1
|
Tong X, Liu X, Jiang YX, Su JR, Luan JQ, Guo C. Astrocyte lactoferrin deficiency affects the construction and function of spinal neurons by regulating cholesterol metabolism. Exp Cell Res 2025; 449:114595. [PMID: 40334811 DOI: 10.1016/j.yexcr.2025.114595] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2024] [Revised: 04/27/2025] [Accepted: 05/05/2025] [Indexed: 05/09/2025]
Abstract
Astrocytes play pivotal roles in central nervous system (CNS) homeostasis, with emerging evidence implicating astrocyte-derived lactoferrin (Lf) in neurodevelopmental and neurodegenerative processes. This study investigates Lf's functional significance in spinal cord integrity using astrocyte-specific Lf knockout (cKO) mice. Behavioral analyses of 1-month-old male cKO mice revealed impaired motor coordination (increased balance beam scores and prolonged pole-climbing latency) and delayed nociceptive responses (increased thermal withdrawal latency). Morphological assessments demonstrated neuron-specific pathology: motor neurons exhibited atrophy and reduced Nissl substance staining, spinal ganglion cells showed quantitative depletion with vacuolar degeneration, and protein expression analyses confirmed declines in neuronal markers (NeuN), synaptic components (SNAP25, PSD95), axonal and myelin related proteins (NF-L, MBP), and neurotransmitter transporters (AChE). Notably, glial cell populations remained unaffected. Mechanistic investigations identified reduced spinal cholesterol content accompanied by downregulation of cholesterol biosynthesis and transport regulators (Srebp2, HMGCR, ApoE, ABCA1) and activation of AMP-activated protein kinase (AMPK). These findings establish astrocytic Lf as a critical modulator of cholesterol metabolism essential for maintaining neuronal structural and functional integrity in the spinal cord. The discovered Lf-cholesterol regulatory axis provides novel insights into the pathogenesis of spinal cord disorders and highlights potential therapeutic targets for neurodegenerative conditions.
Collapse
Affiliation(s)
- Xin Tong
- Key Laboratory of Bioresource Research and Development of Liaoning Province, College of Life and Health Sciences, Northeastern University, Shenyang, 110169, China
| | - Xin Liu
- Key Laboratory of Bioresource Research and Development of Liaoning Province, College of Life and Health Sciences, Northeastern University, Shenyang, 110169, China
| | - Yu-Xuan Jiang
- Key Laboratory of Bioresource Research and Development of Liaoning Province, College of Life and Health Sciences, Northeastern University, Shenyang, 110169, China
| | - Jia-Rui Su
- Key Laboratory of Bioresource Research and Development of Liaoning Province, College of Life and Health Sciences, Northeastern University, Shenyang, 110169, China
| | - Jun-Qi Luan
- Key Laboratory of Bioresource Research and Development of Liaoning Province, College of Life and Health Sciences, Northeastern University, Shenyang, 110169, China
| | - Chuang Guo
- Key Laboratory of Bioresource Research and Development of Liaoning Province, College of Life and Health Sciences, Northeastern University, Shenyang, 110169, China.
| |
Collapse
|
2
|
Wang NQ, Sun PX, Shen QQ, Deng MY. Cholesterol Metabolism in CNS Diseases: The Potential of SREBP2 and LXR as Therapeutic Targets. Mol Neurobiol 2025; 62:6283-6307. [PMID: 39775479 DOI: 10.1007/s12035-024-04672-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Accepted: 12/16/2024] [Indexed: 01/11/2025]
Abstract
The brain is the organ with the highest cholesterol content in the body. Cholesterol in the brain plays a crucial role in maintaining the integrity of synapses and myelin sheaths to ensure normal brain function. Disruptions in cholesterol metabolism are closely associated with various central nervous system (CNS) diseases, including Alzheimer's disease (AD), Huntington's disease (HD), and multiple sclerosis (MS). In this review, we explore the synthesis, regulation, transport, and functional roles of cholesterol in the CNS. We discuss in detail the associations between cholesterol homeostasis imbalance and CNS diseases including AD, HD, and MS, highlighting the significant role of cholesterol metabolism abnormalities in the development of these diseases. Sterol regulatory element binding protein-2 (SREBP2) and liver X receptor (LXR) are two critical transcription factors that play central roles in cholesterol synthesis and reverse transport, respectively. Their cooperative interaction finely tunes the balance of brain cholesterol metabolism, presenting potential therapeutic value for preventing and treating CNS diseases. We particularly emphasize the alterations in SREBP2 and LXR under pathological conditions and their impacts on disease progression. This review summarizes current therapeutic agents targeting these two pathways, with the hope of broadening the perspectives of CNS drug developers and encouraging further study into SREBP2 and LXR-related therapies for CNS diseases.
Collapse
Affiliation(s)
- Ning-Qi Wang
- Institute of Clinical Pharmacology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, 450001, China
- Institute of Clinical Medicine, The First Affiliated Hospital, Zhengzhou University, Zhengzhou, 450001, China
| | - Pei-Xiang Sun
- Institute of Clinical Pharmacology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, 450001, China
- Institute of Clinical Medicine, The First Affiliated Hospital, Zhengzhou University, Zhengzhou, 450001, China
| | - Qi-Qi Shen
- Institute of Clinical Pharmacology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, 450001, China
- Institute of Clinical Medicine, The First Affiliated Hospital, Zhengzhou University, Zhengzhou, 450001, China
| | - Meng-Yan Deng
- Institute of Clinical Pharmacology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, 450001, China.
| |
Collapse
|
3
|
He S, Xu Z, Han X. Lipidome disruption in Alzheimer's disease brain: detection, pathological mechanisms, and therapeutic implications. Mol Neurodegener 2025; 20:11. [PMID: 39871348 PMCID: PMC11773937 DOI: 10.1186/s13024-025-00803-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Accepted: 01/15/2025] [Indexed: 01/29/2025] Open
Abstract
Alzheimer's disease (AD) is among the most devastating neurodegenerative disorders with limited treatment options. Emerging evidence points to the involvement of lipid dysregulation in the development of AD. Nevertheless, the precise lipidomic landscape and the mechanistic roles of lipids in disease pathology remain poorly understood. This review aims to highlight the significance of lipidomics and lipid-targeting approaches in the diagnosis and treatment of AD. We summarized the connection between lipid dysregulation in the human brain and AD at both genetic and lipid species levels. We briefly introduced lipidomics technologies and discussed potential challenges and areas of future advancements in the lipidomics field for AD research. To elucidate the central role of lipids in converging multiple pathological aspects of AD, we reviewed the current knowledge on the interplay between lipids and major AD features, including amyloid beta, tau, and neuroinflammation. Finally, we assessed the progresses and obstacles in lipid-based therapeutics and proposed potential strategies for leveraging lipidomics in the treatment of AD.
