1
|
Nagaraj B, James AW, Mathivanan A, Nachiappan V. Impairment of RPN4, a transcription factor, induces ER stress and lipid abnormality in Saccharomyces cerevisiae. Mol Cell Biochem 2023; 478:2127-2139. [PMID: 36703093 DOI: 10.1007/s11010-022-04623-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Accepted: 11/28/2022] [Indexed: 01/28/2023]
Abstract
Accumulation of misfolded/unfolded proteins in the endoplasmic reticulum (ER) induces ER stress. The transcription factor RPN4 {"Regulatory Particle Non-ATPase"} regulates protein homeostasis by degrading proteins that elude proper folding or assembly via the proteasomal degradation pathway. Here, we studied the lipid alterations exerted by Saccharomyces cerevisiae to mitigate (ER) stress during adaptive responses in rpn4∆ cells. The loss of RPN4-induced ER stress increased phospholipid synthesis, leading to altered membrane structures and accumulation of neutral lipids, causing an increase in lipid droplets (LDs). There was a significant upregulation of genes involved in neutral lipid and membrane lipid synthesis in rpn4∆ cells. Overexpression of RPN4 restored the defects caused by rpn4∆ cells. Thus, our study provides new insight that RPN4 impacts lipid homeostasis.
Collapse
Affiliation(s)
- Bhanupriya Nagaraj
- Biomembrane Lab, Department of Biochemistry, School of Life Sciences, Bharathidasan University, Trichy, Tamil Nadu, 620 024, India
| | - Antonisamy William James
- Biomembrane Lab, Department of Biochemistry, School of Life Sciences, Bharathidasan University, Trichy, Tamil Nadu, 620 024, India
- Departments of Medicine and Cancer Biology, College of Medicine & Life Sciences, Toledo, USA
| | - Arul Mathivanan
- Biomembrane Lab, Department of Biochemistry, School of Life Sciences, Bharathidasan University, Trichy, Tamil Nadu, 620 024, India
| | - Vasanthi Nachiappan
- Biomembrane Lab, Department of Biochemistry, School of Life Sciences, Bharathidasan University, Trichy, Tamil Nadu, 620 024, India.
| |
Collapse
|
2
|
Gao J, Li Y, Yu W, Zhou YJ. Rescuing yeast from cell death enables overproduction of fatty acids from sole methanol. Nat Metab 2022; 4:932-943. [PMID: 35817856 DOI: 10.1038/s42255-022-00601-0] [Citation(s) in RCA: 60] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Accepted: 06/08/2022] [Indexed: 11/09/2022]
Abstract
Methanol is an ideal feedstock for biomanufacturing that can be beneficial for global carbon neutrality; however, the toxicity of methanol limits the efficiency of methanol metabolism toward biochemical production. We here show that engineering production of free fatty acids from sole methanol results in cell death with decreased cellular levels of phospholipids in the methylotrophic yeast Ogataea polymorpha, and cell growth is restored by adaptive laboratory evolution. Whole-genome sequencing of the adapted strains reveals that inactivation of LPL1 (encoding a putative lipase) and IZH3 (encoding a membrane protein related to zinc metabolism) preserve cell survival by restoring phospholipid metabolism. Engineering the pentose phosphate pathway and gluconeogenesis enables high-level production of free fatty acid (15.9 g l-1) from sole methanol. Preventing methanol-associated toxicity underscores the link between lipid metabolism and methanol tolerance, which should contribute to enhancing methanol-based biomanufacturing.
Collapse
Affiliation(s)
- Jiaoqi Gao
- Division of Biotechnology, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, PR China
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, PR China
- Dalian Key Laboratory of Energy Biotechnology, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, PR China
| | - Yunxia Li
- Division of Biotechnology, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, PR China
- Dalian Key Laboratory of Energy Biotechnology, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, PR China
| | - Wei Yu
- Division of Biotechnology, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, PR China
- Dalian Key Laboratory of Energy Biotechnology, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, PR China
- University of Chinese Academy of Sciences, Beijing, PR China
| | - Yongjin J Zhou
- Division of Biotechnology, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, PR China.
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, PR China.
