1
|
Dakic T, Velickovic K, Lakic I, Ruzicic A, Milicevic A, Plackic N, Vujovic P, Jevdjovic T. Rat brown adipose tissue thermogenic markers are modulated by estrous cycle phases and short-term fasting. Biofactors 2024; 50:101-113. [PMID: 37482913 DOI: 10.1002/biof.1993] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Accepted: 07/06/2023] [Indexed: 07/25/2023]
Abstract
Brown adipose tissue (BAT) converts chemical energy into heat to maintain body temperature. Although fatty acids (FAs) represent a primary substrate for uncoupling protein 1 (UCP1)-dependent thermogenesis, BAT also utilizes glucose for the same purpose. Considering that estrous cycle effects on BAT are not greatly explored, we examined those of 6-h fasting on interscapular BAT (iBAT) thermogenic markers in proestrus and diestrus. We found that the percentage of multilocular adipocytes was lower in proestrus than in diestrus, although it was increased after fasting in both analyzed estrous cycle stages. Furthermore, the percentage of paucilocular adipocytes was increased by fasting, unlike the percentage of unilocular cells, which decreased in both analyzed stages of the estrous cycle. The UCP1 amount was lower in proestrus irrespectively of the examined dietary regimens. Regarding FA transporters, it was shown that iBAT CD36 content was increased in fasted rats in diestrus. In contrast to GLUT1, the level of GLUT4 was interactively modulated by selected estrous cycle phases and fasting. There was no change in insulin receptor and ERK1/2 activation, while AKT activation was interactively modulated by fasting and estrous cycle stages. Our study showed that iBAT exhibits morphological and functional changes in proestrus and diestrus. Moreover, iBAT undergoes additional dynamic functional and morphological changes during short-term fasting to modulate nutrient utilization and adjust energy expenditure.
Collapse
Affiliation(s)
- Tamara Dakic
- Department for Comparative Physiology and Ecophysiology, Institute for Physiology and Biochemistry, University of Belgrade-Faculty for Biology, Belgrade, Serbia
| | - Ksenija Velickovic
- Department of Cell and Tissue Biology, Institute for Zoology, University of Belgrade-Faculty of Biology, Belgrade, Serbia
| | - Iva Lakic
- Department for Comparative Physiology and Ecophysiology, Institute for Physiology and Biochemistry, University of Belgrade-Faculty for Biology, Belgrade, Serbia
| | - Aleksandra Ruzicic
- Department for Comparative Physiology and Ecophysiology, Institute for Physiology and Biochemistry, University of Belgrade-Faculty for Biology, Belgrade, Serbia
| | - Andjela Milicevic
- Department for Comparative Physiology and Ecophysiology, Institute for Physiology and Biochemistry, University of Belgrade-Faculty for Biology, Belgrade, Serbia
| | - Nikola Plackic
- Department for Comparative Physiology and Ecophysiology, Institute for Physiology and Biochemistry, University of Belgrade-Faculty for Biology, Belgrade, Serbia
| | - Predrag Vujovic
- Department for Comparative Physiology and Ecophysiology, Institute for Physiology and Biochemistry, University of Belgrade-Faculty for Biology, Belgrade, Serbia
| | - Tanja Jevdjovic
- Department for Comparative Physiology and Ecophysiology, Institute for Physiology and Biochemistry, University of Belgrade-Faculty for Biology, Belgrade, Serbia
| |
Collapse
|
2
|
A mixed blessing for liver transplantation patients - Rapamycin. Hepatobiliary Pancreat Dis Int 2023; 22:14-21. [PMID: 36328894 DOI: 10.1016/j.hbpd.2022.10.004] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Accepted: 10/14/2022] [Indexed: 11/04/2022]
Abstract
BACKGROUND Liver transplantation (LT) is an effective treatment option for end-stage liver disease. Mammalian target of rapamycin (mTOR) inhibitors, such as rapamycin, are widely used post LT. DATA SOURCES In this review, we focused on the anti-cancer activities and metabolic side effects of rapamycin after LT. The literature available on PubMed for the period of January 1999-September 2022 was reviewed. The key words were rapamycin, sirolimus, liver transplantation, hepatocellular carcinoma, diabetes, and lipid metabolism disorder. RESULTS Rapamycin has shown excellent effects and is safer than other immunosuppressive regimens. It has exhibited excellent anti-cancer activity and has the potential in preventing hepatocellular carcinoma (HCC) recurrence post LT. Rapamycin is closely related to two long-term complications after LT, diabetes and lipid metabolism disorders. CONCLUSIONS Rapamycin prevents HCC recurrence post LT in some patients, but it also induces metabolic disorders. Reasonable use of rapamycin benefits the liver recipients.