Collapse
Affiliation(s)
- Sijia He
- Sam and Ann Barshop Institute for Longevity and Aging Studies, University of Texas Health Science Center at San Antonio, San Antonio, TX, 78229, USA
- Department of Cellular and Integrative Physiology, University of Texas Health Science Center at San Antonio, San Antonio, TX, 78299, USA
| | - Ziying Xu
- Sam and Ann Barshop Institute for Longevity and Aging Studies, University of Texas Health Science Center at San Antonio, San Antonio, TX, 78229, USA
| | - Xianlin Han
- Sam and Ann Barshop Institute for Longevity and Aging Studies, University of Texas Health Science Center at San Antonio, San Antonio, TX, 78229, USA.
- Division of Diabetes, Department of Medicine, University of Texas Health Science Center at San Antonio, San Antonio, TX, 78299, USA.
| |
Collapse
|
4
|
Zhang X, Chen C, Liu Y. Navigating the metabolic maze: anomalies in fatty acid and cholesterol processes in Alzheimer's astrocytes. Alzheimers Res Ther 2024; 16:63. [PMID: 38521950 PMCID: PMC10960454 DOI: 10.1186/s13195-024-01430-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Accepted: 03/13/2024] [Indexed: 03/25/2024]
Abstract
Alzheimer's disease (AD) is the most common cause of dementia, and its underlying mechanisms have been a subject of great interest. The mainstream theory of AD pathology suggests that the disease is primarily associated with tau protein and amyloid-beta (Aβ). However, an increasing body of research has revealed that abnormalities in lipid metabolism may be an important event throughout the pathophysiology of AD. Astrocytes, as important members of the lipid metabolism network in the brain, play a significant role in this event. The study of abnormal lipid metabolism in astrocytes provides a new perspective for understanding the pathogenesis of AD. This review focuses on the abnormal metabolism of fatty acids (FAs) and cholesterol in astrocytes in AD, and discusses it from three perspectives: lipid uptake, intracellular breakdown or synthesis metabolism, and efflux transport. We found that, despite the accumulation of their own fatty acids, astrocytes cannot efficiently uptake fatty acids from neurons, leading to fatty acid accumulation within neurons and resulting in lipotoxicity. In terms of cholesterol metabolism, astrocytes exhibit a decrease in endogenous synthesis due to the accumulation of exogenous cholesterol. Through a thorough investigation of these metabolic abnormalities, we can provide new insights for future therapeutic strategies by literature review to navigate this complex metabolic maze and bring hope to patients with Alzheimer's disease.
Collapse
Affiliation(s)
- Xiaoyu Zhang
- Department of Neurosurgery, Institute of Brain Diseases, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, 510515, China
| | - Chuanying Chen
- Department of Neurosurgery, Institute of Brain Diseases, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, 510515, China
- School of Traditional Chinese Medicine, Southern Medical University, 1838 North Guangzhou Avenue, Guangzhou, Guangdong, 510515, People's Republic of China
| | - Yi Liu
- Department of Neurosurgery, Institute of Brain Diseases, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, 510515, China.
| |
Collapse
|
5
|
Nazeri Z, Abdeveiszadeh N, Zarezade V, Azizidoost S, Cheraghzadeh M, Aberumand M, Kheirollah A. Investigating the Effect of Aspirin on apoAI-Induced ATP Binding Cassette Transporter 1 Protein Expression and Cholesterol Efflux in Human Astrocytes. Adv Biomed Res 2024; 13:16. [PMID: 38525390 PMCID: PMC10958728 DOI: 10.4103/abr.abr_417_22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 09/13/2023] [Accepted: 09/17/2023] [Indexed: 03/26/2024] Open
Abstract
Background Neurons need a high amount of cholesterol to maintain the stability of their membrane-rich structures. Astrocytes synthesize and distribute cholesterol to neurons, and ABCA1 is a key mediator of cholesterol efflux to generate HDL for cholesterol transport in the brain. Several studies imply the effect of aspirin on ABCA1 expression in peripheral cells such as macrophages. Here, we compared the effect of aspirin with apoA-I on ABCA1 protein expression and cholesterol efflux in human astrocytes. Materials and Methods Human astrocytes were cultured, and the effects of aspirin on the expression and protein levels of ABCA1 were investigated through RT-PCR and Western blot analysis. Additionally, the effect of co-treatment with apoA-I and aspirin on ABCA1 protein level and cholesterol efflux was evaluated. Results Dose and time-course experiments showed that the maximum effect of aspirin on ABCA1 expression occurred at a concentration of 0.5 mM after 12 h of incubation. RT-PCR and western blot data showed that aspirin upregulates ABCA1 expression by up to 4.7-fold and its protein level by 67%. Additionally, co-treatment with aspirin and apoA-I increased cholesterol release from astrocytes, indicating an additive effect of aspirin on apoAI-mediated cholesterol efflux. Conclusions The results suggest a potential role of aspirin in increasing ABCA1 expression and cholesterol efflux in astrocytes, similar to the effect of apoA-I. This indicates that aspirin could potentially regulate brain cholesterol balance and can be considered in certain neurological diseases, in particular in some neurological disorders related to cholesterol accumulation such as Alzheimer's disease.
Collapse
Affiliation(s)
- Zahra Nazeri
- Department of Clinical Biochemistry, Faculty of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
- Cellular and Molecular Research Center, Medical Basic Sciences Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Neda Abdeveiszadeh
- Department of Clinical Biochemistry, Faculty of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
- Cellular and Molecular Research Center, Medical Basic Sciences Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Vahid Zarezade
- Department of Biochemistry, School of Medicine, Behbahan Faculty of Medical Sciences, Behbahan, Iran
| | - Shirin Azizidoost
- Atherosclerosis Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Maryam Cheraghzadeh
- Department of Clinical Biochemistry, Faculty of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
- Cellular and Molecular Research Center, Medical Basic Sciences Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Mohammad Aberumand
- Department of Clinical Biochemistry, Faculty of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Alireza Kheirollah
- Department of Clinical Biochemistry, Faculty of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
- Cellular and Molecular Research Center, Medical Basic Sciences Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
- 548-E Borwell Research Building, Geisel School of Medicine at Dartmouth, Hanover, NH 03755, USA
| |
Collapse
|
6
|
Amber S, Zahid S. An in silico approach to identify potential downstream targets of miR-153 involved in Alzheimer's disease. Front Genet 2024; 15:1271404. [PMID: 38299037 PMCID: PMC10824926 DOI: 10.3389/fgene.2024.1271404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Accepted: 01/08/2024] [Indexed: 02/02/2024] Open
Abstract
Background: In recent years, microRNAs (miRNAs) have emerged as key players in the pathophysiology of multiple diseases including Alzheimer's disease (AD). Messenger RNA (mRNA) targeting for regulation of gene expression by miRNAs has been implicated in the annotation of disease pathophysiology as well as in the explication of their starring role in contemporary therapeutic interventions. One such miRNA is miR-153 which mediates the survival of cortical neurons and inhibits plaque formation. However, the core mRNA targets of miR-153 have not been fully illustrated. Objective: The present study aimed to elucidate the potential involvement of miR-153 in AD pathogenesis and to reveal its downstream targets. Methods: miRanda was used to identify AD-associated targets of miR-153. TargetScan, PicTar, miRmap, and miRDB were further used to validate these targets. STRING 12 was employed to assess the protein-protein interaction network while Gene ontology (GO) analysis was carried out to identify the molecular functions exhibited by these gene targets. Results: In silico analysis using miRanda predicted five important AD-related targets of miR-153, including APP, SORL1, PICALM, USF1, and PSEN1. All five target genes are negatively regulated by miR-153 and are substantially involved in AD pathogenesis. A protein interaction network using STRING 12 uncovered 30 potential interacting partners for SORL1, PICALM, and USF1. GO analysis revealed that miR-153 target genes play a critical role in neuronal survival, differentiation, exon guidance, amyloid precursor protein processing, and synapse formation. Conclusion: These findings unravel the potential role of miR-153 in the pathogenesis of AD and provide the basis for forthcoming experimental studies.
