1
|
Regulation of P2X1 receptors by modulators of the cAMP effectors PKA and EPAC. Proc Natl Acad Sci U S A 2021; 118:2108094118. [PMID: 34508006 DOI: 10.1073/pnas.2108094118] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/12/2021] [Indexed: 11/18/2022] Open
Abstract
P2X1 receptors are adenosine triphosphate (ATP)-gated cation channels that are functionally important for male fertility, bladder contraction, and platelet aggregation. The activity of P2X1 receptors is modulated by lipids and intracellular messengers such as cAMP, which can stimulate protein kinase A (PKA). Exchange protein activated by cAMP (EPAC) is another cAMP effector; however, its effect on P2X1 receptors has not yet been determined. Here, we demonstrate that P2X1 currents, recorded from human embryonic kidney (HEK) cells transiently transfected with P2X1 cDNA, were inhibited by the highly selective EPAC activator 007-AM. In contrast, EPAC activation enhanced P2X2 current amplitude. The PKA activator 6-MB-cAMP did not affect P2X1 currents, but inhibited P2X2 currents. The inhibitory effects of EPAC on P2X1 were prevented by triple mutation of residues 21 to 23 on the amino terminus of P2X1 subunits to the equivalent amino acids on P2X2 receptors. Double mutation of residues 21 and 22 and single mutation of residue 23 also protected P2X1 receptors from inhibition by EPAC activation. Finally, the inhibitory effects of EPAC on P2X1 were also prevented by NSC23766, an inhibitor of Rac1, a member of the Rho family of small GTPases. These data suggest that EPAC is an important regulator of P2X1 and P2X2 receptors.
Collapse
|
2
|
Potentiation of P2X3 receptor mediated currents by endothelin-1 in rat dorsal root ganglion neurons. Neuropharmacology 2020; 181:108356. [PMID: 33069757 DOI: 10.1016/j.neuropharm.2020.108356] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Revised: 09/23/2020] [Accepted: 10/12/2020] [Indexed: 11/21/2022]
Abstract
Endothelin-1 (ET-1), an endogenous vasoconstrictor, has been known as a pro-nociceptive agent involved in multitude of pain. ET-1 acts on endothelin receptors on vascular endothelial cells, sensitizes release of ATP, which then acts on P2X3 receptors on nociceptors and results in mechanical hyperalgesia. Both endothelin receptors and P2X3 receptors are present in primary sensory neuron, where it remains unclear whether there is an interaction between them. Herein, we reported that ET-1 potentiated the electrophysiological activity of P2X3 receptors in rat dorsal root ganglia (DRG) neurons. ET-1 concentration-dependently increased α,β-methylene-ATP (α,β-meATP)-evoked inward currents, which were mediated by P2X3 receptors. ET-1 shifted the α,β-meATP concentration-response curve upwards, with an increase of 34.38 ± 4.72% in the maximal current response to α,β-meATP in the presence of ET-1. ET-1 potentiation of α,β-meATP-evoked currents was voltage-independent. ET-1 potentiated P2X3 receptor-mediated currents through endothelin-A receptors (ETAR), but not endothelin-B receptors (ETBR). ET-1 potentiation was supressed by blockade of intracellular G-protein or protein kinase C (PKC) signaling. Moreover, there is a synergistic effect on mechanical allodynia induced by intraplantar injection of ET-1 and α,β-meATP in rats. Pharmacological blockade of P2X3 receptors also alleviated ET-1-induced mechanical allodynia. These results suggested that ET-1 sensitized P2X3 receptors in primary sensory neurons via an ETAR and PKC signaling pathway. Our data provide evidence that cutaneous ET-1 induced mechanical allodynia not only by increasing the release of ATP from vascular endothelial cells, but also by sensitizing P2X3 receptors on nociceptive DRG neurons.
Collapse
|
3
|
Stavrou A, Evans RJ, Schmid R. Identification of a distinct desensitisation gate in the ATP-gated P2X2 receptor. Biochem Biophys Res Commun 2020; 523:190-195. [PMID: 31843194 PMCID: PMC7008354 DOI: 10.1016/j.bbrc.2019.12.028] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2019] [Accepted: 12/05/2019] [Indexed: 11/17/2022]
Abstract
P2X receptors are trimeric ATP-gated ion channels. In response to ATP binding, conformational changes lead to opening of the channel and ion flow. Current flow can decline during continued ATP binding in a process called desensitisation. The rate and extent of desensitisation is affected by multiple factors, for instance the T18A mutation in P2X2 makes the ion channel fast desensitising. We have used this mutation to investigate whether the gate restricting ion flow is different in the desensitised and the closed state, by combining molecular modelling and cysteine modification using MTSET (2-(Trimethylammonium)ethyl methanethiosulfonate). Homology modelling of the P2X2 receptor and negative space imaging of the channel suggested a movement of the restriction gate with residue T335 being solvent accessible in the desensitised, but not the closed state. This was confirmed experimentally by probing the accessibility of T335C in the P2X2 T18A/T335C (fast desensitisation) and T335C (slow desensitisation) mutants with MTSET which demonstrates that the barrier to ion flow is different in the closed and the desensitised states. To investigate the T18A induced switch in desensitisation we compared molecular dynamics simulations of the wild type and T18A P2X2 receptor which suggest that the differences in time course of desensitisation are due to structural destabilization of a hydrogen bond network of conserved residues in the proximity of T18.
Collapse
Affiliation(s)
- Anastasios Stavrou
- Department of Molecular and Cell Biology, University of Leicester, Leicester, LE1 7RH, United Kingdom.
| | - Richard J Evans
- Department of Molecular and Cell Biology, University of Leicester, Leicester, LE1 7RH, United Kingdom.
| | - Ralf Schmid
- Department of Molecular and Cell Biology, University of Leicester, Leicester, LE1 7RH, United Kingdom; Leicester Institute of Structural and Chemical Biology, University of Leicester, Leicester, LE1 7RH, United Kingdom.
| |
Collapse
|
4
|
Rokic MB, Castro P, Leiva-Salcedo E, Tomic M, Stojilkovic SS, Coddou C. Opposing Roles of Calcium and Intracellular ATP on Gating of the Purinergic P2X2 Receptor Channel. Int J Mol Sci 2018; 19:ijms19041161. [PMID: 29641486 PMCID: PMC5979340 DOI: 10.3390/ijms19041161] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2018] [Revised: 03/30/2018] [Accepted: 04/03/2018] [Indexed: 11/16/2022] Open
Abstract
P2X2 receptors (P2X2R) exhibit a slow desensitization during the initial ATP application and a progressive, calcium-dependent increase in rates of desensitization during repetitive stimulation. This pattern is observed in whole-cell recordings from cells expressing recombinant and native P2X2R. However, desensitization is not observed in perforated-patched cells and in two-electrode voltage clamped oocytes. Addition of ATP, but not ATPγS or GTP, in the pipette solution also abolishes progressive desensitization, whereas intracellular injection of apyrase facilitates receptor desensitization. Experiments with injection of alkaline phosphatase or addition of staurosporine and ATP in the intracellular solution suggest a role for a phosphorylation-dephosphorylation in receptor desensitization. Mutation of residues that are potential phosphorylation sites identified a critical role of the S363 residue in the intracellular ATP action. These findings indicate that intracellular calcium and ATP have opposing effects on P2X2R gating: calcium allosterically facilitates receptor desensitization and ATP covalently prevents the action of calcium. Single cell measurements further revealed that intracellular calcium stays elevated after washout in P2X2R-expressing cells and the blockade of mitochondrial sodium/calcium exchanger lowers calcium concentrations during washout periods to basal levels, suggesting a role of mitochondria in this process. Therefore, the metabolic state of the cell can influence P2X2R gating.
Collapse
Affiliation(s)
- Milos B Rokic
- Section on Cellular Signaling, National Institutes of Child Health and Human Development, NIH, Bethesda, MD 20892, USA.
| | - Patricio Castro
- Departamento de Ciencias Biomédicas, Facultad de Medicina, Universidad Católica del Norte, Coquimbo 1781421, Chile.
- Laboratory of Developmental Physiology, Department of Physiology, Faculty of Biological Sciences, Universidad de Concepción, Concepción 4030000, Chile.
| | - Elias Leiva-Salcedo
- Section on Cellular Signaling, National Institutes of Child Health and Human Development, NIH, Bethesda, MD 20892, USA.