Collapse
|
3
|
Ferreira V, Folgueira C, Guillén M, Zubiaur P, Navares M, Sarsenbayeva A, López-Larrubia P, Eriksson JW, Pereira MJ, Abad-Santos F, Sabio G, Rada P, Valverde ÁM. Modulation of hypothalamic AMPK phosphorylation by olanzapine controls energy balance and body weight. Metabolism 2022; 137:155335. [PMID: 36272468 DOI: 10.1016/j.metabol.2022.155335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Revised: 09/29/2022] [Accepted: 10/16/2022] [Indexed: 11/22/2022]
Abstract
BACKGROUND Second-generation antipsychotics (SGAs) are a mainstay therapy for schizophrenia. SGA-treated patients present higher risk for weight gain, dyslipidemia and hyperglycemia. Herein, we evaluated the effects of olanzapine (OLA), widely prescribed SGA, in mice focusing on changes in body weight and energy balance. We further explored OLA effects in protein tyrosine phosphatase-1B deficient (PTP1B-KO) mice, a preclinical model of leptin hypersensitivity protected against obesity. METHODS Wild-type (WT) and PTP1B-KO mice were fed an OLA-supplemented diet (5 mg/kg/day, 7 months) or treated with OLA via intraperitoneal (i.p.) injection or by oral gavage (10 mg/kg/day, 8 weeks). Readouts of the crosstalk between hypothalamus and brown or subcutaneous white adipose tissue (BAT and iWAT, respectively) were assessed. The effects of intrahypothalamic administration of OLA with adenoviruses expressing constitutive active AMPKα1 in mice were also analyzed. RESULTS Both WT and PTP1B-KO mice receiving OLA-supplemented diet presented hyperphagia, but weight gain was enhanced only in WT mice. Unexpectedly, all mice receiving OLA via i.p. lost weight without changes in food intake, but with increased energy expenditure (EE). In these mice, reduced hypothalamic AMPK phosphorylation concurred with elevations in UCP-1 and temperature in BAT. These effects were also found by intrahypothalamic OLA injection and were abolished by constitutive activation of AMPK in the hypothalamus. Additionally, OLA i.p. treatment was associated with enhanced Tyrosine Hydroxylase (TH)-positive innervation and less sympathetic neuron-associated macrophages in iWAT. Both central and i.p. OLA injections increased UCP-1 and TH in iWAT, an effect also prevented by hypothalamic AMPK activation. By contrast, in mice fed an OLA-supplemented diet, BAT thermogenesis was only enhanced in those lacking PTP1B. Our results shed light for the first time that a threshold of OLA levels reaching the hypothalamus is required to activate the hypothalamus BAT/iWAT axis and, therefore, avoid weight gain. CONCLUSION Our results have unraveled an unexpected metabolic rewiring controlled by hypothalamic AMPK that avoids weight gain in male mice treated i.p. with OLA by activating BAT thermogenesis and iWAT browning and a potential benefit of PTP1B inhibition against OLA-induced weight gain upon oral treatment.
Collapse
Affiliation(s)
- Vitor Ferreira
- Instituto de Investigaciones Biomedicas Alberto Sols (IIBM), CSIC-UAM, Madrid, Spain; Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERdem), ISCIII, Spain
| | - Cintia Folgueira
- Centro Nacional de Investigaciones Cardiovasculares (CNIC), 28029 Madrid, Spain
| | - Maria Guillén
- Instituto de Investigaciones Biomedicas Alberto Sols (IIBM), CSIC-UAM, Madrid, Spain
| | - Pablo Zubiaur
- Clinical Pharmacology Department, School of Medicine, Hospital Universitario de La Princesa, Instituto Teófilo Hernando, Universidad Autónoma de Madrid, Instituto de Investigación Sanitaria La Princesa (IP), Madrid, Spain; UICEC Hospital Universitario de La Princesa, Platform SCReN (Spanish Clinical Research Network), Instituto de Investigación Sanitaria La Princesa (IP), Madrid, Spain
| | - Marcos Navares
- UICEC Hospital Universitario de La Princesa, Platform SCReN (Spanish Clinical Research Network), Instituto de Investigación Sanitaria La Princesa (IP), Madrid, Spain
| | - Assel Sarsenbayeva
- Department of Medical Sciences, Clinical Diabetes and Metabolism, Uppsala University, Uppsala, Sweden
| | - Pilar López-Larrubia
- Instituto de Investigaciones Biomedicas Alberto Sols (IIBM), CSIC-UAM, Madrid, Spain
| | - Jan W Eriksson
- Department of Medical Sciences, Clinical Diabetes and Metabolism, Uppsala University, Uppsala, Sweden
| | - Maria J Pereira
- Department of Medical Sciences, Clinical Diabetes and Metabolism, Uppsala University, Uppsala, Sweden
| | - Francisco Abad-Santos
- Clinical Pharmacology Department, School of Medicine, Hospital Universitario de La Princesa, Instituto Teófilo Hernando, Universidad Autónoma de Madrid, Instituto de Investigación Sanitaria La Princesa (IP), Madrid, Spain; UICEC Hospital Universitario de La Princesa, Platform SCReN (Spanish Clinical Research Network), Instituto de Investigación Sanitaria La Princesa (IP), Madrid, Spain; Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Instituto de Salud Carlos III, Madrid, Spain
| | - Guadalupe Sabio
- Centro Nacional de Investigaciones Cardiovasculares (CNIC), 28029 Madrid, Spain
| | - Patricia Rada
- Instituto de Investigaciones Biomedicas Alberto Sols (IIBM), CSIC-UAM, Madrid, Spain; Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERdem), ISCIII, Spain.
| | - Ángela M Valverde
- Instituto de Investigaciones Biomedicas Alberto Sols (IIBM), CSIC-UAM, Madrid, Spain; Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERdem), ISCIII, Spain.
