] [Indexed: 12/16/2022] Open
Abstract
Caveolin-1 (CAV1) is an oncogenic membrane protein associated with endocytosis, extracellular matrix organisation, cholesterol distribution, cell migration and signaling. Recent studies reveal that CAV1 is involved in metabolic alterations – a critical strategy adopted by cancer cells to their survival advantage. Consequently, research findings suggest that CAV1, which is altered in several cancer types, influences tumour development or progression by controlling metabolism. Understanding the molecular interplay between CAV1 and metabolism could help uncover druggable metabolic targets or pathways of clinical relevance in cancer therapy. Here we review from a cancer perspective, the findings that CAV1 modulates cell metabolism with a focus on glycolysis, mitochondrial bioenergetics, glutaminolysis, fatty acid metabolism, and autophagy.
Collapse
Affiliation(s)
- Zeribe Chike Nwosu
- Department of Medicine II, Medical Faculty Mannheim, University of Heidelberg, Mannheim, 68167, Germany.,Molecular Hepatology Section, Medical Faculty Mannheim, University of Heidelberg, Mannheim, 68167, Germany
| | - Matthias Philip Ebert
- Department of Medicine II, Medical Faculty Mannheim, University of Heidelberg, Mannheim, 68167, Germany
| | - Steven Dooley
- Department of Medicine II, Medical Faculty Mannheim, University of Heidelberg, Mannheim, 68167, Germany.,Molecular Hepatology Section, Medical Faculty Mannheim, University of Heidelberg, Mannheim, 68167, Germany
| | - Christoph Meyer
- Department of Medicine II, Medical Faculty Mannheim, University of Heidelberg, Mannheim, 68167, Germany. .,Molecular Hepatology Section, Medical Faculty Mannheim, University of Heidelberg, Mannheim, 68167, Germany.
| |
Collapse
|
34
|
Wang G, Cao R, Wang Y, Qian G, Dan HC, Jiang W, Ju L, Wu M, Xiao Y, Wang X. Simvastatin induces cell cycle arrest and inhibits proliferation of bladder cancer cells via PPARγ signalling pathway. Sci Rep 2016; 6:35783. [PMID: 27779188 PMCID: PMC5078845 DOI: 10.1038/srep35783] [Citation(s) in RCA: 96] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2016] [Accepted: 10/06/2016] [Indexed: 12/12/2022] Open
Abstract
Simvastatin is currently one of the most common drugs for old patients with hyperlipidemia, hypercholesterolemia and atherosclerotic diseases by reducing cholesterol level and anti-lipid properties. Importantly, simvastatin has also been reported to have anti-tumor effect, but the underlying mechanism is largely unknown. We collected several human bladder samples and performed microarray. Data analysis suggested bladder cancer (BCa) was significantly associated with fatty acid/lipid metabolism via PPAR signalling pathway. We observed simvastatin did not trigger BCa cell apoptosis, but reduced cell proliferation in a dose- and time-dependent manner, accompanied by PPARγ-activation. Moreover, flow cytometry analysis indicated that simvastatin induced cell cycle arrest at G0/G1 phase, suggested by downregulation of CDK4/6 and Cyclin D1. Furthermore, simvastatin suppressed BCa cell metastasis by inhibiting EMT and affecting AKT/GSK3β. More importantly, we found that the cell cycle arrest at G0/G1 phase and the alterations of CDK4/6 and Cyclin D1 triggered by simvastatin could be recovered by PPARγ-antagonist (GW9662), whereas the treatment of PPARα-antagonist (GW6471) shown no significant effects on the BCa cells. Taken together, our study for the first time revealed that simvastatin inhibited bladder cancer cell proliferation and induced cell cycle arrest at G1/G0 phase via PPARγ signalling pathway.