Collapse
Affiliation(s)
| | - Saadia Zahid
- Department of Healthcare Biotechnology, Neurobiology Research Laboratory, Atta-Ur-Rahman School of Applied Biosciences, National University of Sciences and Technology, Islamabad, Pakistan
| |
Collapse
|
7
|
Han S, Wu X, Zhu L, Lu H, Ling X, Luo Y, Hu Z, Zhou Y, Tang Y, Luo F. Whole grain germinated brown rice intake modulates the gut microbiota and alleviates hypertriglyceridemia and hypercholesterolemia in high fat diet-fed mice. Food Funct 2024; 15:265-283. [PMID: 38059679 DOI: 10.1039/d3fo03288d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/08/2023]
Abstract
Hyperlipidemia is a common clinical disorder of lipid metabolism in modern society and is considered to be one of the major risk factors leading to cardiovascular-related diseases. Germinated brown rice (GBR) is a typical whole grain food. The lipid-lowering effect of GBR has received increasing attention, but its mechanism of action is not fully understood. The gut microbiota has been proposed as a novel target for the treatment of hyperlipidemia. The aim of this study was to investigate the effects of GBR on the gut microbiota and lipid metabolism in high-fat diet (HFD)-fed C57BL/6J mice. The effect of GBR on hyperlipidemia was evaluated by measuring blood lipid levels and by pathological examination. The gut microbiota was detected by 16S rRNA sequencing, and the protein and mRNA expression levels involved in cholesterol metabolism were detected by western blotting and RT-qPCR to find potential correlations. The results showed that GBR supplementation could effectively reduce the levels of TC, TG, LDL-C and HDL-C in the serum and alleviate the excessive accumulation of fat droplets caused by HFD. Moreover, GBR intervention improved HFD-fed gut microbiota disorder via increasing the diversity of the gut microbiota, reducing the Firmicutes/Bacteroidetes ratio, and improving gut barrier damage. In addition, GBR could inhibit endogenous cholesterol synthesis and promote cholesterol transport and excretion. These findings suggest that GBR may be a competitive candidate for the development of functional foods to prevent abnormal lipid metabolism.
Collapse
Affiliation(s)
- Shuai Han
- Laboratory of Molecular Nutrition, College of Food Science and Engineering, Central South University of Forestry and Technology, 498 Southern Shaoshan Road, Changsha, Hunan 410004, P. R. China.
| | - Xiuxiu Wu
- Laboratory of Molecular Nutrition, College of Food Science and Engineering, Central South University of Forestry and Technology, 498 Southern Shaoshan Road, Changsha, Hunan 410004, P. R. China.
| | - Lingfeng Zhu
- Laboratory of Molecular Nutrition, College of Food Science and Engineering, Central South University of Forestry and Technology, 498 Southern Shaoshan Road, Changsha, Hunan 410004, P. R. China.
| | - Han Lu
- Laboratory of Molecular Nutrition, College of Food Science and Engineering, Central South University of Forestry and Technology, 498 Southern Shaoshan Road, Changsha, Hunan 410004, P. R. China.
| | - Xuke Ling
- Laboratory of Molecular Nutrition, College of Food Science and Engineering, Central South University of Forestry and Technology, 498 Southern Shaoshan Road, Changsha, Hunan 410004, P. R. China.
| | - Yi Luo
- Department of Clinic Medicine, Xiangya School of Medicine, Central South University, Changsha, Hunan, 410008, China
| | - Zuomin Hu
- Laboratory of Molecular Nutrition, College of Food Science and Engineering, Central South University of Forestry and Technology, 498 Southern Shaoshan Road, Changsha, Hunan 410004, P. R. China.
| | - Yaping Zhou
- Laboratory of Molecular Nutrition, College of Food Science and Engineering, Central South University of Forestry and Technology, 498 Southern Shaoshan Road, Changsha, Hunan 410004, P. R. China.
| | - Yiping Tang
- National Engineering Research Center of Rice and Byproduct Deep Processing, 498 South Shaoshan Road, Changsha, Hunan 410004, P. R. China
| | - Feijun Luo
- Laboratory of Molecular Nutrition, College of Food Science and Engineering, Central South University of Forestry and Technology, 498 Southern Shaoshan Road, Changsha, Hunan 410004, P. R. China.