| |
Collapse
|
4
|
He Y, Liang Z, Wang J, Tang H, Li J, Cai J, Liao Y. Ceiling culture of human mature white adipocytes with a browning agent: A novel approach to induce transdifferentiation into beige adipocytes. Front Bioeng Biotechnol 2022; 10:905194. [PMID: 36046675 PMCID: PMC9420896 DOI: 10.3389/fbioe.2022.905194] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2022] [Accepted: 07/21/2022] [Indexed: 11/13/2022] Open
Abstract
Excess and dysfunctional adipose tissue plays an important role in metabolic diseases, including obesity, atherosclerosis and type 2 diabetes mellitus. In mammals, adipose tissue is categorized into two types: white and brown. Adult brown tissue is mainly composed of beige adipocytes, which dispose of stored energy as heat and have become increasingly popular as a therapeutic target for obesity. However, there is still a paucity of cell models that allow transdifferentiation of mature white adipocytes into beige adipocytes, as seen in vivo. Here, we describe a novel, ceiling culture-based model of human mature white adipocytes, which transdifferentiate into beige adipocytes under the mechanical force and hypoxia of ceiling culture. We also show that the use of rosiglitazone and rapamycin can modulate transdifferentiation, up and down regulating expression of beige adipocyte-specific genes, respectively. Rosiglitazone additionally facilitated the upregulation of fatty acid lipolysis and oxidation genes. Finally, these beige adipocytes derived from dedifferentiated adipocytes exhibited a progenitor-specific phenotype, with higher expression of mature adipocyte-specific genes than adipocyte-derived stem cells. Overall, we report a novel approach to conveniently cultivate beige adipocytes from white adipocytes in vitro, suitable for mechanistic studies of adipose biology and development of cell and drug therapies in the future.
Collapse
Affiliation(s)
| | | | | | | | | | - Junrong Cai
- *Correspondence: Junrong Cai, ; Yunjun Liao,
| | - Yunjun Liao
- *Correspondence: Junrong Cai, ; Yunjun Liao,
| |
Collapse
|
5
|
Onogi Y, Ussar S. Regulatory networks determining substrate utilization in brown adipocytes. Trends Endocrinol Metab 2022; 33:493-506. [PMID: 35491296 DOI: 10.1016/j.tem.2022.04.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Revised: 03/25/2022] [Accepted: 04/05/2022] [Indexed: 11/16/2022]
Abstract
Brown adipose tissue (BAT) is often considered as a sink for nutrients to generate heat. However, when the complex hormonal and nervous inputs and intracellular signaling networks regulating substrate utilization are considered, BAT appears much more as a tightly controlled rheostat, regulating body temperature and balancing circulating nutrient levels. Here we provide an overview of key regulatory circuits, including the diurnal rhythm, determining glucose, fatty acid, and amino acid utilization and the interdependency of these nutrients in thermogenesis. Moreover, we discuss additional factors mediating sympathetic BAT activation beyond β-adrenergic signaling and the limitations of glucose-based BAT activity measurements to foster a better understanding and interpretation of BAT activity data.
Collapse
Affiliation(s)
- Yasuhiro Onogi
- RG Adipocytes & Metabolism, Institute for Diabetes & Obesity, Helmholtz Diabetes Center, Helmholtz Zentrum München, German Research Center for Environmental Health GmbH, 85764 Neuherberg, Germany; German Center for Diabetes Research (DZD), 85764 Neuherberg, Germany.
| | - Siegfried Ussar
- RG Adipocytes & Metabolism, Institute for Diabetes & Obesity, Helmholtz Diabetes Center, Helmholtz Zentrum München, German Research Center for Environmental Health GmbH, 85764 Neuherberg, Germany; German Center for Diabetes Research (DZD), 85764 Neuherberg, Germany; Department of Medicine, Technische Universität München, Munich, Germany.
| |
Collapse
|
6
|
PINHO ARYANEC, BURGEIRO ANA, PEREIRA MARIAJOÃO, CARVALHO EUGENIA. Drug-induced metabolic alterations in adipose tissue - with an emphasis in epicardial adipose tissue. AN ACAD BRAS CIENC 2022. [DOI: 10.1590/0001-3765202220201819] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/16/2025] Open
Affiliation(s)
| | | | | | - EUGENIA CARVALHO
- University of Coimbra, Portugal; University of Coimbra, Portugal; APDP-Portuguese Diabetes Association, Portugal
| |
Collapse
|
7
|
Carobbio S, Guenantin AC, Bahri M, Rodriguez-Fdez S, Honig F, Kamzolas I, Samuelson I, Long K, Awad S, Lukovic D, Erceg S, Bassett A, Mendjan S, Vallier L, Rosen BS, Chiarugi D, Vidal-Puig A. Unraveling the Developmental Roadmap toward Human Brown Adipose Tissue. Stem Cell Reports 2021; 16:641-655. [PMID: 33606988 PMCID: PMC7940445 DOI: 10.1016/j.stemcr.2021.01.013] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2020] [Revised: 01/21/2021] [Accepted: 01/22/2021] [Indexed: 12/20/2022] Open
Abstract
Increasing brown adipose tissue (BAT) mass and activation is a therapeutic strategy to treat obesity and complications. Obese and diabetic patients possess low amounts of BAT, so an efficient way to expand their mass is necessary. There is limited knowledge about how human BAT develops, differentiates, and is optimally activated. Accessing human BAT is challenging, given its low volume and anatomical dispersion. These constraints make detailed BAT-related developmental and functional mechanistic studies in humans virtually impossible. We have developed and characterized functionally and molecularly a new chemically defined protocol for the differentiation of human pluripotent stem cells (hPSCs) into brown adipocytes (BAs) that overcomes current limitations. This protocol recapitulates step by step the physiological developmental path of human BAT. The BAs obtained express BA and thermogenic markers, are insulin sensitive, and responsive to β-adrenergic stimuli. This new protocol is scalable, enabling the study of human BAs at early stages of development.
