1
|
Cross K, Vetter SW, Alam Y, Hasan MZ, Nath AD, Leclerc E. Role of the Receptor for Advanced Glycation End Products (RAGE) and Its Ligands in Inflammatory Responses. Biomolecules 2024; 14:1550. [PMID: 39766257 PMCID: PMC11673996 DOI: 10.3390/biom14121550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Revised: 11/30/2024] [Accepted: 12/02/2024] [Indexed: 01/03/2025] Open
Abstract
Since its discovery in 1992, the receptor for advanced glycation end products (RAGE) has emerged as a key receptor in many pathological conditions, especially in inflammatory conditions. RAGE is expressed by most, if not all, immune cells and can be activated by many ligands. One characteristic of RAGE is that its ligands are structurally very diverse and belong to different classes of molecules, making RAGE a promiscuous receptor. Many of RAGE ligands are damaged associated molecular patterns (DAMPs) that are released by cells under inflammatory conditions. Although RAGE has been at the center of a lot of research in the past three decades, a clear understanding of the mechanisms of RAGE activation by its ligands is still missing. In this review, we summarize the current knowledge of the role of RAGE and its ligands in inflammation.
Collapse
Affiliation(s)
| | | | | | | | | | - Estelle Leclerc
- Department of Pharmaceutical Sciences, North Dakota State University, Fargo, ND 58105, USA; (K.C.); (S.W.V.); (Y.A.); (M.Z.H.); (A.D.N.)
| |
Collapse
|
2
|
Gasparotto J, Somensi N, Girardi CS, Bittencourt RR, de Oliveira LM, Hoefel LP, Scheibel IM, Peixoto DO, Moreira JCF, Outeiro TF, Gelain DP. Is it all the RAGE? Defining the role of the receptor for advanced glycation end products in Parkinson's disease. J Neurochem 2024; 168:1608-1624. [PMID: 37381043 DOI: 10.1111/jnc.15890] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 05/09/2023] [Accepted: 06/08/2023] [Indexed: 06/30/2023]
Abstract
The receptor for advanced glycation end products (RAGE) is a transmembrane receptor that belongs to the immunoglobulin superfamily and is extensively associated with chronic inflammation in non-transmissible diseases. As chronic inflammation is consistently present in neurodegenerative diseases, it was largely assumed that RAGE could act as a critical modulator of neuroinflammation in Parkinson's disease (PD), similar to what was reported for Alzheimer's disease (AD), where RAGE is postulated to mediate pro-inflammatory signaling in microglia by binding to amyloid-β peptide. However, accumulating evidence from studies of RAGE in PD models suggests a less obvious scenario. Here, we review physiological aspects of RAGE and address the current questions about the potential involvement of this receptor in the cellular events that may be critical for the development and progression of PD, exploring possible mechanisms beyond the classical view of the microglial activation/neuroinflammation/neurodegeneration axis that is widely assumed to be the general mechanism of RAGE action in the adult brain.
Collapse
Affiliation(s)
- Juciano Gasparotto
- Instituto de Ciências Biomédicas, Universidade Federal de Alfenas, Alfenas, MG, Brazil
| | - Nauana Somensi
- Department of Biochemistry, Institute of Basic Health Sciences, Federal University of Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Carolina Saibro Girardi
- Department of Biochemistry, Institute of Basic Health Sciences, Federal University of Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Reykla Ramon Bittencourt
- Department of Biochemistry, Institute of Basic Health Sciences, Federal University of Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Laura Martinewski de Oliveira
- Department of Biochemistry, Institute of Basic Health Sciences, Federal University of Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Laura Piloneto Hoefel
- Department of Biochemistry, Institute of Basic Health Sciences, Federal University of Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Ingrid Matsubara Scheibel
- Department of Biochemistry, Institute of Basic Health Sciences, Federal University of Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Daniel Oppermann Peixoto
- Department of Biochemistry, Institute of Basic Health Sciences, Federal University of Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - José Claudio Fonseca Moreira
- Department of Biochemistry, Institute of Basic Health Sciences, Federal University of Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Tiago Fleming Outeiro
- Department of Experimental Neurodegeneration, Center for Biostructural Imaging of Neurodegeneration, University Medical Center Göttingen, Göttingen, Germany
- Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
- Faculty of Medical Sciences, Translational and Clinical Research Institute, Newcastle University, Newcastle, UK
- Scientific employee with an honorary contract at Deutsches Zentrum für Neurodegenerative Erkrankungen (DZNE), Göttingen, Germany
| | - Daniel Pens Gelain
- Department of Biochemistry, Institute of Basic Health Sciences, Federal University of Rio Grande do Sul, Porto Alegre, RS, Brazil
| |
Collapse
|
3
|
Khalid M, Adem A. The dynamic roles of advanced glycation end products. VITAMINS AND HORMONES 2024; 125:1-29. [PMID: 38997161 DOI: 10.1016/bs.vh.2024.02.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/14/2024]
Abstract
Advanced glycation end products (AGEs) are a heterogeneous group of potentially harmful molecules that can form as a result of a non-enzymatic reaction between reducing sugars and proteins, lipids, or nucleic acids. The total body pool of AGEs reflects endogenously produced AGEs as well as exogeneous AGEs that come from sources such as diet and the environment. Engagement of AGEs with their cellular receptor, the receptor for advanced glycation end products (RAGE), which is expressed on the surface of various cell types, converts a brief pulse of cellular activation to sustained cellular dysfunction and tissue destruction. The AGEs/RAGE interaction triggers a cascade of intracellular signaling pathways such as mitogen-activated protein kinase/extracellular signal-regulated kinase, phosphoinositide 3-kinases, transforming growth factor beta, c-Jun N-terminal kinases (JNK), and nuclear factor kappa B, which leads to the production of pro-inflammatory cytokines, chemokines, adhesion molecules, and oxidative stress. All these events contribute to the progression of several chronic diseases. This chapter will provide a comprehensive understanding of the dynamic roles of AGEs in health and disease which is crucial to develop interventions that prevent and mitigate the deleterious effects of AGEs accumulation.
Collapse
Affiliation(s)
- Mariyam Khalid
- Department of Pharmacology and Therapeutics, College of Medicine and Health Sciences, Khalifa University, Abu Dhabi, United Arab Emirates
| | - Abdu Adem
- Department of Pharmacology and Therapeutics, College of Medicine and Health Sciences, Khalifa University, Abu Dhabi, United Arab Emirates.
| |
Collapse
|
4
|
Sinha SK, Nicholas SB. Pathomechanisms of Diabetic Kidney Disease. J Clin Med 2023; 12:7349. [PMID: 38068400 PMCID: PMC10707303 DOI: 10.3390/jcm12237349] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 11/15/2023] [Accepted: 11/22/2023] [Indexed: 03/15/2024] Open
Abstract
The worldwide occurrence of diabetic kidney disease (DKD) is swiftly rising, primarily attributed to the growing population of individuals affected by type 2 diabetes. This surge has been transformed into a substantial global concern, placing additional strain on healthcare systems already grappling with significant demands. The pathogenesis of DKD is intricate, originating with hyperglycemia, which triggers various mechanisms and pathways: metabolic, hemodynamic, inflammatory, and fibrotic which ultimately lead to renal damage. Within each pathway, several mediators contribute to the development of renal structural and functional changes. Some of these mediators, such as inflammatory cytokines, reactive oxygen species, and transforming growth factor β are shared among the different pathways, leading to significant overlap and interaction between them. While current treatment options for DKD have shown advancement over previous strategies, their effectiveness remains somewhat constrained as patients still experience residual risk of disease progression. Therefore, a comprehensive grasp of the molecular mechanisms underlying the onset and progression of DKD is imperative for the continued creation of novel and groundbreaking therapies for this condition. In this review, we discuss the current achievements in fundamental research, with a particular emphasis on individual factors and recent developments in DKD treatment.
Collapse
Affiliation(s)
- Satyesh K. Sinha
- Department of Medicine, David Geffen School of Medicine, University of California, Los Angeles, CA 90095, USA;
- College of Medicine, Charles R Drew University of Medicine and Science, Los Angeles, CA 90059, USA
| | - Susanne B. Nicholas
- Department of Medicine, David Geffen School of Medicine, University of California, Los Angeles, CA 90095, USA;
| |
Collapse
|
5
|
Naz S, Mahmood T, Gupta R, Siddiqui MH, Ahsan F, Ansari VA, Shamim A, Rizvi AA. Clinical Manifestation of AGE-RAGE Axis in Neurodegenerative and Cognitive Impairment Disorders. Drug Res (Stuttg) 2023. [PMID: 37040870 DOI: 10.1055/a-2004-3591] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/13/2023]
Abstract
The receptor of Advanced Glycation Endproducts (RAGE) and Advanced Glycation Endproducts (AGE) have multiple functions in our body and their restraint are being observed in neurodegenerative and memory impairment disorders. The review of different pathways allows an understanding of the probable mechanism of neurodegeneration and memory impairment involving RAGE and AGE. Commonly we observe AGE accumulation in neural cells and tissues but the extent of accumulation increases with the presence of memory impairment disorder. The presence of AGEs can also be seen in morbid accumulation, pathological structures in the form of amyloid clots, and nervous fibrillary tangles in Alzheimer's Disease (AD) and memory impairment disease.Many neuropathological and biochemical aspects of AD are explained by AGEs, including widespread protein crosslinking, glial activation of oxidative stress, and neuronal cell death. Oxidative stress is due to different reasons and glycation end products set in motion and form or define various actions which are normally due to AGE changes in a pathogenic cascade. By regulating the transit of ß-amyloid in and out of the brain or altering inflammatory pathways, AGE and it's ensnare receptor such as soluble RAGE may function as blockage or shield AD development. RAGE activates the transcription-controlling factor Necrosis Factor (NF-κB) and increases the protraction of cytokines, like a higher number of Tumor Necrosis Factor (TNF-α) and Interleukin (IL-I) by inducing several signal transduction cascades. Furthermore, binding to RAGE can pro-activate reactive oxygen species (ROS), which is popularly known to cause neuronal death.
Collapse
Affiliation(s)
- Sabreena Naz
- Department of Pharmacy, Faculty of Pharmacy, Integral University, Lucknow, India
| | - Tarique Mahmood
- Department of Pharmacy, Faculty of Pharmacy, Integral University, Lucknow, India
| | - Ramesh Gupta
- Department of Pharmacy, Hygia Institute of Pharmaceutical Education and Research, Lucknow, India
| | | | - Farogh Ahsan
- Department of Pharmacy, Faculty of Pharmacy, Integral University, Lucknow, India
| | - Vaseem Ahamad Ansari
- Department of Pharmacy, Faculty of Pharmacy, Integral University, Lucknow, India
| | - Arshiya Shamim
- Department of Pharmacy, Faculty of Pharmacy, Integral University, Lucknow, India
| | - Ali Abbas Rizvi
- Department of Pharmacy, Faculty of Pharmacy, Integral University, Lucknow, India
- Department of Pharmacy, Hygia Institute of Pharmaceutical Education and Research, Lucknow, India
| |
Collapse
|
6
|
Petrushanko IY, Mitkevich VA, Makarov AA. Effect of β-amyloid on blood-brain barrier properties and function. Biophys Rev 2023; 15:183-197. [PMID: 37124923 PMCID: PMC10133432 DOI: 10.1007/s12551-023-01052-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Accepted: 03/13/2023] [Indexed: 05/02/2023] Open
Abstract
The deposition of beta-amyloid (Aβ) aggregates in the brain, accompanied by impaired cognitive function, is a characteristic feature of Alzheimer's disease (AD). An important role in this process is played by vascular disorders, in particular, a disturbance of the blood-brain barrier (BBB). The BBB controls the entry of Aβ from plasma to the brain via the receptor for advanced glycation end products (RAGE) and the removal of brain-derived Aβ via the low-density lipoprotein receptor-related protein (LRP1). The balance between the input of Aβ to the brain from the periphery and its output is disturbed during AD. Aβ changes the redox-status of BBB cells, which in turn changes the functioning of mitochondria and disrupts the barrier function of endothelial cells by affecting tight junction proteins. Aβ oligomers have the greatest toxic effect on BBB cells, and oligomers are most rapidly transferred by transcytosis from the brain side of the BBB to the blood side. Both the cytotoxic effect of Aβ and the impairment of barrier function are partly due to the interaction of Aβ monomers and oligomers with membrane-bound RAGE. AD therapies based on the disruption of this interaction or the creation of decoys for Aβ are being developed. The question of the transfer of various Aβ isoforms through the BBB is important, since it can influence the development of AD. It is shown that the rate of input of Aβ40 and Aβ42 from the blood into the brain is different. The actual question of the transfer of pathogenic Aβ isoforms with post-translational modifications or mutations through the BBB still remains open.