- National Engineering Research Center of Rice and Byproduct Deep Processing, 498 South Shaoshan Road, Changsha, Hunan 410004, P. R. China
| |
Collapse
|
8
|
Zarezade V, Nazeri Z, Azizidoost S, Cheraghzadeh M, Babaahmadi-Rezaei H, Kheirollah A. Paradoxical effect of Aβ on protein levels of ABCA1 in astrocytes, microglia, and neurons isolated from C57BL/6 mice: an in vitro and in silico study to elucidate the effect of Aβ on ABCA1 in the brain cells. J Biomol Struct Dyn 2024; 42:274-287. [PMID: 37105231 DOI: 10.1080/07391102.2023.2201835] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Accepted: 03/10/2023] [Indexed: 04/29/2023]
Abstract
Impaired cholesterol metabolism has been reported in Alzheimer's disease. Since ABCA1 is one of the main players in the brain's cholesterol homeostasis, here we used the in-vitro and in-silico experiments to investigate the effect of Aβ on ABCA1 protein levels in microglia, astrocytes, and neurons in mice. Microglia, astrocytes, and neurons were cultured and exposed to beta amyloid. ABCA1 in cell lysates was determined by Western blotting, and cholesterol efflux was measured in the conditioned media. Molecular docking, molecular dynamics simulations, and MM-GBSA analysis were conducted to gain a better understanding of the effects of Aβ on ABCA1. In response to Aβ, the protein levels of ABCA1 increase significantly in microglia, astrocytes, and neurons; however, its ability to enhance cholesterol efflux is diminished. Aβ inhibited the function of ABCA1 by obstructing the extracellular tunnel that transports lipids outside the cell, as determined by molecular docking. MD simulation analysis validated these findings. Our results demonstrated that Aβ could increase ABCA1 protein levels in various brain cells, regardless of cell type. Molecular docking, molecular dynamics simulation, and MM-GBSA studies indicate that Aβ has a significant effect on the structural conformation of ABCA1, possibly interfering with its function. We believe that the conformational changes of ABCA1 will inhibit its ability to subsequently release cellular cholesterol. Aβ may obstruct the extracellular tunnel of ABCA1, rendering it less accessible to proteases such as the calpain family, which may explain the increase in ABCA1 levels but decrease in its function.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Vahid Zarezade
- Hyperlipidemia Research Center, Department of Clinical Biochemistry, Faculty of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Zahra Nazeri
- Department of Biochemistry, Medical School, Cellular & Molecular Research Center, Medical Basic Sciences Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Shirin Azizidoost
- Atherosclerosis Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Maryam Cheraghzadeh
- Department of Biochemistry, Medical School, Cellular & Molecular Research Center, Medical Basic Sciences Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Hossein Babaahmadi-Rezaei
- Hyperlipidemia Research Center, Department of Clinical Biochemistry, Faculty of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Alireza Kheirollah
- Department of Biochemistry, Medical School, Cellular & Molecular Research Center, Medical Basic Sciences Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| |
Collapse
|
9
|
Zhou X, Wu X, Wang R, Han L, Li H, Zhao W. Mechanisms of 3-Hydroxyl 3-Methylglutaryl CoA Reductase in Alzheimer's Disease. Int J Mol Sci 2023; 25:170. [PMID: 38203341 PMCID: PMC10778631 DOI: 10.3390/ijms25010170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 12/16/2023] [Accepted: 12/19/2023] [Indexed: 01/12/2024] Open
Abstract
Alzheimer's disease (AD) is the most common neurodegenerative disease worldwide and has a high incidence in the elderly. Unfortunately, there is no effective therapy for AD owing to its complicated pathogenesis. However, the development of lipid-lowering anti-inflammatory drugs has heralded a new era in the treatment of Alzheimer's disease. Several studies in recent years have shown that lipid metabolic dysregulation and neuroinflammation are associated with the pathogenesis of AD. 3-Hydroxyl 3-methylglutaryl CoA reductase (HMGCR) is a rate-limiting enzyme in cholesterol synthesis that plays a key role in cholesterol metabolism. HMGCR inhibitors, known as statins, have changed from being solely lipid-lowering agents to neuroprotective compounds because of their effects on lipid levels and inflammation. In this review, we first summarize the main regulatory mechanism of HMGCR affecting cholesterol biosynthesis. We also discuss the pathogenesis of AD induced by HMGCR, including disordered lipid metabolism, oxidative stress, inflammation, microglial proliferation, and amyloid-β (Aβ) deposition. Subsequently, we explain the possibility of HMGCR as a potential target for AD treatment. Statins-based AD treatment is an ascent field and currently quite controversial; therefore, we also elaborate on the current application prospects and limitations of statins in AD treatment.
Collapse
Affiliation(s)
- Xun Zhou
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou 510405, China; (X.Z.); (X.W.); (R.W.); (L.H.)
- Department of Endocrinology, The Fourth Clinical Medical College of Guangzhou University of Chinese Medicine, Shenzhen 518033, China;
| | - Xiaolang Wu
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou 510405, China; (X.Z.); (X.W.); (R.W.); (L.H.)
| | - Rui Wang
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou 510405, China; (X.Z.); (X.W.); (R.W.); (L.H.)
| | - Lu Han
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou 510405, China; (X.Z.); (X.W.); (R.W.); (L.H.)
| | - Huilin Li
- Department of Endocrinology, The Fourth Clinical Medical College of Guangzhou University of Chinese Medicine, Shenzhen 518033, China;
| | - Wei Zhao
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou 510405, China; (X.Z.); (X.W.); (R.W.); (L.H.)
| |
Collapse
|
10
|
Valencia-Olvera AC, Balu D, Bellur S, McNally T, Saleh Y, Pham D, Ghura S, York J, Johansson JO, LaDu MJ, Tai L. A novel apoE-mimetic increases brain apoE levels, reduces Aβ pathology and improves memory when treated before onset of pathology in male mice that express APOE3. Alzheimers Res Ther 2023; 15:216. [PMID: 38102668 PMCID: PMC10722727 DOI: 10.1186/s13195-023-01353-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Accepted: 11/15/2023] [Indexed: 12/17/2023]
Abstract
BACKGROUND Alzheimer's disease (AD) is characterized by cognitive dysfunction and amyloid plaques composed of the amyloid-beta peptide (Aβ). APOE is the greatest genetic risk for AD with APOE4 increasing risk up to ~ 15-fold compared to APOE3. Evidence suggests that levels and lipidation of the apoE protein could regulate AD progression. In glia, apoE is lipidated via cholesterol efflux from intracellular pools, primarily by the ATP-binding cassette transporter A1 (ABCA1). Therefore, increasing ABCA1 activity is suggested to be a therapeutic approach for AD. CS-6253 (CS) is a novel apoE mimetic peptide that was developed to bind and stabilize ABCA1 and maintain its localization into the plasma membrane therefore promoting cholesterol efflux. The goal of this study was to determine whether CS could modulate apoE levels and lipidation, Aβ pathology, and behavior in a model that expresses human APOE and overproduce Aβ. METHODS In vitro, APOE3-glia or APOE4-glia were treated with CS. In vivo, male and female, E3FAD (5xFAD+/-/APOE3+/+) and E4FAD (5xFAD+/-/APOE4+/+) mice were treated with CS via intraperitoneal injection at early (from 4 to 8 months of age) and late ages (from 8 to 10 months of age). ApoE levels, ABCA1 levels and, apoE lipidation were measured by western blot and ELISA. Aβ and amyloid levels were assessed by histochemistry and ELISA. Learning and memory were tested by Morris Water Maze and synaptic proteins were measured by Western blot. RESULTS CS treatment increased apoE levels and cholesterol efflux in primary glial cultures. In young male E3FAD mice, CS treatment increased soluble apoE and lipid-associated apoE, reduced soluble oAβ and insoluble Aβ levels as well as Aβ and amyloid deposition, and improved memory and synaptic protein levels. CS treatment did not induce any therapeutic benefits in young female E3FAD and E4FAD mice or in any groups when treatment was started at later ages. CONCLUSIONS CS treatment reduced Aβ pathology and improved memory only in young male E3FAD, the cohort with the least AD pathology. Therefore, the degree of Aβ pathology or Aβ overproduction may impact the ability of targeting ABCA1 to be an effective AD therapeutic. This suggests that ABCA1-stabilizing treatment by CS-6253 works best in conditions of modest Aβ levels.