- Dalian Key Laboratory of Energy Biotechnology, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, PR China.
| |
Collapse
|
3
|
Lenoir G, D'Ambrosio JM, Dieudonné T, Čopič A. Transport Pathways That Contribute to the Cellular Distribution of Phosphatidylserine. Front Cell Dev Biol 2021; 9:737907. [PMID: 34540851 PMCID: PMC8440936 DOI: 10.3389/fcell.2021.737907] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Accepted: 08/10/2021] [Indexed: 12/05/2022] Open
Abstract
Phosphatidylserine (PS) is a negatively charged phospholipid that displays a highly uneven distribution within cellular membranes, essential for establishment of cell polarity and other processes. In this review, we discuss how combined action of PS biosynthesis enzymes in the endoplasmic reticulum (ER), lipid transfer proteins (LTPs) acting within membrane contact sites (MCS) between the ER and other compartments, and lipid flippases and scramblases that mediate PS flip-flop between membrane leaflets controls the cellular distribution of PS. Enrichment of PS in specific compartments, in particular in the cytosolic leaflet of the plasma membrane (PM), requires input of energy, which can be supplied in the form of ATP or by phosphoinositides. Conversely, coupling between PS synthesis or degradation, PS flip-flop and PS transfer may enable PS transfer by passive flow. Such scenario is best documented by recent work on the formation of autophagosomes. The existence of lateral PS nanodomains, which is well-documented in the case of the PM and postulated for other compartments, can change the steepness or direction of PS gradients between compartments. Improvements in cellular imaging of lipids and membranes, lipidomic analysis of complex cellular samples, reconstitution of cellular lipid transport reactions and high-resolution structural data have greatly increased our understanding of cellular PS homeostasis. Our review also highlights how budding yeast has been instrumental for our understanding of the organization and transport of PS in cells.
Collapse
Affiliation(s)
- Guillaume Lenoir
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell, Gif-sur-Yvette, France
| | - Juan Martín D'Ambrosio
- Centre de Recherche en Biologie Cellulaire de Montpellier (CRBM), Université de Montpellier, CNRS, Montpellier, France
| | - Thibaud Dieudonné
- Danish Research Institute of Translational Neuroscience - DANDRITE, Nordic EMBL Partnership for Molecular Medicine, Department of Molecular Biology and Genetics, Aarhus University, Aarhus, Denmark
| | - Alenka Čopič
- Centre de Recherche en Biologie Cellulaire de Montpellier (CRBM), Université de Montpellier, CNRS, Montpellier, France
| |
Collapse
|
4
|
Yap WS, Shyu P, Gaspar ML, Jesch SA, Marvalim C, Prinz WA, Henry SA, Thibault G. The yeast FIT2 homologs are necessary to maintain cellular proteostasis and membrane lipid homeostasis. J Cell Sci 2020; 133:jcs248526. [PMID: 33033181 PMCID: PMC7657468 DOI: 10.1242/jcs.248526] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Accepted: 10/01/2020] [Indexed: 12/12/2022] Open
Abstract
Lipid droplets (LDs) are implicated in conditions of lipid and protein dysregulation. The fat storage-inducing transmembrane (FIT; also known as FITM) family induces LD formation. Here, we establish a model system to study the role of the Saccharomyces cerevisiae FIT homologues (ScFIT), SCS3 and YFT2, in the proteostasis and stress response pathways. While LD biogenesis and basal endoplasmic reticulum (ER) stress-induced unfolded protein response (UPR) remain unaltered in ScFIT mutants, SCS3 was found to be essential for proper stress-induced UPR activation and for viability in the absence of the sole yeast UPR transducer IRE1 Owing to not having a functional UPR, cells with mutated SCS3 exhibited an accumulation of triacylglycerol within the ER along with aberrant LD morphology, suggesting that there is a UPR-dependent compensatory mechanism that acts to mitigate lack of SCS3 Additionally, SCS3 was necessary to maintain phospholipid homeostasis. Strikingly, global protein ubiquitylation and the turnover of both ER and cytoplasmic misfolded proteins is impaired in ScFITΔ cells, while a screen for interacting partners of Scs3 identifies components of the proteostatic machinery as putative targets. Together, our data support a model where ScFITs play an important role in lipid metabolism and proteostasis beyond their defined roles in LD biogenesis.This article has an associated First Person interview with the first author of the paper.
