1
|
Watson BR, Paul B, Rahman RU, Amir-Zilberstein L, Segerstolpe Å, Epstein ET, Murphy S, Geistlinger L, Lee T, Shih A, Deguine J, Xavier RJ, Moffitt JR, Mullen AC. Spatial transcriptomics of healthy and fibrotic human liver at single-cell resolution. Nat Commun 2025; 16:319. [PMID: 39747812 PMCID: PMC11697218 DOI: 10.1038/s41467-024-55325-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Accepted: 12/09/2024] [Indexed: 01/04/2025] Open
Abstract
Single-cell RNA sequencing (scRNA-seq) has advanced our understanding of cell types and their heterogeneity within the human liver, but the spatial organization at single-cell resolution has not yet been described. Here we apply multiplexed error robust fluorescent in situ hybridization (MERFISH) to map the zonal distribution of hepatocytes, spatially resolve subsets of macrophage and mesenchymal populations, and investigate the relationship between hepatocyte ploidy and gene expression within the healthy human liver. Integrating spatial information from MERFISH with the more complete transcriptome produced by single-nucleus RNA sequencing (snRNA-seq), also reveals zonally enriched receptor-ligand interactions. Finally, MERFISH and snRNA-seq analysis of fibrotic liver samples identify two hepatocyte populations that expand with injury and do not have clear zonal distributions. Together these spatial maps of the healthy and fibrotic liver provide a deeper understanding of the cellular and spatial remodeling that drives disease which, in turn, could provide new avenues for intervention and further study.
Collapse
Affiliation(s)
- Brianna R Watson
- Program in Cellular and Molecular Medicine, Boston Children's Hospital, Boston, MA, 02115, USA
- Department of Microbiology, Blavatnik Institute, Harvard Medical School, Boston, MA, 02115, USA
| | - Biplab Paul
- Division of Gastroenterology, University of Massachusetts Chan Medical School, Worcester, MA, USA
| | - Raza Ur Rahman
- Division of Gastroenterology, University of Massachusetts Chan Medical School, Worcester, MA, USA
- Broad Institute of Harvard and MIT, Cambridge, MA, 02142, USA
| | | | - Åsa Segerstolpe
- Broad Institute of Harvard and MIT, Cambridge, MA, 02142, USA
| | | | - Shane Murphy
- Broad Institute of Harvard and MIT, Cambridge, MA, 02142, USA
| | - Ludwig Geistlinger
- Core for Computational Biomedicine, Department for Biomedical Informatics, Blavatnik Institute, Harvard Medical School, Boston, MA, 02115, USA
| | - Tyrone Lee
- Core for Computational Biomedicine, Department for Biomedical Informatics, Blavatnik Institute, Harvard Medical School, Boston, MA, 02115, USA
| | - Angela Shih
- Massachusetts General Hospital, Boston, MA, 02114, USA
| | - Jacques Deguine
- Broad Institute of Harvard and MIT, Cambridge, MA, 02142, USA
| | - Ramnik J Xavier
- Broad Institute of Harvard and MIT, Cambridge, MA, 02142, USA
- Massachusetts General Hospital, Boston, MA, 02114, USA
| | - Jeffrey R Moffitt
- Program in Cellular and Molecular Medicine, Boston Children's Hospital, Boston, MA, 02115, USA.
- Department of Microbiology, Blavatnik Institute, Harvard Medical School, Boston, MA, 02115, USA.
- Broad Institute of Harvard and MIT, Cambridge, MA, 02142, USA.
| | - Alan C Mullen
- Division of Gastroenterology, University of Massachusetts Chan Medical School, Worcester, MA, USA.
- Broad Institute of Harvard and MIT, Cambridge, MA, 02142, USA.