Collapse
Affiliation(s)
- Ana C Valencia-Olvera
- Department of Anatomy and Cell Biology, University of Illinois at Chicago, Chicago, IL, USA
| | - Deebika Balu
- Department of Anatomy and Cell Biology, University of Illinois at Chicago, Chicago, IL, USA
| | - Shreya Bellur
- Department of Anatomy and Cell Biology, University of Illinois at Chicago, Chicago, IL, USA
| | - Thomas McNally
- Department of Surgery, University of Washington, Seattle, WA, USA
| | - Yaseen Saleh
- University of Miami/Jackson Healthcare System, Miami, FL, USA
| | - Don Pham
- Department of Dentistry, University of Illinois at Chicago, Chicago, IL, USA
| | - Shivesh Ghura
- Department of Pharmacology, University of Pennsylvania, Philadelphia, PA, USA
| | - Jason York
- Department of Anatomy and Cell Biology, University of Illinois at Chicago, Chicago, IL, USA
| | | | - Mary Jo LaDu
- Department of Anatomy and Cell Biology, University of Illinois at Chicago, Chicago, IL, USA
| | - Leon Tai
- Department of Anatomy and Cell Biology, University of Illinois at Chicago, Chicago, IL, USA.
| |
Collapse
|
11
|
Kang SH, Yoo H, Cheon BK, Park YH, Kim SJ, Ham H, Jang H, Kim HJ, Oh K, Koh SB, Na DL, Kim JP, Seo SW. Distinct effects of cholesterol profile components on amyloid and vascular burdens. Alzheimers Res Ther 2023; 15:197. [PMID: 37950256 PMCID: PMC10636929 DOI: 10.1186/s13195-023-01342-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2023] [Accepted: 10/25/2023] [Indexed: 11/12/2023]
Abstract
BACKGROUND Cholesterol plays important roles in β-amyloid (Aβ) metabolism and atherosclerosis. However, the relationships of plasma cholesterol levels with Aβ and cerebral small vessel disease (CSVD) burdens are not fully understood in Asians. Herein, we investigated the relationships between plasma cholesterol profile components and Aβ and CSVD burdens in a large, non-demented Korean cohort. METHODS We enrolled 1,175 non-demented participants (456 with unimpaired cognition [CU] and 719 with mild cognitive impairment [MCI]) aged ≥ 45 years who underwent Aβ PET at the Samsung Medical Center in Korea. We performed linear regression analyses with each cholesterol (low-density lipoprotein cholesterol [LDL-c], high-density lipoprotein cholesterol [HDL-c], and triglyceride) level as a predictor and each image marker (Aβ uptake on PET, white matter hyperintensity [WMH] volume, and hippocampal volume) as an outcome after controlling for potential confounders. RESULTS Increased LDL-c levels (β = 0.014 to 0.115, p = 0.013) were associated with greater Aβ uptake, independent of the APOE e4 allele genotype and lipid-lowering medication. Decreased HDL-c levels (β = - 0.133 to - 0.006, p = 0.032) were predictive of higher WMH volumes. Increased LDL-c levels were also associated with decreased hippocampal volume (direct effect β = - 0.053, p = 0.040), which was partially mediated by Aβ uptake (indirect effect β = - 0.018, p = 0.006). CONCLUSIONS Our findings highlight that increased LDL-c and decreased HDL-c levels are important risk factors for Aβ and CSVD burdens, respectively. Furthermore, considering that plasma cholesterol profile components are potentially modified by diet, exercise, and pharmacological agents, our results provide evidence that regulating LDL-c and HDL-c levels is a potential strategy to prevent dementia.
Collapse
Grants
- 2022R1I1A1A01056956 Basic Science Research Program through the National Research Foundation of Korea(NRF) funded by the Ministry of Education
- HI19C1132 a grant of the Korean Health Technology R&D Project, Ministry of Health & Welfare, Republic of Korea
- grant number: HU20C0111, HU22C0170 a grant of the Korea Health Technology R&D Project through the Korea Health Industry Development Institute (KHIDI), funded by the Ministry of Health & Welfare and Ministry of science and ICT, Republic of Korea
- NRF-2019R1A5A2027340, NRF-2022R1F1A1063966 the National Research Foundation of Korea(NRF) grant funded by the Korea government(MSIT)
- 2021-ER1006-01 the "National Institute of Health" research project
- a grant of the Korean Health Technology R&D Project, Ministry of Health & Welfare, Republic of Korea
- a grant of the Korea Health Technology R&D Project through the Korea Health Industry Development Institute (KHIDI), funded by the Ministry of Health & Welfare and Ministry of science and ICT, Republic of Korea
Collapse
Affiliation(s)
- Sung Hoon Kang
- Department of Neurology, Sungkyunkwan University School of Medicine, Samsung Medical Center, 81 Irwon-ro, Gangnam-gu, Seoul, 06351, Korea
- Department of Neurology, Korea University Guro Hospital, Korea University College of Medicine, Seoul, Korea
| | - Heejin Yoo
- Department of Neurology, Sungkyunkwan University School of Medicine, Samsung Medical Center, 81 Irwon-ro, Gangnam-gu, Seoul, 06351, Korea
- Alzheimer's Disease Convergence Research Center, Samsung Medical Center, Seoul, Korea
| | - Bo Kyoung Cheon
- Department of Neurology, Sungkyunkwan University School of Medicine, Samsung Medical Center, 81 Irwon-ro, Gangnam-gu, Seoul, 06351, Korea
- Department of Digital Health, SAIHST, Sungkyunkwan University, Seoul, Korea
- Department of Intelligent Precision Healthcare Convergence, Sungkyunkwan University, Suwon, Korea
| | - Yu Hyun Park
- Department of Neurology, Sungkyunkwan University School of Medicine, Samsung Medical Center, 81 Irwon-ro, Gangnam-gu, Seoul, 06351, Korea
- Department of Intelligent Precision Healthcare Convergence, Sungkyunkwan University, Suwon, Korea
- Department of Health Sciences and Technology, SAIHST, Sungkyunkwan University, Seoul, Korea
| | - Soo-Jong Kim
- Department of Neurology, Sungkyunkwan University School of Medicine, Samsung Medical Center, 81 Irwon-ro, Gangnam-gu, Seoul, 06351, Korea
- Department of Intelligent Precision Healthcare Convergence, Sungkyunkwan University, Suwon, Korea
- Department of Health Sciences and Technology, SAIHST, Sungkyunkwan University, Seoul, Korea
| | - Hongki Ham
- Department of Neurology, Sungkyunkwan University School of Medicine, Samsung Medical Center, 81 Irwon-ro, Gangnam-gu, Seoul, 06351, Korea
- Department of Digital Health, SAIHST, Sungkyunkwan University, Seoul, Korea
- Department of Intelligent Precision Healthcare Convergence, Sungkyunkwan University, Suwon, Korea
| | - Hyemin Jang
- Department of Neurology, Sungkyunkwan University School of Medicine, Samsung Medical Center, 81 Irwon-ro, Gangnam-gu, Seoul, 06351, Korea
| | - Hee Jin Kim
- Department of Neurology, Sungkyunkwan University School of Medicine, Samsung Medical Center, 81 Irwon-ro, Gangnam-gu, Seoul, 06351, Korea
| | - Kyungmi Oh
- Department of Neurology, Korea University Guro Hospital, Korea University College of Medicine, Seoul, Korea
| | - Seong-Beom Koh
- Department of Neurology, Korea University Guro Hospital, Korea University College of Medicine, Seoul, Korea
| | - Duk L Na
- Department of Neurology, Sungkyunkwan University School of Medicine, Samsung Medical Center, 81 Irwon-ro, Gangnam-gu, Seoul, 06351, Korea
| | - Jun Pyo Kim
- Department of Neurology, Sungkyunkwan University School of Medicine, Samsung Medical Center, 81 Irwon-ro, Gangnam-gu, Seoul, 06351, Korea.