Collapse
Affiliation(s)
- Wei Sheng Yap
- School of Biological Sciences Nanyang Technological University, Singapore, 637551
| | - Peter Shyu
- School of Biological Sciences Nanyang Technological University, Singapore, 637551
| | - Maria Laura Gaspar
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY 14853, USA
| | - Stephen A Jesch
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY 14853, USA
| | - Charlie Marvalim
- School of Biological Sciences Nanyang Technological University, Singapore, 637551
| | - William A Prinz
- Laboratory of Cell and Molecular Biology, National Institute of Diabetes and Digestive and Kidney Diseases, NIH, Bethesda, MD 20892, USA
| | - Susan A Henry
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY 14853, USA
| | - Guillaume Thibault
- School of Biological Sciences Nanyang Technological University, Singapore, 637551
- Institute of Molecular and Cell Biology, A*STAR, Singapore, 138673
| |
Collapse
|
5
|
FSH1 encodes lysophospholipase activity in Saccharomyces cerevisiae. Biotechnol Lett 2020; 43:279-286. [PMID: 32920715 DOI: 10.1007/s10529-020-03004-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Accepted: 09/08/2020] [Indexed: 01/05/2023]
Abstract
OBJECTIVES To elucidate the role of FSH1 (family of serine hydrolase) in lipid homeostasis. RESULTS Proteins in various species containing alpha/beta hydrolase domain are known to be involved in lipid metabolism. In silico analysis of the FSH1 gene in Saccharomyces cerevisiae revealed the presence of alpha/beta hydrolase domain (ABHD) and a lipase motif (GXSXG), however its function in lipid metabolism remained elusive. The overexpression of FSH1 in WT and fsh1Δ cells showed a significant reduction in the cellular phospholipid levels and an increase in the triacylglycerol levels and lipid droplet (LD) number. Furthermore, the purified recombinant protein Fsh1p was identified as a lysophospholipase that specifically acts on lysophosphatidylserine (LPS) and impacts the lipid homeostasis in S. cerevisiae. CONCLUSIONS These results depicted that Fsh1p has a role on lipid homeostasis and is a lysophospholipase that hydrolyzes lysophosphatidylserine (LPS).
Collapse
|
6
|
Martínez-Corona R, Vázquez Marrufo G, Cortés Penagos C, Madrigal-Pérez LA, González-Hernández JC. Bioinformatic characterization of the extracellular lipases from Kluyveromyces marxianus. Yeast 2019; 37:149-162. [PMID: 31758565 DOI: 10.1002/yea.3449] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2019] [Revised: 10/29/2019] [Accepted: 11/15/2019] [Indexed: 11/06/2022] Open
Abstract
Lipases are hydrolytic enzymes that break the ester bonds of triglycerides, generating free fatty acids and glycerol. Extracellular lipase activity has been reported for the nonconventional yeast Kluyveromyces marxianus, grown in olive oil as a substrate, and the presence of at least eight putative lipases has been detected in its genome. However, to date, there is no experimental evidence on the physiological role of the putative lipases nor their structural and catalytic properties. In this study, a bioinformatic analysis of the genes of the putative lipases from K. marxianus L-2029 was performed, particularly identifying and characterizing the extracellular expected enzymes, due to their biotechnological relevance. The amino acid sequence of 10 putative lipases, obtained by in silico translation, ranged between 389 and 773 amino acids. Two of the analysed putative proteins showed a signal peptide, 25 and 33 amino acids long for KmYJR107Wp and KmLIP3p, and a molecular weight of 44.53 and 58.23 kDa, respectively. The amino acid alignment of KmLIP3p and KmYJR107Wp with the crystallized lipases from a patatin and the YlLip2 lipase from Yarrowia lipolytica, respectively, revealed the presence of the hydrolase characteristic motifs. From the 3D models of putative extracellular K. marxianus L-2029 lipases, the conserved pentapeptide of each was determined, being GTSMG for KmLIP3p and GHSLG for KmYJR107Wp; besides, the genes of these two enzymes (LIP3 and YJR107W) are apparently regulated by oleate response elements. The phylogenetic analysis of all K. marxianus lipases revealed evolutionary affinities with lipases from abH15.03, abH23.01, and abH23.02 families.