| |
Collapse
|
2
|
Galletti JG, Scholand KK, Trujillo-Vargas CM, Haap W, Santos-Ferreira T, Ullmer C, Yu Z, de Paiva CS. Effects of Cathepsin S Inhibition in the Age-Related Dry Eye Phenotype. Invest Ophthalmol Vis Sci 2023; 64:7. [PMID: 37540176 PMCID: PMC10414132 DOI: 10.1167/iovs.64.11.7] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2023] [Accepted: 07/12/2023] [Indexed: 08/05/2023] Open
Abstract
Purpose Aged C57BL/6J (B6) mice have increased levels of cathepsin S, and aged cathepsin S (Ctss-/-) knockout mice are resistant to age-related dry eye. This study investigated the effects of cathepsin S inhibition on age-related dry eye disease. Methods Female B6 mice aged 15.5 to 17 months were randomized to receive a medicated diet formulated by mixing the RO5461111 cathepsin S inhibitor or a standard diet for at least 12 weeks. Cornea mechanosensitivity was measured with a Cochet-Bonnet esthesiometer. Ocular draining lymph nodes and lacrimal glands (LGs) were excised and prepared for histology or assayed by flow cytometry to quantify infiltrating immune cells. The inflammatory foci (>50 cells) were counted under a 10× microscope lens and quantified using the focus score. Goblet cell density was investigated in periodic acid-Schiff stained sections. Ctss-/- mice were compared to age-matched wild-type mice. Results Aged mice subjected to cathepsin S inhibition or Ctss-/- mice showed improved conjunctival goblet cell density and cornea mechanosensitivity. There was no change in total LG focus score in the diet or Ctss-/- mice, but there was a lower frequency of CD4+IFN-γ+ cell infiltration in the LGs. Furthermore, aged Ctss-/- LGs had an increase in T central memory, higher numbers of CD19+B220-, and fewer CD19+B220+ cells than wild-type LGs. Conclusions Our results indicate that therapies aimed at decreasing cathepsin S can ameliorate age-related dry eye disease with a highly beneficial impact on the ocular surface. Further studies are needed to investigate the role of cathepsin S during aging.
Collapse
Affiliation(s)
- Jeremias G. Galletti
- Department of Ophthalmology, Baylor College of Medicine, Houston, Texas, United States
- Institute of Experimental Medicine, Buenos Aires, Argentina
| | - Kaitlin K. Scholand
- Department of Ophthalmology, Baylor College of Medicine, Houston, Texas, United States
- Department of Biosciences, Rice University, Houston, Texas, United States
| | - Claudia M. Trujillo-Vargas
- Department of Ophthalmology, Baylor College of Medicine, Houston, Texas, United States
- Grupo de Inmunodeficiencias Primarias, Facultad de Medicina, Universidad de Antioquia, UdeA, Medellín, Colombia
| | - Wolfgang Haap
- Roche Pharma Research and Early Development, F. Hoffmann-La Roche Ltd, Basel, Switzerland
| | - Tiago Santos-Ferreira
- Roche Pharma Research and Early Development, F. Hoffmann-La Roche Ltd, Basel, Switzerland
| | - Christoph Ullmer
- Roche Pharma Research and Early Development, F. Hoffmann-La Roche Ltd, Basel, Switzerland
| | - Zhiyuan Yu
- Department of Ophthalmology, Baylor College of Medicine, Houston, Texas, United States
| | - Cintia S. de Paiva
- Department of Ophthalmology, Baylor College of Medicine, Houston, Texas, United States
- Department of Biosciences, Rice University, Houston, Texas, United States
| |
Collapse
|
3
|
Teng J, Zhao Y, Meng QL, Zhu SR, Chen HJ, Xue LY, Ji XS. Transcriptome analysis in the spleen of Northern Snakehead (Channa argus) challenged with Nocardia seriolae. Genomics 2022; 114:110357. [PMID: 35378240 DOI: 10.1016/j.ygeno.2022.110357] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Revised: 02/05/2022] [Accepted: 03/27/2022] [Indexed: 01/14/2023]
Abstract
Northern snakehead (Channa argus) is an indigenous fish species and is one of popularly cultured snakeheads in China and other Asian countries. Unfortunately, Nocardia seriolae infections have caused considerable losses in the snakehead aquaculture industry. However, the infectivity and the immune response induced by N. seriolae in snakehead are unclear. In order to better understand the immune response of Northern snakehead in a series of time points after N. seriolae challenge, we conducted the transcriptomic comparison in snakehead spleen at 48, 96, and 144 h after the challenge of N. seriola against their control counterparts. Gene annotation and pathway analysis of differentially expressed genes (DEGs) were carried out to understand the functions of the DEGs. Additionally, protein-protein interaction networks were conducted to obtain the interaction relationships of immune-related DEGs. These results revealed the expression changes of multiple DEGs and signaling pathways involved in immunity during N. seriolae infection, which will facilitate our comprehensive understanding of the mechanisms involved in the immune response to bacterial infection in the northern snakehead.