- Departamento de Biología, Facultad de Química y Biología, Universidad de Santiago de Chile, Santiago 9170022, Chile.
- Centro para el Desarrollo de Nanociencias y Nanotecnología (CEDENNA), Santiago 9170022, Chile.
| | - Melanija Tomic
- Section on Cellular Signaling, National Institutes of Child Health and Human Development, NIH, Bethesda, MD 20892, USA.
| | - Stanko S Stojilkovic
- Section on Cellular Signaling, National Institutes of Child Health and Human Development, NIH, Bethesda, MD 20892, USA.
| | - Claudio Coddou
- Section on Cellular Signaling, National Institutes of Child Health and Human Development, NIH, Bethesda, MD 20892, USA.
- Departamento de Ciencias Biomédicas, Facultad de Medicina, Universidad Católica del Norte, Coquimbo 1781421, Chile.
| |
Collapse
|
5
|
Wang W, Ma X, Luo L, Huang M, Dong J, Zhang X, Jiang W, Xu T. Exchange factor directly activated by cAMP-PKCε signalling mediates chronic morphine-induced expression of purine P2X3 receptor in rat dorsal root ganglia. Br J Pharmacol 2018; 175:1760-1769. [PMID: 29500928 DOI: 10.1111/bph.14191] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2017] [Revised: 02/22/2018] [Accepted: 02/23/2018] [Indexed: 01/02/2023] Open
Abstract
BACKGROUND AND PURPOSE The P2X3 receptor is a major receptor in the processing of nociceptive information in dorsal root ganglia. We investigated the role of the P2X3 receptor and the detailed mechanisms underlying chronic morphine-induced analgesic tolerance in rats. EXPERIMENTAL APPROACH Repeated i.t. morphine treatment was used to induce anti-nociceptive tolerance. The expression of spinal P2X3 receptor, phosphorylated PKCε and exchange factor directly activated by cAMP (Epac) were evaluated. Effects of A-317491 (P2X3 antagonist), ε-V1-2 (PKCε inhibitor) and ESI-09 (Epac inhibitor) on mechanical pain thresholds and tail-flick latency after chronic morphine treatment were determined. Co-localization of P2X3 receptor with NeuNs (marker of neuron), IB4 (marker of small DRG neurons), peripherin, PKCε and Epac were performed by double immunofluorescence staining. KEY RESULTS Chronic morphine time-dependently increased the expression of P2X3 receptor, phosphorylated PKCε and Epac in DRGs. ε-V1-2 prevented chronic morphine-induced expression of P2X3 receptor. ESI-09 decreased the phosphorylation of PKCε and up-regulated expression of Epac after chronic morphine exposure. Mechanical pain thresholds and tail-flick latency showed that A317491, ε-V1-2 and ESI-09 significantly attenuated the loss of morphine's analgesic potency. Morphine-induced P2X3 receptor expression mainly occurred in neurons staining for IB4 and peripherin. Co-localization of P2X3 receptor with PKCε and Epac was demonstrated in the same neurons. CONCLUSIONS AND IMPLICATIONS Chronic morphine exposure increased the expression of P2X3 receptor, and i.t. P2X3 receptor antagonists attenuated the loss of morphine's analgesic effect. Inhibiting Epac/PKCε signalling was shown to play a significant inhibitory role in chronic morphine-induced P2X3 receptor expression and attenuate morphine-induced tolerance.
Collapse
Affiliation(s)
- Wenying Wang
- Department of Anesthesiology, Shanghai Sixth People's Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Xiaqing Ma
- Department of Anesthesiology, Shanghai Sixth People's Hospital, Shanghai Jiao Tong University, Shanghai, China.,Department of Anesthesiology, Nantong Third People's Hospital, Nantong University, Nantong, China
| | - Limin Luo
- Department of Anesthesiology, Shanghai Sixth People's Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Min Huang
- Department of Anesthesiology, Shanghai Sixth People's Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Jing Dong
- Department of Anesthesiology, Shanghai Sixth People's Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Xiaoli Zhang
- Department of Anesthesiology, Shanghai Sixth People's Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Wei Jiang
- Department of Anesthesiology, Shanghai Sixth People's Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Tao Xu
- Department of Anesthesiology, Shanghai Sixth People's Hospital, Shanghai Jiao Tong University, Shanghai, China.,Department of Anesthesiology, Tongzhou People's Hospital, Nantong, China
| |
Collapse
|
6
|
CB 1 Receptors Mediated Inhibition of ATP-Induced [Ca 2+]i Increase in Cultured Rat Spinal Dorsal Horn Neurons. Neurochem Res 2017; 43:267-275. [PMID: 29127599 DOI: 10.1007/s11064-017-2414-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2017] [Revised: 09/25/2017] [Accepted: 10/04/2017] [Indexed: 10/18/2022]
Abstract
Spinal cannabinoid receptor 1 (CB1R) and purinergic P2X receptors (P2XR) play a critical role in the process of pathological pain. Both CB1R and P2XR are expressed in spinal dorsal horn (DH) neurons. It is not clear whether CB1 receptor activation modulates the function of P2X receptor channels within dorsal horn. For this reason, we observed the effect of CP55940 (cannabinoid receptor agonist) on ATP-induced Ca2+ mobilization in cultured rat DH neurons. The changes of intracellular calcium concentration ([Ca2+]i) were detected with confocal laser scanning microscopy using fluo-4/AM as a calcium fluorescent indicator. 100 μM ATP caused [Ca2+]i increase in cultured DH neurons. ATP-evoked [Ca2+]i increase in DH neurons was blocked by chelating extracellular Ca2+ and P2 purinoceptor antagonist PPADS. At the same time, ATP-γ-S (a non-hydrolyzable ATP analogue) mimicked the ATP action, while P2Y receptor agonist ADP failed to evoke [Ca2+]i increase in cultured DH neurons. These data suggest that ATP-induced [Ca2+]i elevation in cultured DH neurons is mediated by P2X receptor. Subsequently, we noticed that, in cultured rat DH neurons, ATP-induced Ca2+ mobilization was inhibited after pretreated with CP55940 with a concentration-dependent manner, which implies that the opening of P2X receptor channels are down-regulated by activation of cannabinoid receptor. The inhibitory effect of CP55940 on ATP-induced Ca2+ response was mimicked by ACEA (CB1R agonist), but was not influenced by AM1241 (CB2R agonist). Moreover, the inhibitory effect of CP55940 on ATP-induced Ca2+ mobilization was blocked by AM251 (CB1 receptor antagonist), but was not influenced by AM630 (CB2 receptor antagonist). In addition, we also observed that forskolin (an activator of adenylate cyclase) and 8-Br-cAMP (a cell-permeable cAMP analog) reversed the inhibitory effect of CP55940, respectively. In a summary, our observations raise a possibility that CB1R rather than CB2R can downregulate the opening of P2X receptor channels in DH neurons. The reduction of cAMP/PKA signaling is a key element in the inhibitory effect of CB1R on P2X-channel-induced Ca2+ mobilization.
Collapse
|
7
|
Gu Y, Wang C, Li G, Huang LYM. EXPRESS: F-actin links Epac-PKC signaling to purinergic P2X3 receptors sensitization in dorsal root ganglia following inflammation. Mol Pain 2016; 12:12/0/1744806916660557. [PMID: 27385722 PMCID: PMC4955968 DOI: 10.1177/1744806916660557] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
Sensitization of purinergic P2X3 receptors (P2X3Rs) contributes to the production of exaggerated nociceptive responses following inflammatory injury. We showed previously that prostaglandin E2 (PGE2) potentiates P2X3R-mediated ATP currents in dorsal root ganglion neurons isolated from both control and complete Freund’s adjuvant-induced inflamed rats. PGE2 potentiation of ATP currents depends only on PKA signaling in control neurons, but it depends on both PKA and PKC signaling in inflamed neurons. We further found that inflammation evokes an increase in exchange proteins directly activated by cAMP (Epacs) in dorsal root ganglions. This increase promotes the activation of PKC to produce a much enhanced PGE2 effect on ATP currents and to elicit Epac-dependent flinch nocifensive behavioral responses in complete Freund’s adjuvant rats. The link between Epac-PKC signaling and P2X3R sensitization remains unexplored. Here, we show that the activation of Epacs promotes the expression of phosphorylated PKC and leads to an increase in the cytoskeleton, F-actin, expression at the cell perimeter. Depolymerization of F-actin blocks PGE2-enhanced ATP currents and inhibits P2X3R-mediated nocifensive responses after inflammation. Thus, F-actin is dynamically involved in the Epac-PKC-dependent P2X3R sensitization. Furthermore, Epacs induce a PKC-dependent increase in the membrane expression of P2X3Rs. This increase is abolished by F-actin depolymerization, suggesting that F-actin mediates Epac-PKC signaling of P2X3R membrane expression. Thus, after inflammation, an Epac-PKC dependent increase in F-actin in dorsal root ganglion neurons enhances the membrane expression of P2X3Rs to bring about sensitization of P2X3Rs and abnormal pain behaviors.