Collapse
Affiliation(s)
- Ricardo Martínez-Corona
- Facultad de Químico Farmacobiología, Universidad Michoacana de San Nicolás de Hidalgo, Morelia, Mexico.,Tecnológico Nacional de México/Instituto Tecnológico de Morelia, Morelia, Mexico
| | - Gerardo Vázquez Marrufo
- Centro Multidisciplinario de Estudios en Biotecnología, Universidad Michoacana de San Nicolás de Hidalgo, Morelia, Mexico
| | - Carlos Cortés Penagos
- Facultad de Químico Farmacobiología, Universidad Michoacana de San Nicolás de Hidalgo, Morelia, Mexico
| | - Luis Alberto Madrigal-Pérez
- Laboratorio de Biotecnología Microbiana, Instituto Tecnológico Superior de Ciudad Hidalgo, Ciudad Hidalgo, Mexico
| | | |
Collapse
|
7
|
Bykov YS, Cohen N, Gabrielli N, Manenschijn H, Welsch S, Chlanda P, Kukulski W, Patil KR, Schuldiner M, Briggs JAG. High-throughput ultrastructure screening using electron microscopy and fluorescent barcoding. J Cell Biol 2019; 218:2797-2811. [PMID: 31289126 PMCID: PMC6683748 DOI: 10.1083/jcb.201812081] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2018] [Revised: 05/28/2019] [Accepted: 06/11/2019] [Indexed: 01/24/2023] Open
Abstract
Genetic screens using high-throughput fluorescent microscopes have generated large datasets, contributing many cell biological insights. Such approaches cannot tackle questions requiring knowledge of ultrastructure below the resolution limit of fluorescent microscopy. Electron microscopy (EM) reveals detailed cellular ultrastructure but requires time-consuming sample preparation, limiting throughput. Here we describe a robust method for screening by high-throughput EM. Our approach uses combinations of fluorophores as barcodes to uniquely mark each cell type in mixed populations and correlative light and EM (CLEM) to read the barcode of each cell before it is imaged by EM. Coupled with an easy-to-use software workflow for correlation, segmentation, and computer image analysis, our method, called "MultiCLEM," allows us to extract and analyze multiple cell populations from each EM sample preparation. We demonstrate several uses for MultiCLEM with 15 different yeast variants. The methodology is not restricted to yeast, can be scaled to higher throughput, and can be used in multiple ways to enable EM to become a powerful screening technique.
Collapse
Affiliation(s)
- Yury S Bykov
- Structural and Computational Biology Unit, European Molecular Biology Laboratory, Heidelberg, Germany.,Structural Studies Division, Medical Research Council Laboratory of Molecular Biology, Cambridge Biomedical Campus, Cambridge, UK
| | - Nir Cohen
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel
| | - Natalia Gabrielli
- Structural and Computational Biology Unit, European Molecular Biology Laboratory, Heidelberg, Germany
| | - Hetty Manenschijn
- Structural and Computational Biology Unit, European Molecular Biology Laboratory, Heidelberg, Germany.,Cell Biology and Biophysics Unit, European Molecular Biology Laboratory, Heidelberg, Germany
| | - Sonja Welsch
- Structural and Computational Biology Unit, European Molecular Biology Laboratory, Heidelberg, Germany
| | - Petr Chlanda
- Structural and Computational Biology Unit, European Molecular Biology Laboratory, Heidelberg, Germany
| | - Wanda Kukulski
- Structural and Computational Biology Unit, European Molecular Biology Laboratory, Heidelberg, Germany.,Cell Biology and Biophysics Unit, European Molecular Biology Laboratory, Heidelberg, Germany
| | - Kiran R Patil
- Structural and Computational Biology Unit, European Molecular Biology Laboratory, Heidelberg, Germany
| | - Maya Schuldiner
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel
| | - John A G Briggs
- Structural and Computational Biology Unit, European Molecular Biology Laboratory, Heidelberg, Germany .,Structural Studies Division, Medical Research Council Laboratory of Molecular Biology, Cambridge Biomedical Campus, Cambridge, UK.,Cell Biology and Biophysics Unit, European Molecular Biology Laboratory, Heidelberg, Germany
| |
Collapse
|
8
|
Lipid Biosynthesis as an Antifungal Target. J Fungi (Basel) 2018; 4:jof4020050. [PMID: 29677130 PMCID: PMC6023442 DOI: 10.3390/jof4020050] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2018] [Revised: 04/17/2018] [Accepted: 04/18/2018] [Indexed: 12/15/2022] Open
Abstract
Lipids, commonly including phospholipids, sphingolipids, fatty acids, sterols, and triacylglycerols (TAGs), are important biomolecules for the viability of all cells. Phospholipids, sphingolipids, and sterols are important constituents of biological membranes. Many lipids play important roles in the regulation of cell metabolism by acting as signaling molecules. Neutral lipids, including TAGs and sterol esters (STEs), are important storage lipids in cells. In view of the importance of lipid molecules, this review briefly summarizes the metabolic pathways for sterols, phospholipids, sphingolipids, fatty acids, and neutral lipids in fungi and illustrates the differences between fungal and human (or other mammalian) cells, especially in relation to lipid biosynthetic pathways. These differences might provide valuable clues for us to find target proteins for novel antifungal drugs. In addition, the development of lipidomics technology in recent years has supplied us with a shortcut for finding new antifungal drug targets; this ability is important for guiding our research on pathogenic fungi.