Collapse
Affiliation(s)
- Gang Wang
- Department of Urology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Rui Cao
- Department of Urology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Yongzhi Wang
- Department of Urology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Guofeng Qian
- Department of Endocrinology, The First Affiliated Hospital of Zhejiang University, Hangzhou, China
| | - Han C. Dan
- Marlene and Stewart Greenebaum Cancer Center, School of Medicine, University of Maryland, Baltimore, MD, USA
| | - Wei Jiang
- Medical Research Institute, School of Medicine, Wuhan University, Wuhan, China
- College of Life Science, Wuhan University, Wuhan, China
| | - Lingao Ju
- College of Life Science, Wuhan University, Wuhan, China
| | - Min Wu
- College of Life Science, Wuhan University, Wuhan, China
| | - Yu Xiao
- Department of Urology, Zhongnan Hospital of Wuhan University, Wuhan, China
- Center for Medical Science Research, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Xinghuan Wang
- Department of Urology, Zhongnan Hospital of Wuhan University, Wuhan, China
| |
Collapse
|
35
|
Ingersoll MA, Miller DR, Martinez O, Wakefield CB, Hsieh KC, Simha MV, Kao CL, Chen HT, Batra SK, Lin MF. Statin derivatives as therapeutic agents for castration-resistant prostate cancer. Cancer Lett 2016; 383:94-105. [PMID: 27687622 DOI: 10.1016/j.canlet.2016.09.008] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2016] [Revised: 09/09/2016] [Accepted: 09/10/2016] [Indexed: 12/21/2022]
Abstract
Despite recent advances in modern medicine, castration-resistant prostate cancer remains an incurable disease. Subpopulations of prostate cancer cells develop castration-resistance by obtaining the complete steroidogenic ability to synthesize androgens from cholesterol. Statin derivatives, such as simvastatin, inhibit cholesterol biosynthesis and may reduce prostate cancer incidence as well as progression to advanced, metastatic phenotype. In this study, we demonstrate novel simvastatin-related molecules SVA, AM1, and AM2 suppress the tumorigenicity of prostate cancer cell lines including androgen receptor-positive LNCaP C-81 and VCaP as well as androgen receptor-negative PC-3 and DU145. This is achieved through inhibition of cell proliferation, colony formation, and migration as well as induction of S-phase cell-cycle arrest and apoptosis. While the compounds effectively block androgen receptor signaling, their mechanism of inhibition also includes suppression of the AKT pathway, in part, through disruption of the plasma membrane. SVA also possess an added effect on cell growth inhibition when combined with docetaxel. In summary, of the compounds studied, SVA is the most potent inhibitor of prostate cancer cell tumorigenicity, demonstrating its potential as a promising therapeutic agent for castration-resistant prostate cancer.
Collapse
Affiliation(s)
- Matthew A Ingersoll
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, USA
| | - Dannah R Miller
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, USA
| | - October Martinez
- Department of Biological Sciences, Clark Atlanta University, Atlanta, GA, USA
| | - C Brent Wakefield
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, USA; Section of Urology, Department of Surgery, University of Nebraska Medical Center, Omaha, NE, USA
| | - Kuan-Chan Hsieh
- College of Pharmacy, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - M Vijaya Simha
- Department of Medical and Applied Chemistry, Kaohsiung Medical University Kaohsiung, Taiwan
| | - Chai-Lin Kao
- Department of Medical and Applied Chemistry, Kaohsiung Medical University Kaohsiung, Taiwan; Department of Chemistry, National Sun Yat-sen University, Taiwan
| | - Hui-Ting Chen
- Department of Fragrance and Cosmetic Science, Kaohsiung Medical University, Taiwan; Orthopaedic Research Center, Kaohsiung Medical University, Taiwan.
| | - Surinder K Batra
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, USA; Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, NE, USA
| | - Ming-Fong Lin
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, USA; Section of Urology, Department of Surgery, University of Nebraska Medical Center, Omaha, NE, USA; College of Pharmacy, Kaohsiung Medical University, Kaohsiung, Taiwan; Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, NE, USA.
| |
Collapse
|
36
|
Fatty acids as modulators of neutrophil recruitment, function and survival. Eur J Pharmacol 2016; 785:50-58. [DOI: 10.1016/j.ejphar.2015.03.098] [Citation(s) in RCA: 59] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2015] [Revised: 03/05/2015] [Accepted: 03/16/2015] [Indexed: 12/26/2022]
|
37
|
N-3 vs. n-6 fatty acids differentially influence calcium signalling and adhesion of inflammatory activated monocytes: impact of lipid rafts. Inflamm Res 2016; 65:881-894. [DOI: 10.1007/s00011-016-0971-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2015] [Revised: 04/01/2016] [Accepted: 06/28/2016] [Indexed: 11/30/2022] Open
|
38
|
Skibinski CG, Das A, Chen KM, Liao J, Manni A, Kester M, El-Bayoumy K. A novel biologically active acid stable liposomal formulation of docosahexaenoic acid in human breast cancer cell lines. Chem Biol Interact 2016; 252:1-8. [DOI: 10.1016/j.cbi.2016.03.035] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2016] [Revised: 03/23/2016] [Accepted: 03/30/2016] [Indexed: 02/07/2023]
|
39
|
Shi Y, Tan SH, Ng S, Zhou J, Yang ND, Koo GB, McMahon KA, Parton RG, Hill MM, Del Pozo MA, Kim YS, Shen HM. Critical role of CAV1/caveolin-1 in cell stress responses in human breast cancer cells via modulation of lysosomal function and autophagy. Autophagy 2016; 11:769-84. [PMID: 25945613 DOI: 10.1080/15548627.2015.1034411] [Citation(s) in RCA: 103] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
CAV1 (caveolin 1, caveolae protein, 22kDa) is well known as a principal scaffolding protein of caveolae, a specialized plasma membrane structure. Relatively, the caveolae-independent function of CAV1 is less studied. Autophagy is a process known to involve various membrane structures, including autophagosomes, lysosomes, and autolysosomes for degradation of intracellular proteins and organelles. Currently, the function of CAV1 in autophagy remains largely elusive. In this study, we demonstrate for the first time that CAV1 deficiency promotes both basal and inducible autophagy. Interestingly, the promoting effect was found mainly in the late stage of autophagy via enhancing lysosomal function and autophagosome-lysosome fusion. Notably, the regulatory function of CAV1 in lysosome and autophagy was found to be caveolae-independent, and acts through lipid rafts. Furthermore, the elevated autophagy level induced by CAV1 deficiency serves as a cell survival mechanism under starvation. Importantly, downregulation of CAV1 and enhanced autophagy level were observed in human breast cancer cells and tissues. Taken together, our data reveal a novel function of CAV1 and lipid rafts in breast cancer development via modulation of lysosomal function and autophagy.