Collapse
Affiliation(s)
- Yanping Gu
- University of Texas Medical Branch at Galveston
| | - Congying Wang
- University of Texas Medical Branch at GalvestonUniversity of Texas Medical Branch at Galveston
| | - Guangwen Li
- University of Texas Medical Branch at Galveston
| | - Li-Yen Mae Huang
- University of Texas Medical Branch at GalvestonUniversity of Texas Medical Branch at Galveston
| |
Collapse
|
8
|
Fujita M, Kasai E, Omachi S, Sakaguchi G, Shinohara S. A novel method for assessing bladder-related pain reveals the involvement of nerve growth factor in pain associated with cyclophosphamide-induced chronic cystitis in mice. Eur J Pain 2015; 20:79-91. [PMID: 25820250 DOI: 10.1002/ejp.693] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/18/2015] [Indexed: 12/16/2022]
Abstract
BACKGROUND Pain is a prominent feature of interstitial cystitis/painful bladder syndrome (IC/PBS), but the underlying mechanisms are not fully understood. There is a lack of well-characterized research tools, such as pain evaluation methods and experimental animal models, for investigating non-ulcerative cystitis. We developed a novel method for evaluating bladder pain in mice with cyclophosphamide (CYP)-induced cystitis. METHODS Cystitis was produced by a single intraperitoneal injection of CYP (300 mg/kg) or repeated injections of CYP (150 mg/kg once daily for 4 days). Blunt stimulation with a cotton probe was applied to the abdominal region, and the thresholds for withdrawal responses were measured quantitatively using an anaesthesiometer. RESULTS The single injection of CYP provoked acute cystitis with severe bladder inflammation in mice. In these mice, we could detect an increased sensitivity to blunt stimulation, which was abolished by intravesical lidocaine. The stimulation induced phosphorylation of extracellular signal-regulated kinases in bladder-projecting sensory neurons. Chronic treatment with CYP produced persistent pain responses to the blunt stimulus. Although there were few signs of bladder inflammation in these mice, the concentration of nerve growth factor (NGF) was elevated in bladder tissue, and NGF antiserum inhibited the hypersensitivity. CONCLUSIONS The blunt probe method is useful for evaluating bladder pain signalling in mice, and revealed the involvement of an NGF-sensitive pain pathway in chronic cystitis pain. This assessment method may be useful for studying the pathophysiology of bladder pain and for developing therapeutic strategies for non-ulcerative IC/PBS in patients.
Collapse
Affiliation(s)
- M Fujita
- Pain & Neurology, Discovery Research Laboratories for Core Therapeutic Areas, Shionogi & Co. Ltd., Toyonaka, Osaka, Japan
| | - E Kasai
- Pain & Neurology, Discovery Research Laboratories for Core Therapeutic Areas, Shionogi & Co. Ltd., Toyonaka, Osaka, Japan
| | - S Omachi
- Pain & Neurology, Discovery Research Laboratories for Core Therapeutic Areas, Shionogi & Co. Ltd., Toyonaka, Osaka, Japan
| | - G Sakaguchi
- Pain & Neurology, Discovery Research Laboratories for Core Therapeutic Areas, Shionogi & Co. Ltd., Toyonaka, Osaka, Japan
| | - S Shinohara
- Pain & Neurology, Discovery Research Laboratories for Core Therapeutic Areas, Shionogi & Co. Ltd., Toyonaka, Osaka, Japan
| |
Collapse
|
9
|
Chizhmakov I, Kulyk V, Khasabova I, Khasabov S, Simone D, Bakalkin G, Gordienko D, Verkhratsky A, Krishtal O. Molecular mechanism for opioid dichotomy: bidirectional effect of μ-opioid receptors on P2X₃ receptor currents in rat sensory neurones. Purinergic Signal 2015; 11:171-81. [PMID: 25592684 DOI: 10.1007/s11302-015-9443-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2014] [Accepted: 01/05/2015] [Indexed: 12/28/2022] Open
Abstract
Here, we describe a molecular switch associated with opioid receptors-linked signalling cascades that provides a dual opioid control over P2X3 purinoceptor in sensory neurones. Leu-enkephalin inhibited P2X3-mediated currents with IC50 ~10 nM in ~25% of small nociceptive rat dorsal root ganglion (DRG) neurones. In contrast, in neurones pretreated with pertussis toxin leu-enkephalin produced stable and significant increase of P2X3 currents. All effects of opioid were abolished by selective μ-opioid receptor antagonist D-Phe-Cys-Tyr-D-Trp-Orn-Thr-Pen-Thr-NH2 (CTOP), nonselective inhibitor naloxone, and by PLC inhibitor U73122. Thus, we discovered a dual link between purinoceptors and μ-opioid receptors: the latter exert both inhibitory (pertussis toxin-sensitive) and stimulatory (pertussis toxin-insensitive) actions on P2X3 receptors through phospholipase C (PLC)-dependent pathways. This dual opioid control of P2X3 receptors may provide a molecular explanation for dichotomy of opioid therapy. Pharmacological control of this newly identified facilitation/inhibition switch may open new perspectives for the adequate medical use of opioids, the most powerful pain-killing agents known today.
Collapse
Affiliation(s)
- Igor Chizhmakov
- State Key Laboratory for Molecular Biology, Bogomoletz Institute of Physiology, 4 Bogomoletz str., Kiev, 01024, Ukraine
| | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Stojilkovic SS, Leiva-Salcedo E, Rokic MB, Coddou C. Regulation of ATP-gated P2X channels: from redox signaling to interactions with other proteins. Antioxid Redox Signal 2014; 21:953-70. [PMID: 23944253 PMCID: PMC4116155 DOI: 10.1089/ars.2013.5549] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
SIGNIFICANCE The family of purinergic P2X receptors (P2XRs) is a part of ligand-gated superfamily of channels activated by extracellular adenosine-5'-triphosphate. P2XRs are present in virtually all mammalian tissues as well as in tissues of other vertebrate and nonvertebrate species and mediate a large variety of functions, including fast transmission at central synapses, contraction of smooth muscle cells, platelet aggregation, and macrophage activation to proliferation and cell death. RECENT ADVANCES The recent solving of crystal structure of the zebrafish P2X4.1R is a major advance in the understanding of structural correlates of channel activation and regulation. Combined with growing information obtained in the post-structure era and the reinterpretation of previous work within the context of the tridimensional structure, these data provide a better understanding of how the channel operates at the molecular levels. CRITICAL ISSUES This review focuses on the relationship between redox signaling and P2XR function. We also discuss other allosteric modulation of P2XR gating in the physiological/pathophysiological context. This includes the summary of extracellular actions of trace metals, which can be released to the synaptic cleft, pH decrease that happens during ischemia and inflammation, and calcium, an extracellular and intracellular messenger. FUTURE DIRECTIONS Our evolving understanding of activation and regulation of P2XRs is helpful in clarifying the mechanism by which these channels trigger and modulate cellular functions. Further research is required to identify the signaling pathways contributing to the regulation of the receptor activity and to develop novel and receptor-specific allosteric modulators, which could be used in vivo with therapeutic potential.
