1
|
Yu Y, Fu R, Jin C, Gao H, Han L, Fu B, Qi M, Li Q, Suo Z, Leng J. Regulation of Milk Fat Synthesis: Key Genes and Microbial Functions. Microorganisms 2024; 12:2302. [PMID: 39597692 PMCID: PMC11596427 DOI: 10.3390/microorganisms12112302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2024] [Revised: 11/04/2024] [Accepted: 11/07/2024] [Indexed: 11/29/2024] Open
Abstract
Milk is rich in a variety of essential nutrients, including fats, proteins, and trace elements that are important for human health. In particular, milk fat has an alleviating effect on diseases such as heart disease and diabetes. Fatty acids, the basic units of milk fat, play an important role in many biological reactions in the body, including the involvement of glycerophospholipids and sphingolipids in the formation of cell membranes. However, milk fat synthesis is a complex biological process involving multiple organs and tissues, and how to improve milk fat of dairy cows has been a hot research issue in the industry. There exists a close relationship between milk fat synthesis, genes, and microbial functions, as a result of the organic integration between the different tissues of the cow's organism and the external environment. This review paper aims (1) to highlight the synthesis and regulation of milk fat by the first and second genomes (gastrointestinal microbial genome) and (2) to discuss the effects of ruminal microorganisms and host metabolites on milk fat synthesis. Through exploring the interactions between the first and second genomes, and discovering the relationship between microbial and host metabolite in the milk fat synthesis pathway, it may become a new direction for future research on the mechanism of milk fat synthesis in dairy cows.
Collapse
Affiliation(s)
- Ye Yu
- Faculty of Animal Science and Technology, Yunnan Agricultural University, Kunming 650201, China; (Y.Y.); (R.F.); (C.J.); (H.G.); (L.H.); (B.F.); (M.Q.); (Q.L.); (Z.S.)
- Key Laboratory of Animal Nutrition and Feed Science of Yunnan Province, Yunnan Agricultural University, Kunming 650201, China
| | - Runqi Fu
- Faculty of Animal Science and Technology, Yunnan Agricultural University, Kunming 650201, China; (Y.Y.); (R.F.); (C.J.); (H.G.); (L.H.); (B.F.); (M.Q.); (Q.L.); (Z.S.)
- Key Laboratory of Animal Nutrition and Feed Science of Yunnan Province, Yunnan Agricultural University, Kunming 650201, China
| | - Chunjia Jin
- Faculty of Animal Science and Technology, Yunnan Agricultural University, Kunming 650201, China; (Y.Y.); (R.F.); (C.J.); (H.G.); (L.H.); (B.F.); (M.Q.); (Q.L.); (Z.S.)
- Key Laboratory of Animal Nutrition and Feed Science of Yunnan Province, Yunnan Agricultural University, Kunming 650201, China
| | - Huan Gao
- Faculty of Animal Science and Technology, Yunnan Agricultural University, Kunming 650201, China; (Y.Y.); (R.F.); (C.J.); (H.G.); (L.H.); (B.F.); (M.Q.); (Q.L.); (Z.S.)
- Key Laboratory of Animal Nutrition and Feed Science of Yunnan Province, Yunnan Agricultural University, Kunming 650201, China
| | - Lin Han
- Faculty of Animal Science and Technology, Yunnan Agricultural University, Kunming 650201, China; (Y.Y.); (R.F.); (C.J.); (H.G.); (L.H.); (B.F.); (M.Q.); (Q.L.); (Z.S.)
- Key Laboratory of Animal Nutrition and Feed Science of Yunnan Province, Yunnan Agricultural University, Kunming 650201, China
| | - Binlong Fu
- Faculty of Animal Science and Technology, Yunnan Agricultural University, Kunming 650201, China; (Y.Y.); (R.F.); (C.J.); (H.G.); (L.H.); (B.F.); (M.Q.); (Q.L.); (Z.S.)