Collapse
Affiliation(s)
- Irina Yu. Petrushanko
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia
| | - Vladimir A. Mitkevich
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia
| | - Alexander A. Makarov
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia
| |
Collapse
|
7
|
RAGE Inhibitors for Targeted Therapy of Cancer: A Comprehensive Review. Int J Mol Sci 2022; 24:ijms24010266. [PMID: 36613714 PMCID: PMC9820344 DOI: 10.3390/ijms24010266] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2022] [Revised: 10/28/2022] [Accepted: 12/16/2022] [Indexed: 12/28/2022] Open
Abstract
The receptor for advanced glycation end products (RAGE) is a member of the immunoglobulin family that is overexpressed in several cancers. RAGE is highly expressed in the lung, and its expression increases proportionally at the site of inflammation. This receptor can bind a variety of ligands, including advanced glycation end products, high mobility group box 1, S100 proteins, adhesion molecules, complement components, advanced lipoxidation end products, lipopolysaccharides, and other molecules that mediate cellular responses related to acute and chronic inflammation. RAGE serves as an important node for the initiation and stimulation of cell stress and growth signaling mechanisms that promote carcinogenesis, tumor propagation, and metastatic potential. In this review, we discuss different aspects of RAGE and its prominent ligands implicated in cancer pathogenesis and describe current findings that provide insights into the significant role played by RAGE in cancer. Cancer development can be hindered by inhibiting the interaction of RAGE with its ligands, and this could provide an effective strategy for cancer treatment.
Collapse
|
8
|
Rao NL, Kotian GB, Shetty JK, Shelley BP, Dmello MK, Lobo EC, Shankar SP, Almeida SD, Shah SR. Receptor for Advanced Glycation End Product, Organ Crosstalk, and Pathomechanism Targets for Comprehensive Molecular Therapeutics in Diabetic Ischemic Stroke. Biomolecules 2022; 12:1712. [PMID: 36421725 PMCID: PMC9687999 DOI: 10.3390/biom12111712] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2022] [Revised: 11/03/2022] [Accepted: 11/05/2022] [Indexed: 08/10/2023] Open
Abstract
Diabetes mellitus, a well-established risk factor for stroke, is related to higher mortality and poorer outcomes following the stroke event. Advanced glycation end products(AGEs), their receptors RAGEs, other ligands, and several other processes contribute to the cerebrovascular pathomechanism interaction in the diabetes-ischemic stroke combination. Critical reappraisal of molecular targets and therapeutic agents to mitigate them is required to identify key elements for therapeutic interventions that may improve patient outcomes. This scoping review maps evidence on the key roles of AGEs, RAGEs, other ligands such as Leukotriene B4 (LTB4), High-mobility group box 1 (HMGB1) nuclear protein, brain-kidney-muscle crosstalk, alternate pathomechanisms in neurodegeneration, and cognitive decline related to diabetic ischemic stroke. RAGE, HMGB1, nitric oxide, and polyamine mechanisms are important therapeutic targets, inflicting common consequences of neuroinflammation and oxidative stress. Experimental findings on a number of existing-emerging therapeutic agents and natural compounds against key targets are promising. The lack of large clinical trials with adequate follow-up periods is a gap that requires addressing to validate the emerging therapeutic agents. Five therapeutic components, which include agents to mitigate the AGE-RAGE axis, improved biomarkers for risk stratification, better renal dysfunction management, adjunctive anti-inflammatory-antioxidant therapies, and innovative neuromuscular stimulation for rehabilitation, are identified. A comprehensive therapeutic strategy that features all the identified components is needed for outcome improvement in diabetic stroke patients.
Collapse
Affiliation(s)
- Nivedita L Rao
- Department of Biochemistry, Yenepoya Medical College, Yenepoya (deemed to be University), Mangalore 575018, Karnataka, India
| | - Greeshma B Kotian
- Department of Biochemistry, Yenepoya Medical College, Yenepoya (deemed to be University), Mangalore 575018, Karnataka, India
| | - Jeevan K Shetty
- Department of Biochemistry, School of Medicine, Royal College of Surgeons in Ireland Medical University of Bahrain, Muharraq 228, Bahrain
| | - Bhaskara P Shelley
- Department of Neurology, Yenepoya Medical College, Yenepoya (deemed to be University), Mangalore 575018, Karnataka, India
| | - Mackwin Kenwood Dmello
- Department of Public Health, KS Hegde Medical Academy, Nitte (Deemed to be University), Mangalore 575018, Karnataka, India
| | - Eric C Lobo
- Department of Biochemistry, Yenepoya Medical College, Yenepoya (deemed to be University), Mangalore 575018, Karnataka, India
| | - Suchetha Padar Shankar
- College of Physiotherapy, Dayananda Sagar University, Bangalore 560111, Karnataka, India
| | - Shellette D Almeida
- School of Physiotherapy, D. Y. Patil (Deemed to be University), Navi Mumbai 400706, Maharashtra, India
| | - Saiqa R Shah
- Department of Biochemistry, Yenepoya Medical College, Yenepoya (deemed to be University), Mangalore 575018, Karnataka, India
| |
Collapse
|
9
|
Juranek J, Mukherjee K, Kordas B, Załęcki M, Korytko A, Zglejc-Waszak K, Szuszkiewicz J, Banach M. Role of RAGE in the Pathogenesis of Neurological Disorders. Neurosci Bull 2022; 38:1248-1262. [PMID: 35729453 PMCID: PMC9554177 DOI: 10.1007/s12264-022-00878-x] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2021] [Accepted: 03/03/2022] [Indexed: 11/30/2022] Open
Abstract
This review reflects upon our own as well as other investigators' studies on the role of receptor for advanced glycation end-products (RAGE), bringing up the latest information on RAGE in physiology and pathology of the nervous system. Over the last ten years, major progress has been made in uncovering many of RAGE-ligand interactions and signaling pathways in nervous tissue; however, the translation of these discoveries into clinical practice has not come to fruition yet. This is likely, in part to be the result of our incomplete understanding of this crucial signaling pathway. Clinical trials examining the therapeutic efficacy of blocking RAGE-external ligand interactions by genetically engineered soluble RAGE or an endogenous RAGE antagonist, has not stood up to its promise; however, other trials with different blocking agents are being considered with hope for therapeutic success in diseases of the nervous system.
Collapse
Affiliation(s)
- Judyta Juranek
- Department of Human Physiology and Pathophysiology, School of Medicine, University of Warmia and Mazury, 10-085, Olsztyn, Poland.
| | - Konark Mukherjee
- Fralin Biomedical Research Institute at VTC, Virginia Tech, Blacksburg, VA, 24016, USA
| | - Bernard Kordas
- Department of Human Physiology and Pathophysiology, School of Medicine, University of Warmia and Mazury, 10-085, Olsztyn, Poland
| | - Michał Załęcki
- Department of Animal Anatomy, Faculty of Veterinary Medicine, University of Warmia and Mazury, 10-719, Olsztyn, Poland
| | - Agnieszka Korytko
- Department of Human Physiology and Pathophysiology, School of Medicine, University of Warmia and Mazury, 10-085, Olsztyn, Poland
| | - Kamila Zglejc-Waszak
- Department of Human Physiology and Pathophysiology, School of Medicine, University of Warmia and Mazury, 10-085, Olsztyn, Poland
| | - Jarosław Szuszkiewicz
- Department of Materials and Machines Technology, Faculty of Technical Sciences, University of Warmia and Mazury, 10-719, Olsztyn, Poland
| | - Marta Banach
- Department of Neurology, Collegium Medicum, Jagiellonian University, 31-008, Kraków, Poland.
| |
Collapse
|
10
|
Jeong JH, Lee DH, Song J. HMGB1 signaling pathway in diabetes-related dementia: Blood-brain barrier breakdown, brain insulin resistance, and Aβ accumulation. Biomed Pharmacother 2022; 150:112933. [PMID: 35413600 DOI: 10.1016/j.biopha.2022.112933] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Revised: 04/05/2022] [Accepted: 04/06/2022] [Indexed: 11/28/2022] Open
Abstract
Diabetes contributes to the onset of various diseases, including cancer and cardiovascular and neurodegenerative diseases. Recent studies have highlighted the similarities and relationship between diabetes and dementia as an important issue for treating diabetes-related cognitive deficits. Diabetes-related dementia exhibits several features, including blood-brain barrier disruption, brain insulin resistance, and Aβ over-accumulation. High-mobility group box1 (HMGB1) is a protein known to regulate gene transcription and cellular mechanisms by binding to DNA or chromatin via receptor for advanced glycation end-products (RAGE) and toll-like receptor 4 (TLR4). Recent studies have demonstrated that the interplay between HMGB1, RAGE, and TLR4 can impact both neuropathology and diabetic alterations. Herein, we review the recent research regarding the roles of HMGB1-RAGE-TLR4 axis in diabetes-related dementia from several perspectives and emphasize the importance of the influence of HMGB1 in diabetes-related dementia.
Collapse
Affiliation(s)
- Jae-Ho Jeong
- Department of Microbiology, Chonnam National University Medical School, Hwasun 58128, Jeollanam-do, Republic of Korea.
| | - Dong Hoon Lee
- Department of Otolaryngology-Head and Neck Surgery, Chonnam National University Medical School, and Chonnam National University Hwasun Hospital, Hwasun 58128, Jeollanam-do, Republic of Korea.
| | - Juhyun Song
- Department of Anatomy, Chonnam National University Medical School, Hwasun 58128, Jeollanam-do, Republic of Korea.
| |
Collapse
|
11
|
Advanced Glycation End Products and Diabetes Mellitus: Mechanisms and Perspectives. Biomolecules 2022; 12:biom12040542. [PMID: 35454131 PMCID: PMC9030615 DOI: 10.3390/biom12040542] [Citation(s) in RCA: 336] [Impact Index Per Article: 112.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 03/28/2022] [Accepted: 03/31/2022] [Indexed: 02/06/2023] Open
Abstract
Persistent hyperglycemic state in type 2 diabetes mellitus leads to the initiation and progression of non-enzymatic glycation reaction with proteins and lipids and nucleic acids. Glycation reaction leads to the generation of a heterogeneous group of chemical moieties known as advanced glycated end products (AGEs), which play a central role in the pathophysiology of diabetic complications. The engagement of AGEs with its chief cellular receptor, RAGE, activates a myriad of signaling pathways such as MAPK/ERK, TGF-β, JNK, and NF-κB, leading to enhanced oxidative stress and inflammation. The downstream consequences of the AGEs/RAGE axis involve compromised insulin signaling, perturbation of metabolic homeostasis, RAGE-induced pancreatic beta cell toxicity, and epigenetic modifications. The AGEs/RAGE signaling instigated modulation of gene transcription is profoundly associated with the progression of type 2 diabetes mellitus and pathogenesis of diabetic complications. In this review, we will summarize the exogenous and endogenous sources of AGEs, their role in metabolic dysfunction, and current understandings of AGEs/RAGE signaling cascade. The focus of this review is to recapitulate the role of the AGEs/RAGE axis in the pathogenesis of type 2 diabetes mellitus and its associated complications. Furthermore, we present an overview of future perspectives to offer new therapeutic interventions to intervene with the AGEs/RAGE signaling pathway and to slow down the progression of diabetes-related complications.
Collapse
|
12
|
Molecular Characteristics of RAGE and Advances in Small-Molecule Inhibitors. Int J Mol Sci 2021; 22:ijms22136904. [PMID: 34199060 PMCID: PMC8268101 DOI: 10.3390/ijms22136904] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Revised: 06/22/2021] [Accepted: 06/24/2021] [Indexed: 12/16/2022] Open
Abstract
Receptor for advanced glycation end-products (RAGE) is a member of the immunoglobulin superfamily. RAGE binds and mediates cellular responses to a range of DAMPs (damage-associated molecular pattern molecules), such as AGEs, HMGB1, and S100/calgranulins, and as an innate immune sensor, can recognize microbial PAMPs (pathogen-associated molecular pattern molecules), including bacterial LPS, bacterial DNA, and viral and parasitic proteins. RAGE and its ligands stimulate the activations of diverse pathways, such as p38MAPK, ERK1/2, Cdc42/Rac, and JNK, and trigger cascades of diverse signaling events that are involved in a wide spectrum of diseases, including diabetes mellitus, inflammatory, vascular and neurodegenerative diseases, atherothrombosis, and cancer. Thus, the targeted inhibition of RAGE or its ligands is considered an important strategy for the treatment of cancer and chronic inflammatory diseases.
Collapse
|
13
|
Semchyshyn H. Is carbonyl/AGE/RAGE stress a hallmark of the brain aging? Pflugers Arch 2021; 473:723-734. [PMID: 33742308 DOI: 10.1007/s00424-021-02529-y] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 01/21/2021] [Accepted: 01/28/2021] [Indexed: 12/13/2022]
Abstract
Recent studies have linked carbonyl stress to many physiological processes. Increase in the levels of carbonyl compounds, derived from both endogenous and exogenous sources, is believed to accompany normal age-related decline as well as different pathologies. Reactive carbonyl species (RCS) are capable of damaging biomolecules via their involvement in a net of nonspecific reactions. In the advanced stages of RCS metabolism, variety of poorly degraded adducts and crosslinks, collectively named advanced glycoxidation end products (AGEs), arises. They are accumulated in an age-dependent manner in different tissues and organs and can contribute to inflammatory processes. In particular, detrimental effects of the end products are realized via activation of the specific receptor for AGEs (RAGE) and RAGE-dependent inflammatory signaling cascade. Although it is unclear, whether carbonyl stress is causal for age-associated impairments or it results from age- and disease-related cell damages, increased levels of RCS and AGEs are tightly related to inflammaging, and therefore, attenuation of the RAGE signaling is suggested as an effective approach for the treatment of inflammation and age-related disorders. The question raised in this review is whether specific metabolism in the aging brain related to carbonyl/RCS/AGE/RAGE stress.