- Alzheimer's Disease Convergence Research Center, Samsung Medical Center, Seoul, Korea.
| | - Sang Won Seo
- Department of Neurology, Sungkyunkwan University School of Medicine, Samsung Medical Center, 81 Irwon-ro, Gangnam-gu, Seoul, 06351, Korea.
- Alzheimer's Disease Convergence Research Center, Samsung Medical Center, Seoul, Korea.
- Department of Digital Health, SAIHST, Sungkyunkwan University, Seoul, Korea.
- Department of Intelligent Precision Healthcare Convergence, Sungkyunkwan University, Suwon, Korea.
- Department of Health Sciences and Technology, SAIHST, Sungkyunkwan University, Seoul, Korea.
| |
Collapse
|
12
|
Rudajev V, Novotny J. Cholesterol-dependent amyloid β production: space for multifarious interactions between amyloid precursor protein, secretases, and cholesterol. Cell Biosci 2023; 13:171. [PMID: 37705117 PMCID: PMC10500844 DOI: 10.1186/s13578-023-01127-y] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Accepted: 09/05/2023] [Indexed: 09/15/2023] Open
Abstract
Amyloid β is considered a key player in the development and progression of Alzheimer's disease (AD). Many studies investigating the effect of statins on lowering cholesterol suggest that there may be a link between cholesterol levels and AD pathology. Since cholesterol is one of the most abundant lipid molecules, especially in brain tissue, it affects most membrane-related processes, including the formation of the most dangerous form of amyloid β, Aβ42. The entire Aβ production system, which includes the amyloid precursor protein (APP), β-secretase, and the complex of γ-secretase, is highly dependent on membrane cholesterol content. Moreover, cholesterol can affect amyloidogenesis in many ways. Cholesterol influences the stability and activity of secretases, but also dictates their partitioning into specific cellular compartments and cholesterol-enriched lipid rafts, where the amyloidogenic machinery is predominantly localized. The most complicated relationships have been found in the interaction between cholesterol and APP, where cholesterol affects not only APP localization but also the precise character of APP dimerization and APP processing by γ-secretase, which is important for the production of Aβ of different lengths. In this review, we describe the intricate web of interdependence between cellular cholesterol levels, cholesterol membrane distribution, and cholesterol-dependent production of Aβ, the major player in AD.
Collapse
Affiliation(s)
- Vladimir Rudajev
- Department of Physiology, Faculty of Science, Charles University, Prague, Czech Republic
| | - Jiri Novotny
- Department of Physiology, Faculty of Science, Charles University, Prague, Czech Republic
| |
Collapse
|
13
|
Paseban T, Alavi MS, Etemad L, Roohbakhsh A. The role of the ATP-Binding Cassette A1 (ABCA1) in neurological disorders: a mechanistic review. Expert Opin Ther Targets 2023; 27:531-552. [PMID: 37428709 DOI: 10.1080/14728222.2023.2235718] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Accepted: 07/09/2023] [Indexed: 07/12/2023]
Abstract
INTRODUCTION Cholesterol homeostasis is critical for normal brain function. It is tightly controlled by various biological elements. ATP-binding cassette transporter A1 (ABCA1) is a membrane transporter that effluxes cholesterol from cells, particularly astrocytes, into the extracellular space. The recent studies pertaining to ABCA1's role in CNS disorders were included in this study. AREAS COVERED In this comprehensive literature review, preclinical and human studies showed that ABCA1 has a significant role in the following diseases or disorders: Alzheimer's disease, Parkinson's disease, Huntington's disease, multiple sclerosis, neuropathy, anxiety, depression, psychosis, epilepsy, stroke, and brain ischemia and trauma. EXPERT OPINION ABCA1 via modulating normal and aberrant brain functions such as apoptosis, phagocytosis, BBB leakage, neuroinflammation, amyloid β efflux, myelination, synaptogenesis, neurite outgrowth, and neurotransmission promotes beneficial effects in aforementioned diseases. ABCA1 is a key molecule in the CNS. By boosting its expression or function, some CNS disorders may be resolved. In preclinical studies, liver X receptor agonists have shown promise in treating CNS disorders via ABCA1 and apoE enhancement.
Collapse
Affiliation(s)
- Tahere Paseban
- Department of Pharmacodynamics and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mohaddeseh Sadat Alavi
- Pharmacological Research Center of Medicinal Plants, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Leila Etemad
- International UNESCO Center for Health-Related Basic Sciences and Human Nutrition, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Ali Roohbakhsh
- Department of Pharmacodynamics and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
- Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
14
|
Nazeri Z, Mohammadzadeh G, Rashidi M, Azizdoost S, Cheraghzadeh M, Kheirollah A. 24-Hydroxycholesterol Moderates the Effects of Amyloid-β on Expression of HMG-CoA Reductase and ABCA1 Proteins in Mouse Astrocytes. Adv Biomed Res 2023; 12:167. [PMID: 37564436 PMCID: PMC10410428 DOI: 10.4103/abr.abr_245_22] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2022] [Revised: 10/21/2022] [Accepted: 11/13/2022] [Indexed: 08/12/2023] Open
Abstract
Background Elevated brain cholesterol increases the risk of Alzheimer's disease. Production of 24-hydroxycholesterol (24s-OHC) by neurons prevents cholesterol accumulation in the brain. In this study, we investigated the effect of 24s-OHC on the HMG-COA reductase and ABCA1 which are involved in the brain cholesterol homeostasis with or without β-amyloid in astrocytes. Methods and Materials Astrocytes were treated with 24s-OHC with or without Aβ. Western blot and real-time polymerase chain reaction were done to detect protein and gene expression of β-hydroxy-3-methyl-glutaryl-coenzyme A reductase (HMGCR) and ABCA1, respectively. Cholesterol release was determined using a quantitation kit. Results Protein levels of HMGCR and ABCA1 were significantly increased by Aβ; however, the 24s-OHC was able to restore their levels and diminish the effect of amyloid-β. Aβ did not have a significant effect on HMGCR expression, while 24s-OHC reduced it by 68%. Aβ-induced ABCA1 expression did not increase cholesterol efflux as the lower levels of cholesterol in conditioned medium of Aβ-treated cells were found. Conclusion Our novel findings show that Aβ affects two key elements in the brain cholesterol homeostasis, HMGCR and ABCA1, which are crucial in cholesterol synthesis and efflux. Since 24s-OHC could suppress the Aβ effects on enhancement of HMGCR and ABCA1, therefore the cytochrome P450 46A1 (Cyp46A1), which is exclusively expressed in the central nervous system and responsible for producing of 24s-OHC, could consider as a therapeutic target in the cholesterol-related neurodegenerative diseases such as Alzheimer's disease.