Collapse
Key Words
- ATP6V0D1, ATPase H+ transporting lysosomal 38kDa, V0 subunit d1
- Baf, bafilomycin A1
- CAV1, caveolin 1
- CHO, water-soluble cholesterol
- CQ, choloroquine
- CTSL, cathepsin L
- CTxB, cholera toxin subunit B
- DRF, detergent-resistant fraction
- DSF, detergent-soluble fraction
- EGF, epidermal growth factor
- KO, knockout
- LAMP1, lysosomal-associated membrane protein 1
- MAP1LC3/LC3, microtubule-associated protein 1 light chain 3
- MBCD, methyl-β-cyclodextrin
- MEF, mouse embryonic fibroblasts
- MTOR, mechanistic target of rapamycin
- PBS, phosphate-buffered saline
- PI, propidium iodide
- PLA, proximity ligation assay
- PTRF, polymerase I and transcript release factor
- TFRC, transferrin receptor
- TSC, tuberous sclerosis complex
- WT, wild type.
- autophagy
- breast cancer
- caveolin 1
- lipid rafts
- lysosome
- tfLC3B, mRFP-GFP tandem fluorescent-tagged LC3B
Collapse
Affiliation(s)
- Yin Shi
- a Department of Physiology; Yong Loo Lin School of Medicine; National University of Singapore ; Singapore
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Omega-3 Fatty Acids and Cancer Cell Cytotoxicity: Implications for Multi-Targeted Cancer Therapy. J Clin Med 2016; 5:jcm5020015. [PMID: 26821053 PMCID: PMC4773771 DOI: 10.3390/jcm5020015] [Citation(s) in RCA: 187] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2015] [Revised: 01/15/2016] [Accepted: 01/19/2016] [Indexed: 12/24/2022] Open
Abstract
Cancer is a major disease worldwide. Despite progress in cancer therapy, conventional cytotoxic therapies lead to unsatisfactory long-term survival, mainly related to development of drug resistance by tumor cells and toxicity towards normal cells. n-3 polyunsaturated fatty acids (PUFAs), eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA), can exert anti-neoplastic activity by inducing apoptotic cell death in human cancer cells either alone or in combination with conventional therapies. Indeed, n-3 PUFAs potentially increase the sensitivity of tumor cells to conventional therapies, possibly improving their efficacy especially against cancers resistant to treatment. Moreover, in contrast to traditional therapies, n-3 PUFAs appear to cause selective cytotoxicity towards cancer cells with little or no toxicity on normal cells. This review focuses on studies investigating the cytotoxic activity of n-3 PUFAs against cancer cells via apoptosis, analyzing the molecular mechanisms underlying this effective and selective activity. Here, we highlight the multiple molecules potentially targeted by n-3 PUFAs to trigger cancer cell apoptosis. This analysis can allow a better comprehension of the potential cytotoxic therapeutic role of n-3 PUFAs against cancer, providing specific information and support to design future pre-clinical and clinical studies for a better use of n-3 PUFAs in cancer therapy, mainly combinational therapy.
Collapse
|
41
|
Fabian CJ, Kimler BF, Phillips TA, Box JA, Kreutzjans AL, Carlson SE, Hidaka BH, Metheny T, Zalles CM, Mills GB, Powers KR, Sullivan DK, Petroff BK, Hensing WL, Fridley BL, Hursting SD. Modulation of Breast Cancer Risk Biomarkers by High-Dose Omega-3 Fatty Acids: Phase II Pilot Study in Premenopausal Women. Cancer Prev Res (Phila) 2015; 8:912-21. [PMID: 26438592 PMCID: PMC6053670 DOI: 10.1158/1940-6207.capr-14-0335] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Higher intakes of the omega-3 eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) relative to the omega-6 arachidonic acid (AA) have been variably associated with reduced risk of premenopausal breast cancer. The purpose of this pilot trial was to assess feasibility and explore the effects of high-dose EPA and DHA on blood and benign breast tissue risk biomarkers before design of a placebo-controlled phase IIB trial. Premenopausal women with evidence of hyperplasia ± atypia by baseline random periareolar fine needle aspiration were given 1860 mg of EPA + 1500 mg of DHA ethyl esters daily for 6 months. Blood and benign breast tissue were sampled during the same menstrual cycle phase prestudy and a median of 3 weeks after last dose. Additional blood was obtained within 24 hours of last dose. Feasibility, which was predefined as 50% uptake, 85% retention, and 70% compliance, was demonstrated with 46% uptake, 94% completion, and 85% compliance. Cytologic atypia decreased from 77% to 38% (P = 0.002), and Ki-67 from a median of 2.1% to 1.0% (P = 0.021) with an increase in the ratio of EPA + DHA to AA in erythrocyte phospholipids but no change in blood hormones, adipokines, or cytokines. Exploratory breast proteomics assessment showed decreases in several proteins involved in hormone and cytokine signaling with mixed effects on those in the AKT/mTOR pathways. Further investigation of EPA plus DHA for breast cancer prevention in a placebo-controlled trial in premenopausal women is warranted.