Collapse
Affiliation(s)
- Halyna Semchyshyn
- Department of Biochemistry and Biotechnology, Vasyl Stefanyk Precarpathian National University, 57 Shevchenko Str, Ivano-Frankivsk, 76018, Ukraine.
| |
Collapse
|
14
|
Acute MDPV Binge Paradigm on Mice Emotional Behavior and Glial Signature. Pharmaceuticals (Basel) 2021; 14:ph14030271. [PMID: 33809599 PMCID: PMC8002122 DOI: 10.3390/ph14030271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Revised: 03/11/2021] [Accepted: 03/13/2021] [Indexed: 11/17/2022] Open
Abstract
3,4-Methylenedioxypyrovalerone (MDPV), a widely available synthetic cathinone, is a popular substitute for classical controlled drugs of abuse, such as methamphetamine (METH). Although MDPV poses public health risks, its neuropharmacological profile remains poorly explored. This study aimed to provide evidence on that direction. Accordingly, C57BL/6J mice were exposed to a binge MDPV or METH regimen (four intraperitoneal injections every 2 h, 10 mg/kg). Locomotor, exploratory, and emotional behavior, in addition to striatal neurotoxicity and glial signature, were assessed within 18–24 h, a known time-window encompassing classical amphetamine dopaminergic neurotoxicity. MDPV resulted in unchanged locomotor activity (open field test) and emotional behavior (elevated plus maze, splash test, tail suspension test). Additionally, striatal TH (METH neurotoxicity hallmark), Iba-1 (microglia), GFAP (astrocyte), RAGE, and TLR2/4/7 (immune modulators) protein densities remained unchanged after MDPV-exposure. Expectedly, and in sheer contrast with MDPV, METH resulted in decrease general locomotor activity paralleled by a significant striatal TH depletion, astrogliosis, and microglia arborization alterations (Sholl analysis). This comparative study newly highlights that binge MDPV-exposure comes without evident behavioral, neurochemical, and glial changes at a time-point where METH-induced striatal neurotoxicity is clearly evident. Nevertheless, neuropharmacological MDPV signature needs further profiling at different time-points, regimens, and brain regions.
Collapse
|
15
|
Shen L, Zhang T, Yang Y, Lu D, Xu A, Li K. FPS-ZM1 Alleviates Neuroinflammation in Focal Cerebral Ischemia Rats via Blocking Ligand/RAGE/DIAPH1 Pathway. ACS Chem Neurosci 2021; 12:63-78. [PMID: 33300334 DOI: 10.1021/acschemneuro.0c00530] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Receptor for advanced glycation end products (RAGEs), a multiligand receptor belonging to the cell-surface immunoglobulin superfamily, has been reported to play a crucial role in neuroinflammation and neurodegenerative diseases. Here, we tested our hypothesis that the RAGE-specific antagonist FPS-ZM1 is neuroprotective against ischemic brain injury. Distal middle cerebral artery occlusion (MCAO) or sham operation was performed on anesthetized Sprague-Dawley male rats (n = 60), which were then treated with FPS-ZM1 or vehicle (four groups in total = Vehicle + MCAO, FPS-ZM1 + MCAO, Vehicle + sham, and FPS-ZM1 + sham). After 1 week, neurological function was evaluated, and then, brain tissues were collected for 2,3,5-triphenyltetrazolium chloride staining, Nissl staining, TUNEL staining, Western blotting, and immunohistochemical analyses. FPS-ZM1 treatment after MCAO markedly attenuated neurological deficits and reduced the infarct area. More interestingly, FPS-ZM1 inhibited ischemia-induced astrocytic activation and microgliosis and decreased the elevated levels of proinflammatory cytokines. Furthermore, FPS-ZM1 blocked the increase in the level of RAGE and, notably, of DIAPH1, the key cytoplasmic hub for RAGE-ligand-mediated activation of cellular signaling. Accordingly, FPS-ZM1 also reversed the MCAO-induced increase in phosphorylation of NF-κB targets that are potentially downstream from RAGE/DIAPH1. Our findings reveal that FPS-ZM1 treatment reduces neuroinflammation in rats with focal cerebral ischemia and further suggest that the ligand/RAGE/DIAPH1 pathway contributes to this FPS-ZM1-mediated alleviation of neuroinflammation.
Collapse
Affiliation(s)
- Lingling Shen
- Department of Neurology and Stroke Centre, the Fist Affiliated Hospital of Jinan University, Guangzhou 510632, China
- Clinical Neuroscience Institute of Jinan University, Guangzhou 510632, China
| | - Tianyuan Zhang
- Department of Neurology and Stroke Centre, the Fist Affiliated Hospital of Jinan University, Guangzhou 510632, China
- Clinical Neuroscience Institute of Jinan University, Guangzhou 510632, China
| | - Yu Yang
- Department of Neurology and Stroke Centre, the Fist Affiliated Hospital of Jinan University, Guangzhou 510632, China
- Clinical Neuroscience Institute of Jinan University, Guangzhou 510632, China
| | - Dan Lu
- Department of Neurology and Stroke Centre, the Fist Affiliated Hospital of Jinan University, Guangzhou 510632, China
- Clinical Neuroscience Institute of Jinan University, Guangzhou 510632, China
| | - Anding Xu
- Department of Neurology and Stroke Centre, the Fist Affiliated Hospital of Jinan University, Guangzhou 510632, China
- Clinical Neuroscience Institute of Jinan University, Guangzhou 510632, China
| | - Keshen Li
- Clinical Neuroscience Institute of Jinan University, Guangzhou 510632, China
| |
Collapse
|
16
|
Gou X, Ying J, Yue Y, Qiu X, Hu P, Qu Y, Li J, Mu D. The Roles of High Mobility Group Box 1 in Cerebral Ischemic Injury. Front Cell Neurosci 2020; 14:600280. [PMID: 33384585 PMCID: PMC7770223 DOI: 10.3389/fncel.2020.600280] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2020] [Accepted: 11/25/2020] [Indexed: 12/11/2022] Open
Abstract
High mobility group box 1 (HMGB1) is a ubiquitous nuclear protein that plays an important role in stabilizing nucleosomes and DNA repair. HMGB1 can be passively released from necrotic neurons or actively secreted by microglia, macrophages/monocytes, and neutrophils. Cerebral ischemia is a major cause of mortality and disability worldwide, and its outcome depends on the number of neurons dying due to hypoxia in the ischemic area. HMGB1 contributes to the pathogenesis of cerebral ischemia via mediating neuroinflammatory responses to cerebral ischemic injury. Extracellular HMGB1 regulates many neuroinflammatory events by interacting with its different cell surface receptors, such as receptors for advanced glycation end products, toll-like receptor (TLR)-2, and TLR-4. Additionally, HMGB1 can be redox-modified, thus exerting specific cellular functions in the ischemic brain and has different roles in the acute and late stages of cerebral ischemic injury. However, the role of HMGB1 in cerebral ischemia is complex and remains unclear. Herein, we summarize and review the research on HMGB1 in cerebral ischemia, focusing especially on the role of HMGB1 in hypoxic ischemia in the immature brain and in white matter ischemic injury. We also outline the possible mechanisms of HMGB1 in cerebral ischemia and the main strategies to inhibit HMGB1 pertaining to its potential as a novel critical molecular target in cerebral ischemic injury.
Collapse
Affiliation(s)
- Xiaoyun Gou
- Department of Pediatrics, West China Second University Hospital, Sichuan University, Chengdu, China.,Key Laboratory of Obstetric & Gynecologic and Pediatric Diseases and Birth Defects, Ministry of Education, Sichuan University, Chengdu, China
| | - Junjie Ying
- Department of Pediatrics, West China Second University Hospital, Sichuan University, Chengdu, China.,Key Laboratory of Obstetric & Gynecologic and Pediatric Diseases and Birth Defects, Ministry of Education, Sichuan University, Chengdu, China
| | - Yan Yue
- Department of Pediatrics, West China Second University Hospital, Sichuan University, Chengdu, China.,Key Laboratory of Obstetric & Gynecologic and Pediatric Diseases and Birth Defects, Ministry of Education, Sichuan University, Chengdu, China
| | - Xia Qiu
- Department of Pediatrics, West China Second University Hospital, Sichuan University, Chengdu, China.,Key Laboratory of Obstetric & Gynecologic and Pediatric Diseases and Birth Defects, Ministry of Education, Sichuan University, Chengdu, China
| | - Peng Hu
- Department of Pediatrics, West China Second University Hospital, Sichuan University, Chengdu, China.,Key Laboratory of Obstetric & Gynecologic and Pediatric Diseases and Birth Defects, Ministry of Education, Sichuan University, Chengdu, China
| | - Yi Qu
- Department of Pediatrics, West China Second University Hospital, Sichuan University, Chengdu, China.,Key Laboratory of Obstetric & Gynecologic and Pediatric Diseases and Birth Defects, Ministry of Education, Sichuan University, Chengdu, China
| | - Jinhui Li
- Department of Pediatrics, West China Second University Hospital, Sichuan University, Chengdu, China.,Key Laboratory of Obstetric & Gynecologic and Pediatric Diseases and Birth Defects, Ministry of Education, Sichuan University, Chengdu, China
| | - Dezhi Mu
- Department of Pediatrics, West China Second University Hospital, Sichuan University, Chengdu, China.,Key Laboratory of Obstetric & Gynecologic and Pediatric Diseases and Birth Defects, Ministry of Education, Sichuan University, Chengdu, China
| |
Collapse
|
17
|
Graboski AL, Redinbo MR. Gut-Derived Protein-Bound Uremic Toxins. Toxins (Basel) 2020; 12:toxins12090590. [PMID: 32932981 PMCID: PMC7551879 DOI: 10.3390/toxins12090590] [Citation(s) in RCA: 67] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Revised: 08/17/2020] [Accepted: 09/08/2020] [Indexed: 12/11/2022] Open
Abstract
Chronic kidney disease (CKD) afflicts more than 500 million people worldwide and is one of the fastest growing global causes of mortality. When glomerular filtration rate begins to fall, uremic toxins accumulate in the serum and significantly increase the risk of death from cardiovascular disease and other causes. Several of the most harmful uremic toxins are produced by the gut microbiota. Furthermore, many such toxins are protein-bound and are therefore recalcitrant to removal by dialysis. We review the derivation and pathological mechanisms of gut-derived, protein-bound uremic toxins (PBUTs). We further outline the emerging relationship between kidney disease and gut dysbiosis, including the bacterial taxa altered, the regulation of microbial uremic toxin-producing genes, and their downstream physiological and neurological consequences. Finally, we discuss gut-targeted therapeutic strategies employed to reduce PBUTs. We conclude that targeting the gut microbiota is a promising approach for the treatment of CKD by blocking the serum accumulation of PBUTs that cannot be eliminated by dialysis.
Collapse
Affiliation(s)
- Amanda L. Graboski
- Department of Pharmacology, University of North Carolina, Chapel Hill, NC 27599-7365, USA;
| | - Matthew R. Redinbo
- Departments of Chemistry, Biochemistry, Microbiology and Genomics, University of North Carolina, Chapel Hill, NC 27599-3290, USA
- Correspondence:
| |
Collapse
|
18
|
Kim OY, Song J. The importance of BDNF and RAGE in diabetes-induced dementia. Pharmacol Res 2020; 160:105083. [PMID: 32679182 DOI: 10.1016/j.phrs.2020.105083] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Revised: 06/30/2020] [Accepted: 07/12/2020] [Indexed: 01/11/2023]
Abstract
Diabetes-induced dementia is an emerging neurodisorder all over the world. The prevalence rates of dementia and diabetes have been gradually increasing worldwide. Diabetes has been known to lead to oxidative stress, inflammation aggravation, and hyperglycemia conditions in the brain. Various diabetic implications cause the lower secretion of brain-derived neurotrophic factor (BDNF) and the increase of receptor for advanced glycation end products (RAGE), ultimately leading to both cerebrovascular dysfunction and cognitive decline. Here, we summarized the significant evidences highlighting the specific mechanisms between BDNF and RAGE and cerebrovascular dysfunction and memory function and how these relate to diabetes-induced dementia. Especially, we review that the association between BDFN and RAGE in neuroinflammation, the reduction of long-term potentiation, and the vascular implications in brain.
Collapse
Affiliation(s)
- Oh Yoen Kim
- The Department of Food Science and Nutrition, Dong-A University, Busan 49315, Republic of Korea; The Center for Silver-Targeted Biomaterials, Brain Busan 21 Plus Program, Graduate School, Dong-A University, Busan 49315, Republic of Korea.
| | - Juhyun Song
- The Department of Anatomy, Chonnam National University, Chonnam National University Medical School, Hwasun 58128, Jeollanam-do, Republic of Korea.
| |
Collapse
|
19
|
El-Far AH, Sroga G, Al Jaouni SK, Mousa SA. Role and Mechanisms of RAGE-Ligand Complexes and RAGE-Inhibitors in Cancer Progression. Int J Mol Sci 2020; 21:ijms21103613. [PMID: 32443845 PMCID: PMC7279268 DOI: 10.3390/ijms21103613] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2020] [Revised: 05/02/2020] [Accepted: 05/08/2020] [Indexed: 12/26/2022] Open
Abstract
Interactions of the receptor for advanced glycation end product (RAGE) and its ligands in the context of their role in diabetes mellitus, inflammation, and carcinogenesis have been extensively investigated. This review focuses on the role of RAGE-ligands and anti-RAGE drugs capable of controlling cancer progression. Different studies have demonstrated interaction of RAGE with a diverse range of acidic (negatively charged) ligands such as advanced glycation end products (AGEs), high-mobility group box1 (HMGB1), and S100s, and their importance to cancer progression. Some RAGE-ligands displayed effects on anti- and pro-apoptotic proteins through upregulation of the phosphatidylinositide 3-kinase (PI3K)/protein kinase B (Akt)/mammalian target of rapamycin (mTOR), mitogen-activated protein kinases (MAPKs), matrix metalloproteinases (MMPs), vascular endothelial growth factor (VEGF), and nuclear factor kappa B (NF-κB) pathways, while downregulating p53 in cancer progression. In addition, RAGE may undergo ligand-driven multimodal dimerization or oligomerization mediated through self-association of some of its subunits. We conclude our review by proposing possible future lines of study that could result in control of cancer progression through RAGE inhibition.