Collapse
Affiliation(s)
- Jian Teng
- College of Animal Science and Technology, Shandong Agricultural University, Taian, China; College of Marine Sciences, Ningbo University, Ningbo, China
| | - Yan Zhao
- College of Animal Science and Technology, Shandong Agricultural University, Taian, China
| | - Qing Lei Meng
- Shandong Freshwater Fisheries Research Institute, Jinan, China
| | - Shu Ren Zhu
- Shandong Freshwater Fisheries Research Institute, Jinan, China
| | - Hong Ju Chen
- College of Animal Science and Technology, Shandong Agricultural University, Taian, China
| | - Liang Yi Xue
- College of Marine Sciences, Ningbo University, Ningbo, China
| | - Xiang Shan Ji
- College of Animal Science and Technology, Shandong Agricultural University, Taian, China.
| |
Collapse
|
4
|
Ruiz-Blázquez P, Pistorio V, Fernández-Fernández M, Moles A. The multifaceted role of cathepsins in liver disease. J Hepatol 2021; 75:1192-1202. [PMID: 34242696 DOI: 10.1016/j.jhep.2021.06.031] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Revised: 06/16/2021] [Accepted: 06/21/2021] [Indexed: 12/15/2022]
Abstract
Proteases are the most abundant enzyme gene family in vertebrates and they execute essential functions in all living organisms. Their main role is to hydrolase the peptide bond within proteins, a process also called proteolysis. Contrary to the conventional paradigm, proteases are not only random catalytic devices, but can perform highly selective and targeted cleavage of specific substrates, finely modulating multiple essential cellular processes. Lysosomal protease cathepsins comprise 3 families of proteases that preferentially act within acidic cellular compartments, but they can also be found in other cellular locations. They can operate alone or as part of signalling cascades and regulatory circuits, playing important roles in apoptosis, extracellular matrix remodelling, hepatic stellate cell activation, autophagy and metastasis, contributing to the initiation, development and progression of liver disease. In this review, we comprehensively summarise current knowledge on the role of lysosomal cathepsins in liver disease, with a particular emphasis on liver fibrosis, non-alcoholic fatty liver disease and hepatocellular carcinoma.
Collapse
Affiliation(s)
- Paloma Ruiz-Blázquez
- Institute of Biomedical Research of Barcelona, Spanish National Research Council (IIBB-CSIC), Barcelona, Spain
| | - Valeria Pistorio
- Institute of Biomedical Research of Barcelona, Spanish National Research Council (IIBB-CSIC), Barcelona, Spain; University of Naples Federico II, Naples, Italy
| | - María Fernández-Fernández
- Institute of Biomedical Research of Barcelona, Spanish National Research Council (IIBB-CSIC), Barcelona, Spain
| | - Anna Moles
- Institute of Biomedical Research of Barcelona, Spanish National Research Council (IIBB-CSIC), Barcelona, Spain; IDIBAPS, Barcelona, Spain; CiberEHD, Spain.
| |
Collapse
|
5
|
Wirtz TH, Saal A, Bergmann I, Fischer P, Heinrichs D, Brandt EF, Koenen MT, Djudjaj S, Schneider KM, Boor P, Bucala R, Weiskirchen R, Bernhagen J, Trautwein C, Berres ML. Macrophage migration inhibitory factor exerts pro-proliferative and anti-apoptotic effects via CD74 in murine hepatocellular carcinoma. Br J Pharmacol 2021; 178:4452-4467. [PMID: 34250589 DOI: 10.1111/bph.15622] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Revised: 06/23/2021] [Accepted: 06/25/2021] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND AND PURPOSE Macrophage migration inhibitory factor (MIF) is an inflammatory and chemokine-like protein expressed in different inflammatory diseases as well as solid tumours. CD74-as the cognate MIF receptor-was identified as an important target of MIF. We here analysed the role of MIF and CD74 in the progression of hepatocellular carcinoma (HCC) in vitro and in vivo. EXPERIMENTAL APPROACH Multilocular HCC was induced using the diethylnitrosamine/carbon tetrachloride (DEN/CCl4 ) model in hepatocyte-specific Mif knockout (Mif Δhep ), Cd74-deficient, and control mice. Tumour burden was compared between the genotypes. MIF, CD74 and Ki67 expression were investigated in tumour and surrounding tissue. In vitro, the effects of the MIF/CD74 axis on the proliferative and apoptotic behaviour of hepatoma cells and respective signalling pathways were assessed after treatment with MIF and anti-CD74 antibodies. KEY RESULTS DEN/CCl4 treatment of Mif Δhep mice resulted in reduced tumour burden and diminished proliferation capacity within tumour tissue. In vitro, MIF stimulated proliferation of Hepa 1-6 and HepG2 cells, inhibited therapy-induced cell death and induced ERK activation. The investigated effects could be reversed using a neutralizing anti-CD74 antibody, and Cd74-/- mice developed fewer tumours associated with decreased proliferation rates. CONCLUSION AND IMPLICATIONS We identified a pro-tumorigenic role of MIF during proliferation and therapy-induced apoptosis of HCC cells. These effects were mediated via the MIF cognate receptor CD74. Thus, inhibition of the MIF/CD74 axis could represent a promising target with regard to new pharmacological therapies aimed at HCC.