Collapse
Affiliation(s)
- Stanko S Stojilkovic
- 1 Section on Cellular Signaling, Program in Developmental Neuroscience, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health , Bethesda, Maryland
| | | | | | | |
Collapse
|
11
|
Hausmann R, Bahrenberg G, Kuhlmann D, Schumacher M, Braam U, Bieler D, Schlusche I, Schmalzing G. A hydrophobic residue in position 15 of the rP2X3 receptor slows desensitization and reveals properties beneficial for pharmacological analysis and high-throughput screening. Neuropharmacology 2014; 79:603-15. [PMID: 24452010 DOI: 10.1016/j.neuropharm.2014.01.010] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2013] [Revised: 12/24/2013] [Accepted: 01/09/2014] [Indexed: 11/19/2022]
Abstract
The homotrimeric P2X3 subtype, one of the seven members of the ATP-gated P2X receptor family, plays a role in sensory neurotransmission, including nociception. To overcome the bias resulting from fast desensitization of the P2X3 receptor in dose-response analyses, a non-desensitizing P2X2-X3 receptor chimera has been repeatedly used as a surrogate for the P2X3 receptor for functional analysis. Here, we show that only three of the P2X2-specific amino acid residues of the P2X2-X3 chimera, (19)P(21)V(22)I, are needed to confer a slowly desensitizing phenotype to the P2X3 receptor. The strongest delay in desensitization of the P2X3 receptor by a single residue was observed when (15)Ser was replaced by Val or another hydrophobic residue. Pharmacologically, the S(15)V-rP2X3 mutant behaved similarly to the wt-P2X3 receptor. Analysis of the S(15)V-rP2X3 receptor in 1321N1 astrocytoma cells by a common calcium-imaging-based assay showed 10-fold higher calcium transients relative to those of the wt-rP2X3 receptor. The S(15)V-rP2X3 cell line enabled reliable analysis of antagonistic potencies and correctly reported the mechanism of action of the P2X3 receptor antagonists A-317491 and TNP-ATP by a calcium-imaging assay. Together, these data suggest that the S(15)V-rP2X3 mutant may be suitable not only for automated fluorescence-based screening of molecule libraries for identification of lead compounds but also for facilitated pharmacological characterization of specific P2X3 receptor ligands. We suggest that the mechanism of desensitization of the P2X3 receptor may involve the movement of an N-terminal inactivation particle, in analogy to the "hinged-lid" or "ball and chain" mechanisms of voltage-gated NaV and Shaker KV channels, respectively.
Collapse
Affiliation(s)
- Ralf Hausmann
- Department of Molecular Pharmacology, Medical Faculty of the RWTH Aachen University, Wendlingweg 2, 52074 Aachen, Germany.
| | - Gregor Bahrenberg
- Grünenthal GmbH, Global Drug Discovery, Department of Molecular Pharmacology, Zieglerstrasse 6, 52078 Aachen, Germany
| | - Daniel Kuhlmann
- Department of Molecular Pharmacology, Medical Faculty of the RWTH Aachen University, Wendlingweg 2, 52074 Aachen, Germany
| | - Michaela Schumacher
- Department of Molecular Pharmacology, Medical Faculty of the RWTH Aachen University, Wendlingweg 2, 52074 Aachen, Germany
| | - Ursula Braam
- Department of Molecular Pharmacology, Medical Faculty of the RWTH Aachen University, Wendlingweg 2, 52074 Aachen, Germany
| | - Dagmar Bieler
- Grünenthal GmbH, Global Drug Discovery, Department of Molecular Pharmacology, Zieglerstrasse 6, 52078 Aachen, Germany
| | - Ilka Schlusche
- Grünenthal GmbH, Global Drug Discovery, Department of Molecular Pharmacology, Zieglerstrasse 6, 52078 Aachen, Germany
| | - Günther Schmalzing
- Department of Molecular Pharmacology, Medical Faculty of the RWTH Aachen University, Wendlingweg 2, 52074 Aachen, Germany
| |
Collapse
|
12
|
Lu Y, Jiang Q, Yu L, Lu ZY, Meng SP, Su D, Burnstock G, Ma B. 17β-estradiol rapidly attenuates P2X3 receptor-mediated peripheral pain signal transduction via ERα and GPR30. Endocrinology 2013; 154:2421-33. [PMID: 23610132 DOI: 10.1210/en.2012-2119] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Estrogen has been reported to affect pain perception, although the underlying mechanisms remain unclear. In this investigation, pain behavior testing, patch clamp recording, and immunohistochemistry were used on rats and transgenic mice to determine which estrogen receptors (ERs) and the related signaling pathway are involved in the rapid modulation of estrogen on P2X3 receptor-mediated events. The results showed that 17β-estradiol (E2) rapidly inhibited pain induced by α,β-methylene ATP (α,β-me-ATP), a P2X1 and P2X3 receptor agonist in ovariectomized rats and normal rats in diestrus. The ERα agonist 4,49,499-(4-propyl-[1H]-pyrazole-1,3,5-triyl) trisphenol (PPT) and G protein-coupled receptor 30 (GPR30) agonist G-1 mimicked the estrogen effect, whereas the ERβ agonist diarylpropionitrile (DPN) had no effect. In cultured rat dorsal root ganglion (DRG) neurons, PPT and G-1 but not DPN significantly attenuated α,β-me-ATP-mediated currents, with the dose-response curve of these currents shifted to the right. The inhibitory effect of E2 on P2X3 currents was blocked by G-15, a selective antagonist to the GPR30 estrogen receptor. E2 lacked this effect in DRG neurons from ERα-knockout mice but partly remained in those from ERβ-knockout mice. The P2X3 and GPR30 receptors were coexpressed in the rat DRG neurons. Furthermore, the ERK1/2 inhibitor U0126 reversed the inhibitory effect of E2 on α,β-me-ATP-induced pain and of PPT or G-1 on P2X3 receptor-mediated currents. The cAMP-protein kinase A (PKA) agonist forskolin, but not the PKC agonist phorbol-12-myristate-13-acetate (PMA), mimicked the estrogen-inhibitory effect on P2X3 receptor currents, which was blocked by another ERK1/2 inhibitor, PD98059. These results suggest that estrogen regulates P2X3-mediated peripheral pain by acting on ERα and GPR30 receptors expressed in primary afferent neurons, which probably involves the intracellular cAMP-PKA-ERK1/2 pathway.
Collapse
Affiliation(s)
- Yi Lu
- Department of Physiology, School of Pharmacy, Second Military Medical University, Shanghai 200433, People’s Republic of China
| | | | | | | | | | | | | | | |
Collapse
|
13
|
Lambertucci C, Sundukova M, Kachare DD, Panmand DS, Dal Ben D, Buccioni M, Marucci G, Marchenkova A, Thomas A, Nistri A, Cristalli G, Volpini R. Evaluation of adenine as scaffold for the development of novel P2X3 receptor antagonists. Eur J Med Chem 2013; 65:41-50. [PMID: 23688699 DOI: 10.1016/j.ejmech.2013.04.037] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2012] [Revised: 04/15/2013] [Accepted: 04/16/2013] [Indexed: 11/29/2022]
Abstract
Ligands that selectively block P2X3 receptors localized on nociceptive sensory fibres may be useful for the treatment of chronic pain conditions including neuropathic pain, migraine, and inflammatory pain. With the aim at exploring the suitability of adenine moiety as a scaffold for the development of antagonists of this receptor, a series of 9-benzyl-2-aminoadenine derivatives were designed and synthesized. These new compounds were functionally evaluated at rat or human P2X3 receptors expressed in human embryonic kidney (HEK) cells and on native P2X3 receptors from mouse trigeminal ganglion sensory neurons using patch clamp recording under voltage clamp configuration. The new molecules behaved as P2X3 antagonists, as they rapidly and reversibly inhibited (IC50 in the low micromolar range) the membrane currents induced via P2X3 receptor activation by the full agonist α,β-methyleneATP. Introduction of a small lipophilic methyl substituent at the 6-amino group enhanced the activity, in comparison to the corresponding unsubstituted derivative, resulting in the 9-(5-iodo-2-isopropyl-4-methoxybenzyl)-N(6)-methyl-9H-purine-2,6-diamine (24), which appears to be a good antagonist on recombinant and native P2X3 receptors with IC50 = 1.74 ± 0.21 μM.