Collapse
Affiliation(s)
- Stefania Carobbio
- Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, UK; Metabolic Research Laboratories, Addenbrooke's Treatment Centre, Institute of Metabolic Science, Addenbrooke's Hospital, University of Cambridge, Cambridge, UK.
| | - Anne-Claire Guenantin
- Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, UK; Metabolic Research Laboratories, Addenbrooke's Treatment Centre, Institute of Metabolic Science, Addenbrooke's Hospital, University of Cambridge, Cambridge, UK
| | - Myriam Bahri
- Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, UK
| | | | - Floris Honig
- Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, UK
| | - Ioannis Kamzolas
- Metabolic Research Laboratories, Addenbrooke's Treatment Centre, Institute of Metabolic Science, Addenbrooke's Hospital, University of Cambridge, Cambridge, UK; European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Genome Campus, Hinxton, UK
| | - Isabella Samuelson
- Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, UK; Metabolic Research Laboratories, Addenbrooke's Treatment Centre, Institute of Metabolic Science, Addenbrooke's Hospital, University of Cambridge, Cambridge, UK
| | - Kathleen Long
- Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, UK
| | - Sherine Awad
- Metabolic Research Laboratories, Addenbrooke's Treatment Centre, Institute of Metabolic Science, Addenbrooke's Hospital, University of Cambridge, Cambridge, UK
| | - Dunja Lukovic
- Retinal Degeneration Lab and National Stem Cell Bank-Valencia Node, Research Center Principe Felipe, Valencia, Spain
| | - Slaven Erceg
- Stem Cell Therapies for Neurodegenerative Diseases Lab and National Stem Cell Bank - Valencia Node, Research Center Principe Felipe, Valencia, Spain
| | - Andrew Bassett
- Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, UK
| | - Sasha Mendjan
- Institute of Molecular Biotechnology, 1030 Vienna, Austria
| | - Ludovic Vallier
- Wellcome-MRC Cambridge Stem Cell Institute, Jeffrey Cheah Biomedical Centre, University of Cambridge, Cambridge, UK; Department of Surgery, University of Cambridge, Cambridge, UK
| | - Barry S Rosen
- Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, UK
| | - Davide Chiarugi
- Metabolic Research Laboratories, Addenbrooke's Treatment Centre, Institute of Metabolic Science, Addenbrooke's Hospital, University of Cambridge, Cambridge, UK
| | - Antonio Vidal-Puig
- Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, UK; Metabolic Research Laboratories, Addenbrooke's Treatment Centre, Institute of Metabolic Science, Addenbrooke's Hospital, University of Cambridge, Cambridge, UK; Cambridge University Nanjing Centre of Technology and Innovation, Jiangbei Area, Nanjing, P.R. China.
| |
Collapse
|
8
|
Czech MP. Mechanisms of insulin resistance related to white, beige, and brown adipocytes. Mol Metab 2020; 34:27-42. [PMID: 32180558 PMCID: PMC6997501 DOI: 10.1016/j.molmet.2019.12.014] [Citation(s) in RCA: 148] [Impact Index Per Article: 29.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/22/2019] [Revised: 12/21/2019] [Accepted: 12/23/2019] [Indexed: 01/05/2023] Open
Abstract
BACKGROUND The diminished glucose lowering effect of insulin in obesity, called "insulin resistance," is associated with glucose intolerance, type 2 diabetes, and other serious maladies. Many publications on this topic have suggested numerous hypotheses on the molecular and cellular disruptions that contribute to the syndrome. However, significant uncertainty remains on the mechanisms of its initiation and long-term maintenance. SCOPE OF REVIEW To simplify insulin resistance analysis, this review focuses on the unifying concept that adipose tissue is a central regulator of systemic glucose homeostasis by controlling liver and skeletal muscle metabolism. Key aspects of adipose function related to insulin resistance reviewed are: 1) the modes by which specific adipose tissues control hepatic glucose output and systemic glucose disposal, 2) recently acquired understanding of the underlying mechanisms of these modes of regulation, and 3) the steps in these pathways adversely affected by obesity that cause insulin resistance. MAJOR CONCLUSIONS Adipocyte heterogeneity is required to mediate the multiple pathways that control systemic glucose tolerance. White adipocytes specialize in sequestering triglycerides away from the liver, muscle, and other tissues to limit toxicity. In contrast, brown/beige adipocytes are very active in directly taking up glucose in response to β adrenergic signaling and insulin and enhancing energy expenditure. Nonetheless, white, beige, and brown adipocytes all share the common feature of secreting factors and possibly exosomes that act on distant tissues to control glucose homeostasis. Obesity exerts deleterious effects on each of these adipocyte functions to cause insulin resistance.