Collapse
|
9
|
Weisshaar N, Welsch H, Guerra-Moreno A, Hanna J. Phospholipase Lpl1 links lipid droplet function with quality control protein degradation. Mol Biol Cell 2017; 28:716-725. [PMID: 28100635 PMCID: PMC5349779 DOI: 10.1091/mbc.e16-10-0717] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2016] [Revised: 01/05/2017] [Accepted: 01/09/2017] [Indexed: 11/11/2022] Open
Abstract
Protein misfolding is toxic to cells and is believed to underlie many human diseases, including many neurodegenerative diseases. Accordingly, cells have developed stress responses to deal with misfolded proteins. The transcription factor Rpn4 mediates one such response and is best known for regulating the abundance of the proteasome, the complex multisubunit protease that destroys proteins. Here we identify Lpl1 as an unexpected target of the Rpn4 response. Lpl1 is a phospholipase and a component of the lipid droplet. Lpl1 has dual functions: it is required for both efficient proteasome-mediated protein degradation and the dynamic regulation of lipid droplets. Lpl1 shows a synthetic genetic interaction with Hac1, the master regulator of a second proteotoxic stress response, the unfolded protein response (UPR). The UPR has long been known to regulate phospholipid metabolism, and Lpl1's relationship with Hac1 appears to reflect Hac1's role in stimulating phospholipid synthesis under stress. Thus two distinct proteotoxic stress responses control phospholipid metabolism. Furthermore, these results provide a direct link between the lipid droplet and proteasomal protein degradation and suggest that dynamic regulation of lipid droplets is a key aspect of some proteotoxic stress responses.
Collapse
Affiliation(s)
- Nina Weisshaar
- Department of Pathology, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115
| | - Hendrik Welsch
- Department of Pathology, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115
| | - Angel Guerra-Moreno
- Department of Pathology, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115
| | - John Hanna
- Department of Pathology, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115
| |
Collapse
|
10
|
Ramya V, Rajasekharan R. ATG15
encodes a phospholipase and is transcriptionally regulated by YAP1 in Saccharomyces cerevisiae. FEBS Lett 2016; 590:3155-67. [DOI: 10.1002/1873-3468.12369] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2016] [Revised: 08/09/2016] [Accepted: 08/10/2016] [Indexed: 01/23/2023]
Affiliation(s)
- Visvanathan Ramya
- Lipidomics Centre; Department of Lipid Science; Central Food Technological Research Institute; Council of Scientific and Industrial Research; Mysore Karnataka India
- Academy of Scientific and Innovative Research; Mysore Karnataka India
| | - Ram Rajasekharan
- Lipidomics Centre; Department of Lipid Science; Central Food Technological Research Institute; Council of Scientific and Industrial Research; Mysore Karnataka India
- Academy of Scientific and Innovative Research; Mysore Karnataka India
| |
Collapse
|
11
|
Molecular characterization of human ABHD2 as TAG lipase and ester hydrolase. Biosci Rep 2016; 36:BSR20160033. [PMID: 27247428 PMCID: PMC4945992 DOI: 10.1042/bsr20160033] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2016] [Accepted: 05/31/2016] [Indexed: 01/12/2023] Open
Abstract
Alterations in lipid metabolism have been progressively documented as a characteristic property of cancer cells. Though, human ABHD2 gene was found to be highly expressed in breast and lung cancers, its biochemical functionality is yet uncharacterized. In the present study we report, human ABHD2 as triacylglycerol (TAG) lipase along with ester hydrolysing capacity. Sequence analysis of ABHD2 revealed the presence of conserved motifs G205XS207XG209 and H120XXXXD125. Phylogenetic analysis showed homology to known lipases, Drosophila melanogaster CG3488. To evaluate the biochemical role, recombinant ABHD2 was expressed in Saccharomyces cerevisiae using pYES2/CT vector and His-tag purified protein showed TAG lipase activity. Ester hydrolase activity was confirmed with pNP acetate, butyrate and palmitate substrates respectively. Further, the ABHD2 homology model was built and the modelled protein was analysed based on the RMSD and root mean square fluctuation (RMSF) of the 100 ns simulation trajectory. Docking the acetate, butyrate and palmitate ligands with the model confirmed covalent binding of ligands with the Ser207 of the GXSXG motif. The model was validated with a mutant ABHD2 developed with alanine in place of Ser207 and the docking studies revealed loss of interaction between selected ligands and the mutant protein active site. Based on the above results, human ABHD2 was identified as a novel TAG lipase and ester hydrolase.