Collapse
Affiliation(s)
- Theresa H Wirtz
- Department of Medicine III, University Hospital RWTH Aachen, Aachen, Germany
| | - Alena Saal
- Department of Medicine III, University Hospital RWTH Aachen, Aachen, Germany
| | - Irina Bergmann
- Department of Medicine III, University Hospital RWTH Aachen, Aachen, Germany
| | - Petra Fischer
- Department of Medicine III, University Hospital RWTH Aachen, Aachen, Germany
| | - Daniel Heinrichs
- Department of Medicine III, University Hospital RWTH Aachen, Aachen, Germany
| | - Elisa F Brandt
- Department of Medicine III, University Hospital RWTH Aachen, Aachen, Germany
| | - Maria T Koenen
- Department of Medicine III, University Hospital RWTH Aachen, Aachen, Germany
| | - Sonja Djudjaj
- Institute of Pathology, RWTH Aachen University, Aachen, Germany
| | - Kai M Schneider
- Department of Medicine III, University Hospital RWTH Aachen, Aachen, Germany
| | - Peter Boor
- Institute of Pathology, RWTH Aachen University, Aachen, Germany.,Department of Nephrology and Immunology, RWTH Aachen University, Aachen, Germany
| | - Richard Bucala
- Department of Internal Medicine, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Ralf Weiskirchen
- Institute of Molecular Pathobiochemistry, Experimental Gene Therapy and Clinical Chemistry (IFMPEGKC), University Hospital RWTH Aachen, Aachen, Germany
| | - Jürgen Bernhagen
- Division of Vascular Biology, Institute for Stroke and Dementia Research (ISD), Ludwig Maximilian-University (LMU) and LMU University Hospital, Munich, Germany.,Munich Cluster for Systems Neurology (EXC 2145 SyNergy), Munich, Germany
| | - Christian Trautwein
- Department of Medicine III, University Hospital RWTH Aachen, Aachen, Germany
| | - Marie-Luise Berres
- Department of Medicine III, University Hospital RWTH Aachen, Aachen, Germany
| |
Collapse
|
6
|
Arriola Benitez PC, Pesce Viglietti AI, Elizalde MM, Giambartolomei GH, Quarleri JF, Delpino MV. Hepatic Stellate Cells and Hepatocytes as Liver Antigen-Presenting Cells during B. abortus Infection. Pathogens 2020; 9:527. [PMID: 32629846 PMCID: PMC7399813 DOI: 10.3390/pathogens9070527] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Revised: 06/06/2020] [Accepted: 06/15/2020] [Indexed: 01/18/2023] Open
Abstract
In Brucellosis, the role of hepatic stellate cells (HSCs) in the induction of liver fibrosis has been elucidated recently. Here, we study how the infection modulates the antigen-presenting capacity of LX-2 cells. Brucella abortus infection induces the upregulation of class II transactivator protein (CIITA) with concomitant MHC-I and -II expression in LX-2 cells in a manner that is independent from the expression of the type 4 secretion system (T4SS). In concordance, B. abortus infection increases the phagocytic ability of LX-2 cells and induces MHC-II-restricted antigen processing and presentation. In view of the ability of B. abortus-infected LX-2 cells to produce monocyte-attracting factors, we tested the capacity of culture supernatants from B. abortus-infected monocytes on MHC-I and -II expression in LX-2 cells. Culture supernatants from B. abortus-infected monocytes do not induce MHC-I and -II expression. However, these supernatants inhibit MHC-II expression induced by IFN-γ in an IL-10 dependent mechanism. Since hepatocytes constitute the most abundant epithelial cell in the liver, experiments were conducted to determine the contribution of these cells in antigen presentation in the context of B. abortus infection. Our results indicated that B. abortus-infected hepatocytes have an increased MHC-I expression, but MHC-II levels remain at basal levels. Overall, B. abortus infection induces MHC-I and -II expression in LX-2 cells, increasing the antigen presentation. Nevertheless, this response could be modulated by resident or infiltrating monocytes/macrophages.