- Key Laboratory of Animal Nutrition and Feed Science of Yunnan Province, Yunnan Agricultural University, Kunming 650201, China
| | - Min Qi
- Faculty of Animal Science and Technology, Yunnan Agricultural University, Kunming 650201, China; (Y.Y.); (R.F.); (C.J.); (H.G.); (L.H.); (B.F.); (M.Q.); (Q.L.); (Z.S.)
| | - Qian Li
- Faculty of Animal Science and Technology, Yunnan Agricultural University, Kunming 650201, China; (Y.Y.); (R.F.); (C.J.); (H.G.); (L.H.); (B.F.); (M.Q.); (Q.L.); (Z.S.)
- Key Laboratory of Animal Nutrition and Feed Science of Yunnan Province, Yunnan Agricultural University, Kunming 650201, China
| | - Zhuo Suo
- Faculty of Animal Science and Technology, Yunnan Agricultural University, Kunming 650201, China; (Y.Y.); (R.F.); (C.J.); (H.G.); (L.H.); (B.F.); (M.Q.); (Q.L.); (Z.S.)
- Key Laboratory of Animal Nutrition and Feed Science of Yunnan Province, Yunnan Agricultural University, Kunming 650201, China
| | - Jing Leng
- Faculty of Animal Science and Technology, Yunnan Agricultural University, Kunming 650201, China; (Y.Y.); (R.F.); (C.J.); (H.G.); (L.H.); (B.F.); (M.Q.); (Q.L.); (Z.S.)
- Key Laboratory of Animal Nutrition and Feed Science of Yunnan Province, Yunnan Agricultural University, Kunming 650201, China
| |
Collapse
|
2
|
Pei Y, Si J, Navet N, Ji P, Zhang X, Qiao H, Xu R, Zhai Y, Miao J, Tyler BM, Dou D. Two typical acyl-CoA-binding proteins (ACBPs) are required for the asexual development and virulence of Phytophthora sojae. Fungal Genet Biol 2022; 161:103695. [PMID: 35513256 DOI: 10.1016/j.fgb.2022.103695] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Revised: 04/10/2022] [Accepted: 04/12/2022] [Indexed: 11/15/2022]
Abstract
Being found in all eukaryotes investigated, acyl-CoA-binding proteins (ACBPs) participate in lipid metabolism via specifically binding acyl-CoA esters with high affinity. The structures and functions of ACBP family proteins have been extensively described in yeasts, fungi, plants and mammals, but not oomycetes. In the present study, seven ACBP genes named PsACBP1-7 were identified from the genome of Phytophthora sojae, an oomycete pathogen of soybean. CRISPR-Cas9 knockout mutants targeting PsACBP1 and PsACBP2 were created for phenotypic assays. PsACBP1 knockout led to defects in sporangia production and virulence. PsACBP2 knockout mutants exhibited impaired vegetative growth, zoospore production, cyst germination and virulence. Moreover, Nile red staining of PsACBP2 knockout and over-expression lines showed that PsACBP2 is involved in the formation of lipid bodies in P. sojae. Our results demonstrate that two ACBP genes are differently required for growth and development, and both are essential for virulence in P. sojae.
Collapse
Affiliation(s)
- Yong Pei
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing, China
| | - Jierui Si
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing, China
| | - Natasha Navet
- Department of Botany and Plant Pathology, Oregon State University, Corvallis, OR 97331, United States
| | - Peiyun Ji
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing, China
| | - Xiong Zhang
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing, China
| | - Huijun Qiao
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing, China
| | - Ruofei Xu
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing, China
| | - Ying Zhai
- Department of Plant Pathology, Washington State University, Pullman, WA 99164, United States
| | - Jianqiang Miao
- Department of Botany and Plant Pathology, Oregon State University, Corvallis, OR 97331, United States; State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Yangling, China
| | - Brett M Tyler
- Department of Botany and Plant Pathology, Oregon State University, Corvallis, OR 97331, United States
| | - Daolong Dou
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing, China.