Collapse
Affiliation(s)
- Ali H. El-Far
- Department of Biochemistry, Faculty of Veterinary Medicine, Damanhour University, Damanhour, Damanhour 22511, Egypt;
| | - Grazyna Sroga
- Rensselaer Polytechnic Institute, NY (RPI), Troy, NY 12180, USA;
| | - Soad K. Al Jaouni
- Department of Hematology/Pediatric Oncology, King Abdulaziz University, Yousef Abdulatif Jameel Scientific Chair of Prophetic Medicine Application, Faculty of Medicine, King Abdulaziz University, Jeddah 21589, Saudi Arabia;
| | - Shaker A. Mousa
- The Pharmaceutical Research Institute, Albany College of Pharmacy and Health Sciences, Rensselaer, NY 12144, USA
- Correspondence:
| |
Collapse
|
20
|
Wang X, Sun X, Niu M, Zhang X, Wang J, Zhou C, Xie A. RAGE Silencing Ameliorates Neuroinflammation by Inhibition of p38-NF-κB Signaling Pathway in Mouse Model of Parkinson's Disease. Front Neurosci 2020; 14:353. [PMID: 32410941 PMCID: PMC7201072 DOI: 10.3389/fnins.2020.00353] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2020] [Accepted: 03/24/2020] [Indexed: 12/14/2022] Open
Abstract
Accumulating evidence suggested that neuroinflammation played a crucial role in dopaminergic neuronal death in Parkinson's disease (PD). The receptor for advanced glycation end products (RAGE), a multi-ligand receptor of the immunoglobulin superfamily, has been proposed as a key molecule in the onset and sustainment of the inflammatory response. Engagement of RAGE contributed to neuroinflammation by upregulating nuclear factor-κB (NF-κB) as well as cytokines. The aim of the present study was to investigate the expression of RAGE in 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-treated mice and elucidate the RAGE signal pathway involved in the inflammation. Results showed that RAGE protein and pro-inflammatory cytokines cyclooxygenase type 2 (COX-2) were upregulated in MPTP-treated mice. Further experiments showed that RAGE ablation inhibited phosphorylation of IκB and p38 and protected nigral dopaminergic neurons against cell death in the substantia nigra (SN). These results suggested that RAGE participated in the pathogenesis of PD by neuroinflammation and p38MAPK-NFκB signal pathway may be involved in the process. Moreover, interfering with RAGE signaling pathway may be a reasonable therapeutic option in slowing PD development and progression.
Collapse
Affiliation(s)
- Xiaoli Wang
- Department of Neurology, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Xiaoxuan Sun
- Department of Neurology, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Mengyue Niu
- Department of Neurology, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Xiaona Zhang
- Department of Neurology, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Jing Wang
- Department of Neurology, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Chang Zhou
- Department of Neurology, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Anmu Xie
- Department of Neurology, The Affiliated Hospital of Qingdao University, Qingdao, China
| |
Collapse
|
21
|
Qian B, Huang H, Cheng M, Qin T, Chen T, Zhao J. Mechanism of HMGB1-RAGE in Kawasaki disease with coronary artery injury. Eur J Med Res 2020; 25:8. [PMID: 32183905 PMCID: PMC7079349 DOI: 10.1186/s40001-020-00406-5] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2019] [Accepted: 02/18/2020] [Indexed: 01/11/2023] Open
Abstract
Background Kawasaki disease (KD) is a common, yet unknown etiology disease in Asian countries, which causes acquired heart disease in childhood. It is characterized by an inflammatory acute febrile vasculitis of medium-sized arteries, particularly the coronary arteries. High-mobility group box-1 protein (HMGB1) is a non-histone chromosomal-binding protein present in the nucleus of eukaryotic cells, which contains 215 amino acid residues. Although the cellular signal transduction mechanisms of HMGB1 are currently unclear, the important role of the receptor for advanced glycation end-products (RAGE), the main receptor for HMGB1 has been reported in detail. The purpose of our study was to verify the mechanism and clinical significance of HMGB1-RAGE in coronary artery injury of Kawasaki disease. Methods 52 blood samples of patients in KD were collected, and the coronary artery Z score was calculated according to the echocardiographic results. The Z score ≥ 2.0 was classified as coronary artery lesions (CAL); otherwise, it was no-coronary artery lesions (NCAL). In addition, the fever group and control group were set. Among them, the fever group were children with fever due to respiratory tract infection at the same time period as KD (heat peak ≥ 38.5 ℃). The normal group were children at a routine physical examination in the outpatient clinic of Nantong University and the physical examination center of the child care insurance, and there were no infectious diseases and heart diseases. The serum levels of HMGB1, RAGE, and NF-κB in each group were detected by ELISA. The animal model of KD was established using the New Zealand young rabbits. We used RT-qPCR/H&E staining/immunohistochemistry/ELISA and western blot to detect the level of HMGB1/RAGE and NF-κB. Results In this study, we found that the HMGB1/RAGE/NF-κB axis was elevated in the serum of children with KD. In addition, an animal model of KD was subsequently prepared to examine the pathological changes of the coronary arteries. We found that the serum levels of HMGB1/RAGE/NF-κB in rabbits with KD were significantly higher than those of the control group. Moreover, the lumen diameter of the coronary artery was slightly enlarged, and the wall of the tube became thinner and deformed. In addition, the HMGB1/RAGE/NF-κB levels in the coronary artery were higher in the rabbits with KD in the acute phase. Conclusions On the whole, the findings of this study demonstrate that the expression of HMGB1/RAGE/NF-κB is altered at different stages of KD, suggesting that the HMGB1/RAGE/NF-κB signaling pathway plays an important role in vascular injury in KD. The results of this study may have important implications for the early warning of coronary artery lesions in KD.
Collapse
Affiliation(s)
- Biying Qian
- Department of Paediatrics, Affiliated Hospital of Nantong University, Nantong, 226001, Jiangsu, People's Republic of China.,Medical College of Nantong university, Nantong, 226001, Jiangsu, People's Republic of China.,Department of Emergency Medicine, Shanghai Children's Hospital, Shanghai Jiaotong University, Shanghai, 200062, People's Republic of China
| | - Hua Huang
- Department of Paediatrics, Affiliated Hospital of Nantong University, Nantong, 226001, Jiangsu, People's Republic of China.,Medical College of Nantong university, Nantong, 226001, Jiangsu, People's Republic of China
| | - Mingye Cheng
- Department of Paediatrics, Affiliated Hospital of Nantong University, Nantong, 226001, Jiangsu, People's Republic of China.,Medical College of Nantong university, Nantong, 226001, Jiangsu, People's Republic of China
| | - Tingting Qin
- Department of Paediatrics, Affiliated Hospital of Nantong University, Nantong, 226001, Jiangsu, People's Republic of China.,Medical College of Nantong university, Nantong, 226001, Jiangsu, People's Republic of China
| | - Tao Chen
- Department of Paediatrics, Affiliated Hospital of Nantong University, Nantong, 226001, Jiangsu, People's Republic of China.,Medical College of Nantong university, Nantong, 226001, Jiangsu, People's Republic of China
| | - Jianmei Zhao
- Department of Paediatrics, Affiliated Hospital of Nantong University, Nantong, 226001, Jiangsu, People's Republic of China.
| |
Collapse
|
22
|
Teissier T, Boulanger É. The receptor for advanced glycation end-products (RAGE) is an important pattern recognition receptor (PRR) for inflammaging. Biogerontology 2019; 20:279-301. [PMID: 30968282 DOI: 10.1007/s10522-019-09808-3] [Citation(s) in RCA: 102] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Accepted: 04/02/2019] [Indexed: 12/20/2022]
Abstract
The receptor for advanced glycation end-products (RAGE) was initially characterized and named for its ability to bind to advanced glycation end-products (AGEs) that form upon the irreversible and non-enzymatic interaction between nucleophiles, such as lysine, and carbonyl compounds, such as reducing sugars. The concentrations of AGEs are known to increase in conditions such as diabetes, as well as during ageing. However, it is now widely accepted that RAGE binds with numerous ligands, many of which can be defined as pathogen-associated molecular patterns (PAMPs) or damage-associated molecular patterns (DAMPs). The interaction between RAGE and its ligands mainly results in a pro-inflammatory response, and can lead to stress events often favouring mitochondrial dysfunction or cellular senescence. Thus, RAGE should be considered as a pattern recognition receptor (PRR), similar to those that regulate innate immunity. Innate immunity itself plays a central role in inflammaging, the chronic low-grade and sterile inflammation that increases with age and is a potentially important contributory factor in ageing. Consequently, and in addition to the age-related accumulation of PAMPs and DAMPs and increases in pro-inflammatory cytokines from senescent cells and damaged cells, PRRs are therefore important in inflammaging. We suggest here that, through its interconnection with immunity, senescence, mitochondrial dysfunction and inflammasome activation, RAGE is a key contributor to inflammaging and that the pro-longevity effects seen upon blocking RAGE, or upon its deletion, are thus the result of reduced inflammaging.
Collapse
Affiliation(s)
- Thibault Teissier
- Univ. Lille, Inserm, CHU Lille, U995 - LIRIC - Lille Inflammation Research International Center, 59000, Lille, France.
| | - Éric Boulanger
- Univ. Lille, Inserm, CHU Lille, U995 - LIRIC - Lille Inflammation Research International Center, 59000, Lille, France.,Department of Geriatrics and Ageing Biology, School of Medicine, Lille University, Lille, France.,Department of Geriatrics, Lille University Hospital, Lille, France
| |
Collapse
|
23
|
Volpina OM, Samokhin AN, Koroev DO, Nesterova IV, Volkova TD, Medvinskaya NI, Nekrasov PV, Tatarnikova OG, Kamynina AV, Balasanyants SM, Voronina TA, Kulikov AM, Bobkova NV. Synthetic Fragment of Receptor for Advanced Glycation End Products Prevents Memory Loss and Protects Brain Neurons in Olfactory Bulbectomized Mice. J Alzheimers Dis 2019; 61:1061-1076. [PMID: 29332040 DOI: 10.3233/jad-170483] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Activation of receptor for advanced glycation end products (RAGE) plays an essential role in the development of Alzheimer's disease (AD). It is known that the soluble isoform of the receptor binds to ligands and prevents negative effects of the receptor activation. We proposed that peptide fragments from RAGE prevent negative effects of the receptor activation during AD neurodegeneration. We have synthesized peptide fragments from surface-exposed regions of RAGE. Peptides were intranasally administrated into olfactory bulbectomized (OBX) mice, which developed some characteristics similar to AD neurodegeneration. We have found that only insertion of fragment (60-76) prevents the memory of OBX mice. Immunization of OBX mice with peptides showed that again only (60-76) peptide protected the memory of animals. Both intranasal insertion and immunization decreased the amyloid-β (Aβ) level in the brain. Activity of shortened fragments of (60-76) peptide was tested and showed only the (60-70) peptide is responsible for manifestation of activity. Intranasal administration of (60-76) peptide shows most protective effect on morpho-functional characteristics of neurons in the cortex and hippocampal areas. Using Flu-(60-76) peptide, we revealed its penetration in the brain of OBX mice as well as colocalization of Flu-labeled peptide with Aβ in the brain regions in transgenic mice. Flu-(60-76) peptide complex with trimer of Aβ was detected by SDS-PAGE. These data indicate that Aβ can be one of the molecular target of (60-70) peptide. These findings provide a new peptide molecule for design of anti-AD drug and for investigation of RAGE activation ways in progression of AD neurodegeneration.