Collapse
Affiliation(s)
- Zahra Nazeri
- Department of Biochemistry, Faculty of Medicine, Cellular and Molecular Research Center, Medical Basic Sciences Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Ghorban Mohammadzadeh
- Department of Biochemistry, Faculty of Medicine, Cellular and Molecular Research Center, Medical Basic Sciences Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Mojtaba Rashidi
- Department of Biochemistry, Faculty of Medicine, Cellular and Molecular Research Center, Medical Basic Sciences Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Shirin Azizdoost
- Atherosclerosis Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Maryam Cheraghzadeh
- Department of Biochemistry, Faculty of Medicine, Cellular and Molecular Research Center, Medical Basic Sciences Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Alireza Kheirollah
- Department of Biochemistry, Faculty of Medicine, Cellular and Molecular Research Center, Medical Basic Sciences Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| |
Collapse
|
15
|
Huang T, Xiao Y, Zhang Y, Ge Y, Gao J. Combination of single-nucleus and bulk RNA-seq reveals the molecular mechanism of thalamus haemorrhage-induced central poststroke pain. Front Immunol 2023; 14:1174008. [PMID: 37153564 PMCID: PMC10157064 DOI: 10.3389/fimmu.2023.1174008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2023] [Accepted: 04/10/2023] [Indexed: 05/09/2023] Open
Abstract
Central poststroke pain (CPSP) induced by thalamic haemorrhage (TH) can be continuous or intermittent and is accompanied by paresthesia, which seriously affects patient quality of life. Advanced insights into CPSP mechanisms and therapeutic strategies require a deeper understanding of the molecular processes of the thalamus. Here, using single-nucleus RNA sequencing (snRNA-seq), we sequenced the transcriptomes of 32332 brain cells, which revealed a total of four major cell types within the four thalamic samples from mice. Compared with the control group, the experimental group possessed the higher sensitivity to mechanical, thermal, and cold stimuli, and increased microglia numbers and decreased neuron numbers. We analysed a collection of differentially expressed genes and neuronal marker genes obtained from bulk RNA sequencing (bulk RNA-seq) data and found that Apoe, Abca1, and Hexb were key genes verified by immunofluorescence (IF). Immune infiltration analysis found that these key genes were closely related to macrophages, T cells, related chemokines, immune stimulators and receptors. Gene Ontology (GO) enrichment analysis also showed that the key genes were enriched in biological processes such as protein export from nucleus and protein sumoylation. In summary, using large-scale snRNA-seq, we have defined the transcriptional and cellular diversity in the brain after TH. Our identification of discrete cell types and differentially expressed genes within the thalamus can facilitate the development of new CPSP therapeutics.
Collapse
Affiliation(s)
- Tianfeng Huang
- Northern Jiangsu People's Hospital Affiliated to Yangzhou University/Clinical Medical College, Yangzhou University, Yangzhou, Jiangsu, China
- Yangzhou Key Laboratory of Anesthesiology, Northern Jiangsu People's Hospital, Yangzhou, Jiangsu, China
| | - Yinggang Xiao
- Northern Jiangsu People's Hospital Affiliated to Yangzhou University/Clinical Medical College, Yangzhou University, Yangzhou, Jiangsu, China
- Yangzhou Key Laboratory of Anesthesiology, Northern Jiangsu People's Hospital, Yangzhou, Jiangsu, China
| | - Yang Zhang
- Northern Jiangsu People's Hospital Affiliated to Yangzhou University/Clinical Medical College, Yangzhou University, Yangzhou, Jiangsu, China
- Yangzhou Key Laboratory of Anesthesiology, Northern Jiangsu People's Hospital, Yangzhou, Jiangsu, China
| | - Yali Ge
- Northern Jiangsu People's Hospital Affiliated to Yangzhou University/Clinical Medical College, Yangzhou University, Yangzhou, Jiangsu, China
- Yangzhou Key Laboratory of Anesthesiology, Northern Jiangsu People's Hospital, Yangzhou, Jiangsu, China
| | - Ju Gao
- Northern Jiangsu People's Hospital Affiliated to Yangzhou University/Clinical Medical College, Yangzhou University, Yangzhou, Jiangsu, China
- Yangzhou Key Laboratory of Anesthesiology, Northern Jiangsu People's Hospital, Yangzhou, Jiangsu, China
| |
Collapse
|
16
|
Zhu Y, Zhang J, Wang C, Zheng T, Di S, Wang Y, Fei W, Liang W, Wang L. Ameliorative Effect of Ethanolic Echinacea purpurea against Hyperthyroidism-Induced Oxidative Stress via AMRK and PPAR Signal Pathway Using Transcriptomics and Network Pharmacology Analysis. Int J Mol Sci 2022; 24:ijms24010187. [PMID: 36613632 PMCID: PMC9820381 DOI: 10.3390/ijms24010187] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 12/15/2022] [Accepted: 12/16/2022] [Indexed: 12/25/2022] Open
Abstract
Echinacea purpurea (L.) Moench (EP) is a well-known botanical supplement with antioxidant characteristics. However, the effects of EP on oxidative stress induced by hyperthyroidism have not yet been studied. This study was designed to evaluate the antioxidative effect of ethanolic Echinacea Purpurea (EEP) on hyperthyroidism-induced oxidative stress mice using an integrated strategy combining transcriptomics with network pharmacology analysis. Firstly, a hyperthyroidism mice model was induced via thyroxine (160 mg/kg) and EEP (1, 2, or 4 g/kg) once daily for 2 weeks. Body weight, thyroid-stimulating hormones, and oxidative stress markers were tested. Secondly, EEP regulating the potential genes at transcript level were analyzed. Thirdly, a network pharmacology based on the constituents of EEP identified using UPLC-Q-TOF-MS analysis was adopted. Finally, a joint analysis was performed to identify the key pathway. The results showed that EEP significantly changed the thyroid-stimulating hormones and oxidative stress markers. Meanwhile, RT-qPCR and Western Blotting demonstrated that the mechanism of the antioxidant effect of EEP reversed the mRNA expression of EHHADH, HMGCR and SLC27A2 and the protein expression of FABP and HMGCR in AMPK and PPAR signaling pathways. This study integrates transcriptomics with network pharmacology to reveal the mechanism of ameliorative effect of EEP on hyperthyroidism-induced oxidative stress.