Collapse
Affiliation(s)
- Carol J Fabian
- Department of Internal Medicine, University of Kansas Medical Center, Kansas City, Kansas.
| | - Bruce F Kimler
- Department of Radiation Oncology, University of Kansas Medical Center, Kansas City, Kansas
| | - Teresa A Phillips
- Department of Internal Medicine, University of Kansas Medical Center, Kansas City, Kansas
| | - Jessica A Box
- Department of Internal Medicine, University of Kansas Medical Center, Kansas City, Kansas
| | - Amy L Kreutzjans
- Department of Internal Medicine, University of Kansas Medical Center, Kansas City, Kansas
| | - Susan E Carlson
- Department of Dietetics and Nutrition, University of Kansas Medical Center, Kansas City, Kansas
| | - Brandon H Hidaka
- Department of Dietetics and Nutrition, University of Kansas Medical Center, Kansas City, Kansas
| | - Trina Metheny
- Department of Internal Medicine, University of Kansas Medical Center, Kansas City, Kansas
| | | | - Gordon B Mills
- Department of Systems Biology, University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Kandy R Powers
- Department of Internal Medicine, University of Kansas Medical Center, Kansas City, Kansas
| | - Debra K Sullivan
- Department of Dietetics and Nutrition, University of Kansas Medical Center, Kansas City, Kansas
| | - Brian K Petroff
- Department of Internal Medicine, University of Kansas Medical Center, Kansas City, Kansas
| | - Whitney L Hensing
- Department of Internal Medicine, University of Kansas Medical Center, Kansas City, Kansas
| | - Brooke L Fridley
- Department of Biostatistics, University of Kansas Medical Center, Kansas City, Kansas
| | - Stephen D Hursting
- Department of Nutrition, University of North Carolina, Chapel Hill, North Carolina
| |
Collapse
|
42
|
Fabian CJ, Kimler BF, Phillips TA, Nydegger JL, Kreutzjans AL, Carlson SE, Hidaka BH, Metheny T, Zalles CM, Mills GB, Powers KR, Sullivan DK, Petroff BK, Hensing WL, Fridley BL, Hursting SD. Modulation of Breast Cancer Risk Biomarkers by High-Dose Omega-3 Fatty Acids: Phase II Pilot Study in Postmenopausal Women. Cancer Prev Res (Phila) 2015; 8:922-31. [PMID: 26276744 PMCID: PMC4596784 DOI: 10.1158/1940-6207.capr-14-0336] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2014] [Accepted: 08/03/2015] [Indexed: 01/05/2023]
Abstract
Associational studies suggest higher intakes/blood levels of the omega-3 fatty acids eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) relative to the omega-6 arachidonic acid (AA) are associated with reduced breast cancer risk. We performed a pilot study of high-dose EPA + DHA in postmenopausal women to assess feasibility before initiating a phase IIB prevention trial. Postmenopausal women with cytologic evidence of hyperplasia in their baseline random periareolar fine needle aspiration (RPFNA) took 1,860 mg EPA +1500 mg DHA ethyl esters daily for 6 months. Blood and breast tissue were sampled at baseline and study conclusion for exploratory biomarker assessment, with P values uncorrected for multiple comparisons. Feasibility was predefined as 50% uptake, 80% completion, and 70% compliance. Trial uptake by 35 study entrants from 54 eligible women was 65%, with 97% completion and 97% compliance. Favorable modulation was suggested for serum adiponectin (P = 0.0027), TNFα (P = 0.016), HOMA 2B measure of pancreatic β cell function (P = 0.0048), and bioavailable estradiol (P = 0.039). Benign breast tissue Ki-67 (P = 0.036), macrophage chemoattractant protein-1 (P = 0.033), cytomorphology index score (P = 0.014), and percent mammographic density (P = 0.036) were decreased with favorable effects in a proteomics array for several proteins associated with mitogen signaling and cell-cycle arrest; but no obvious overall effect on proteins downstream of mTOR. Although favorable risk biomarker modulation will need to be confirmed in a placebo-controlled trial, we have demonstrated feasibility for development of high-dose EPA and DHA ethyl esters for primary prevention of breast cancer.