Collapse
Affiliation(s)
- Michael P Czech
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, MA, USA.
| |
Collapse
|
9
|
Freeman AJ, Sellers ZM, Mazariegos G, Kelly A, Saiman L, Mallory G, Ling SC, Narkewicz MR, Leung DH. A Multidisciplinary Approach to Pretransplant and Posttransplant Management of Cystic Fibrosis-Associated Liver Disease. Liver Transpl 2019; 25:640-657. [PMID: 30697907 DOI: 10.1002/lt.25421] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/23/2018] [Accepted: 01/09/2019] [Indexed: 12/16/2022]
Abstract
Approximately 5%-10% of patients with cystic fibrosis (CF) will develop advanced liver disease with portal hypertension, representing the third leading cause of death among patients with CF. Cystic fibrosis with advanced liver disease and portal hypertension (CFLD) represents the most significant risk to patient mortality, second only to pulmonary or lung transplant complications in patients with CF. Currently, there is no medical therapy to treat or reverse CFLD. Liver transplantation (LT) in patients with CFLD with portal hypertension confers a significant survival advantage over those who do not receive LT, although the timing in which to optimize this benefit is unclear. Despite the value and efficacy of LT in selected patients with CFLD, established clinical criteria outlining indications and timing for LT as well as disease-specific transplant considerations are notably absent. The goal of this comprehensive and multidisciplinary report is to present recommendations on the unique CF-specific pre- and post-LT management issues clinicians should consider and will face.
Collapse
Affiliation(s)
- A Jay Freeman
- Department of Pediatrics, Emory University School of Medicine, Atlanta, GA.,Division of Pediatric Gastroenterology, Hepatology and Nutrition, Children's Healthcare of Atlanta, Atlanta, GA
| | - Zachary M Sellers
- Department of Pediatrics, Stanford University School of Medicine, Palo Alto, CA.,Division of Pediatric Gastroenterology, Hepatology and Nutrition, Lucile Packard Children's Hospital at Stanford, Palo Alto, CA
| | - George Mazariegos
- Department of Surgery and Critical Care, University of Pittsburgh School of Medicine, Pittsburgh, PA.,Hillman Center for Pediatric Transplantation, Children's Hospital of Pittsburgh, Pittsburgh, PA
| | - Andrea Kelly
- Department of Pediatrics, Perelman School of Medicine of University of Pennsylvania, Philadelphia, PA.,Division of Pediatric Endocrinology and Diabetes, Children's Hospital of Philadelphia, Philadelphia, PA
| | - Lisa Saiman
- Department of Pediatrics, Columbia University Medical Center, New York, NY.,Division of Pediatric Infectious Diseases, New York-Presbyterian Morgan Stanley Children's Hospital, New York, NY
| | - George Mallory
- Department of Pediatrics, Texas Children's Hospital, Baylor College of Medicine, Houston, TX.,Divisions of Pediatric Pulmonary Medicine, Texas Children's Hospital, Baylor College of Medicine, Houston, TX
| | - Simon C Ling
- Department of Pediatrics, University of Toronto, Toronto, Ontario, Canada.,Division of Pediatric Gastroenterology, Hepatology and Nutrition, Toronto, Ontario, Canada
| | - Michael R Narkewicz
- Digestive Health Institute, Children's Hospital of Colorado, Section of Pediatric Gastroenterology, Hepatology and Nutrition, Department of Pediatrics, University of Colorado School of Medicine, Aurora, CO
| | - Daniel H Leung
- Department of Pediatrics, Texas Children's Hospital, Baylor College of Medicine, Houston, TX.,Pediatric Gastroenterology, Hepatology and Nutrition, Texas Children's Hospital, Baylor College of Medicine, Houston, TX
| |
Collapse
|
10
|
Vázquez P, Hernández-Sánchez C, Escalona-Garrido C, Pereira L, Contreras C, López M, Balsinde J, de Pablo F, Valverde ÁM. Increased FGF21 in brown adipose tissue of tyrosine hydroxylase heterozygous mice: implications for cold adaptation. J Lipid Res 2018; 59:2308-2320. [PMID: 30352954 DOI: 10.1194/jlr.m085209] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2018] [Revised: 10/10/2018] [Indexed: 02/02/2023] Open
Abstract
Tyrosine hydroxylase (TH) catalyzes the first step in catecholamines synthesis. We studied the impact of reduced TH in brown adipose tissue (BAT) activation. In adult heterozygous (Th+/- ) mice, dopamine and noradrenaline (NA) content in BAT decreased after cold exposure. This reduced catecholaminergic response did not impair cold adaptation, because these mice induced uncoupling protein 1 (UCP-1) and maintained BAT temperature to a similar extent than controls (Th+/+ ). Possible compensatory mechanisms implicated were studied. Prdm16 and Fgf21 expression, key genes in BAT activation, were elevated in Th+/- mice at thermoneutrality from day 18.5 of embryonic life. Likewise, plasma FGF21 and liver Fgf21 mRNA were increased. Analysis of endoplasmic reticulum (ER) stress, a process that triggers elevations in FGF21, showed higher phospho-IRE1, phospho-JNK, and CHOP in BAT of Th+/- mice at thermoneutrality. Also, increased lipolysis in BAT of cold-exposure Th+/- mice was demonstrated by increased phosphorylation of hormone-sensitive lipase (HSL), as well as diacylglycerol (DAG) and FFA content. Overall, these results indicate that the mild effects of Th haploinsufficiency on BAT function are likely due to compensatory mechanisms involving elevations in Fgf21 and Prdm16 and through adaptive changes in the lipid profile.