Collapse
Affiliation(s)
- Paula Constanza Arriola Benitez
- Instituto de Inmunología, Genética y Metabolismo (INIGEM), Universidad de Buenos Aires, CONICET, Buenos Aires 1120, Argentina; (P.C.A.B.); (A.I.P.V.); (G.H.G.)
| | - Ayelén Ivana Pesce Viglietti
- Instituto de Inmunología, Genética y Metabolismo (INIGEM), Universidad de Buenos Aires, CONICET, Buenos Aires 1120, Argentina; (P.C.A.B.); (A.I.P.V.); (G.H.G.)
| | - María Mercedes Elizalde
- Instituto de Investigaciones Biomédicas en Retrovirus y Sida (INBIRS), Universidad de Buenos Aires, CONICET, Buenos Aires 1121, Argentina;
| | - Guillermo Hernán Giambartolomei
- Instituto de Inmunología, Genética y Metabolismo (INIGEM), Universidad de Buenos Aires, CONICET, Buenos Aires 1120, Argentina; (P.C.A.B.); (A.I.P.V.); (G.H.G.)
| | - Jorge Fabián Quarleri
- Instituto de Investigaciones Biomédicas en Retrovirus y Sida (INBIRS), Universidad de Buenos Aires, CONICET, Buenos Aires 1121, Argentina;
| | - María Victoria Delpino
- Instituto de Inmunología, Genética y Metabolismo (INIGEM), Universidad de Buenos Aires, CONICET, Buenos Aires 1120, Argentina; (P.C.A.B.); (A.I.P.V.); (G.H.G.)
| |
Collapse
|
7
|
Liu X, Rosenthal SB, Meshgin N, Baglieri J, Musallam SG, Diggle K, Lam K, Wu R, Pan SQ, Chen Y, Dorko K, Presnell S, Benner C, Hosseini M, Tsukamoto H, Brenner D, Kisseleva T. Primary Alcohol-Activated Human and Mouse Hepatic Stellate Cells Share Similarities in Gene-Expression Profiles. Hepatol Commun 2020; 4:606-626. [PMID: 32258954 PMCID: PMC7109347 DOI: 10.1002/hep4.1483] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/12/2019] [Accepted: 12/15/2019] [Indexed: 01/18/2023] Open
Abstract
Alcoholic liver disease (ALD) is a leading cause of cirrhosis in the United States, which is characterized by extensive deposition of extracellular matrix proteins and formation of a fibrous scar. Hepatic stellate cells (HSCs) are the major source of collagen type 1 producing myofibroblasts in ALD fibrosis. However, the mechanism of alcohol-induced activation of human and mouse HSCs is not fully understood. We compared the gene-expression profiles of primary cultured human HSCs (hHSCs) isolated from patients with ALD (n = 3) or without underlying liver disease (n = 4) using RNA-sequencing analysis. Furthermore, the gene-expression profile of ALD hHSCs was compared with that of alcohol-activated mHSCs (isolated from intragastric alcohol-fed mice) or CCl4-activated mouse HSCs (mHSCs). Comparative transcriptome analysis revealed that ALD hHSCs, in addition to alcohol-activated and CCl4-activated mHSCs, share the expression of common HSC activation (Col1a1 [collagen type I alpha 1 chain], Acta1 [actin alpha 1, skeletal muscle], PAI1 [plasminogen activator inhibitor-1], TIMP1 [tissue inhibitor of metalloproteinase 1], and LOXL2 [lysyl oxidase homolog 2]), indicating that a common mechanism underlies the activation of human and mouse HSCs. Furthermore, alcohol-activated mHSCs most closely recapitulate the gene-expression profile of ALD hHSCs. We identified the genes that are similarly and uniquely up-regulated in primary cultured alcohol-activated hHSCs and freshly isolated mHSCs, which include CSF1R (macrophage colony-stimulating factor 1 receptor), PLEK (pleckstrin), LAPTM5 (lysosmal-associated transmembrane protein 5), CD74 (class I transactivator, the invariant chain), CD53, MMP9 (matrix metallopeptidase 9), CD14, CTSS (cathepsin S), TYROBP (TYRO protein tyrosine kinase-binding protein), and ITGB2 (integrin beta-2), and other genes (compared with CCl4-activated mHSCs). Conclusion: We identified genes in alcohol-activated mHSCs from intragastric alcohol-fed mice that are largely consistent with the gene-expression profile of primary cultured hHSCs from patients with ALD. These genes are unique to alcohol-induced HSC activation in two species, and therefore may become targets or readout for antifibrotic therapy in experimental models of ALD.