Collapse
Affiliation(s)
- Olga M Volpina
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russia
| | - Alexandr N Samokhin
- Institute of Cell Biophysics, Russian Academy of Sciences, Pushchino, Russia
| | - Dmitriy O Koroev
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russia
| | - Inna V Nesterova
- Institute of Cell Biophysics, Russian Academy of Sciences, Pushchino, Russia
| | - Tatyana D Volkova
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russia
| | | | - Pavel V Nekrasov
- Institute of Cell Biophysics, Russian Academy of Sciences, Pushchino, Russia
| | - Olga G Tatarnikova
- Institute of Cell Biophysics, Russian Academy of Sciences, Pushchino, Russia
| | - Anna V Kamynina
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russia
| | - Samson M Balasanyants
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russia
| | | | - Alexey M Kulikov
- Koltsov Institute of Developmental Biology, Russian Academy of Sciences, Moscow, Russia
| | - Natalia V Bobkova
- Institute of Cell Biophysics, Russian Academy of Sciences, Pushchino, Russia
| |
Collapse
|
24
|
Fournet M, Bonté F, Desmoulière A. Glycation Damage: A Possible Hub for Major Pathophysiological Disorders and Aging. Aging Dis 2018; 9:880-900. [PMID: 30271665 PMCID: PMC6147582 DOI: 10.14336/ad.2017.1121] [Citation(s) in RCA: 168] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2017] [Accepted: 11/21/2017] [Indexed: 12/25/2022] Open
Abstract
Glycation is both a physiological and pathological process which mainly affects proteins, nucleic acids and lipids. Exogenous and endogenous glycation produces deleterious reactions that take place principally in the extracellular matrix environment or within the cell cytosol and organelles. Advanced glycation end product (AGE) formation begins by the non-enzymatic glycation of free amino groups by sugars and aldehydes which leads to a succession of rearrangements of intermediate compounds and ultimately to irreversibly bound products known as AGEs. Epigenetic factors, oxidative stress, UV and nutrition are important causes of the accumulation of chemically and structurally different AGEs with various biological reactivities. Cross-linked proteins, deriving from the glycation process, present both an altered structure and function. Nucleotides and lipids are particularly vulnerable targets which can in turn favor DNA mutation or a decrease in cell membrane integrity and associated biological pathways respectively. In mitochondria, the consequences of glycation can alter bioenergy production. Under physiological conditions, anti-glycation defenses are sufficient, with proteasomes preventing accumulation of glycated proteins, while lipid turnover clears glycated products and nucleotide excision repair removes glycated nucleotides. If this does not occur, glycation damage accumulates, and pathologies may develop. Glycation-induced biological products are known to be mainly associated with aging, neurodegenerative disorders, diabetes and its complications, atherosclerosis, renal failure, immunological changes, retinopathy, skin photoaging, osteoporosis, and progression of some tumors.
Collapse
Affiliation(s)
- Maxime Fournet
- 1University of Limoges, Faculty of Pharmacy, Department of Physiology, EA 6309, F-87025 Limoges, France
| | | | - Alexis Desmoulière
- 3University of Limoges, Faculty of Pharmacy, Department of Physiology, EA 6309, F-87025 Limoges, France
| |
Collapse
|
25
|
Gasparotto J, Ribeiro CT, da Rosa-Silva HT, Bortolin RC, Rabelo TK, Peixoto DO, Moreira JCF, Gelain DP. Systemic Inflammation Changes the Site of RAGE Expression from Endothelial Cells to Neurons in Different Brain Areas. Mol Neurobiol 2018; 56:3079-3089. [DOI: 10.1007/s12035-018-1291-6] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2018] [Accepted: 07/31/2018] [Indexed: 12/21/2022]
|
26
|
Videira PAQ, Castro-Caldas M. Linking Glycation and Glycosylation With Inflammation and Mitochondrial Dysfunction in Parkinson's Disease. Front Neurosci 2018; 12:381. [PMID: 29930494 PMCID: PMC5999786 DOI: 10.3389/fnins.2018.00381] [Citation(s) in RCA: 55] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Accepted: 05/18/2018] [Indexed: 01/08/2023] Open
Abstract
Parkinson’s disease (PD) is the second most common neurodegenerative disorder, affecting about 6.3 million people worldwide. PD is characterized by the progressive degeneration of dopaminergic neurons in the Substantia nigra pars compacta, resulting into severe motor symptoms. The cellular mechanisms underlying dopaminergic cell death in PD are still not fully understood, but mitochondrial dysfunction, oxidative stress and inflammation are strongly implicated in the pathogenesis of both familial and sporadic PD cases. Aberrant post-translational modifications, namely glycation and glycosylation, together with age-dependent insufficient endogenous scavengers and quality control systems, lead to cellular overload of dysfunctional proteins. Such injuries accumulate with time and may lead to mitochondrial dysfunction and exacerbated inflammatory responses, culminating in neuronal cell death. Here, we will discuss how PD-linked protein mutations, aging, impaired quality control mechanisms and sugar metabolism lead to up-regulated abnormal post-translational modifications in proteins. Abnormal glycation and glycosylation seem to be more common than previously thought in PD and may underlie mitochondria-induced oxidative stress and inflammation in a feed-forward mechanism. Moreover, the stress-induced post-translational modifications that directly affect parkin and/or its substrates, deeply impairing its ability to regulate mitochondrial dynamics or to suppress inflammation will also be discussed. Together, these represent still unexplored deleterious mechanisms implicated in neurodegeneration in PD, which may be used for a more in-depth knowledge of the pathogenic mechanisms, or as biomarkers of the disease.
Collapse
Affiliation(s)
- Paula A Q Videira
- UCIBIO, Departamento Ciências da Vida, Faculdade de Ciências e Tecnologia, Universidade NOVA de Lisboa, Caparica, Portugal.,CDG & Allies - Professionals and Patient Associations International Network (CDG & Allies - PPAIN), Faculdade de Ciências e Tecnologia, Universidade NOVA de Lisboa, Caparica, Portugal
| | - Margarida Castro-Caldas
- UCIBIO, Departamento Ciências da Vida, Faculdade de Ciências e Tecnologia, Universidade NOVA de Lisboa, Caparica, Portugal.,Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Lisbon, Portugal
| |
Collapse
|
27
|
Garaschuk O, Semchyshyn HM, Lushchak VI. Healthy brain aging: Interplay between reactive species, inflammation and energy supply. Ageing Res Rev 2018; 43:26-45. [PMID: 29452266 DOI: 10.1016/j.arr.2018.02.003] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2017] [Revised: 11/13/2017] [Accepted: 02/08/2018] [Indexed: 02/07/2023]
Abstract
Brains' high energy expenditure with preferable utilization of glucose and ketone bodies, defines the specific features of its energy homeostasis. The extensive oxidative metabolism is accompanied by a concomitant generation of high amounts of reactive oxygen, nitrogen, and carbonyl species, which will be here collectively referred to as RONCS. Such metabolism in combination with high content of polyunsaturated fatty acids creates specific problems in maintaining brains' redox homeostasis. While the levels of products of interaction between RONCS and cellular components increase slowly during the first two trimesters of individuals' life, their increase is substantially accelerated towards the end of life. Here we review the main mechanisms controlling the redox homeostasis of the mammalian brain, their age-dependencies as well as their adaptive potential, which might turn out to be much higher than initially assumed. According to recent data, the organism seems to respond to the enhancement of aging-related toxicity by forming a new homeostatic set point. Therefore, further research will focus on understanding the properties of the new set point(s), the general nature of this phenomenon and will explore the limits of brains' adaptivity.
Collapse
Affiliation(s)
- O Garaschuk
- Department of Neurophysiology, Institute of Physiology, University of Tübingen, 72074 Tübingen, Germany.
| | - H M Semchyshyn
- Department of Biochemistry and Biotechnology, Vasyl Stefanyk Precarpathian National University, 57 Shevchenko Str, Ivano-Frankivsk, 76018, Ukraine.
| | - V I Lushchak
- Department of Biochemistry and Biotechnology, Vasyl Stefanyk Precarpathian National University, 57 Shevchenko Str, Ivano-Frankivsk, 76018, Ukraine.
| |
Collapse
|
28
|
Jiang X, Wang X, Tuo M, Ma J, Xie A. RAGE and its emerging role in the pathogenesis of Parkinson’s disease. Neurosci Lett 2018; 672:65-69. [DOI: 10.1016/j.neulet.2018.02.049] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2017] [Revised: 02/20/2018] [Accepted: 02/21/2018] [Indexed: 01/10/2023]
|
29
|
González-Reyes RE, Nava-Mesa MO, Vargas-Sánchez K, Ariza-Salamanca D, Mora-Muñoz L. Involvement of Astrocytes in Alzheimer's Disease from a Neuroinflammatory and Oxidative Stress Perspective. Front Mol Neurosci 2017; 10:427. [PMID: 29311817 PMCID: PMC5742194 DOI: 10.3389/fnmol.2017.00427] [Citation(s) in RCA: 352] [Impact Index Per Article: 44.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2017] [Accepted: 12/06/2017] [Indexed: 12/19/2022] Open
Abstract
Alzheimer disease (AD) is a frequent and devastating neurodegenerative disease in humans, but still no curative treatment has been developed. Although many explicative theories have been proposed, precise pathophysiological mechanisms are unknown. Due to the importance of astrocytes in brain homeostasis they have become interesting targets for the study of AD. Changes in astrocyte function have been observed in brains from individuals with AD, as well as in AD in vitro and in vivo animal models. The presence of amyloid beta (Aβ) has been shown to disrupt gliotransmission, neurotransmitter uptake, and alter calcium signaling in astrocytes. Furthermore, astrocytes express apolipoprotein E and are involved in the production, degradation and removal of Aβ. As well, changes in astrocytes that precede other pathological characteristics observed in AD, point to an early contribution of astroglia in this disease. Astrocytes participate in the inflammatory/immune responses of the central nervous system. The presence of Aβ activates different cell receptors and intracellular signaling pathways, mainly the advanced glycation end products receptor/nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) pathway, responsible for the transcription of pro-inflammatory cytokines and chemokines in astrocytes. The release of these pro-inflammatory agents may induce cellular damage or even stimulate the production of Aβ in astrocytes. Additionally, Aβ induces the appearance of oxidative stress (OS) and production of reactive oxygen species and reactive nitrogen species in astrocytes, affecting among others, intracellular calcium levels, NADPH oxidase (NOX), NF-κB signaling, glutamate uptake (increasing the risk of excitotoxicity) and mitochondrial function. Excessive neuroinflammation and OS are observed in AD, and astrocytes seem to be involved in both. The Aβ/NF-κB interaction in astrocytes may play a central role in these inflammatory and OS changes present in AD. In this paper, we also discuss therapeutic measures highlighting the importance of astrocytes in AD pathology. Several new therapeutic approaches involving phenols (curcumin), phytoestrogens (genistein), neuroesteroids and other natural phytochemicals have been explored in astrocytes, obtaining some promising results regarding cognitive improvements and attenuation of neuroinflammation. Novel strategies comprising astrocytes and aimed to reduce OS in AD have also been proposed. These include estrogen receptor agonists (pelargonidin), Bambusae concretio Salicea, Monascin, and various antioxidatives such as resveratrol, tocotrienol, anthocyanins, and epicatechin, showing beneficial effects in AD models.
Collapse
Affiliation(s)
- Rodrigo E González-Reyes
- Grupo de Investigación en Neurociencias (NeURos), Escuela de Medicina y Ciencias de la Salud, Universidad del Rosario, Bogotá, Colombia
| | - Mauricio O Nava-Mesa
- Grupo de Investigación en Neurociencias (NeURos), Escuela de Medicina y Ciencias de la Salud, Universidad del Rosario, Bogotá, Colombia
| | - Karina Vargas-Sánchez
- Biomedical Sciences Research Group, School of Medicine, Universidad Antonio Nariño, Bogotá, Colombia
| | - Daniel Ariza-Salamanca
- Grupo de Investigación en Neurociencias (NeURos), Escuela de Medicina y Ciencias de la Salud, Universidad del Rosario, Bogotá, Colombia
| | - Laura Mora-Muñoz
- Grupo de Investigación en Neurociencias (NeURos), Escuela de Medicina y Ciencias de la Salud, Universidad del Rosario, Bogotá, Colombia
| |
Collapse
|
30
|
Pivotal neuroinflammatory and therapeutic role of high mobility group box 1 in ischemic stroke. Biosci Rep 2017; 37:BSR20171104. [PMID: 29054968 PMCID: PMC5715129 DOI: 10.1042/bsr20171104] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2017] [Revised: 09/29/2017] [Accepted: 10/18/2017] [Indexed: 12/27/2022] Open
Abstract
Stroke is a major cause of mortality and disability worldwide. Stroke is a frequent and severe neurovascular disorder. The main cause of stroke is atherosclerosis, and the most common risk factor for atherosclerosis is hypertension. Therefore, prevention and treatment of stroke are crucial issues in humans. High mobility group box 1 (HMGB1) is non-histone nuclear protein that is currently one of the crucial proinflammatory alarmins in ischemic stroke (IS). It is instantly released from necrotic cells in the ischemic core and activates an early inflammatory response. HMGB1 may signal via its putative receptors, such as receptor for advanced glycation end products (RAGE), toll-like receptors (TLRs) as well as matrix metalloproteinase (MMP) enzymes during IS. These receptors are expressed in brain cells. Additionally, brain-released HMGB1 can be redox modified in the circulation and activate peripheral immune cells. The role of HMGB1 may be more complex. HMGB1 possesses beneficial actions, such as endothelial activation, enhancement of neurite outgrowth, and neuronal survival. HMGB1 may also provide a novel link for brain-immune communication leading to post-stroke immunomodulation. Therefore, HMGB1 is new promising therapeutic intervention aimed at promoting neurovascular repair and remodeling after stroke. In this review, we look at the mechanisms of secretion of HMGB1, the role of receptors, MMP enzymes, hypoglycemia, atherosclerosis, edema, angiogenesis as well as neuroimmunological reactions and post-ischemic brain recovery in IS. We also outline therapeutic roles of HMGB1 in IS.