| |
Collapse
|
3
|
Xiong L, Pei J, Chu M, Wu X, Kalwar Q, Yan P, Guo X. Fat Deposition in the Muscle of Female and Male Yak and the Correlation of Yak Meat Quality with Fat. Animals (Basel) 2021; 11:ani11072142. [PMID: 34359275 PMCID: PMC8300776 DOI: 10.3390/ani11072142] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Revised: 07/13/2021] [Accepted: 07/18/2021] [Indexed: 02/06/2023] Open
Abstract
This study aimed to explore the differences in fat deposition between female (FYs) and male yaks (MYs). Compared with MYs, the tenderness, L*, marbling, absolute content of fat, and most fatty acids (FAs) of longissimus dorsi (LD) in FYs were higher or better (p < 0.05), whereas the relative content of polyunsaturated fatty acids (PUFAs) and n-3 PUFAs were lower (p < 0.01). The absolute content of fat, C18:0, cis-C18:2, cis-C18:1, and C24:0 were positively correlated with L*45 min, b*24 h, tenderness, and marbling score of LD in FYs and MYs (p < 0.05), respectively. LPL, FATP2, ELOVL6, HADH, HACD, and PLINS genes play a crucial role in improving the marbling score and tenderness of yak meat. The results of gene expression and protein synthesis showed the effect of gender to FA biosynthesis, FA transport, lipolysis, and FA oxidation in the adipose tissue of yak was realized by the expressions of ME1, SCD, ACSL5, LPL, FABP1, PLIN4, and PLIN2 in peroxisome proliferators-activated receptor (PPAR) signaling. This study established a theoretical basis for the improvement of the meat quality of yak and molecular breeding.
Collapse
Affiliation(s)
- Lin Xiong
- Animal Science Department, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730050, China; (L.X.); (J.P.); (M.C.); (X.W.)
- Key Laboratory for Yak Genetics, Breeding, and Reproduction Engineering of Gansu Province, Lanzhou 730050, China
| | - Jie Pei
- Animal Science Department, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730050, China; (L.X.); (J.P.); (M.C.); (X.W.)
- Key Laboratory for Yak Genetics, Breeding, and Reproduction Engineering of Gansu Province, Lanzhou 730050, China
| | - Min Chu
- Animal Science Department, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730050, China; (L.X.); (J.P.); (M.C.); (X.W.)
- Key Laboratory for Yak Genetics, Breeding, and Reproduction Engineering of Gansu Province, Lanzhou 730050, China
| | - Xiaoyun Wu
- Animal Science Department, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730050, China; (L.X.); (J.P.); (M.C.); (X.W.)
- Key Laboratory for Yak Genetics, Breeding, and Reproduction Engineering of Gansu Province, Lanzhou 730050, China
| | - Qudratullah Kalwar
- Department of Animal Reproduction, Shaheed Benazir Bhutto University of Veterinary and Animal Sciences, Sakrand 67210, Pakistan;
| | - Ping Yan
- Animal Science Department, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730050, China; (L.X.); (J.P.); (M.C.); (X.W.)
- Key Laboratory for Yak Genetics, Breeding, and Reproduction Engineering of Gansu Province, Lanzhou 730050, China
- Correspondence: (P.Y.); (X.G.); Tel.: +86-0931-2115288 (P.Y.); +86-0931-2115271 (X.G.)
| | - Xian Guo
- Animal Science Department, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730050, China; (L.X.); (J.P.); (M.C.); (X.W.)
- Key Laboratory for Yak Genetics, Breeding, and Reproduction Engineering of Gansu Province, Lanzhou 730050, China
- Correspondence: (P.Y.); (X.G.); Tel.: +86-0931-2115288 (P.Y.); +86-0931-2115271 (X.G.)