Collapse
Affiliation(s)
- Catia Lambertucci
- School of Pharmacy, Medicinal Chemistry Unit, University of Camerino, Via S. Agostino, 1, 62032 Camerino, MC, Italy
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Wang S, Dai Y, Kobayashi K, Zhu W, Kogure Y, Yamanaka H, Wan Y, Zhang W, Noguchi K. Potentiation of the P2X3 ATP receptor by PAR-2 in rat dorsal root ganglia neurons, through protein kinase-dependent mechanisms, contributes to inflammatory pain. Eur J Neurosci 2012; 36:2293-301. [PMID: 22616675 DOI: 10.1111/j.1460-9568.2012.08142.x] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Proinflammatory agents trypsin and mast cell tryptase cleave and activate protease-activated receptor-2 (PAR-2), which is expressed on sensory nerves and causes neurogenic inflammation. P2X3 is a subtype of the ionotropic receptors for adenosine 5'-triphosphate (ATP), and is mainly localized on nociceptors. Here, we show that a functional interaction of the PAR-2 and P2X3 in primary sensory neurons could contribute to inflammatory pain. PAR-2 activation increased the P2X3 currents evoked by α, β, methylene ATP in dorsal root ganglia (DRG) neurons. Application of inhibitors of either protein kinase C (PKC) or protein kinase A (PKA) suppressed this potentiation. Consistent with this, a PKC or PKA activator mimicked the PAR-2-mediated potentiation of P2X3 currents. In the in vitro phosphorylation experiments, application of a PAR-2 agonist failed to establish phosphorylation of the P2X3 either on the serine or the threonine site. In contrast, application of a PAR-2 agonist induced trafficking of the P2X3 from the cytoplasm to the plasma membrane. These findings indicate that PAR-2 agonists may potentiate the P2X3, and the mechanism of this potentiation is likely to be a result of translocation, but not phosphorylation. The functional interaction between P2X3 and PAR-2 was also confirmed by detection of the α, β, methylene-ATP-evoked extracellular signal-regulated kinases (ERK) activation, a marker of neuronal signal transduction in DRG neurons, and pain behavior. These results demonstrate a functional interaction of the protease signal with the ATP signal, and a novel mechanism through which protease released in response to tissue inflammation might trigger the sensation to pain through P2X3 activation.
Collapse
Affiliation(s)
- Shenglan Wang
- State Key Laboratory of Earth Surface Processes and Resource Ecology, Beijing Normal University, Beijing 100088, China
| | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Kaczmarek-Hájek K, Lörinczi E, Hausmann R, Nicke A. Molecular and functional properties of P2X receptors--recent progress and persisting challenges. Purinergic Signal 2012; 8:375-417. [PMID: 22547202 PMCID: PMC3360091 DOI: 10.1007/s11302-012-9314-7] [Citation(s) in RCA: 176] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2011] [Accepted: 10/18/2011] [Indexed: 12/16/2022] Open
Abstract
ATP-gated P2X receptors are trimeric ion channels that assemble as homo- or heteromers from seven cloned subunits. Transcripts and/or proteins of P2X subunits have been found in most, if not all, mammalian tissues and are being discovered in an increasing number of non-vertebrates. Both the first crystal structure of a P2X receptor and the generation of knockout (KO) mice for five of the seven cloned subtypes greatly advanced our understanding of their molecular and physiological function and their validation as drug targets. This review summarizes the current understanding of the structure and function of P2X receptors and gives an update on recent developments in the search for P2X subtype-selective ligands. It also provides an overview about the current knowledge of the regulation and modulation of P2X receptors on the cellular level and finally on their physiological roles as inferred from studies on KO mice.
Collapse
Affiliation(s)
- Karina Kaczmarek-Hájek
- Max Planck Institute for Experimental Medicine, Hermann Rein Str. 3, 37075, Göttingen, Germany
| | | | | | | |
Collapse
|
16
|
Wu JX, Xu MY, Miao XR, Lu ZJ, Yuan XM, Li XQ, Yu WF. Functional up-regulation of P2X3 receptors in dorsal root ganglion in a rat model of bone cancer pain. Eur J Pain 2012; 16:1378-88. [PMID: 22528605 DOI: 10.1002/j.1532-2149.2012.00149.x] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/20/2012] [Indexed: 12/30/2022]
Abstract
BACKGROUND Cancer-induced bone pain remains a clinical challenge due to the poor understanding of the mechanisms. Recent study revealed extracellular adenosine triphosphate (ATP) and P2X receptors may be implicated in nociceptive signalling under cancer pain state. Therefore, here we investigated the potential role of P2X(3) receptor in a rat model of bone cancer pain. METHODS Walker 256 tumour cells were inoculated into the left tibia of Wistar rats. The model was verified by X-ray imaging, pathology and behaviour examinations. The expression of P2X(3) receptors in dorsal root ganglia (DRG) was examined. Functional significance of altered P2X(3) receptors was investigated by measuring influx upon α,β-meATP stimulation in acutely dissociated DRG neurons. Moreover, A-317491, an antagonist of P2X(3) receptors, was administrated intrathecally or locally to evaluate its analgesia effect in the cancer pain animals. RESULTS The P2X(3) receptor was up-regulated for about 50% in DRG neurons in rats with bone cancer at both protein and mRNA levels and correlated with the pain behaviour in bone cancer rats. A 51.9% increase of α,β-me ATP (10 μM, for 4 s) evoked transient response currents and a higher percentage of neurons responsive to the application of α,β-me ATP was detected in bone cancer rats. Intrathecal or local injection of A-317491 significantly attenuated pain behaviour induced by bone cancer. CONCLUSIONS These results suggest that the P2X(3) receptor is functionally up-regulated in DRG in cancer rats. P2X(3) receptor is a promising target for therapeutic intervention in cancer patients for pain management.
Collapse
Affiliation(s)
- J X Wu
- Department of Anesthesiology, Eastern Hepatobiliary Surgery Hospital, Second Military Medical University, Shanghai, China
| | | | | | | | | | | | | |
Collapse
|
17
|
Gohil R, Khan RS, Ahmed K, Kumar P, Challacombe B, Khan MS, Dasgupta P. Urology training: past, present and future. BJU Int 2011; 109:1444-8. [DOI: 10.1111/j.1464-410x.2011.10653.x] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
18
|
Coddou C, Yan Z, Obsil T, Huidobro-Toro JP, Stojilkovic SS. Activation and regulation of purinergic P2X receptor channels. Pharmacol Rev 2011; 63:641-83. [PMID: 21737531 PMCID: PMC3141880 DOI: 10.1124/pr.110.003129] [Citation(s) in RCA: 405] [Impact Index Per Article: 28.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Mammalian ATP-gated nonselective cation channels (P2XRs) can be composed of seven possible subunits, denoted P2X1 to P2X7. Each subunit contains a large ectodomain, two transmembrane domains, and intracellular N and C termini. Functional P2XRs are organized as homomeric and heteromeric trimers. This review focuses on the binding sites involved in the activation (orthosteric) and regulation (allosteric) of P2XRs. The ectodomains contain three ATP binding sites, presumably located between neighboring subunits and formed by highly conserved residues. The detection and coordination of three ATP phosphate residues by positively charged amino acids are likely to play a dominant role in determining agonist potency, whereas an AsnPheArg motif may contribute to binding by coordinating the adenine ring. Nonconserved ectodomain histidines provide the binding sites for trace metals, divalent cations, and protons. The transmembrane domains account not only for the formation of the channel pore but also for the binding of ivermectin (a specific P2X4R allosteric regulator) and alcohols. The N- and C- domains provide the structures that determine the kinetics of receptor desensitization and/or pore dilation and are critical for the regulation of receptor functions by intracellular messengers, kinases, reactive oxygen species and mercury. The recent publication of the crystal structure of the zebrafish P2X4.1R in a closed state provides a major advance in the understanding of this family of receptor channels. We will discuss data obtained from numerous site-directed mutagenesis experiments accumulated during the last 15 years with reference to the crystal structure, allowing a structural interpretation of the molecular basis of orthosteric and allosteric ligand actions.