Collapse
Affiliation(s)
- Xiao Liu
- Department of Surgery University of California, San Diego La Jolla CA.,Department of Medicine University of California, San Diego La Jolla CA
| | - Sara Brin Rosenthal
- Center for Computational Biology & Bioinformatics University of California, San Diego La Jolla CA
| | - Nairika Meshgin
- Department of Surgery University of California, San Diego La Jolla CA.,Department of Medicine University of California, San Diego La Jolla CA
| | - Jacopo Baglieri
- Department of Surgery University of California, San Diego La Jolla CA.,Department of Medicine University of California, San Diego La Jolla CA
| | - Sami G Musallam
- Department of Surgery University of California, San Diego La Jolla CA
| | - Karin Diggle
- Department of Medicine University of California, San Diego La Jolla CA
| | - Kevin Lam
- Department of Medicine University of California, San Diego La Jolla CA
| | - Raymond Wu
- Southern California Research Center for ALPD & Cirrhosis Keck School of Medicine of the University of Southern California Los Angeles CA.,Department of Pathology Keck School of Medicine of the University of Southern California Los Angeles CA
| | - Stephanie Q Pan
- Southern California Research Center for ALPD & Cirrhosis Keck School of Medicine of the University of Southern California Los Angeles CA.,Department of Pathology Keck School of Medicine of the University of Southern California Los Angeles CA
| | - Yibu Chen
- Bioinformatics Services Keck School of Medicine of the University of Southern California Los Angeles CA
| | | | | | - Chris Benner
- Department of Medicine University of California, San Diego La Jolla CA
| | - Mojgan Hosseini
- Department of Pathology University of California, San Diego La Jolla CA
| | - Hidekazu Tsukamoto
- Southern California Research Center for ALPD & Cirrhosis Keck School of Medicine of the University of Southern California Los Angeles CA.,Department of Pathology Keck School of Medicine of the University of Southern California Los Angeles CA.,Department of Veterans Affairs Great Los Angeles Healthcare System Los Angeles CA
| | - David Brenner
- Department of Medicine University of California, San Diego La Jolla CA.,Southern California Research Center for ALPD & Cirrhosis Keck School of Medicine of the University of Southern California Los Angeles CA
| | - Tatiana Kisseleva
- Department of Surgery University of California, San Diego La Jolla CA.,Southern California Research Center for ALPD & Cirrhosis Keck School of Medicine of the University of Southern California Los Angeles CA
| |
Collapse
|
8
|
Klinngam W, Janga SR, Lee C, Ju Y, Yarber F, Shah M, Guo H, Wang D, MacKay JA, Edman MC, Hamm-Alvarez SF. Inhibition of Cathepsin S Reduces Lacrimal Gland Inflammation and Increases Tear Flow in a Mouse Model of Sjögren's Syndrome. Sci Rep 2019; 9:9559. [PMID: 31267034 PMCID: PMC6606642 DOI: 10.1038/s41598-019-45966-7] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Accepted: 06/17/2019] [Indexed: 12/16/2022] Open
Abstract
Cathepsin S (CTSS) is highly increased in Sjögren's syndrome (SS) patients tears and in tears and lacrimal glands (LG) of male non-obese diabetic (NOD) mice, a murine model of SS. To explore CTSS's utility as a therapeutic target for mitigating ocular manifestations of SS in sites where CTSS is increased in disease, the tears and the LG (systemically), the peptide-based inhibitor, Z-FL-COCHO (Z-FL), was administered to 14-15 week male NOD mice. Systemic intraperitoneal (i.p.) injection for 2 weeks significantly reduced CTSS activity in tears, LG and spleen, significantly reduced total lymphocytic infiltration into LG, reduced CD3+ and CD68+ cell abundance within lymphocytic infiltrates, and significantly increased stimulated tear secretion. Topical administration of Z-FL to a different cohort of 14-15 week male NOD mice for 6 weeks significantly reduced only tear CTSS while not affecting LG and spleen CTSS and attenuated the disease-progression related reduction of basal tear secretion, while not significantly impacting lymphocytic infiltration of the LG. These findings suggest that CTSS inhibitors administered either topically or systemically can mitigate aspects of the ocular manifestations of SS.