| |
Collapse
|
4
|
Sprenger RR, Hermansson M, Neess D, Becciolini LS, Sørensen SB, Fagerberg R, Ecker J, Liebisch G, Jensen ON, Vance DE, Færgeman NJ, Klemm RW, Ejsing CS. Lipid molecular timeline profiling reveals diurnal crosstalk between the liver and circulation. Cell Rep 2021; 34:108710. [PMID: 33535053 DOI: 10.1016/j.celrep.2021.108710] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Revised: 10/29/2020] [Accepted: 01/08/2021] [Indexed: 12/18/2022] Open
Abstract
Diurnal regulation of whole-body lipid metabolism plays a vital role in metabolic health. Although changes in lipid levels across the diurnal cycle have been investigated, the system-wide molecular responses to both short-acting fasting-feeding transitions and longer-timescale circadian rhythms have not been explored in parallel. Here, we perform time-series multi-omics analyses of liver and plasma revealing that the majority of molecular oscillations are entrained by adaptations to fasting, food intake, and the postprandial state. By developing algorithms for lipid structure enrichment analysis and lipid molecular crosstalk between tissues, we find that the hepatic phosphatidylethanolamine (PE) methylation pathway is diurnally regulated, giving rise to two pools of oscillating phosphatidylcholine (PC) molecules in the circulation, which are coupled to secretion of either very low-density lipoprotein (VLDL) or high-density lipoprotein (HDL) particles. Our work demonstrates that lipid molecular timeline profiling across tissues is key to disentangling complex metabolic processes and provides a critical resource for the study of whole-body lipid metabolism.
Collapse
Affiliation(s)
- Richard R Sprenger
- Department of Biochemistry and Molecular Biology, VILLUM Center for Bioanalytical Sciences, University of Southern Denmark, Odense, Denmark
| | - Martin Hermansson
- Department of Biochemistry and Molecular Biology, VILLUM Center for Bioanalytical Sciences, University of Southern Denmark, Odense, Denmark
| | - Ditte Neess
- Department of Biochemistry and Molecular Biology, VILLUM Center for Bioanalytical Sciences, University of Southern Denmark, Odense, Denmark
| | - Lena Sokol Becciolini
- Department of Biochemistry and Molecular Biology, VILLUM Center for Bioanalytical Sciences, University of Southern Denmark, Odense, Denmark
| | - Signe Bek Sørensen
- Department of Biochemistry and Molecular Biology, VILLUM Center for Bioanalytical Sciences, University of Southern Denmark, Odense, Denmark
| | - Rolf Fagerberg
- Department of Mathematics and Computer Science, University of Southern Denmark, Odense, Denmark
| | - Josef Ecker
- ZIEL-Institute for Food & Health, Research Group Lipid Metabolism, Technical University of Munich, Freising, Germany
| | - Gerhard Liebisch
- Institute of Clinical Chemistry and Laboratory Medicine, Regensburg University Hospital, Regensburg, Germany
| | - Ole N Jensen
- Department of Biochemistry and Molecular Biology, VILLUM Center for Bioanalytical Sciences, University of Southern Denmark, Odense, Denmark
| | - Dennis E Vance
- Group on Molecular and Cell Biology of Lipids, University of Alberta, Edmonton, AB, Canada
| | - Nils J Færgeman
- Department of Biochemistry and Molecular Biology, VILLUM Center for Bioanalytical Sciences, University of Southern Denmark, Odense, Denmark
| | - Robin W Klemm
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, UK
| | - Christer S Ejsing
- Department of Biochemistry and Molecular Biology, VILLUM Center for Bioanalytical Sciences, University of Southern Denmark, Odense, Denmark; Cell Biology and Biophysics Unit, European Molecular Biology Laboratory, Heidelberg, Germany.
| |
Collapse
|
5
|
Qiu S, Zeng B. Advances in Understanding the Acyl-CoA-Binding Protein in Plants, Mammals, Yeast, and Filamentous Fungi. J Fungi (Basel) 2020; 6:E34. [PMID: 32164164 PMCID: PMC7151191 DOI: 10.3390/jof6010034] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Revised: 03/06/2020] [Accepted: 03/07/2020] [Indexed: 12/31/2022] Open
Abstract
Acyl-CoA-binding protein (ACBP) is an important protein with a size of about 10 kDa. It has a high binding affinity for C12-C22 acyl-CoA esters and participates in lipid metabolism. ACBP and its family of proteins have been found in all eukaryotes and some prokaryotes. Studies have described the function and structure of ACBP family proteins in mammals (such as humans and mice), plants (such as Oryza sativa, Arabidopsis thaliana, and Hevea brasiliensis) and yeast. However, little information on the structure and function of the proteins in filamentous fungi has been reported. This article concentrates on recent advances in the research of the ACBP family proteins in plants and mammals, especially in yeast, filamentous fungi (such as Monascus ruber and Aspergillus oryzae), and fungal pathogens (Aspergillus flavus, Cryptococcus neoformans). Furthermore, we discuss some problems in the field, summarize the binding characteristics of the ACBP family proteins in filamentous fungi and yeast, and consider the future of ACBP development.