Collapse
Affiliation(s)
- Claudio Coddou
- Section on Cellular Signaling, Program in Developmental Neuroscience, National Institute of Child Health and Human Developmant, National Institutes of Health, Bethesda, MD 20892-4510, USA
| | | | | | | | | |
Collapse
|
19
|
Dartt DA, Hodges RR. Interaction of alpha1D-adrenergic and P2X(7) receptors in the rat lacrimal gland and the effect on intracellular [Ca2+] and protein secretion. Invest Ophthalmol Vis Sci 2011; 52:5720-9. [PMID: 21685341 DOI: 10.1167/iovs.11-7358] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
PURPOSE To determine whether α(1D)-adrenergic receptors (α(1D)-AR) and P2X(7) receptors interact by determining their effect on ATP release, intracellular [Ca(2+)] ([Ca(2+)](i)), and protein secretion in rat lacrimal gland acini. METHODS Exorbital lacrimal glands from male Sprague-Dawley rats were divided into pieces or digested with collagenase to form acini. With the use of an imaging system, [Ca(2+)](i) was measured in acini loaded with fura-2. Adenosine triphosphate (ATP) release was determined using the luciferin-luciferase reaction. Peroxidase secretion, our index for protein secretion, was measured spectrophotometrically. Acini were stimulated with the P2X(7) receptor agonist, (benzoylbenzoyl)adenosine 5' triphosphate (BzATP) or the α(1D)-AR agonist phenylephrine with or without antagonist preincubation. RESULTS Phenylephrine increased ATP release from pieces in a time-dependent manner. The α(1D)-AR antagonist BMY7378 blocked the BzATP-stimulated increase in [Ca(2+)](i) but not in peroxidase secretion. The P2X(7) antagonist A438079 blocked the phenylephrine-stimulated increase in [Ca(2+)](i) but not peroxidase secretion. The increase in [Ca(2+)](i) caused by phenylephrine and BzATP used simultaneously or sequentially was additive, as was the increase in peroxidase secretion. The inhibition of protein kinase C isoforms or calcium calmodulin kinase II did not alter the BzATP-induced increase in [Ca(2+)](i). CONCLUSIONS The authors conclude that activation of α(1D)-AR releases ATP, which induces P2X(7) receptors to increase [Ca(2+)](i) but not to stimulate protein secretion. P2X(7) receptors in turn activate α(1D)-AR to increase [Ca(2+)](i) but not to stimulate protein secretion. Furthermore, α(1D)-AR compared with P2X(7) receptors use different cellular mechanisms to increase [Ca(2+)](i) and cause protein secretion.
Collapse
Affiliation(s)
- Darlene A Dartt
- Department of Ophthalmology, Schepens Eye Research Institute, Harvard Medical School, Boston, Massachusetts 02114, USA.
| | | |
Collapse
|
20
|
Dartt DA, Hodges RR. Cholinergic agonists activate P2X7 receptors to stimulate protein secretion by the rat lacrimal gland. Invest Ophthalmol Vis Sci 2011; 52:3381-90. [PMID: 21421880 DOI: 10.1167/iovs.11-7210] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
PURPOSE To determine the interaction of M3 muscarinic receptors (M3AChR) and P2X(7) receptors to increase intracellular [Ca2+] ([Ca2+]i) and stimulate protein secretion in rat lacrimal gland cells. METHODS Exorbital lacrimal glands from male Sprague-Dawley rats were divided into pieces or digested with collagenase to form acinar clumps. [Ca2+]i was measured using an imaging system in acini incubated with fura-2/AM. Adenosine triphosphate (ATP) release was determined using the luciferin-luciferase reaction. Peroxidase secretion, our index for protein secretion, was measured spectrophotometrically. Acini were stimulated with the P2X7 receptor agonist, (benzoylbenzoyl)adenosine 5' triphosphate (BzATP), cholinergic agonist carbachol, or the activator of conventional and novel PKC isoforms, phorbol 12-myristate 13-acetate (PMA). RESULTS The increase in [Ca2+]i caused by carbachol and BzATP used simultaneously was less than additive, but the increase in protein secretion was additive. The M3AChR antagonist atropine blocked the BzATP-stimulated increase in [Ca2+]i and peroxidase secretion. The P2X7 antagonist did not alter the carbachol-stimulated increase in [Ca2+]i or peroxidase. PMA- and BzATP-stimulated increases in [Ca2+]i were additive. Neither constitutively active PKCα, dominant-negative PKCα, nor PKCε altered BzATP-stimulated increases in [Ca2+]i. Carbachol increased ATP release from lacrimal gland pieces but not from acini. CONCLUSIONS In lacrimal gland cells, the activation of M3AChRs stimulates P2X7 receptors to increase [Ca2+]i and protein secretion. The underlying mechanisms are unknown but could include the release of ATP or intracellular interactions not mediated by PKC isoforms. In addition, M3AChRs use signaling pathways that overlap with those used by P2X7 receptors to increase [Ca2+]i, but they also use signaling pathways not used by P2X7 receptors to stimulate protein secretion.
Collapse
Affiliation(s)
- Darlene A Dartt
- Schepens Eye Research Institute, Department of Ophthalmology, Harvard Medical School, Boston, Massachusetts 02114, USA.
| | | |
Collapse
|
21
|
Köles L, Leichsenring A, Rubini P, Illes P. P2 receptor signaling in neurons and glial cells of the central nervous system. ADVANCES IN PHARMACOLOGY (SAN DIEGO, CALIF.) 2011; 61:441-93. [PMID: 21586367 DOI: 10.1016/b978-0-12-385526-8.00014-x] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Purine and pyrimidine nucleotides are extracellular signaling molecules in the central nervous system (CNS) leaving the intracellular space of various CNS cell types via nonexocytotic mechanisms. In addition, ATP is a neuro-and gliotransmitter released by exocytosis from neurons and neuroglia. These nucleotides activate P2 receptors of the P2X (ligand-gated cationic channels) and P2Y (G protein-coupled receptors) types. In mammalians, seven P2X and eight P2Y receptor subunits occur; three P2X subtypes form homomeric or heteromeric P2X receptors. P2Y subtypes may also hetero-oligomerize with each other as well as with other G protein-coupled receptors. P2X receptors are able to physically associate with various types of ligand-gated ion channels and thereby to interact with them. The P2 receptor homomers or heteromers exhibit specific sensitivities against pharmacological ligands and have preferential functional roles. They may be situated at both presynaptic (nerve terminals) and postsynaptic (somatodendritic) sites of neurons, where they modulate either transmitter release or the postsynaptic sensitivity to neurotransmitters. P2 receptors exist at neuroglia (e.g., astrocytes, oligodendrocytes) and microglia in the CNS. The neuroglial P2 receptors subserve the neuron-glia cross talk especially via their end-feets projecting to neighboring synapses. In addition, glial networks are able to communicate through coordinated oscillations of their intracellular Ca(2+) over considerable distances. P2 receptors are involved in the physiological regulation of CNS functions as well as in its pathophysiological dysregulation. Normal (motivation, reward, embryonic and postnatal development, neuroregeneration) and abnormal regulatory mechanisms (pain, neuroinflammation, neurodegeneration, epilepsy) are important examples for the significance of P2 receptor-mediated/modulated processes.
Collapse
Affiliation(s)
- Laszlo Köles
- Rudolph-Boehm-Institute of Pharmacology and Toxicology, University of Leipzig, Germany
| | | | | | | |
Collapse
|
22
|
Romanenko VG, Catalán MA, Brown DA, Putzier I, Hartzell HC, Marmorstein AD, Gonzalez-Begne M, Rock JR, Harfe BD, Melvin JE. Tmem16A encodes the Ca2+-activated Cl- channel in mouse submandibular salivary gland acinar cells. J Biol Chem 2010; 285:12990-3001. [PMID: 20177062 DOI: 10.1074/jbc.m109.068544] [Citation(s) in RCA: 166] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Activation of an apical Ca(2+)-dependent Cl(-) channel (CaCC) is the rate-limiting step for fluid secretion in many exocrine tissues. Here, we compared the properties of native CaCC in mouse submandibular salivary gland acinar cells to the Ca(2+)-gated Cl(-) currents generated by Tmem16A and Best2, members from two distinct families of Ca(2+)-activated Cl(-) channels found in salivary glands. Heterologous expression of Tmem16A and Best2 transcripts in HEK293 cells produced Ca(2+)-activated Cl(-) currents with time and voltage dependence and inhibitor sensitivity that resembled the Ca(2+)-activated Cl(-) current found in native salivary acinar cells. Best2(-/-) and Tmem16A(-/-) mice were used to further characterize the role of these channels in the exocrine salivary gland. The amplitude and the biophysical footprint of the Ca(2+)-activated Cl(-) current in submandibular gland acinar cells from Best2-deficient mice were the same as in wild type cells. Consistent with this observation, the fluid secretion rate in Best2 null mice was comparable with that in wild type mice. In contrast, submandibular gland acinar cells from Tmem16A(-/-) mice lacked a Ca(2+)-activated Cl(-) current and a Ca(2+)-mobilizing agonist failed to stimulate Cl(-) efflux, requirements for fluid secretion. Furthermore, saliva secretion was abolished by the CaCC inhibitor niflumic acid in wild type and Best2(-/-) mice. Our results demonstrate that both Tmem16A and Best2 generate Ca(2+)-activated Cl(-) current in vitro with similar properties to those expressed in native cells, yet only Tmem16A appears to be a critical component of the acinar Ca(2+)-activated Cl(-) channel complex that is essential for saliva production by the submandibular gland.