Collapse
|
31
|
Fingolimod anti-inflammatory and neuroprotective effects modulation of RAGE axis in multiple sclerosis patients. Neuropharmacology 2017; 130:71-76. [PMID: 29197515 DOI: 10.1016/j.neuropharm.2017.11.047] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2016] [Revised: 09/14/2017] [Accepted: 11/27/2017] [Indexed: 12/12/2022]
Abstract
BACKGROUND We investigated Fingolimod treatment effects on the RAGE (receptor for advanced glycation endproducts) axis in multiple sclerosis (MS) patients. The primary outcome of the study was whether Fingolimod treatment increases serum levels of the soluble RAGE isoforms, sRAGE and esRAGE - both being considered putative endogenous inhibitors of RAGE signaling. Additional variables were serum levels of RAGE ligands, the high mobility group box (HMGB)1 and pentosidine. METHODS Serum levels of the study variables were measured by ELISA, and compared between baseline (before Fingolimod treatment) and 6 and 12 months post-drug treatment in 17 relapsing MS patients. Fingolimod treatment effects on MS disease progression were assessed by comparing pre- and post-Fingolimod values of the EDSS and rate of clinical relapse, and changes in the T1-and T2-enahncing lesions on the MRI scan.methods RESULTS: Twelve months treatment with Fingolimod increased serum levels of sRAGE and esRAGE by 32.4% (P = 0.004) and 48.5% (P = 0.007) respectively. In addition, Fingolimod treatment reduced serum levels of HMGB1 by 71.6% (P = 0.02) and pentosidine serum levels by 41.3% (P = 0.12). EDSS remained stable (baseline: 3.57 ± 1.56; post-Fingolimod: 3.54 ± 1.2, P = 0.96) and the rate of clinical relapse decreased near significantly (P = 0.094). T1-and T2-enhancing lesions remained stable, showing no significant changes pre-vs. post-Fingolimod treatment. CONCLUSION Fingolimod mediates modulation of the RAGE axis which apparently contributes to the Fingolimod's anti-inflammatory and neuroprotective effects. These findings may provide a rationale for the clinical efficacy of Fingolimod in pathological states other than MS, where dysregulation of the RAGE axis plays a role.
Collapse
|
32
|
Bongarzone S, Savickas V, Luzi F, Gee AD. Targeting the Receptor for Advanced Glycation Endproducts (RAGE): A Medicinal Chemistry Perspective. J Med Chem 2017; 60:7213-7232. [PMID: 28482155 PMCID: PMC5601361 DOI: 10.1021/acs.jmedchem.7b00058] [Citation(s) in RCA: 224] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
![]()
The
receptor for advanced glycation endproducts (RAGE) is an ubiquitous,
transmembrane, immunoglobulin-like receptor that exists in multiple
isoforms and binds to a diverse range of endogenous extracellular
ligands and intracellular effectors. Ligand binding at the extracellular
domain of RAGE initiates a complex intracellular signaling cascade,
resulting in the production of reactive oxygen species (ROS), immunoinflammatory
effects, cellular proliferation, or apoptosis with concomitant upregulation
of RAGE itself. To date, research has mainly focused on the correlation
between RAGE activity and pathological conditions, such as cancer,
diabetes, cardiovascular diseases, and neurodegeneration. Because
RAGE plays a role in many pathological disorders, it has become an
attractive target for the development of inhibitors at the extracellular
and intracellular domains. This review describes the role of endogenous
RAGE ligands/effectors in normo- and pathophysiological processes,
summarizes the current status of exogenous small-molecule inhibitors
of RAGE and concludes by identifying key strategies for future therapeutic
intervention.
Collapse
Affiliation(s)
- Salvatore Bongarzone
- Division of Imaging Sciences and Biomedical Engineering, King's College London, King's Health Partners , St. Thomas' Hospital, London, SE1 7EH, United Kingdom
| | - Vilius Savickas
- Division of Imaging Sciences and Biomedical Engineering, King's College London, King's Health Partners , St. Thomas' Hospital, London, SE1 7EH, United Kingdom
| | - Federico Luzi
- Division of Imaging Sciences and Biomedical Engineering, King's College London, King's Health Partners , St. Thomas' Hospital, London, SE1 7EH, United Kingdom
| | - Antony D Gee
- Division of Imaging Sciences and Biomedical Engineering, King's College London, King's Health Partners , St. Thomas' Hospital, London, SE1 7EH, United Kingdom
| |
Collapse
|
33
|
Koroev DO, Volpina OM, Volkova TD, Kamynina AV, Filatova MP, Balasanyants SM, Samokhin AN, Bobkova NV. A synthetic fragment 60–70 of the receptor for advanced glycation end products exhibits a therapeutic effect in an animal model of Alzheimer’s disease. RUSSIAN JOURNAL OF BIOORGANIC CHEMISTRY 2017. [DOI: 10.1134/s1068162017020066] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
34
|
Wetzels S, Wouters K, Schalkwijk CG, Vanmierlo T, Hendriks JJA. Methylglyoxal-Derived Advanced Glycation Endproducts in Multiple Sclerosis. Int J Mol Sci 2017; 18:ijms18020421. [PMID: 28212304 PMCID: PMC5343955 DOI: 10.3390/ijms18020421] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2017] [Revised: 02/09/2017] [Accepted: 02/10/2017] [Indexed: 12/23/2022] Open
Abstract
Multiple sclerosis (MS) is a demyelinating disease of the central nervous system (CNS). The activation of inflammatory cells is crucial for the development of MS and is shown to induce intracellular glycolytic metabolism in pro-inflammatory microglia and macrophages, as well as CNS-resident astrocytes. Advanced glycation endproducts (AGEs) are stable endproducts formed by a reaction of the dicarbonyl compounds methylglyoxal (MGO) and glyoxal (GO) with amino acids in proteins, during glycolysis. This suggests that, in MS, MGO-derived AGEs are formed in glycolysis-driven cells. MGO and MGO-derived AGEs can further activate inflammatory cells by binding to the receptor for advanced glycation endproducts (RAGE). Recent studies have revealed that AGEs are increased in the plasma and brain of MS patients. Therefore, AGEs might contribute to the inflammatory status in MS. Moreover, the main detoxification system of dicarbonyl compounds, the glyoxalase system, seems to be affected in MS patients, which may contribute to high MGO-derived AGE levels. Altogether, evidence is emerging for a contributing role of AGEs in the pathology of MS. In this review, we provide an overview of the current knowledge on the involvement of AGEs in MS.
Collapse
Affiliation(s)
- Suzan Wetzels
- Department of Internal Medicine, Cardiovascular Research Institute Maastricht, Maastricht University, 6229 Maastricht, The Netherlands.
- Department of Immunology and Biochemistry, Biomedical Research Institute, Hasselt University, Martelarenlaan 42, 3500 Hasselt, Belgium.
| | - Kristiaan Wouters
- Department of Internal Medicine, Cardiovascular Research Institute Maastricht, Maastricht University, 6229 Maastricht, The Netherlands.
| | - Casper G Schalkwijk
- Department of Internal Medicine, Cardiovascular Research Institute Maastricht, Maastricht University, 6229 Maastricht, The Netherlands.
| | - Tim Vanmierlo
- Department of Immunology and Biochemistry, Biomedical Research Institute, Hasselt University, Martelarenlaan 42, 3500 Hasselt, Belgium.
| | - Jerome J A Hendriks
- Department of Immunology and Biochemistry, Biomedical Research Institute, Hasselt University, Martelarenlaan 42, 3500 Hasselt, Belgium.
| |
Collapse
|
35
|
RAGE-TLR Crosstalk Sustains Chronic Inflammation in Neurodegeneration. Mol Neurobiol 2017; 55:1463-1476. [PMID: 28168427 DOI: 10.1007/s12035-017-0419-4] [Citation(s) in RCA: 82] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2016] [Accepted: 01/24/2017] [Indexed: 01/10/2023]
Abstract
Chronic inflammatory reactions are consistenly present in neurodegeneration of Alzheimer type and are considered important factors that accelerate progression of the disease. Receptors of innate immunity participate in triggering and driving inflammatory reactions. For example, Toll-like receptors (TLRs) and receptor for advanced glycation end product (RAGE), major receptors of innate immunity, play a central role in perpetuation of inflammation. RAGE activation should be perceived as a primary mechanism which determines self-perpetuated chronic inflammation, and RAGE cooperation with TLRs amplifies inflammatory signaling. In this review, we highlight and discuss that RAGE-TLR crosstalk emerges as an important driving force of chronic inflammation in Alzheimer's disease.
Collapse
|
36
|
A. Richard S, Min W, Su Z, Xu HX. Epochal neuroinflammatory role of high mobility group box 1 in central nervous system diseases. AIMS MOLECULAR SCIENCE 2017. [DOI: 10.3934/molsci.2017.2.185] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
|
37
|
Juranek J, Ray R, Banach M, Rai V. Receptor for advanced glycation end-products in neurodegenerative diseases. Rev Neurosci 2016. [PMID: 26226128 DOI: 10.1515/revneuro-2015-0003] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
This review, for the first time, aims to summarize the current knowledge in the emerging field of RAGE (receptor for advanced glycation end-products) studies in neurodegeneration and neurodegenerative diseases. RAGE, a member of the multiligand cell surface immunoglobulin family, has been implicated in numerous pathological conditions - from diabetes and cardiovascular diseases to tumors and neurodegenerative disorders, such as Alzheimer's disease, familial amyloid polyneuropathy, diabetic neuropathy, Parkinson's disease, and Huntington's disease. Until now, the detailed mechanisms of the contribution of RAGE to neurodegeneration remain elusive; however, mounting evidence suggests that its detrimental actions are triggered by its ligand interactions and contribute to increased neuroinflammation, neuronal degeneration, and apoptosis. Deciphering the role of RAGE in neurodegenerative disorders will be a milestone in our basic understanding of the mechanisms involved in the pathogenesis of neurodegeneration, helping to delineate molecular links between complex RAGE signaling pathways and neuronal dysfunction and neurodegeneration.
Collapse
|
38
|
Viana SD, Valero J, Rodrigues-Santos P, Couceiro P, Silva AM, Carvalho F, Ali SF, Fontes-Ribeiro CA, Pereira FC. Regulation of striatal astrocytic receptor for advanced glycation end-products variants in an early stage of experimental Parkinson's disease. J Neurochem 2016; 138:598-609. [PMID: 27221633 DOI: 10.1111/jnc.13682] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2016] [Revised: 05/11/2016] [Accepted: 05/12/2016] [Indexed: 09/01/2023]
Abstract
Convincing evidence indicates that advanced glycation end-products and danger-associated protein S100B play a role in Parkinson's disease (PD). These agents operate through the receptor for advanced glycation end-products (RAGE), which displays distinct isoforms playing protective/deleterious effects. However, the nature of RAGE variants has been overlooked in PD studies. Hence, we attempted to characterize RAGE regulation in early stages of PD striatal pathology. A neurotoxin-based rodent model of PD was used in this study, through administration of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) to C57BL/6 mice. Animals were killed 6 h post-MPTP to assess S100B/RAGE contents (RT-qPCR, ELISA) and RAGE isoform density (WB) and cellular distribution (immunohistochemistry). Dopaminergic and gliotic status were also mapped (HPLC-ED, WB, immunohistochemistry). At this preliminary stage of MPTP-induced PD in mice, RAGE inhibitory isoforms were increased whereas full-length RAGE was not affected. This putative cytoprotective RAGE phenotype paired an inflammatory and pro-oxidant setting fueling DAergic denervation. Increased RAGE inhibitory variants occur in astrocytes showing higher S100B density but no overt signs of hypertrophy or NF-κB activation, a canonical effector of RAGE. These findings expand our understanding of the toxic effect of MPTP on striatum and offer first in vivo evidence of RAGE being a responder in early stages of astrogliosis dynamics, supporting a protective rather tissue-destructive phenotype of RAGE in the initial phase of PD degeneration. These data lay the groundwork for future studies on the relevance of astrocytic RAGE in DAergic neuroprotection strategies. We report increased antagonistic RAGE variants paralleling S100B up-regulation in early stages of MPTP-induced astrogliosis dynamics . We propose that selective RAGE regulation reflects a self-protective mechanism to maintain low levels of RAGE ligands , preventing long-term inflammation and oxidative stress arising from sustained ligands/flRAGE activation . Understanding loss of RAGE protective response to stress may provide new therapeutic options to halt or slow down dopaminergic axonopathy and, ultimately, neuronal death .