Collapse
Affiliation(s)
| | - Bin Zeng
- JiangXi Province Key Laboratory of Bioprocess Engineering, College of Life Sciences, Jiangxi Science & Technology Normal University, Nanchang 330013, China;
| |
Collapse
|
6
|
Total Fatty Acid Analysis of Human Blood Samples in One Minute by High-Resolution Mass Spectrometry. Biomolecules 2018; 9:biom9010007. [PMID: 30591667 PMCID: PMC6359376 DOI: 10.3390/biom9010007] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2018] [Revised: 12/13/2018] [Accepted: 12/17/2018] [Indexed: 12/14/2022] Open
Abstract
Total fatty acid analysis is a routine method in many areas, including lipotyping of individuals in personalized medicine, analysis of foodstuffs, and optimization of oil production in biotechnology. This analysis is commonly done by converting fatty acyl (FA) chains of intact lipids into FA methyl esters (FAMEs) and monitoring these by gas-chromatography (GC)-based methods, typically requiring at least 15 min of analysis per sample. Here, we describe a novel method that supports fast, precise and accurate absolute quantification of total FA levels in human plasma and serum samples. The method uses acid-catalyzed transesterification with 18O-enriched H2O (i.e., H218O) to convert FA chains into 18O-labeled free fatty acids. The resulting “mass-tagged” FA analytes can be specifically monitored with improved signal-to-background by 1 min of high resolution Fourier transform mass spectrometry (FTMS) on an Orbitrap-based mass spectrometer. By benchmarking to National Institute of Standards and Technology (NIST) certified standard reference materials we show that the performance of our method is comparable, and at times superior, to that of gold-standard GC-based methods. In addition, we demonstrate that the method supports the accurate quantification of FA differences in samples obtained in dietary intervention studies and also affords specific monitoring of ingested stable isotope-labeled fatty acids (13C16-palmitate) in normoinsulinemic and hyperinsulinemic human subjects. Overall, our novel high-throughput method is generic and suitable for many application areas, spanning basic research to personalized medicine, and is particularly useful for laboratories equipped with high resolution mass spectrometers, but lacking access to GC-based instrumentation.
Collapse
|
7
|
Yurkovich JT, Palsson BO. Quantitative -omic data empowers bottom-up systems biology. Curr Opin Biotechnol 2018; 51:130-136. [DOI: 10.1016/j.copbio.2018.01.009] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2017] [Revised: 01/09/2018] [Accepted: 01/09/2018] [Indexed: 12/24/2022]
|
8
|
Lydic TA, Goo YH. Lipidomics unveils the complexity of the lipidome in metabolic diseases. Clin Transl Med 2018; 7:4. [PMID: 29374337 PMCID: PMC5786598 DOI: 10.1186/s40169-018-0182-9] [Citation(s) in RCA: 106] [Impact Index Per Article: 15.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2017] [Accepted: 01/08/2018] [Indexed: 12/30/2022] Open
Abstract
Dysregulation of lipid metabolism is responsible for pathologies of human diseases including metabolic diseases. Recent advances in lipidomics analysis allow for the targeted and untargeted identification of lipid species and for their quantification in normal and diseased conditions. Herein, this review provides a brief introduction to lipidomics, highlights its application to characterize the lipidome at the cellular and physiological levels under different biological conditions, and discusses the potential for the use of lipidomics in the discovery of biomarkers.