Collapse
Affiliation(s)
- Victor G Romanenko
- Department of Pharmacology and Physiology, University of Rochester, Rochester, New York 14642, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Brown DA, Yule DI. Protein kinase A regulation of P2X(4) receptors: requirement for a specific motif in the C-terminus. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2009; 1803:275-87. [PMID: 20026202 DOI: 10.1016/j.bbamcr.2009.12.002] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2009] [Revised: 12/10/2009] [Accepted: 12/11/2009] [Indexed: 10/20/2022]
Abstract
The P2X purinergic receptor sub-family of ligand-gated ion channels are subject to protein kinase modulation. We have previously demonstrated that P2X(4)R signaling can be positively regulated by increasing intracellular cAMP levels. The molecular mechanism underlying this effect was, however, unknown. The present study initially addressed whether protein kinase A (PKA) activation was required. Subsequently a mutational approach was utilized to determine which region of the receptor was required for this potentiation. In both DT-40 3KO and HEK-293 cells transiently expressing P2X(4)R, forskolin treatment enhanced ATP-mediated signaling. Specific PKA inhibitors prevented the forskolin-induced enhancement of ATP-mediated inward currents in P2X(4)R expressing HEK-293 cells. To define which region of the P2X(4)R was required for the potentiation, mutations were generated in the cytoplasmic C-terminal tail. It was determined that a limited region of the C-terminus, consisting of a non-canonical tyrosine based sorting motif, was required for the effects of PKA. Of note, this region does not harbor any recognizable PKA phosphorylation motifs, and no direct phosphorylation of P2X(4)R was detected, suggesting that PKA phosphorylation of an accessory protein interacts with the endocytosis motif in the C-terminus of the P2X(4)R. In support of this notion, using Total Internal Reflection Fluorescence Microscopy (TIRF)\ P2X(4)-EGFP was shown to accumulate at/near the plasma membrane following forskolin treatment. In addition, disrupting the endocytosis machinery using a dominant-negative dynamin construct also prevented the PKA-mediated enhancement of ATP-stimulated Ca(2+) signals. Our results are consistent with a novel mechanism of P2XR regulation, whereby PKA activity, without directly phosphorylating P2X(4)R, markedly enhances ATP-stimulated P2X(4)R currents and hence cytosolic Ca(2+) signals. This may occur at least in part, by altering the trafficking of a population of P2X(4)R present at the plasma membrane.
Collapse
Affiliation(s)
- David A Brown
- Department of Pharmacology and Physiology, University of Rochester Medical Center, Rochester, NY 14642, USA
| | | |
Collapse
|
24
|
Chizhmakov I, Mamenko N, Volkova T, Khasabova I, Simone DA, Krishtal O. P2X receptors in sensory neurons co-cultured with cancer cells exhibit a decrease in opioid sensitivity. Eur J Neurosci 2008; 29:76-86. [PMID: 19077126 DOI: 10.1111/j.1460-9568.2008.06556.x] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Opioids are known to control the activity of P2X receptors in the sensory neurons of rats. These receptors are important in persistent pain signaling. However, there are extremely severe pain states, such as those associated with metastatic diseases, that are refractory to opioid treatment. We have tested the possibility that cancer cells affect the sensitivity of P2X(2/3) and P2X(2) receptors to opiates. The sensitivity of ATP-activated currents to the selective mu-opioid receptor agonist endomorphin-1 was evaluated in rat nodose neurons co-cultured (on separate coverslips) with fibrosarcoma cells (NCTC 2472) using whole-cell patch-clamp recordings. Both in control and in co-cultured neurons, P2X-mediated responses exhibited highly variable biphasic desensitization kinetics with fast and slow components. However, ATP-activated currents in co-cultured neurons acquired a new feature: the degree of their inhibition by endomorphin-1 demonstrated strong dependence on their desensitization kinetics. The neurons with 'slower' responses were subject to a smaller inhibitory effect of the opioid. The 'ultra-slow' responses completely lost their sensitivity to the opioid. The occurrence of such responses, rarely observed in the control neurons, was considerably increased with the duration of co-culturing. Application of endomorphin-1 to nodose neurons, co-cultured with rapidly proliferating but non-malignant cells (fibroblasts), resulted in data similar to those for the control. In summary, fibrosarcoma cells release diffusible factors altering the properties of desensitization kinetics of P2X receptors and, in particular, decrease their sensitivity to opioid inhibitory control. These phenomena may increase neuronal excitability initiated by peripheral ATP release and thereby contribute to the decreased sensitivity of cancer pain to opioids.
Collapse
Affiliation(s)
- I Chizhmakov
- Bogomoletz Institute of Physiology, Ukraine Bogomoletz Institute of Physiology, Kiev, Ukraine
| | | | | | | | | | | |
Collapse
|
25
|
Meisner JG, Reid AR, Sawynok J. Adrenergic regulation of P2X3 and TRPV1 receptors: differential effects of spared nerve injury. Neurosci Lett 2008; 444:172-5. [PMID: 18722504 DOI: 10.1016/j.neulet.2008.08.032] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2008] [Revised: 08/11/2008] [Accepted: 08/12/2008] [Indexed: 02/01/2023]
Abstract
Local application of alphabetaMeATP (ligand for P2X3 receptors) and capsaicin (ligand for TRPV1 receptors) to the rat hindpaw produces pain behaviors (flinching) which are enhanced by noradrenaline (NA). In this study, we have examined the effect of nerve injury on adrenergic regulation of P2X3 and TRPV1 receptors by administering alphabetaMeATP and capsaicin, alone and in combination with NA, into the lateral and medial hindpaw in the spared nerve injury (SNI) model; this allows for an exploration of the role of injured and uninjured afferents in their effects on nociceptive signaling using a behavioral model. Following lateral hindpaw injections (sural sensory field), effects of NA and alphabetaMeATP, both alone and in combination, were increased following SNI, but no such effects were seen following medial hindpaw injections (saphenous sensory field). Following lateral hindpaw injections, the effect of capsaicin alone was unaltered following SNI, but the effect of NA/capsaicin was reduced; this latter effect was not seen following medial hindpaw injections. At the lateral site, prazosin (alpha1-adrenergic receptor antagonist) inhibited the effect of NA/alphabetaMeATP following SNI, but neither prazosin nor GF109203X (protein kinase C inhibitor) inhibited the effect of NA/capsaicin following SNI. These results demonstrate: (a) an enhanced adrenergic regulation of P2X3 receptor activity at lateral sites following SNI where signaling afferents are directly influenced by injured neurons; (b) differential effects on adrenergic regulation of TRPV1 receptors under the same conditions; (c) lack of such changes when agents are administered into medial sites following SNI.
Collapse
Affiliation(s)
- Jason G Meisner
- Department of Pharmacology, Dalhousie University, Halifax, Nova Scotia, Canada B3H 1X5
| | | | | |
Collapse
|
26
|
Köles L, Gerevich Z, Oliveira JF, Zadori ZS, Wirkner K, Illes P. Interaction of P2 purinergic receptors with cellular macromolecules. Naunyn Schmiedebergs Arch Pharmacol 2007; 377:1-33. [DOI: 10.1007/s00210-007-0222-2] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2007] [Accepted: 11/12/2007] [Indexed: 02/04/2023]
|
27
|
Lack of evidence for direct phosphorylation of recombinantly expressed P2X(2) and P2X (3) receptors by protein kinase C. Purinergic Signal 2007; 3:377-88. [PMID: 18404451 PMCID: PMC2072911 DOI: 10.1007/s11302-007-9067-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2007] [Accepted: 07/27/2007] [Indexed: 12/18/2022] Open
Abstract
P2X3 and P2X2+3 receptors are present on sensory neurons, where they contribute not only to transient nociceptive responses, but also to hypersensitivity underlying pathological pain states elicited by nerve injuries. Increased signalling through P2X3 and P2X2+3 receptors may arise from an increased routing to the plasma membrane and/or gain of function of pre-existing receptors. An obvious effector mechanism for functional modulation is protein kinase C (PKC)-mediated phosphorylation, since all P2X family members share a conserved consensus sequence for PKC, TXR/K, within the intracellularly located N-terminal domain. Contradictory reports have been published regarding the exact role of this motif. In the present study, we confirm that site-directed elimination of the potential phosphor-acceptor threonine or the basic residue in the P+2 position of the TXR/K sequence accelerates desensitization of P2X2 receptors and abolishes P2X3 receptor function. Moreover, the PKC activator phorbol 12-myristate 13-acetate increased P2X3 (but not P2X2) receptor-mediated currents. Biochemically, however, we were unable to demonstrate by various experimental approaches a direct phosphorylation of wild-type P2X2 and P2X3 receptors expressed in both Xenopus laevis oocytes and HEK293 cells. In conclusion, our data support the view that the TXR/K motif plays an important role in P2X function and that phorbol 12-myristate 13-acetate is capable of modulating some P2X receptor subtypes. The underlying mechanism, however, is unlikely to involve direct PKC-mediated P2X receptor phosphorylation.