Collapse
|
12
|
Kaltdorf M, Srivastava M, Gupta SK, Liang C, Binder J, Dietl AM, Meir Z, Haas H, Osherov N, Krappmann S, Dandekar T. Systematic Identification of Anti-Fungal Drug Targets by a Metabolic Network Approach. Front Mol Biosci 2016; 3:22. [PMID: 27379244 PMCID: PMC4911368 DOI: 10.3389/fmolb.2016.00022] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2015] [Accepted: 05/24/2016] [Indexed: 11/13/2022] Open
Abstract
New antimycotic drugs are challenging to find, as potential target proteins may have close human orthologs. We here focus on identifying metabolic targets that are critical for fungal growth and have minimal similarity to targets among human proteins. We compare and combine here: (I) direct metabolic network modeling using elementary mode analysis and flux estimates approximations using expression data, (II) targeting metabolic genes by transcriptome analysis of condition-specific highly expressed enzymes, and (III) analysis of enzyme structure, enzyme interconnectedness ("hubs"), and identification of pathogen-specific enzymes using orthology relations. We have identified 64 targets including metabolic enzymes involved in vitamin synthesis, lipid, and amino acid biosynthesis including 18 targets validated from the literature, two validated and five currently examined in own genetic experiments, and 38 further promising novel target proteins which are non-orthologous to human proteins, involved in metabolism and are highly ranked drug targets from these pipelines.
Collapse
Affiliation(s)
- Martin Kaltdorf
- Department of Bioinformatics, Biocenter, University of Würzburg Würzburg, Germany
| | - Mugdha Srivastava
- Department of Bioinformatics, Biocenter, University of Würzburg Würzburg, Germany
| | - Shishir K Gupta
- Department of Bioinformatics, Biocenter, University of Würzburg Würzburg, Germany
| | - Chunguang Liang
- Department of Bioinformatics, Biocenter, University of Würzburg Würzburg, Germany
| | - Jasmin Binder
- Microbiology Institute - Clinical Microbiology, Immunology and Hygiene, Friedrich-Alexander University Erlangen-Nürnberg, University Hospital of Erlangen Erlangen, Germany
| | - Anna-Maria Dietl
- Division of Molecular Biology/Biocenter, Medical University Innsbruck Innsbruck, Austria
| | - Zohar Meir
- Aspergillus and Antifungal Research Laboratory, Department of Clinical Microbiology and Immunology, Sackler School of Medicine, Tel Aviv University Tel-Aviv, Israel
| | - Hubertus Haas
- Division of Molecular Biology/Biocenter, Medical University Innsbruck Innsbruck, Austria
| | - Nir Osherov
- Aspergillus and Antifungal Research Laboratory, Department of Clinical Microbiology and Immunology, Sackler School of Medicine, Tel Aviv University Tel-Aviv, Israel
| | - Sven Krappmann
- Microbiology Institute - Clinical Microbiology, Immunology and Hygiene, Friedrich-Alexander University Erlangen-Nürnberg, University Hospital of Erlangen Erlangen, Germany
| | - Thomas Dandekar
- Department of Bioinformatics, Biocenter, University of Würzburg Würzburg, Germany
| |
Collapse
|
13
|
Heier C, Taschler U, Radulovic M, Aschauer P, Eichmann TO, Grond S, Wolinski H, Oberer M, Zechner R, Kohlwein SD, Zimmermann R. Monoacylglycerol Lipases Act as Evolutionarily Conserved Regulators of Non-oxidative Ethanol Metabolism. J Biol Chem 2016; 291:11865-75. [PMID: 27036938 PMCID: PMC4882453 DOI: 10.1074/jbc.m115.705541] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2015] [Revised: 03/24/2016] [Indexed: 12/27/2022] Open
Abstract
Fatty acid ethyl esters (FAEEs) are non-oxidative metabolites of ethanol that accumulate in human tissues upon ethanol intake. Although FAEEs are considered as toxic metabolites causing cellular dysfunction and tissue damage, the enzymology of FAEE metabolism remains poorly understood. In this study, we used a biochemical screen in Saccharomyces cerevisiae to identify and characterize putative hydrolases involved in FAEE catabolism. We found that Yju3p, the functional orthologue of mammalian monoacylglycerol lipase (MGL), contributes >90% of cellular FAEE hydrolase activity, and its loss leads to the accumulation of FAEE. Heterologous expression of mammalian MGL in yju3Δ mutants restored cellular FAEE hydrolase activity and FAEE catabolism. Moreover, overexpression or pharmacological inhibition of MGL in mouse AML-12 hepatocytes decreased or increased FAEE levels, respectively. FAEEs were transiently incorporated into lipid droplets (LDs) and both Yju3p and MGL co-localized with these organelles. We conclude that the storage of FAEE in inert LDs and their mobilization by LD-resident FAEE hydrolases facilitate a controlled metabolism of these potentially toxic lipid metabolites.