Collapse
Affiliation(s)
- Patricia Vázquez
- Alberto Sols Biomedical Research Institute (IIBm), Consejo Superior de Investigaciones Científicas/Universidad Autónoma de Madrid (CSIC/UAM), Madrid, Spain .,Centro de Investigaciones Biológicas, Consejo Superior de Investigaciones Científicas, (CSIC) Madrid, Spain.,Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas (CIBERdem), Instituto de Salud Carlos III, Madrid, Spain
| | - Catalina Hernández-Sánchez
- Centro de Investigaciones Biológicas, Consejo Superior de Investigaciones Científicas, (CSIC) Madrid, Spain.,Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas (CIBERdem), Instituto de Salud Carlos III, Madrid, Spain
| | - Carmen Escalona-Garrido
- Alberto Sols Biomedical Research Institute (IIBm), Consejo Superior de Investigaciones Científicas/Universidad Autónoma de Madrid (CSIC/UAM), Madrid, Spain.,Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas (CIBERdem), Instituto de Salud Carlos III, Madrid, Spain
| | - Laura Pereira
- Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas (CIBERdem), Instituto de Salud Carlos III, Madrid, Spain.,Instituto de Biología y Genética Molecular, Consejo Superior de Investigaciones Científicas (CSIC), Universidad de Valladolid, Valladolid, Spain
| | - Cristina Contreras
- Physiology Department, Pharmacy School, Complutense University of Madrid, Madrid, Spain
| | - Miguel López
- NeurObesity Group, Department of Physiology, Centro Singular de Investigación en Medicine Molecular y Enfermedades Crónicas (CIMUS), University of Santiago de Compostela, Instituto de Investigación Sanitaria, Santiago de Compostela, Spain.,Centro de Investigación Biomédica en Red Fisiopatología de la Obesidad y Nutrición (CIBERobn), Santiago de Compostela, Spain
| | - Jesús Balsinde
- Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas (CIBERdem), Instituto de Salud Carlos III, Madrid, Spain.,Instituto de Biología y Genética Molecular, Consejo Superior de Investigaciones Científicas (CSIC), Universidad de Valladolid, Valladolid, Spain
| | - Flora de Pablo
- Centro de Investigaciones Biológicas, Consejo Superior de Investigaciones Científicas, (CSIC) Madrid, Spain.,Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas (CIBERdem), Instituto de Salud Carlos III, Madrid, Spain
| | - Ángela M Valverde
- Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas (CIBERdem), Instituto de Salud Carlos III, Madrid, Spain .,Alberto Sols Biomedical Research Institute (IIBm), Consejo Superior de Investigaciones Científicas/Universidad Autónoma de Madrid (CSIC/UAM), Madrid, Spain
| |
Collapse
|
11
|
Peng HY, Liang YC, Tan TH, Chuang HC, Lin YJ, Lin JC. RBM4a-SRSF3-MAP4K4 Splicing Cascade Constitutes a Molecular Mechanism for Regulating Brown Adipogenesis. Int J Mol Sci 2018; 19:E2646. [PMID: 30200638 PMCID: PMC6163301 DOI: 10.3390/ijms19092646] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2018] [Revised: 08/24/2018] [Accepted: 09/04/2018] [Indexed: 12/18/2022] Open
Abstract
An increase in mitogen-activated protein kinase kinase kinase kinase 4 (MAP4K4) reportedly attenuates insulin-mediated signaling which participates in the development of brown adipose tissues (BATs). Nevertheless, the effect of MAP4K4 on brown adipogenesis remains largely uncharacterized. In this study, results of a transcriptome analysis (also referred as RNA-sequencing) showed differential expressions of MAP4K4 or SRSF3 transcripts isolated from distinct stages of embryonic BATs. The discriminative splicing profiles of MAP4K4 or SRSF3 were noted as well in brown adipocytes (BAs) with RNA-binding motif protein 4-knockout (RBM4-/-) compared to the wild-type counterparts. Moreover, the relatively high expressions of authentic SRSF3 transcripts encoding the splicing factor functioned as a novel regulator toward MAP4K4 splicing during brown adipogenesis. The presence of alternatively spliced MAP4K4 variants exerted differential effects on the phosphorylation of c-Jun N-terminal protein kinase (JNK) which was correlated with the differentiation or metabolic signature of BAs. Collectively, the RBM4-SRSF3-MAP4K4 splicing cascade constitutes a novel molecular mechanism in manipulating the development of BAs through related signaling pathways.
Collapse
Affiliation(s)
- Hui-Yu Peng
- School of Medical Laboratory Science and Biotechnology, College of Medical Science and Technology, Taipei Medical University, Taipei 110, Taiwan.
| | - Yu-Chih Liang
- School of Medical Laboratory Science and Biotechnology, College of Medical Science and Technology, Taipei Medical University, Taipei 110, Taiwan.
- Ph.D. Program in Medicine Biotechnology, College of Medical Science and Technology, Taipei Medical University, Taipei 110, Taiwan.
| | - Tse-Hua Tan
- Immunology Research Center, National Health Research Institutes, Zhunan 35053, Taiwan.
| | - Huai-Chia Chuang
- Immunology Research Center, National Health Research Institutes, Zhunan 35053, Taiwan.
| | - Ying-Ju Lin
- School of Chinese Medicine, China Medical University, Taichung 40402, Taiwan.
| | - Jung-Chun Lin
- School of Medical Laboratory Science and Biotechnology, College of Medical Science and Technology, Taipei Medical University, Taipei 110, Taiwan.