Collapse
|
28
|
D'Arco M, Giniatullin R, Simonetti M, Fabbro A, Nair A, Nistri A, Fabbretti E. Neutralization of nerve growth factor induces plasticity of ATP-sensitive P2X3 receptors of nociceptive trigeminal ganglion neurons. J Neurosci 2007; 27:8190-201. [PMID: 17670966 PMCID: PMC6673078 DOI: 10.1523/jneurosci.0713-07.2007] [Citation(s) in RCA: 71] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
The molecular mechanisms of migraine pain are incompletely understood, although migraine mediators such as NGF and calcitonin gene-related peptide (CGRP) are believed to play an algogenic role. Although NGF block is proposed as a novel analgesic approach, its consequences on nociceptive purinergic P2X receptors of trigeminal ganglion neurons remain unknown. We investigated whether neutralizing NGF might change the function of P2X3 receptors natively coexpressed with NGF receptors on cultured mouse trigeminal neurons. Treatment with an NGF antibody (24 h) decreased P2X3 receptor-mediated currents and Ca2+ transients, an effect opposite to exogenously applied NGF. Recovery from receptor desensitization was delayed by anti-NGF treatment without changing desensitization onset. NGF neutralization was associated with decreased threonine phosphorylation of P2X3 subunits, presumably accounting for their reduced responses and slower recovery. Anti-NGF treatment could also increase the residual current typical of heteromeric P2X2/3 receptors, consistent with enhanced membrane location of P2X2 subunits. This possibility was confirmed with cross-linking and immunoprecipitation studies. NGF neutralization also led to increased P2X2e splicing variant at mRNA and membrane protein levels. These data suggest that NGF controlled plasticity of P2X3 subunits and their membrane assembly with P2X2 subunits. Despite anti-NGF treatment, CGRP could still enhance P2X3 receptor activity, indicating separate NGF- or CGRP-mediated mechanisms to upregulate P2X3 receptors. In an in vivo model of mouse trigeminal pain, anti-NGF pretreatment suppressed responses evoked by P2X3 receptor activation. Our findings outline the important contribution by NGF signaling to nociception of trigeminal sensory neurons, which could be counteracted by anti-NGF pretreatment.
Collapse
Affiliation(s)
- Marianna D'Arco
- Neurobiology Sector, International School for Advanced Studies, 34014 Trieste, Italy
| | - Rashid Giniatullin
- Neurobiology Sector, International School for Advanced Studies, 34014 Trieste, Italy
| | - Manuela Simonetti
- Neurobiology Sector, International School for Advanced Studies, 34014 Trieste, Italy
| | - Alessandra Fabbro
- Neurobiology Sector, International School for Advanced Studies, 34014 Trieste, Italy
| | - Asha Nair
- Neurobiology Sector, International School for Advanced Studies, 34014 Trieste, Italy
| | - Andrea Nistri
- Neurobiology Sector, International School for Advanced Studies, 34014 Trieste, Italy
| | - Elsa Fabbretti
- Neurobiology Sector, International School for Advanced Studies, 34014 Trieste, Italy
| |
Collapse
|
29
|
Wang C, Gu Y, Li GW, Huang LYM. A critical role of the cAMP sensor Epac in switching protein kinase signalling in prostaglandin E2-induced potentiation of P2X3 receptor currents in inflamed rats. J Physiol 2007; 584:191-203. [PMID: 17702820 PMCID: PMC2277053 DOI: 10.1113/jphysiol.2007.135616] [Citation(s) in RCA: 76] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Sensitization of purinergic P2X receptors is one of the mechanisms responsible for exaggerated pain responses to inflammatory injuries. Prostaglandin E2 (PGE2), produced by inflamed tissues, is known to contribute to abnormal pain states. In a previous study, we showed that PGE2 increases fast inactivating ATP currents that are mediated by homomeric P2X3 receptors in dorsal root ganglion (DRG) neurons isolated from normal rats. Protein kinase A (PKA) is the signalling pathway used by PGE2. Little is known about the action of PGE2 on ATP currents after inflammation, although the information is crucial for understanding the mechanisms underlying inflammation-induced sensitization of P2X receptors. We therefore studied the effects of PGE2 on P2X3 receptor-mediated ATP currents in DRG neurons dissociated from complete Freund's adjuvant (CFA)-induced inflamed rats. We found that PGE2 produces a large increase in ATP currents. PKCepsilon, in addition to PKA, becomes involved in the modulatory action of PGE2. Thus, PGE2 signalling switches from a solely PKA-dependent pathway under normal conditions to both PKA- and PKC-dependent pathways after inflammation. Studying the mechanisms underlying the switch, we demonstrated that cAMP-responsive guanine nucleotide exchange factor 1 (Epac1) is up-regulated after inflammation. The Epac agonist CPT-OMe mimics the potentiating effect of PGE2 and occludes the PKC-mediated PGE2 action on ATP currents. These results suggest that Epac plays a critical role in P2X3 sensitization by activation of de novo PKC-dependent signalling of PGE2 after inflammation and would be a useful therapeutic target for pain therapies.
Collapse
Affiliation(s)
- Congying Wang
- Department of Neuroscience and Cell Biology, University of Texas Medical Branch, Galveston, TX 77555-1069, USA
| | | | | | | |
Collapse
|
30
|
Puthussery T, Fletcher EL. Neuronal expression of P2X3 purinoceptors in the rat retina. Neuroscience 2007; 146:403-14. [PMID: 17367943 DOI: 10.1016/j.neuroscience.2007.01.055] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2006] [Revised: 01/10/2007] [Accepted: 01/27/2007] [Indexed: 11/16/2022]
Abstract
P2X3 purinoceptors are involved in fast, excitatory neurotransmission in the nervous system, and are expressed predominantly within sensory neurons. In this study, we examined the cellular and synaptic localization of the P2X3 receptor subunit in the retina of the rat using immunofluorescence immunohistochemistry and pre-embedding immunoelectron microscopy. In addition, we investigated the activity of ecto-ATPases in the inner retina using an enzyme cytochemical method. The P2X3 receptor subunit was expressed in the soma of a subset of GABA immunoreactive amacrine cells, some of which also expressed protein kinase C-alpha. In addition, punctate immunoreactivity was observed within both the inner and outer plexiform layers of the retina. Double labeling studies showed that P2X3 receptor puncta were associated with both rod and cone bipolar cell axon terminals in the inner plexiform layer. Ultrastructural studies indicated that P2X3 receptor subunits were expressed on putative A17 amacrine cells at sites of reciprocal synaptic input to the rod bipolar cell axon terminal. Moreover, we observed P2X3 immunolabeling on amacrine cell processes that were associated with cone bipolar cell axon terminals and other conventional synapses. In the outer retina, P2X3 immunoreactivity was observed on specialized junctions made by putative interplexiform cells. Ecto-ATPase activity was localized to the inner plexiform layer on the extracellular side of all plasma membranes, but was not apparent in the ganglion cell layer or the inner nuclear layer, suggesting that ATP dephosphorylation occurs exclusively in synaptic regions of the inner retina. These data provide further evidence that purines participate in retinal transmission, particularly within the rod pathway.
Collapse
Affiliation(s)
- T Puthussery
- Department of Anatomy and Cell Biology, The University of Melbourne, Cnr Grattan St and Royal Pde, Parkville, 3010, Victoria, Australia
| | | |
Collapse
|