Collapse
Affiliation(s)
- Todd A Lydic
- Department of Physiology, Michigan State University, East Lansing, MI, 48824, USA.
| | - Young-Hwa Goo
- Department of Molecular and Cellular Physiology, Albany Medical College, 47 New Scotland Avenue, Albany, NY, 12208, USA.
| |
Collapse
|
9
|
Gallego SF, Højlund K, Ejsing CS. Easy, Fast, and Reproducible Quantification of Cholesterol and Other Lipids in Human Plasma by Combined High Resolution MSX and FTMS Analysis. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2018; 29:34-41. [PMID: 29063477 DOI: 10.1007/s13361-017-1829-2] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2017] [Revised: 09/30/2017] [Accepted: 10/03/2017] [Indexed: 06/07/2023]
Abstract
Reliable, cost-effective, and gold-standard absolute quantification of non-esterified cholesterol in human plasma is of paramount importance in clinical lipidomics and for the monitoring of metabolic health. Here, we compared the performance of three mass spectrometric approaches available for direct detection and quantification of cholesterol in extracts of human plasma. These approaches are high resolution full scan Fourier transform mass spectrometry (FTMS) analysis, parallel reaction monitoring (PRM), and novel multiplexed MS/MS (MSX) technology, where fragments from selected precursor ions are detected simultaneously. Evaluating the performance of these approaches in terms of dynamic quantification range, linearity, and analytical precision showed that the MSX-based approach is superior to that of the FTMS and PRM-based approaches. To further show the efficacy of this approach, we devised a simple routine for extensive plasma lipidome characterization using only 8 μL of plasma, using a new commercially available ready-to-spike-in mixture with 14 synthetic lipid standards, and executing a single 6 min sample injection with combined MSX analysis for cholesterol quantification and FTMS analysis for quantification of sterol esters, glycerolipids, glycerophospholipids, and sphingolipids. Using this simple routine afforded reproducible and absolute quantification of 200 lipid species encompassing 13 lipid classes in human plasma samples. Notably, the analysis time of this procedure can be shortened for high throughput-oriented clinical lipidomics studies or extended with more advanced MSALL technology (Almeida R. et al., J. Am. Soc. Mass Spectrom. 26, 133-148 [1]) to support in-depth structural elucidation of lipid molecules. Graphical Abstract ᅟ.
Collapse
Affiliation(s)
- Sandra F Gallego
- Department of Biochemistry and Molecular Biology, Villum Center for Bioanalytical Sciences, University of Southern Denmark, DK-5230, Odense, Denmark
| | - Kurt Højlund
- Department of Endocrinology, Odense University Hospital, Odense, Denmark
| | - Christer S Ejsing
- Department of Biochemistry and Molecular Biology, Villum Center for Bioanalytical Sciences, University of Southern Denmark, DK-5230, Odense, Denmark.
- Cell Biology and Biophysics Unit, European Molecular Biology Laboratory, Heidelberg, Germany.
| |
Collapse
|
10
|
Pauling JK, Hermansson M, Hartler J, Christiansen K, Gallego SF, Peng B, Ahrends R, Ejsing CS. Proposal for a common nomenclature for fragment ions in mass spectra of lipids. PLoS One 2017; 12:e0188394. [PMID: 29161304 PMCID: PMC5697860 DOI: 10.1371/journal.pone.0188394] [Citation(s) in RCA: 77] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2017] [Accepted: 10/20/2017] [Indexed: 12/16/2022] Open
Abstract
Advances in mass spectrometry-based lipidomics have in recent years prompted efforts to standardize the annotation of the vast number of lipid molecules that can be detected in biological systems. These efforts have focused on cataloguing, naming and drawing chemical structures of intact lipid molecules, but have provided no guidelines for annotation of lipid fragment ions detected using tandem and multi-stage mass spectrometry, albeit these fragment ions are mandatory for structural elucidation and high confidence lipid identification, especially in high throughput lipidomics workflows. Here we propose a nomenclature for the annotation of lipid fragment ions, describe its implementation and present a freely available web application, termed ALEX123 lipid calculator, that can be used to query a comprehensive database featuring curated lipid fragmentation information for more than 430,000 potential lipid molecules from 47 lipid classes covering five lipid categories. We note that the nomenclature is generic, extendable to stable isotope-labeled lipid molecules and applicable to automated annotation of fragment ions detected by most contemporary lipidomics platforms, including LC-MS/MS-based routines.