Collapse
Affiliation(s)
- Yingli Zhu
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Jianjun Zhang
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100029, China
- Correspondence: (J.Z.); (L.W.)
| | - Chun Wang
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Ting Zheng
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Songrui Di
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Yinyin Wang
- School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Wenting Fei
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Weican Liang
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Linyuan Wang
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 100029, China
- Correspondence: (J.Z.); (L.W.)
| |
Collapse
|
17
|
Identification of potential inhibitors of brain-specific CYP46A1 from phytoconstituents in Indian traditional medicinal plants. JOURNAL OF PROTEINS AND PROTEOMICS 2022; 13:227-245. [PMCID: PMC9667835 DOI: 10.1007/s42485-022-00098-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Revised: 07/27/2022] [Accepted: 09/29/2022] [Indexed: 11/17/2022]
|
18
|
PCSK9 Affects Astrocyte Cholesterol Metabolism and Reduces Neuron Cholesterol Supplying In Vitro: Potential Implications in Alzheimer's Disease. Int J Mol Sci 2022; 23:ijms232012192. [PMID: 36293049 PMCID: PMC9602670 DOI: 10.3390/ijms232012192] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 10/04/2022] [Accepted: 10/11/2022] [Indexed: 12/02/2022] Open
Abstract
The Proprotein Convertase Subtilisin/Kexin Type 9 (PCSK9) involvement in Alzheimer’s disease (AD) is poorly investigated. We evaluated the in vitro PCSK9 modulation of astrocyte cholesterol metabolism and neuronal cholesterol supplying, which is fundamental for neuronal functions. Moreover, we investigated PCSK9 neurotoxic effects. In human astrocytoma cells, PCSK9 reduced cholesterol content (−20%; p < 0.05), with a greater effect in presence of beta amyloid peptide (Aβ) (−37%; p < 0.01). PCSK9 increased cholesterol synthesis and reduced the uptake of apoE-HDL-derived cholesterol (−36%; p < 0.0001), as well as the LDL receptor (LDLR) and the apoE receptor 2 (ApoER2) expression (−66% and −31%, respectively; p < 0.01). PCSK9 did not modulate ABCA1- and ABCG1-cholesterol efflux, ABCA1 levels, or membrane cholesterol. Conversely, ABCA1 expression and activity, as well as membrane cholesterol, were reduced by Aβ (p < 0.05). In human neuronal cells, PCSK9 reduced apoE-HDL-derived cholesterol uptake (−41%; p < 0.001) and LDLR/apoER2 expression (p < 0.05). Reduced cholesterol internalization occurred also in PCSK9-overexpressing neurons exposed to an astrocyte-conditioned medium (−39%; p < 0.001). PCSK9 reduced neuronal cholesterol content overall (−29%; p < 0.05) and increased the Aβ-induced neurotoxicity (p < 0.0001). Our data revealed an interfering effect of PCSK9, in cooperation with Aβ, on brain cholesterol metabolism leading to neuronal cholesterol reduction, a potentially deleterious effect. PCSK9 also exerted a neurotoxic effect, and thus represents a potential pharmacological target in AD.
Collapse
|
19
|
The "Cerebrospinal Fluid Sink Therapeutic Strategy" in Alzheimer's Disease-From Theory to Design of Applied Systems. Biomedicines 2022; 10:biomedicines10071509. [PMID: 35884814 PMCID: PMC9313192 DOI: 10.3390/biomedicines10071509] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Revised: 06/23/2022] [Accepted: 06/24/2022] [Indexed: 12/28/2022] Open
Abstract
Alzheimer’s disease (AD) is a global health problem, with incidence and prevalence considered to increase during the next decades. However, no currently available effective treatment exists despite numerous clinical trials in progress. Moreover, although many hypotheses are accepted regarding the pathophysiological mechanisms of AD onset and evolution, there are still many unknowns about the disorder. A relatively new approach, based on the amyloid-beta dynamics among different biological compartments, is currently intensely discussed, as it seems to offer a promising solution with significant therapeutic impact. Known as the “cerebrospinal-fluid-sink therapeutic strategy”, part of the “three-sink therapeutic strategy”, this theoretical model focuses on the dynamics of amyloid-beta among the three main liquid compartments of the human body, namely blood, cerebrospinal fluid, and the (brain) interstitial fluid. In this context, this article aims to describe in detail the abovementioned hypothesis, by reviewing in the first part the most relevant anatomical and physiological aspects of amyloid-beta dynamics. Subsequently, explored therapeutic strategies based on the clearance of amyloid-beta from the cerebrospinal fluid level are presented, additionally highlighting their limitations. Finally, the originality and novelty of this work rely on the research experience of the authors, who focus on implantable devices and their utility in AD treatment.
Collapse
|
20
|
MacLean M, López-Díez R, Vasquez C, Gugger PF, Schmidt AM. Neuronal-glial communication perturbations in murine SOD1 G93A spinal cord. Commun Biol 2022; 5:177. [PMID: 35228715 PMCID: PMC8885678 DOI: 10.1038/s42003-022-03128-y] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Accepted: 02/08/2022] [Indexed: 12/13/2022] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is an incurable disease characterized by proteinaceous aggregate accumulation and neuroinflammation culminating in rapidly progressive lower and upper motor neuron death. To interrogate cell-intrinsic and inter-cell type perturbations in ALS, single-nucleus RNA sequencing was performed on the lumbar spinal cord in the murine ALS model SOD1G93A transgenic and littermate control mice at peri-symptomatic onset stage of disease, age 90 days. This work uncovered perturbed tripartite synapse functions, complement activation and metabolic stress in the affected spinal cord; processes evidenced by cell death and proteolytic stress-associated gene sets. Concomitantly, these pro-damage events in the spinal cord co-existed with dysregulated reparative mechanisms. This work provides a resource of cell-specific niches in the ALS spinal cord and asserts that interwoven dysfunctional neuronal-glial communications mediating neurodegeneration are underway prior to overt disease manifestation and are recapitulated, in part, in the human post-mortem ALS spinal cord. In this paper, single-nucleus RNA sequencing was performed to provide a resource of cell-specific niches in the murine ALS model spinal cord at peri-symptomatic onset stage of disease. The data suggest that dysfunctional neuronal-glial communication occurs prior to disease onset, which is partially recapitulated in human post-mortem ALS spinal cord tissue.
Collapse
Affiliation(s)
- Michael MacLean
- Diabetes Research Program, Department of Medicine, New York University Grossman School of Medicine, New York, NY, 10016, USA
| | - Raquel López-Díez
- Diabetes Research Program, Department of Medicine, New York University Grossman School of Medicine, New York, NY, 10016, USA
| | - Carolina Vasquez
- Diabetes Research Program, Department of Medicine, New York University Grossman School of Medicine, New York, NY, 10016, USA
| | - Paul F Gugger
- Diabetes Research Program, Department of Medicine, New York University Grossman School of Medicine, New York, NY, 10016, USA
| | - Ann Marie Schmidt
- Diabetes Research Program, Department of Medicine, New York University Grossman School of Medicine, New York, NY, 10016, USA.
| |
Collapse
|