Collapse
Affiliation(s)
- Sofia D Viana
- Laboratory of Pharmacology and Experimental Therapeutics/IBILI, Faculty of Medicine, University of Coimbra, Coimbra, Portugal
- CNC.IBILI - University of Coimbra, Coimbra, Portugal
- Polytechnic Institute of Coimbra, ESTESC-Coimbra Health School, Pharmacy, Coimbra, Portugal
| | - Jorge Valero
- CNC.IBILI - University of Coimbra, Coimbra, Portugal
- Achucarro Basque Center for Neuroscience, Zamudio, Bizkaia, Spain
- Ikerbasque Foundation, Bilbao, Bizkaia, Spain
| | - Paulo Rodrigues-Santos
- Institute of Immunology - Faculty of Medicine, University of Coimbra, Coimbra, Portugal
- Immunology and Oncology Laboratory, Center for Neurosciences and Cell Biology (CNC), University of Coimbra, Coimbra, Portugal
- Center of Investigation in Environment, Genetics and Oncobiology (CIMAGO), Faculty of Medicine, University of Coimbra, Coimbra, Portugal
| | - Patrícia Couceiro
- Immunology and Oncology Laboratory, Center for Neurosciences and Cell Biology (CNC), University of Coimbra, Coimbra, Portugal
| | - Andréa M Silva
- Laboratory of Pharmacology and Experimental Therapeutics/IBILI, Faculty of Medicine, University of Coimbra, Coimbra, Portugal
- CNC.IBILI - University of Coimbra, Coimbra, Portugal
| | - Félix Carvalho
- UCIBIO-REQUIMTE, Laboratory of Toxicology, Department of Biological Sciences, Faculty of Pharmacy, University of Porto, Porto, Portugal
| | - Syed F Ali
- Neurochemistry Laboratory, Division of Neurotoxicology, National Center of Toxicological Research/Food and Drug Administration, Jefferson, Arkansas, USA
| | - Carlos A Fontes-Ribeiro
- Laboratory of Pharmacology and Experimental Therapeutics/IBILI, Faculty of Medicine, University of Coimbra, Coimbra, Portugal
- CNC.IBILI - University of Coimbra, Coimbra, Portugal
| | - Frederico C Pereira
- Laboratory of Pharmacology and Experimental Therapeutics/IBILI, Faculty of Medicine, University of Coimbra, Coimbra, Portugal
- CNC.IBILI - University of Coimbra, Coimbra, Portugal
| |
Collapse
|
39
|
Juranek JK, Daffu GK, Geddis MS, Li H, Rosario R, Kaplan BJ, Kelly L, Schmidt AM. Soluble RAGE Treatment Delays Progression of Amyotrophic Lateral Sclerosis in SOD1 Mice. Front Cell Neurosci 2016; 10:117. [PMID: 27242430 PMCID: PMC4860390 DOI: 10.3389/fncel.2016.00117] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2016] [Accepted: 04/22/2016] [Indexed: 12/12/2022] Open
Abstract
The etiology of amyotrophic lateral sclerosis (ALS), a fatal motor neuron disorder characterized by progressive muscle weakness and spasticity, remains largely unknown. Approximately 5-10% of cases are familial, and of those, 15-20% are associated with mutations in the gene encoding Cu/Zn superoxide dismutase (SOD1). Mutations of the SOD1 gene interrupt cellular homeostasis and contribute to cellular toxicity evoked by the presence of altered SOD1, along with other toxic species, such as advanced glycation end products (AGEs). AGEs trigger activation of their chief cell surface receptor, RAGE (receptor for advanced glycation end products), and induce RAGE-dependent cellular stress and inflammation in neurons, thereby affecting their function and leading to apoptosis. Here, we show for the first time that the expression of RAGE is higher in the SOD1 transgenic mouse model of ALS vs. wild-type mouse spinal cord. We tested whether pharmacological blockade of RAGE may delay the onset and progression of disease in this mouse model. Our findings reveal that treatment of SOD1 transgenic mice with soluble RAGE (sRAGE), a natural competitor of RAGE that sequesters RAGE ligands and blocks their interaction with cell surface RAGE, significantly delays the progression of ALS and prolongs life span compared to vehicle treatment. We demonstrate that in sRAGE-treated SOD1 transgenic animals at the final stage of the disease, a significantly higher number of neurons and lower number of astrocytes is detectable in the spinal cord. We conclude that RAGE antagonism may provide a novel therapeutic strategy for ALS intervention.
Collapse
Affiliation(s)
- Judyta K Juranek
- Division of Endocrinology, Department of Medicine, New York University Langone Medical CenterNew York, NY, USA; Department of Surgery, Columbia University Medical CenterNew York, NY, USA
| | - Gurdip K Daffu
- Division of Endocrinology, Department of Medicine, New York University Langone Medical Center New York, NY, USA
| | - Matthew S Geddis
- Department of Surgery, Columbia University Medical CenterNew York, NY, USA; Department of Science, Borough of Manhattan Community College-City University of New YorkNew York, NY, USA
| | - Huilin Li
- Division of Biostatistics, Department of Population Health, New York University Langone Medical Center New York, NY, USA
| | - Rosa Rosario
- Division of Endocrinology, Department of Medicine, New York University Langone Medical CenterNew York, NY, USA; Department of Surgery, Columbia University Medical CenterNew York, NY, USA
| | - Benjamin J Kaplan
- Department of Surgery, Columbia University Medical Center New York, NY, USA
| | - Lauren Kelly
- Department of Surgery, Columbia University Medical Center New York, NY, USA
| | - Ann Marie Schmidt
- Division of Endocrinology, Department of Medicine, New York University Langone Medical CenterNew York, NY, USA; Department of Surgery, Columbia University Medical CenterNew York, NY, USA
| |
Collapse
|
40
|
Singh V, Roth S, Veltkamp R, Liesz A. HMGB1 as a Key Mediator of Immune Mechanisms in Ischemic Stroke. Antioxid Redox Signal 2016; 24:635-51. [PMID: 26493086 DOI: 10.1089/ars.2015.6397] [Citation(s) in RCA: 86] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
SIGNIFICANCE Stroke is the leading cause of morbidity and mortality worldwide. Inflammatory cascades have a major impact on outcome and regeneration after ischemic stroke. High-mobility group box 1 (HMGB1) has come into the focus of experimental and clinical stroke research because it is released from necrotic brain tissue and its differential redox forms attract and activate immune cells after ischemic brain injury. HMGB1 is a potent inducer of inflammatory cascades, and thereby, secondary deterioration of neurological outcome. RECENT ADVANCES The role of HMGB1 in sterile inflammation is well established. Emerging evidence suggests that HMGB1 modulates neuroinflammation after experimental brain ischemia and that it may be a useful prognostic biomarker for stroke patients. CRITICAL ISSUES HMGB1 is instantly released from necrotic cells in the ischemic core and activates an early inflammatory response. In addition, brain-released HMGB1 can be redox modified in the circulation and activate peripheral immune cells. HMGB1 concentrations correlate with disease severity and outcome after brain injury. This is the first review depicting the crucial role of HMGB1 in the initiation and perpetuation of secondary immune alterations after experimental and clinical stroke. FUTURE DIRECTIONS HMGB1-dependent signaling pathways are on the verge and have the potential to become a central topic in experimental stroke research. Current and upcoming projects in this field will be paving the way for future translational approaches targeting the center of poststroke inflammation to improve stroke recovery and long-term outcome.
Collapse
Affiliation(s)
- Vikramjeet Singh
- 1 Institute for Stroke and Dementia Research , Klinikum der Universität München, Munich, Germany .,2 Munich Cluster for Systems Neurology (SyNergy) , Munich, Germany
| | - Stefan Roth
- 1 Institute for Stroke and Dementia Research , Klinikum der Universität München, Munich, Germany .,2 Munich Cluster for Systems Neurology (SyNergy) , Munich, Germany
| | - Roland Veltkamp
- 3 Division of Brain Sciences, Imperial College London , London, United Kingdom
| | - Arthur Liesz
- 1 Institute for Stroke and Dementia Research , Klinikum der Universität München, Munich, Germany .,2 Munich Cluster for Systems Neurology (SyNergy) , Munich, Germany
| |
Collapse
|
41
|
Kim Y, Kim C, Son SM, Song H, Hong HS, Han SH, Mook-Jung I. The novel RAGE interactor PRAK is associated with autophagy signaling in Alzheimer's disease pathogenesis. Mol Neurodegener 2016; 11:4. [PMID: 26758977 PMCID: PMC4709948 DOI: 10.1186/s13024-016-0068-5] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2015] [Accepted: 01/04/2016] [Indexed: 01/12/2023] Open
Abstract
BACKGROUND The receptor for advanced glycation end products (RAGE) has been found to interact with amyloid β (Aβ). Although RAGE does not have any kinase motifs in its cytosolic domain, the interaction between RAGE and Aβ triggers multiple cellular signaling involved in Alzheimer's disease (AD). However, the mechanism of signal transduction by RAGE remains still unknown. Therefore, identifying binding proteins of RAGE may provide novel therapeutic targets for AD. RESULTS In this study, we identified p38-regulated/activated protein kinase (PRAK) as a novel RAGE interacting molecule. To investigate the effect of Aβ on PRAK mediated RAGE signaling pathway, we treated SH-SY5Y cells with monomeric form of Aβ. We demonstrated that Aβ significantly increased the phosphorylation of PRAK as well as the interaction between PRAK and RAGE. We showed that knockdown of PRAK rescued mTORC1 inactivation induced by Aβ treatment and decreased the formation of Aβ-induced autophagosome. CONCLUSIONS We provide evidence that PRAK plays a critical role in AD pathology as a key interactor of RAGE. Thus, our data suggest that PRAK might be a potential therapeutic target of AD involved in RAGE-mediated cell signaling induced by Aβ.
Collapse
Affiliation(s)
- Yoonhee Kim
- Department of Biochemistry and Biomedical Sciences, Seoul National University College of Medicine, 103 Daehak-ro, Jongro-gu, Seoul, 110-799, Korea.
| | - Chaeyoung Kim
- Department of Biochemistry and Biomedical Sciences, Seoul National University College of Medicine, 103 Daehak-ro, Jongro-gu, Seoul, 110-799, Korea.
| | - Sung Min Son
- Department of Biochemistry and Biomedical Sciences, Seoul National University College of Medicine, 103 Daehak-ro, Jongro-gu, Seoul, 110-799, Korea.
| | - Hyundong Song
- Department of Biochemistry and Biomedical Sciences, Seoul National University College of Medicine, 103 Daehak-ro, Jongro-gu, Seoul, 110-799, Korea.
| | - Hyun Seok Hong
- Department of Biochemistry and Biomedical Sciences, Seoul National University College of Medicine, 103 Daehak-ro, Jongro-gu, Seoul, 110-799, Korea.
| | - Sun-ho Han
- Department of Biochemistry and Biomedical Sciences, Seoul National University College of Medicine, 103 Daehak-ro, Jongro-gu, Seoul, 110-799, Korea.
| | - Inhee Mook-Jung
- Department of Biochemistry and Biomedical Sciences, Seoul National University College of Medicine, 103 Daehak-ro, Jongro-gu, Seoul, 110-799, Korea.
| |
Collapse
|
42
|
Ray R, Juranek JK, Rai V. RAGE axis in neuroinflammation, neurodegeneration and its emerging role in the pathogenesis of amyotrophic lateral sclerosis. Neurosci Biobehav Rev 2015; 62:48-55. [PMID: 26724598 DOI: 10.1016/j.neubiorev.2015.12.006] [Citation(s) in RCA: 104] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2015] [Revised: 10/19/2015] [Accepted: 12/10/2015] [Indexed: 12/13/2022]
Abstract
RAGE, the receptor of advanced glycation end-products, is thought to be one of the potential contributors to the neurodegeneration. It has been shown that RAGE activation triggers an increase in proinflammatory molecules, oxidative stressors and cytokines. RAGE involvement has been documented in the pathogenesis of a number of neurodegenerative diseases such amyotrophic lateral sclerosis (ALS), Alzheimer's, Parkinson's, Huntington's, Creutzfeld-Jakob' diseases and various neurodegenerative conditions such as diabetic neuropathy, familial amyloid polyneuropathy, Charcot neuroarthropathy and vasculitic neuropathy. Although the detailed mechanisms of RAGE contribution to the neurodegeneration remains unclear, studies indicate that RAGE detrimental actions are exerted via its binding to the pro-inflammatory ligands such as advanced glycation end-products, S100/calgranulin and amphoterin and subsequent activation of downstream regulatory pathways such as NF-κB, STAT and JKN pathways. Here, in this review we attempt to shed light onto molecular events and pathological pathways involved in neuroinflammation, neurodegeneration and its emerging role in the pathogenesis of amyotrophic lateral sclerosis (ALS)--a progressive and fatal neurodegenerative disorder, summarizing current knowledge and the prospect of RAGE in the pathogenesis of this disastrous disease.
Collapse
Affiliation(s)
- Rashmi Ray
- Institute of Life Sciences, Bhubaneswar 751023, India; Manipal University, Karnataka 576104, India
| | - Judyta K Juranek
- Department of Medicine, New York University Medical Center, New York, USA; Department of Pathophysiology, Faculty of Medicine, University of Warmia and Mazury, 10-557 Olsztyn, Poland.
| | - Vivek Rai
- Institute of Life Sciences, Bhubaneswar 751023, India.
| |
Collapse
|
43
|
Juranek JK, Daffu GK, Wojtkiewicz J, Lacomis D, Kofler J, Schmidt AM. Receptor for Advanced Glycation End Products and its Inflammatory Ligands are Upregulated in Amyotrophic Lateral Sclerosis. Front Cell Neurosci 2015; 9:485. [PMID: 26733811 PMCID: PMC4686801 DOI: 10.3389/fncel.2015.00485] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2015] [Accepted: 11/30/2015] [Indexed: 12/12/2022] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is a fatal motor neuron disorder of largely unknown pathogenesis. Recent studies suggest that enhanced oxidative stress and neuroinflammation contribute to the progression of the disease. Mounting evidence implicates the receptor for advanced glycation end-products (RAGE) as a significant contributor to the pathogenesis of certain neurodegenerative diseases and chronic conditions. It is hypothesized that detrimental actions of RAGE are triggered upon binding to its ligands, such as AGEs (advanced glycation end products), S100/calgranulin family members, and High Mobility Group Box-1 (HMGB1) proteins. Here, we examined the expression of RAGE and its ligands in human ALS spinal cord. Tissue samples from age-matched human control and ALS spinal cords were tested for the expression of RAGE, carboxymethyllysine (CML) AGE, S100B, and HMGB1, and intensity of the immunofluorescent and immunoblotting signals was assessed. We found that the expression of both RAGE and its ligands was significantly increased in the spinal cords of ALS patients versus age-matched control subjects. Our study is the first report describing co-expression of both RAGE and its ligands in human ALS spinal cords. These findings suggest that further probing of RAGE as a mechanism of neurodegeneration in human ALS is rational.