Collapse
Affiliation(s)
- Josch K. Pauling
- Department of Biochemistry and Molecular Biology, VILLUM Center for Bioanalytical Sciences, University of Southern Denmark, Odense, Denmark
| | - Martin Hermansson
- Department of Biochemistry and Molecular Biology, VILLUM Center for Bioanalytical Sciences, University of Southern Denmark, Odense, Denmark
| | - Jürgen Hartler
- Institute of Computational Biotechnology, Graz University of Technology, Graz, Austria
- Omics Center Graz, BioTechMed-Graz, Graz, Austria
| | - Klaus Christiansen
- Department of Biochemistry and Molecular Biology, VILLUM Center for Bioanalytical Sciences, University of Southern Denmark, Odense, Denmark
| | - Sandra F. Gallego
- Department of Biochemistry and Molecular Biology, VILLUM Center for Bioanalytical Sciences, University of Southern Denmark, Odense, Denmark
| | - Bing Peng
- Leibniz-Institut für Analytische Wissenschaften-ISAS-e.V., Dortmund, Germany
| | - Robert Ahrends
- Leibniz-Institut für Analytische Wissenschaften-ISAS-e.V., Dortmund, Germany
| | - Christer S. Ejsing
- Department of Biochemistry and Molecular Biology, VILLUM Center for Bioanalytical Sciences, University of Southern Denmark, Odense, Denmark
- Cell Biology and Biophysics Unit, European Molecular Biology Laboratory, Heidelberg, Germany
| |
Collapse
|
11
|
Common cases of improper lipid annotation using high-resolution tandem mass spectrometry data and corresponding limitations in biological interpretation. Biochim Biophys Acta Mol Cell Biol Lipids 2017; 1862:766-770. [PMID: 28263877 DOI: 10.1016/j.bbalip.2017.02.016] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2016] [Revised: 02/25/2017] [Accepted: 02/26/2017] [Indexed: 12/30/2022]
|
12
|
Liebisch G, Ekroos K, Hermansson M, Ejsing CS. Reporting of lipidomics data should be standardized. Biochim Biophys Acta Mol Cell Biol Lipids 2017; 1862:747-751. [PMID: 28238863 DOI: 10.1016/j.bbalip.2017.02.013] [Citation(s) in RCA: 67] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2017] [Revised: 02/20/2017] [Accepted: 02/21/2017] [Indexed: 01/03/2023]
Abstract
This article highlights, to our opinion, some of the most pertinent issues related to producing high quality lipidomics data. These issues include pitfalls related to sample collection and storage, lipid extraction, the use of shotgun and LC-MS-based lipidomics approaches, and the identification, annotation and quantification of lipid species. We hope that highlighting these issues will help stimulate efforts to implement reporting standards for dissemination of lipidomics data. This article is part of a Special Issue entitled: BBALIP_Lipidomics Opinion Articles edited by Sepp Kohlwein.
Collapse
Affiliation(s)
- Gerhard Liebisch
- Institute of Clinical Chemistry and Laboratory Medicine, University of Regensburg, Germany.
| | - Kim Ekroos
- Lipidomics Consulting Ltd., FI-02230 Esbo, Finland.
| | - Martin Hermansson
- Department of Biochemistry and Molecular Biology, VILLUM Center for Bioanalytical Sciences, University of Southern Denmark, DK-5230 Odense, Denmark.
| | - Christer S Ejsing
- Department of Biochemistry and Molecular Biology, VILLUM Center for Bioanalytical Sciences, University of Southern Denmark, DK-5230 Odense, Denmark.
| |
Collapse
|