Collapse
Affiliation(s)
- Christoph Heier
- From the Institute of Molecular Biosciences, University of Graz and
| | - Ulrike Taschler
- From the Institute of Molecular Biosciences, University of Graz and
| | - Maja Radulovic
- From the Institute of Molecular Biosciences, University of Graz and
| | - Philip Aschauer
- From the Institute of Molecular Biosciences, University of Graz and
| | | | - Susanne Grond
- From the Institute of Molecular Biosciences, University of Graz and
| | - Heimo Wolinski
- From the Institute of Molecular Biosciences, University of Graz and BioTechMed-Graz, 8010 Graz, Austria
| | - Monika Oberer
- From the Institute of Molecular Biosciences, University of Graz and
| | - Rudolf Zechner
- From the Institute of Molecular Biosciences, University of Graz and
| | - Sepp D Kohlwein
- From the Institute of Molecular Biosciences, University of Graz and BioTechMed-Graz, 8010 Graz, Austria
| | | |
Collapse
|
14
|
Rajakumar S, Ravi C, Nachiappan V. Defect of zinc transporter ZRT1 ameliorates cadmium induced lipid accumulation in Saccharomyces cerevisiae. Metallomics 2016; 8:453-60. [PMID: 26999708 DOI: 10.1039/c6mt00005c] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Cadmium (Cd) is a non-essential divalent heavy metal that enters the cells by utilizing the transport pathways of the essential metals, like zinc (Zn), in Saccharomyces cerevisiae. This work focuses on Cd accumulation and its impact on deletion of Zn transporters Zrt1p and Zrt2p and lipid homeostasis. Cd exposure reduces the Zn levels in the mutant strains, and the effect was higher in zrt2Δ cells. Upon Cd exposure, the wild-type and zrt2Δ cells follow a similar pattern, but an opposite pattern was observed in zrt1Δ cells. The Cd influx and ROS levels were high in both wild-type cells and zrt2Δ cells but significantly reduced in zrt1Δ cells. Cd exposure led to accumulation of triacylglycerol and lipid droplets in wild-type cells and zrt2Δ cells but these levels were decreased in zrt1Δ cells. Hence, these studies suggest that the zrt1Δ cells provide resistance towards Cd and aid in the maintenance of lipid homeostasis in yeast cells.
Collapse
Affiliation(s)
- Selvaraj Rajakumar
- Biomembrane Lab, Department of Biochemistry, School of Life Sciences, Bharathidasan University, Tiruchirappalli 620024, Tamil Nadu, India.
| | | | | |
Collapse
|
15
|
Renne MF, Bao X, De Smet CH, de Kroon AIPM. Lipid Acyl Chain Remodeling in Yeast. Lipid Insights 2016; 8:33-40. [PMID: 26819558 PMCID: PMC4720183 DOI: 10.4137/lpi.s31780] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2015] [Accepted: 11/21/2015] [Indexed: 11/05/2022] Open
Abstract
Membrane lipid homeostasis is maintained by de novo synthesis, intracellular transport, remodeling, and degradation of lipid molecules. Glycerophospholipids, the most abundant structural component of eukaryotic membranes, are subject to acyl chain remodeling, which is defined as the post-synthetic process in which one or both acyl chains are exchanged. Here, we review studies addressing acyl chain remodeling of membrane glycerophospholipids in Saccharomyces cerevisiae, a model organism that has been successfully used to investigate lipid synthesis and its regulation. Experimental evidence for the occurrence of phospholipid acyl chain exchange in cardiolipin, phosphatidylcholine, phosphatidylinositol, and phosphatidylethanolamine is summarized, including methods and tools that have been used for detecting remodeling. Progress in the identification of the enzymes involved is reported, and putative functions of acyl chain remodeling in yeast are discussed.