Collapse
Affiliation(s)
- Judyta K Juranek
- Department of Surgery, Columbia University Medical CenterNew York, NY, USA; Department of Medicine, New York University Langone Medical Center - New York University School of MedicineNew York, NY, USA
| | - Gurdip K Daffu
- Department of Medicine, New York University Langone Medical Center - New York University School of Medicine New York, NY, USA
| | - Joanna Wojtkiewicz
- Department of Pathophysiology, University of Warmia and Mazury Olsztyn, Poland
| | - David Lacomis
- Department of Neurology, University of Pittsburgh Pittsburgh, PA, USA
| | - Julia Kofler
- Department of Pathology, University of Pittsburgh Pittsburgh, PA, USA
| | - Ann Marie Schmidt
- Department of Surgery, Columbia University Medical CenterNew York, NY, USA; Department of Medicine, New York University Langone Medical Center - New York University School of MedicineNew York, NY, USA
| |
Collapse
|
44
|
Volpina OM, Koroev DO, Volkova TD, Kamynina AV, Filatova MP, Zaporozhskaya YV, Samokhin AN, Aleksandrova IY, Bobkova NV. A fragment of the receptor for advanced glycation end products restores the spatial memory of animals in a model of Alzheimer’s disease. RUSSIAN JOURNAL OF BIOORGANIC CHEMISTRY 2015; 41:709-16. [DOI: 10.1134/s1068162015060187] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
|
45
|
Soluble and Endogenous Secretory Receptors for Advanced Glycation End Products in Threatened Preterm Labor and Preterm Premature Rupture of Fetal Membranes. BIOMED RESEARCH INTERNATIONAL 2015; 2015:568042. [PMID: 26413536 PMCID: PMC4564602 DOI: 10.1155/2015/568042] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/06/2015] [Accepted: 03/19/2015] [Indexed: 12/24/2022]
Abstract
The aim of the study was to compare sRAGE and esRAGE plasma levels in pregnant women with (A) threatened premature labor (n = 41), (B) preterm premature rupture of membranes (n = 49), and (C) preterm rupture of membranes at term (n = 48). The relationship between these and classic intrauterine infection markers and the latent time from symptoms up to delivery depending on RAGE's concentration were investigated. In groups A and B, a positive correlation was found between plasma sRAGE and latent time (r = 0,422; p = 0,001; r = 0,413, p = 0,004, resp.). High prognostic values were found in both groups for plasma sRAGE concentration and the latent time from symptoms up to delivery. Groups B and C presented higher levels of esRAGE than group A (526,315 ± 129,453 pg/mL and 576,212 ± 136,237 pg/mL versus 485,918 ± 133,127 pg/mL, p< 0,05). The conclusion is that sRAGE concentration can be a favorable prognostic factor in the presence of symptoms of threatened premature labor. Higher esRAGE plasma level in case of the rupture of membranes in mature and premature pregnancy suggests its participation in fetal membranes destruction.
Collapse
|
46
|
Stinghen AEM, Massy ZA, Vlassara H, Striker GE, Boullier A. Uremic Toxicity of Advanced Glycation End Products in CKD. J Am Soc Nephrol 2015; 27:354-70. [PMID: 26311460 DOI: 10.1681/asn.2014101047] [Citation(s) in RCA: 170] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Advanced glycation end products (AGEs), a heterogeneous group of compounds formed by nonenzymatic glycation reactions between reducing sugars and amino acids, lipids, or DNA, are formed not only in the presence of hyperglycemia, but also in diseases associated with high levels of oxidative stress, such as CKD. In chronic renal failure, higher circulating AGE levels result from increased formation and decreased renal clearance. Interactions between AGEs and their receptors, including advanced glycation end product-specific receptor (RAGE), trigger various intracellular events, such as oxidative stress and inflammation, leading to cardiovascular complications. Although patients with CKD have a higher burden of cardiovascular disease, the relationship between AGEs and cardiovascular disease in patients with CKD is not fully characterized. In this paper, we review the various deleterious effects of AGEs in CKD that lead to cardiovascular complications and the role of these AGEs in diabetic nephropathy. We also discuss potential pharmacologic approaches to circumvent these deleterious effects by reducing exogenous and endogenous sources of AGEs, increasing the breakdown of existing AGEs, or inhibiting AGE-induced inflammation. Finally, we speculate on preventive and therapeutic strategies that focus on the AGE-RAGE axis to prevent vascular complications in patients with CKD.
Collapse
Affiliation(s)
- Andréa E M Stinghen
- Institut National de la Santé et de la Recherche Médicale (INSERM) U-1088, Jules Verne University of Picardie, Amiens, France
| | - Ziad A Massy
- Institut National de la Santé et de la Recherche Médicale (INSERM) U-1088, Jules Verne University of Picardie, Amiens, France; Division of Nephrology, Ambroise Paré University Medical Center, Assistance Publique-Hôpitaux de Paris (APHP), University of Paris Ouest, University Versailles-Saint Quentin, Boulogne Billancourt/Paris, France
| | - Helen Vlassara
- Division of Experimental Diabetes and Aging, Departments of Geriatrics and Palliative Care and Medicine and Division of Experimental Diabetes and Aging, Department of Geriatrics and Aging and Division of Nephrology, Department of Medicine, Icahn School of Medicine, New York, New York; and
| | - Gary E Striker
- Division of Experimental Diabetes and Aging, Departments of Geriatrics and Palliative Care and Medicine and Division of Experimental Diabetes and Aging, Department of Geriatrics and Aging and Division of Nephrology, Department of Medicine, Icahn School of Medicine, New York, New York; and
| | - Agnès Boullier
- Institut National de la Santé et de la Recherche Médicale (INSERM) U-1088, Jules Verne University of Picardie, Amiens, France; Biochemistry Laboratory, Amiens University Medical Center, Amiens, France
| |
Collapse
|
47
|
Rzepka R, Dołęgowska B, Sałata D, Rajewska A, Budkowska M, Domański L, Kwiatkowski S, Mikołajek-Bedner W, Torbé A. Soluble receptors for advanced glycation end products and receptor activator of NF-κB ligand serum levels as markers of premature labor. BMC Pregnancy Childbirth 2015; 15:134. [PMID: 26059227 PMCID: PMC4461927 DOI: 10.1186/s12884-015-0559-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2014] [Accepted: 05/18/2015] [Indexed: 01/12/2023] Open
Abstract
Background This study aimed to determine the relationships between secretory and endogenous secretory receptors for advanced glycation end products (sRAGE, esRAGE), sRANKL, osteoprotegerin and the interval from diagnosis of threatened premature labor or premature rupture of the fetal membranes to delivery, and to evaluate the prognostic values of the assessed parameters for preterm birth. Methods Ninety women between 22 and 36 weeks’ gestation were included and divided into two groups: group A comprised 41 women at 22 to 36 weeks’ gestation who were suffering from threatened premature labor; and group B comprised 49 women at 22 to 36 weeks’ gestation with preterm premature rupture of the membranes. Levels of sRAGE, esRAGE, sRANKL, and osteoprotegerin were measured. The Mann–Whitney test was used to assess differences in parameters between the groups. For statistical analysis of relationships, correlation coefficients were estimated using Spearman’s test. Receiver operating characteristics were used to determine the cut-off point and predictive values. Results In group A, sRAGE and sRANKL levels were correlated with the latent time from symptoms until delivery (r = 0.422; r = −0.341, respectively). The sensitivities of sRANKL and sRAGE levels for predicting preterm delivery were 0.895 and 0.929 with a negative predictive value (NPV) of 0.857 and 0.929, respectively. In group B, sRAGE and sRANKL levels were correlated with the latent time from pPROM until delivery (r = 0.381; r = −0.439). The sensitivity of sRANKL and sRAGE for predicting delivery within 24 h after pPROM was 0.682 and 0.318, with NPVs of 0.741 and 0.625, respectively. Levels of esRAGE and sRANKL were lower in group A than in group B (median = 490.2 vs 541.1 pg/mL; median = 6425.0 vs 11362.5 pg/mL, respectively). Conclusions Correlations between sRAGE, sRANKL, and pregnancy duration after the onset of symptoms suggest their role in preterm delivery. The high prognostic values of these biomarkers indicate their usefulness in diagnosis of pregnancies with threatened premature labor.
Collapse
Affiliation(s)
- Rafał Rzepka
- Department of Obstetrics and Gynecology, Pomeranian Medical University, Al. Powstańców Wielkopolskich 72, 70-111, Szczecin, Poland.
| | - Barbara Dołęgowska
- Department of Laboratory Diagnostics and Molecular Medicine, Pomeranian Medical University, Al. Powstańców Wielkopolskich 72, 70-111, Szczecin, Poland.
| | - Daria Sałata
- Department of Laboratory Diagnostics and Molecular Medicine, Pomeranian Medical University, Al. Powstańców Wielkopolskich 72, 70-111, Szczecin, Poland.
| | - Aleksandra Rajewska
- Department of Obstetrics and Gynecology, Pomeranian Medical University, Al. Powstańców Wielkopolskich 72, 70-111, Szczecin, Poland.
| | - Marta Budkowska
- Department of Laboratory Diagnostics and Molecular Medicine, Pomeranian Medical University, Al. Powstańców Wielkopolskich 72, 70-111, Szczecin, Poland.
| | - Leszek Domański
- Department of Nephrology, Transplantology and Internal Medicine, Pomeranian Medical University, Al. Powstańców Wielkopolskich 72, 70-111, Szczecin, Poland.
| | - Sebastian Kwiatkowski
- Department of Obstetrics and Gynecology, Pomeranian Medical University, Al. Powstańców Wielkopolskich 72, 70-111, Szczecin, Poland.
| | - Wioletta Mikołajek-Bedner
- Department of Obstetrics and Gynecology, Pomeranian Medical University, Al. Powstańców Wielkopolskich 72, 70-111, Szczecin, Poland.
| | - Andrzej Torbé
- Department of Obstetrics and Gynecology, Pomeranian Medical University, Al. Powstańców Wielkopolskich 72, 70-111, Szczecin, Poland.
| |
Collapse
|
48
|
Zhu H, Ding Q. Lower expression level of two RAGE alternative splicing isoforms in Alzheimer’s disease. Neurosci Lett 2015; 597:66-70. [DOI: 10.1016/j.neulet.2015.04.032] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2015] [Revised: 04/13/2015] [Accepted: 04/18/2015] [Indexed: 11/26/2022]
|
49
|
On the significance of new biochemical markers for the diagnosis of premature labour. Mediators Inflamm 2014; 2014:251451. [PMID: 25548433 PMCID: PMC4274839 DOI: 10.1155/2014/251451] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2014] [Accepted: 11/24/2014] [Indexed: 12/31/2022] Open
Abstract
Preterm labour is defined as a birth taking place between 22nd and 37th weeks of gestation. Despite numerous studies on the aetiology and pathogenesis of preterm labour, its very cause still remains unclear. The importance of the cytokines and acute inflammation in preterm labour aetiology is nowadays well-proven. However, chronic inflammation as an element of the pathogenesis of premature labour is still unclear. This paper presents a literature review on the damage-associated molecular patterns (DAMPs), receptors for advanced glycation end products (RAGE), negative soluble isoforms of RAGE, chemokine-stromal cell-derived factor-1 (SDF-1) and one of the adipokines, resistin, in the pathogenesis of preterm labour. We conclude that the chronic inflammatory response can play a much more important role in the pathogenesis of preterm delivery than the acute one.
Collapse
|
50
|
Li DX, Deng TZ, Lv J, Ke J. Advanced glycation end products (AGEs) and their receptor (RAGE) induce apoptosis of periodontal ligament fibroblasts. ACTA ACUST UNITED AC 2014. [PMID: 25387669 PMCID: PMC4244668 DOI: 10.1590/1414-431x20143996] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Diabetics have an increased prevalence of periodontitis, and diabetes is one of the
causative factors of severe periodontitis. Apoptosis is thought to be involved in
this pathogenic relationship. The aim of this study was to investigate apoptosis in
human periodontal ligament (PDL) fibroblasts induced by advanced glycation end
products (AGEs) and their receptor (RAGE). We examined the roles of apoptosis, AGEs,
and RAGE during periodontitis in diabetes mellitus using cultured PDL fibroblasts
that were treated by AGE-modified bovine serum albumin (AGE-BSA), bovine serum
albumin (BSA) alone, or given no treatment (control). Microscopy and real-time
quantitative PCR indicated that PDL fibroblasts treated with AGE-BSA were deformed
and expressed higher levels of RAGE and caspase 3. Cell viability assays and flow
cytometry indicated that AGE-BSA reduced cell viability (69.80±5.50%, P<0.01) and
increased apoptosis (11.31±1.73%, P<0.05). Hoechst 33258 staining and
terminal-deoxynucleotidyl transferase-mediated nick-end labeling revealed that
AGE-BSA significantly increased apoptosis of PDL fibroblasts. The results showed that
the changes in PDL fibroblasts induced by AGE-BSA may explain how AGE-RAGE
participates in and exacerbates periodontium destruction.
Collapse
Affiliation(s)
- D X Li
- Department of Stomatology, Air Force General Hospital PLA, Haidian District, Beijing, China
| | - T Z Deng
- Department of Stomatology, Air Force General Hospital PLA, Haidian District, Beijing, China
| | - J Lv
- Department of Stomatology, Air Force General Hospital PLA, Haidian District, Beijing, China
| | - J Ke
- Department of Stomatology, Air Force General Hospital PLA, Haidian District, Beijing, China
| |
Collapse
|