Collapse
Affiliation(s)
- Carol J Fabian
- Department of Internal Medicine, University of Kansas Medical Center, Kansas City, Kansas.
| | - Bruce F Kimler
- Department of Radiation Oncology, University of Kansas Medical Center, Kansas City, Kansas
| | - Teresa A Phillips
- Department of Internal Medicine, University of Kansas Medical Center, Kansas City, Kansas
| | - Jennifer L Nydegger
- Department of Internal Medicine, University of Kansas Medical Center, Kansas City, Kansas
| | - Amy L Kreutzjans
- Department of Internal Medicine, University of Kansas Medical Center, Kansas City, Kansas
| | - Susan E Carlson
- Department of Dietetics and Nutrition, University of Kansas Medical Center, Kansas City, Kansas
| | - Brandon H Hidaka
- Department of Dietetics and Nutrition, University of Kansas Medical Center, Kansas City, Kansas
| | - Trina Metheny
- Department of Internal Medicine, University of Kansas Medical Center, Kansas City, Kansas
| | | | - Gordon B Mills
- Department of Systems Biology, University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Kandy R Powers
- Department of Internal Medicine, University of Kansas Medical Center, Kansas City, Kansas
| | - Debra K Sullivan
- Department of Dietetics and Nutrition, University of Kansas Medical Center, Kansas City, Kansas
| | - Brian K Petroff
- Department of Internal Medicine, University of Kansas Medical Center, Kansas City, Kansas
| | - Whitney L Hensing
- Department of Internal Medicine, University of Kansas Medical Center, Kansas City, Kansas
| | - Brooke L Fridley
- Department of Biostatistics, University of Kansas Medical Center, Kansas City, Kansas
| | - Stephen D Hursting
- Department of Nutrition, University of North Carolina, Chapel Hill, North Carolina
| |
Collapse
|
43
|
Mason JK, Klaire S, Kharotia S, Wiggins AKA, Thompson LU. α-linolenic acid and docosahexaenoic acid, alone and combined with trastuzumab, reduce HER2-overexpressing breast cancer cell growth but differentially regulate HER2 signaling pathways. Lipids Health Dis 2015; 14:91. [PMID: 26282560 PMCID: PMC4539855 DOI: 10.1186/s12944-015-0090-6] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2015] [Accepted: 07/31/2015] [Indexed: 01/29/2023] Open
Abstract
BACKGROUND Diets rich in the n-3 fatty acid alpha-linolenic acid (ALA) have been shown to reduce breast tumor growth, enhance the effectiveness of the HER2-targeted drug trastuzumab (TRAS) and reduce HER2 signaling in mouse models. It is unclear whether this is due to direct effects of ALA or due to its long-chain n-3 fatty acids metabolites including docosahexaenoic acid (DHA). METHODS The ability of HER2-overexpressing BT-474 human breast cancer cells to convert ALA to long-chain n-3 fatty acids was determined by measurement of phospholipid fatty acids by gas chromatography following treatment with 100 μM ALA. The effects of 96 h treatment with ALA or DHA, at serum levels seen in mice (50-100 μM), alone and combined with TRAS (10 μg/ml), on BT-474 cell growth measured by trypan blue exclusion, apoptosis measured by flow cytometric analysis of Annexin-V/7-AAD stained cells (ALA and TRAS treatment only) and protein biomarkers HER2 signaling measured by western blot were determined. RESULTS ALA-treated BT-474 cells had higher phospholipid ALA but no increase in downstream n-3 metabolites including DHA. Both ALA and DHA reduced cell growth with and without TRAS. ALA had no effect on apoptosis. ALA and DHA showed opposite effects on Akt and MAPK phosphorylation; ALA increased and DHA decreased phosphorylation. CONCLUSIONS Together these data suggest that, while both ALA and its DHA metabolite can reduce HER2-overexpressing breast cancer growth with and without TRAS, they demonstrate for the first time that DHA is responsible for the effects of ALA-rich diets on HER2 signaling pathways.
Collapse
Affiliation(s)
- Julie K Mason
- Department of Nutritional Sciences, Faculty of Medicine, University of Toronto, 150 College Street, Toronto, ON, M5S 3E2, Canada.
| | - Sukhpreet Klaire
- Department of Nutritional Sciences, Faculty of Medicine, University of Toronto, 150 College Street, Toronto, ON, M5S 3E2, Canada.
| | - Shikhil Kharotia
- Department of Nutritional Sciences, Faculty of Medicine, University of Toronto, 150 College Street, Toronto, ON, M5S 3E2, Canada.
| | - Ashleigh K A Wiggins
- Department of Nutritional Sciences, Faculty of Medicine, University of Toronto, 150 College Street, Toronto, ON, M5S 3E2, Canada.