- Ph.D. Program in Medicine Biotechnology, College of Medical Science and Technology, Taipei Medical University, Taipei 110, Taiwan.
| |
Collapse
|
12
|
Felthaus O, Schön T, Schiltz D, Aung T, Kühlmann B, Jung F, Anker A, Klein S, Prantl L. Adipose tissue-derived stem cells from affected and unaffected areas in patients with multiple symmetric lipomatosis show differential regulation of mTOR pathway genes. Clin Hemorheol Microcirc 2018; 69:141-151. [PMID: 29758934 DOI: 10.3233/ch-189107] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
BACKGROUND Multiple symmetric lipomatosis is a rare disease characterized by the excessive growth of uncapsulated masses of adipose tissue. Although the etiology has yet to be elucidated, a connection to brown adipose tissue has been proposed recently. The mTOR pathway which is found to be regulated in lipomatous tissue as well as associated with brown adipose tissue can be inhibited by a compound called rapamycin. METHODS We isolated adipose tissue derived stem cells from both affected and unaffected tissue and treated these cells with different concentrations of rapamycin. RESULTS The differences in both proliferation and differentiation between adipose tissue derived stem cells (ASCs) from lipomatous and normal tissue decreased after mTOR pathway inhibition. In some patients regulation of mTOR genes was opposed in the ASCs from the two different tissues. CONCLUSIONS Treatment with rapamycin might be a novel therapeutical approach for patients suffering from multiple symmetric lipomatosis.
Collapse
Affiliation(s)
- Oliver Felthaus
- Department of Plastic-, Hand-, and Reconstructive Surgery, University Hospital Regensburg, Regensburg, Germany
| | - Teresa Schön
- Department of Plastic-, Hand-, and Reconstructive Surgery, University Hospital Regensburg, Regensburg, Germany
| | - Daniel Schiltz
- Department of Plastic-, Hand-, and Reconstructive Surgery, University Hospital Regensburg, Regensburg, Germany
| | - Thiha Aung
- Department of Plastic-, Hand-, and Reconstructive Surgery, University Hospital Regensburg, Regensburg, Germany
| | - Britta Kühlmann
- Department of Plastic-, Hand-, and Reconstructive Surgery, University Hospital Regensburg, Regensburg, Germany
| | - Friedrich Jung
- Institute of Biomaterial Science and Berlin-Brandenburg Centre for Regenerative Therapies, Helmholtz-Zentrum Geesthacht, Kantstrasse, Teltow, Germany
| | - Alexandra Anker
- Department of Plastic-, Hand-, and Reconstructive Surgery, University Hospital Regensburg, Regensburg, Germany
| | - Silvan Klein
- Department of Plastic-, Hand-, and Reconstructive Surgery, University Hospital Regensburg, Regensburg, Germany
| | - Lukas Prantl
- Department of Plastic-, Hand-, and Reconstructive Surgery, University Hospital Regensburg, Regensburg, Germany
| |
Collapse
|
13
|
Morimoto H, Mori J, Nakajima H, Kawabe Y, Tsuma Y, Fukuhara S, Kodo K, Ikoma K, Matoba S, Oudit GY, Hosoi H. Angiotensin 1-7 stimulates brown adipose tissue and reduces diet-induced obesity. Am J Physiol Endocrinol Metab 2018; 314:E131-E138. [PMID: 29066463 DOI: 10.1152/ajpendo.00192.2017] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The renin-angiotensin system is a key regulator of metabolism with beneficial effects of the angiotensin 1-7 (Ang 1-7) peptide. We hypothesized that the antiobesity effect of Ang 1-7 was related to the stimulation of brown adipose tissue (BAT). We administered Ang 1-7 (0.54 mg kg-1 day-1) for 28 days via implanted micro-osmotic pumps to mice with high-fat diet (HFD)-induced obesity. Ang 1-7 treatment reduced body weight, upregulated thermogenesis, and ameliorated impaired glucose homeostasis without affecting food consumption. Furthermore, Ang 1-7 treatment enlarged BAT and the increased expression of UCP1, PRDM16, and prohibitin. Alterations in PRDM16 expression correlated with increased AMPK and phosphorylation of mTOR. Ang 1-7 treatment elevated thermogenesis in subcutaneous white adipose tissue without altering UCP1 expression. These changes occurred in the context of decreased lipid accumulation in BAT from HFD-fed mice, preserved insulin signaling concomitant with phosphorylation of hormone-sensitive lipase and decreased expression of perilipin. These data suggest that Ang 1-7 induces brown adipocyte differentiation leading to upregulation of thermogenesis and improved metabolic profile in diet-induced obesity. Enhancing Ang 1-7 action represents a promising therapy to increase BAT and to reduce the metabolic complications associated with diet-induced obesity.