Collapse
Affiliation(s)
- Mike F Renne
- Membrane Biochemistry and Biophysics, Bijvoet Center for Biomolecular Research, Institute of Biomembranes, Utrecht University, Utrecht, the Netherlands
| | - Xue Bao
- Membrane Biochemistry and Biophysics, Bijvoet Center for Biomolecular Research, Institute of Biomembranes, Utrecht University, Utrecht, the Netherlands
| | - Cedric H De Smet
- Membrane Biochemistry and Biophysics, Bijvoet Center for Biomolecular Research, Institute of Biomembranes, Utrecht University, Utrecht, the Netherlands.; Present address: Division of Cell Biology, Biocenter, Innsbruck Medical University, Innsbruck, Austria
| | - Anton I P M de Kroon
- Membrane Biochemistry and Biophysics, Bijvoet Center for Biomolecular Research, Institute of Biomembranes, Utrecht University, Utrecht, the Netherlands
| |
Collapse
|
16
|
Proteomic analysis of murine testes lipid droplets. Sci Rep 2015; 5:12070. [PMID: 26159641 PMCID: PMC4498221 DOI: 10.1038/srep12070] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2015] [Accepted: 06/10/2015] [Indexed: 01/12/2023] Open
Abstract
Testicular Leydig cells contain abundant cytoplasmic lipid droplets (LDs) as a cholesteryl-ester store for releasing cholesterols as the precursor substrate for testosterone biosynthesis. Here, we identified the protein composition of testicular LDs purified from adult mice by using mass spectrometry and immunodetection. Among 337 proteins identified, 144 were previously detected in LD proteomes; 44 were confirmed by microscopy. Testicular LDs contained multiple Rab GTPases, chaperones, and proteins involved in glucuronidation, ubiquination and transport, many known to modulate LD formation and LD-related cellular functions. In particular, testicular LDs contained many members of both the perilipin family and classical lipase/esterase superfamily assembled predominately in adipocyte LDs. Thus, testicular LDs might be regulated similar to adipocyte LDs. Remarkably, testicular LDs contained a large number of classical enzymes for biosynthesis and metabolism of cholesterol and hormonal steroids, so steroidogenic reactions might occur on testicular LDs or the steroidogenic enzymes and products could be transferred through testicular LDs. These characteristics differ from the LDs in most other types of cells, so testicular LDs could be an active organelle functionally involved in steroidogenesis.
Collapse
|
17
|
Vishnu Varthini L, Selvaraju K, Srinivasan M, Nachiappan V. ROG1 encodes a monoacylglycerol lipase in Saccharomyces cerevisiae. FEBS Lett 2014; 589:23-30. [PMID: 25433290 DOI: 10.1016/j.febslet.2014.11.019] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2014] [Revised: 11/13/2014] [Accepted: 11/14/2014] [Indexed: 11/30/2022]
Abstract
Lipid metabolism is extensively studied in Saccharomyces cerevisiae. Here, we report that revertant of glycogen synthase kinase mutation-1 (Rog1p) possesses monoacylglycerol (MAG) lipase activity in S. cerevisiae. The lipase activity of Rog1p was confirmed in two ways: through analysis of a strain with a double deletion of ROG1 and monoglyceride lipase YJU3 (yju3Δrog1Δ) and by site-directed mutagenesis of the ROG1 lipase motif (GXSXG). Rog1p is localized in both the cytosol and the nucleus. Overexpression of ROG1 in a ROG1-deficient strain resulted in an accumulation of reactive oxygen species. These results suggest that Rog1p is a MAG lipase that regulates lipid homeostasis.
Collapse
Affiliation(s)
| | - Kandasamy Selvaraju
- Department of Biochemistry, School of Life Sciences, Bharathidasan University, Tiruchirappalli 620 024, Tamil Nadu, India
| | - Malathi Srinivasan
- CSIR-Central Food Technological Research Institute, Lipidomics Center, Allalasandra, GKVK Post, Bellary Road, Bangalore 560 065, Karnataka, India
| | - Vasanthi Nachiappan
- Department of Biochemistry, School of Life Sciences, Bharathidasan University, Tiruchirappalli 620 024, Tamil Nadu, India.
| |
Collapse
|