| | - Lilian U Thompson
- Department of Nutritional Sciences, Faculty of Medicine, University of Toronto, 150 College Street, Toronto, ON, M5S 3E2, Canada.
| |
Collapse
|
44
|
He M, Guo S, Li Z. Dynamically in situ monitoring lipid changes in DHA-treated breast cells by matrix-assisted laser desorption/ionization Fourier transform ion cyclotron resonance mass spectrometry. RAPID COMMUNICATIONS IN MASS SPECTROMETRY : RCM 2015; 29:987-990. [PMID: 26407314 DOI: 10.1002/rcm.7183] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2014] [Revised: 02/04/2015] [Accepted: 02/24/2015] [Indexed: 06/05/2023]
Affiliation(s)
- Manwen He
- Department of Biophysics and Structural Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences & School of Basic Medicine, Peking Union Medical College, Beijing, 100005, P.R. China
| | - Shuai Guo
- Department of Biophysics and Structural Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences & School of Basic Medicine, Peking Union Medical College, Beijing, 100005, P.R. China
| | - Zhili Li
- Department of Biophysics and Structural Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences & School of Basic Medicine, Peking Union Medical College, Beijing, 100005, P.R. China
| |
Collapse
|
45
|
Li CC, Yao HT, Cheng FJ, Hsieh YH, Lu CY, Wu CC, Liu KL, Chang JW. Docosahexaenoic Acid Downregulates EGF-Induced Urokinase Plasminogen Activator and Matrix Metalloproteinase 9 Expression by Inactivating EGFR/ErbB2 Signaling in SK-BR3 Breast Cancer Cells. Nutr Cancer 2015; 67:771-82. [PMID: 25970488 DOI: 10.1080/01635581.2015.1037961] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Urokinase plasminogen activator (uPA) and matrix metalloproteinase 9 (MMP-9) play crucial roles in tumor metastasis. Despite the well-known anticancer role of docosa-hexaenoic acid (DHA), its specific effect on ErbB2-mediated breast cancer metastasis is not fully clarified. In this study, we investigated the effect of DHA on epidermal growth factor (EGF)-induced uPA and MMP-9 activity, expression and cell invasion in SK-BR3 breast cancer cells and the possible mechanisms involved. The results showed that EGF (40 ng/ml) induced uPA and MMP-9 mRNA and protein expression, enzyme activity, and 100 μM DHA significantly inhibited EGF-induced uPA and MMP-9 mRNA, protein expression, enzyme activity, cell migration, and cell invasion. EGF increased protein expression and phosphorylation of EGF receptor (EGFR) and ErbB2 as well as of JNK2, ERK1/2, and Akt, and these changes were attenuated by DHA pretreatment. AG1478, an inhibitor of EGFR, also attenuated EGF-induced activation of EGFR, JNK2, ERK1/2, and Akt. Knocked down ErbB2 expression resulted in a similar inhibition of uPA and MMP-9 expression as noted by DHA and AG1478. Taken together, these results suggest that suppression of EGF-induced metastasis by DHA is likely through an inhibition of EGFR and ErbB2 protein expression and the downstream target uPA and MMP-9 activation in SK-BR3 human breast cancer cells.
Collapse
Affiliation(s)
- Chien-Chun Li
- a School of Nutrition, Chung Shan Medical University , Taichung , Taiwan
| | | | | | | | | | | | | | | |
Collapse
|
46
|
Abstract
Women with evidence of high intake ratios of the marine omega-3 fatty acids eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) relative to the omega-6 arachidonic acid have been found to have a reduced risk of breast cancer compared with those with low ratios in some but not all case–control and cohort studies. If increasing EPA and DHA relative to arachidonic acid is effective in reducing breast cancer risk, likely mechanisms include reduction in proinflammatory lipid derivatives, inhibition of nuclear factor-κB-induced cytokine production, and decreased growth factor receptor signaling as a result of alteration in membrane lipid rafts. Primary prevention trials with either risk biomarkers or cancer incidence as endpoints are underway but final results of these trials are currently unavailable. EPA and DHA supplementation is also being explored in an effort to help prevent or alleviate common problems after a breast cancer diagnosis, including cardiac and cognitive dysfunction and chemotherapy-induced peripheral neuropathy. The insulin-sensitizing and anabolic properties of EPA and DHA also suggest supplementation studies to determine whether these omega-3 fatty acids might reduce chemotherapy-associated loss of muscle mass and weight gain. We will briefly review relevant omega-3 fatty acid metabolism, and early investigations in breast cancer prevention and survivorship.