Collapse
Affiliation(s)
- Hidechika Morimoto
- Department of Pediatrics, Kyoto Prefectural University of Medicine, Graduate School of Medical Science , Kyoto , Japan
| | - Jun Mori
- Department of Pediatrics, Kyoto Prefectural University of Medicine, Graduate School of Medical Science , Kyoto , Japan
| | - Hisakazu Nakajima
- Department of Pediatrics, Kyoto Prefectural University of Medicine, Graduate School of Medical Science , Kyoto , Japan
| | - Yasuhiro Kawabe
- Department of Pediatrics, Kyoto Prefectural University of Medicine, Graduate School of Medical Science , Kyoto , Japan
| | - Yusuke Tsuma
- Department of Pediatrics, Kyoto Prefectural University of Medicine, Graduate School of Medical Science , Kyoto , Japan
| | - Shota Fukuhara
- Department of Pediatrics, Kyoto Prefectural University of Medicine, Graduate School of Medical Science , Kyoto , Japan
| | - Kazuki Kodo
- Department of Pediatrics, Kyoto Prefectural University of Medicine, Graduate School of Medical Science , Kyoto , Japan
| | - Kazuya Ikoma
- Department of Orthopaedics, Kyoto Prefectural University of Medicine, Graduate School of Medical Science , Kyoto , Japan
| | - Satoaki Matoba
- Department of Cardiovascular Medicine, Kyoto Prefectural University of Medicine, Graduate School of Medical Science , Kyoto , Japan
| | - Gavin Y Oudit
- Department of Physiology, University of Alberta , Edmonton , Canada
- Division of Cardiology, Department of Medicine, University of Alberta , Edmonton , Canada
| | - Hajime Hosoi
- Department of Pediatrics, Kyoto Prefectural University of Medicine, Graduate School of Medical Science , Kyoto , Japan
| |
Collapse
|
14
|
Abdullahi A, Jeschke MG. Taming the Flames: Targeting White Adipose Tissue Browning in Hypermetabolic Conditions. Endocr Rev 2017; 38:538-549. [PMID: 28938469 PMCID: PMC5716828 DOI: 10.1210/er.2017-00163] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/13/2017] [Accepted: 08/18/2017] [Indexed: 12/17/2022]
Abstract
In this era of increased obesity and diabetes prevalence, the browning of white adipose tissue (WAT) has emerged as a promising therapeutic target to induce weight loss and improve insulin sensitivity in this population. The browning process entails a shift in the WAT from primarily storing excess energy to the dissipation of energy as heat. However, this idealistic view of WAT browning being the savior of the metabolic syndrome has been criticized by studies in burn and cancer patients that have shown browning to be detrimental rather than beneficial. In fact, in the context of hypermetabolic states, the browning of WAT has presented with substantial clinical adverse outcomes related to cachexia, hepatic steatosis, and muscle catabolism. Therefore, the previous thought construct of understanding browning as an all-beneficial physiologic event has now been met with skepticism. In this review, we focus on current knowledge of browning of WAT and its adverse metabolic alterations during hypermetabolic states. We also discuss the regulators and signaling pathways involved in the browning process and their potential for being targeted by new or existing drugs to inhibit or alleviate browning, potentially leading to decreased hypermetabolism and improved clinical outcomes. Lastly, the imminent clinical applications of pharmacological agents are explored in the perspective of attenuating WAT browning and its associated adverse side effects reported in burn patients.
Collapse
Affiliation(s)
- Abdikarim Abdullahi
- Faculty of Medicine, University of Toronto, Canada
- Biological Sciences, Sunnybrook Research Institute, Canada
- Ross Tilley Burn Centre, Sunnybrook Hospital, Canada
| | - Marc G Jeschke
- Faculty of Medicine, University of Toronto, Canada
- Biological Sciences, Sunnybrook Research Institute, Canada
- Ross Tilley Burn Centre, Sunnybrook Hospital, Canada
- Department of Surgery, Division of Plastic Surgery and Department of Immunology, University of Toronto, Canada
| |
Collapse
|
15
|
Lombardi A, Trimarco B, Iaccarino G, Santulli G. Impaired mitochondrial calcium uptake caused by tacrolimus underlies beta-cell failure. Cell Commun Signal 2017; 15:47. [PMID: 29132395 PMCID: PMC5684747 DOI: 10.1186/s12964-017-0203-0] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2017] [Accepted: 11/02/2017] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND One of the most common side effects of the immunosuppressive drug tacrolimus (FK506) is the increased risk of new-onset diabetes mellitus. However, the molecular mechanisms underlying this association have not been fully clarified. METHODS We studied the effects of the therapeutic dose of tacrolimus on mitochondrial fitness in beta-cells. RESULTS We demonstrate that tacrolimus impairs glucose-stimulated insulin secretion (GSIS) in beta-cells through a previously unidentified mechanism. Indeed, tacrolimus causes a decrease in mitochondrial Ca2+ uptake, accompanied by altered mitochondrial respiration and reduced ATP production, eventually leading to impaired GSIS. CONCLUSION Our observations individuate a new fundamental mechanism responsible for the augmented incidence of diabetes following tacrolimus treatment. Indeed, this drug alters Ca2+ fluxes in mitochondria, thereby compromising metabolism-secretion coupling in beta-cells.
Collapse
Affiliation(s)
- Angela Lombardi
- Department of Medicine, Albert Einstein College of Medicine, New York, NY, USA
| | - Bruno Trimarco
- Department of Advanced Biomedical Sciences, "Federico II" University of Naples, Naples, Italy
| | - Guido Iaccarino
- Department of Medicine, Surgery and Dentistry, "Scuola Medica Salernitana", University of Salerno, Fisciano, Italy
| | - Gaetano Santulli
- Department of Medicine, Albert Einstein College of Medicine, New York, NY, USA.
- Department of Advanced Biomedical Sciences, "Federico II" University of Naples, Naples, Italy.
| |
Collapse
|