Collapse
|
47
|
Shaikh SR, Wassall SR, Brown DA, Kosaraju R. N-3 Polyunsaturated Fatty Acids, Lipid Microclusters, and Vitamin E. CURRENT TOPICS IN MEMBRANES 2015; 75:209-31. [PMID: 26015284 DOI: 10.1016/bs.ctm.2015.03.003] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Increased consumption of long-chain marine n-3 polyunsaturated fatty acids (PUFA) has potential health benefits for the general population and for select clinical populations. However, several key limitations remain in making adequate dietary recommendations on n-3 PUFAs in addition to translating the fatty acids into clinical trials for select diseases. One major constraint is an incomplete understanding of the underlying mechanisms of action of n-3 PUFAs. In this review, we highlight studies to show n-3 PUFA acyl chains reorganize the molecular architecture of plasma membrane sphingolipid-cholesterol-enriched lipid rafts and potentially sphingolipid-rich cholesterol-free domains and cardiolipin-protein scaffolds in the inner mitochondrial membrane. We also discuss the possibility that the effects of n-3 PUFAs on membrane organization could be regulated by the presence of vitamin E (α-tocopherol), which is necessary to protect highly unsaturated acyl chains from oxidation. Finally, we propose the integrated hypothesis, based predominately on studies in lymphocytes, cancer cells, and model membranes, that the mechanism by which n-3 PUFAs disrupt signaling microclusters is highly dependent on the type of lipid species that incorporate n-3 PUFA acyl chains. The current evidence suggests that n-3 PUFA acyl chains disrupt lipid raft formation by incorporating primarily into phosphatidylethanolamines but can also incorporate into other lipid species of the lipidome.
Collapse
Affiliation(s)
- Saame Raza Shaikh
- Department of Biochemistry & Molecular Biology, East Carolina University, Greenville, NC, USA; Department of Microbiology and Immunology, East Carolina University, Greenville, NC, USA; East Carolina Diabetes and Obesity Institute, East Carolina University, Greenville, NC, USA
| | - Stephen R Wassall
- Department of Physics, Indiana University-Purdue University Indianapolis, Indianapolis, IN, USA
| | - David A Brown
- East Carolina Diabetes and Obesity Institute, East Carolina University, Greenville, NC, USA; Department of Physiology, East Carolina University, Greenville, NC, USA
| | - Rasagna Kosaraju
- Department of Biochemistry & Molecular Biology, East Carolina University, Greenville, NC, USA; East Carolina Diabetes and Obesity Institute, East Carolina University, Greenville, NC, USA
| |
Collapse
|
48
|
Zhu Z, Tan Z, Li Y, Luo H, Hu X, Tang M, Hescheler J, Mu Y, Zhang L. Docosahexaenoic acid alters Gsα localization in lipid raft and potentiates adenylate cyclase. Nutrition 2015; 31:1025-30. [PMID: 26059378 DOI: 10.1016/j.nut.2015.02.012] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2014] [Revised: 02/13/2015] [Accepted: 02/17/2015] [Indexed: 12/28/2022]
Abstract
OBJECTIVE Supplementation with docosahexaenoic acid (DHA), an ω-3 polyunsaturated fatty acid (PUFA), recently has become popular for the amelioration of depression; however the molecular mechanism of DHA action remains unclear. The aim of this study was to investigate the mechanism underlying the antidepressant effect of DHA by evaluating Gsα localization in lipid raft and the activity of adenylate cyclase in an in vitro glioma cell model. METHODS Lipid raft fractions from C6 glioma cells treated chronically with DHA were isolated by sucrose gradient ultracentrifugation. The content of Gsα in lipid raft was analyzed by immunoblotting and colocalization of Gsα with lipid raft was subjected to confocal microscopic analysis. The intracellular cyclic adenosine monophosphate (cAMP) level was determined by cAMP immunoassay kit. RESULTS DHA decreased the amount of Gsα in lipid raft, whereas whole cell lysate Gsα was not changed. Confocal microscopic analysis demonstrated that colocalization of Gsα with lipid raft was decreased, whereas DHA increased intracellular cAMP accumulation in a dose-dependent manner. Interestingly, we found that DHA increased the lipid raft level, instead of disrupting it. CONCLUSIONS The results of this study suggest that DHA may exert its antidepressant effect by translocating Gsα from lipid raft and potentiating the activity of adenylate cyclase. Importantly, the reduced Gsα in lipid raft by DHA is independent of disruption of lipid raft. Overall, the study provides partial preclinical evidence supporting a safe and effective therapy using DHA for depression.
Collapse
Affiliation(s)
- Zhuoran Zhu
- Department of Physiology, Chinese-German Stem Cell Center, Key Laboratory of Drug Target Research and Pharmacodynamic Evaluation, Hubei Province, School of Basic Medicine, Huazhong University of Science and Technology, Wuhan, China; The Institute of Brain Research, Huazhong University of Science and Technology, Wuhan, China
| | - Zhoubin Tan
- Department of Physiology, Chinese-German Stem Cell Center, Key Laboratory of Drug Target Research and Pharmacodynamic Evaluation, Hubei Province, School of Basic Medicine, Huazhong University of Science and Technology, Wuhan, China
| | - Yan Li
- Department of Physiology, Chinese-German Stem Cell Center, Key Laboratory of Drug Target Research and Pharmacodynamic Evaluation, Hubei Province, School of Basic Medicine, Huazhong University of Science and Technology, Wuhan, China; The Institute of Brain Research, Huazhong University of Science and Technology, Wuhan, China
| | - Hongyan Luo
- Department of Physiology, Chinese-German Stem Cell Center, Key Laboratory of Drug Target Research and Pharmacodynamic Evaluation, Hubei Province, School of Basic Medicine, Huazhong University of Science and Technology, Wuhan, China; The Institute of Brain Research, Huazhong University of Science and Technology, Wuhan, China
| | - Xinwu Hu
- Department of Physiology, Chinese-German Stem Cell Center, Key Laboratory of Drug Target Research and Pharmacodynamic Evaluation, Hubei Province, School of Basic Medicine, Huazhong University of Science and Technology, Wuhan, China; The Institute of Brain Research, Huazhong University of Science and Technology, Wuhan, China
| | - Ming Tang
- Department of Physiology, Chinese-German Stem Cell Center, Key Laboratory of Drug Target Research and Pharmacodynamic Evaluation, Hubei Province, School of Basic Medicine, Huazhong University of Science and Technology, Wuhan, China; The Institute of Brain Research, Huazhong University of Science and Technology, Wuhan, China
| | - Jürgen Hescheler
- Institute for Neurophysiology, University of Cologne, Cologne, Germany
| | - Yangling Mu
- Department of Physiology, Chinese-German Stem Cell Center, Key Laboratory of Drug Target Research and Pharmacodynamic Evaluation, Hubei Province, School of Basic Medicine, Huazhong University of Science and Technology, Wuhan, China; The Institute of Brain Research, Huazhong University of Science and Technology, Wuhan, China
| | - Lanqiu Zhang
- Department of Physiology, Chinese-German Stem Cell Center, Key Laboratory of Drug Target Research and Pharmacodynamic Evaluation, Hubei Province, School of Basic Medicine, Huazhong University of Science and Technology, Wuhan, China; The Institute of Brain Research, Huazhong University of Science and Technology, Wuhan, China; Tianjin Nankai Hospital, Tianjin, China.
| |
Collapse
|
49
|
n-3 polyunsaturated fatty acids and mechanisms to mitigate inflammatory paracrine signaling in obesity-associated breast cancer. Nutrients 2014; 6:4760-93. [PMID: 25360510 PMCID: PMC4245562 DOI: 10.3390/nu6114760] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2014] [Revised: 10/08/2014] [Accepted: 10/10/2014] [Indexed: 02/06/2023] Open
Abstract
Globally, the prevalence of obesity is increasing which subsequently increases the risk of the development of obesity-related chronic diseases. Low-grade chronic inflammation and dysregulated adipose tissue inflammatory mediator/adipokine secretion are well-established in obesity, and these factors increase the risk of developing inflammation-associated cancer. Breast cancer is of particular interest given that increased inflammation within the subcutaneous mammary adipose tissue depot can alter the local tissue inflammatory microenvironment such that it resembles that of obese visceral adipose tissue. Therefore, in obese women with breast cancer, increased inflammatory mediators both locally and systemically can perpetuate inflammation-associated pro-carcinogenic signaling pathways, thereby increasing disease severity. Herein, we discuss some of these inflammation-associated pro-carcinogenic mechanisms of the combined obese breast cancer phenotype and offer evidence that dietary long chain n-3 polyunsaturated fatty acids (PUFA) may have utility in mitigating the severity of obesity-associated inflammation and breast cancer.
Collapse
|
50
|
Fleming I. The pharmacology of the cytochrome P450 epoxygenase/soluble epoxide hydrolase axis in the vasculature and cardiovascular disease. Pharmacol Rev 2014; 66:1106-40. [PMID: 25244930 DOI: 10.1124/pr.113.007781] [Citation(s) in RCA: 112] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/21/2025] Open
Abstract
Over the last 20 years, it has become clear that cytochrome P450 (P450) enzymes generate a spectrum of bioactive lipid mediators from endogenous substrates. However, studies focused on the determining biologic activity of the P450 system have focused largely on the metabolites generated by one substrate (i.e., arachidonic acid). However, epoxides and diols derived from other endogenous substrates, such as linoleic acid, eicosapentaenoic acid, and docosahexaenoic acid, may be generated in higher concentrations and may potentially be of more physiologic relevance. Recent studies that used a combination of phenotyping and lipid array analyses revealed that rather than being inactive products, fatty acid diols play important roles in a number of biologic processes including inflammation, angiogenesis, and metabolic regulation. Moreover, inhibitors of the soluble epoxide hydrolase that increase epoxide but decrease diol levels have potential for the treatment of the metabolic syndrome.
Collapse
Affiliation(s)
- Ingrid Fleming
- Institute for Vascular Signalling, Centre for Molecular Medicine, Goethe University, Frankfurt am Main, Germany
| |
Collapse
|