Collapse
Affiliation(s)
- Wannita Klinngam
- Department of Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Southern California, Los Angeles, CA, 90033, USA
| | - Srikanth R Janga
- Department of Ophthalmology, Roski Eye Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA, 90033, USA
| | - Changrim Lee
- Department of Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Southern California, Los Angeles, CA, 90033, USA
| | - Yaping Ju
- Department of Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Southern California, Los Angeles, CA, 90033, USA
| | - Frances Yarber
- Department of Ophthalmology, Roski Eye Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA, 90033, USA
| | - Mihir Shah
- Department of Ophthalmology, Roski Eye Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA, 90033, USA
| | - Hao Guo
- Department of Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Southern California, Los Angeles, CA, 90033, USA
| | - Dandan Wang
- Anatomic and Clinical Pathology, Los Angeles County + University of Southern California Medical Center, Los Angeles, CA, 90033, USA
| | - J Andrew MacKay
- Department of Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Southern California, Los Angeles, CA, 90033, USA.,Department of Ophthalmology, Roski Eye Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA, 90033, USA.,Department of Biomedical Engineering, Viterbi School of Engineering, University of Southern California, Los Angeles, CA, 90089, USA
| | - Maria C Edman
- Department of Ophthalmology, Roski Eye Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA, 90033, USA
| | - Sarah F Hamm-Alvarez
- Department of Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Southern California, Los Angeles, CA, 90033, USA. .,Department of Ophthalmology, Roski Eye Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA, 90033, USA.
| |
Collapse
|
9
|
Paul-Heng M, Leong M, Cunningham E, Bunker DLJ, Bremner K, Wang Z, Wang C, Tay SS, McGuffog C, Logan GJ, Alexander IE, Hu M, Alexander SI, Sparwasser TD, Bertolino P, Bowen DG, Bishop GA, Sharland A. Direct recognition of hepatocyte-expressed MHC class I alloantigens is required for tolerance induction. JCI Insight 2018; 3:97500. [PMID: 30089715 DOI: 10.1172/jci.insight.97500] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2017] [Accepted: 06/28/2018] [Indexed: 12/31/2022] Open
Abstract
Adeno-associated viral vector-mediated (AAV-mediated) expression of allogeneic major histocompatibility complex class I (MHC class I) in recipient liver induces donor-specific tolerance in mouse skin transplant models in which a class I allele (H-2Kb or H-2Kd) is mismatched between donor and recipient. Tolerance can be induced in mice primed by prior rejection of a donor-strain skin graft, as well as in naive recipients. Allogeneic MHC class I may be recognized by recipient T cells as an intact molecule (direct recognition) or may be processed and presented as an allogeneic peptide in the context of self-MHC (indirect recognition). The relative contributions of direct and indirect allorecognition to tolerance induction in this setting are unknown. Using hepatocyte-specific AAV vectors encoding WT allogeneic MHC class I molecules, or class I molecules containing a point mutation (D227K) that impedes direct recognition of intact allogeneic MHC class I by CD8+ T cells without hampering the presentation of processed peptides derived from allogeneic MHC class I, we show here that tolerance induction depends upon recognition of intact MHC class I. Indirect recognition alone yielded a modest prolongation of subsequent skin graft survival, attributable to the generation of CD4+ Tregs, but it was not sufficient to induce tolerance.
Collapse
Affiliation(s)
- Moumita Paul-Heng
- Transplantation Immunobiology Group, University of Sydney Central Clinical School, Charles Perkins Centre, Faculty of Medicine and Health, Sydney, NSW, Australia
| | - Mario Leong
- Transplantation Immunobiology Group, University of Sydney Central Clinical School, Charles Perkins Centre, Faculty of Medicine and Health, Sydney, NSW, Australia
| | - Eithne Cunningham
- Transplantation Immunobiology Group, University of Sydney Central Clinical School, Charles Perkins Centre, Faculty of Medicine and Health, Sydney, NSW, Australia
| | - Daniel L J Bunker
- Transplantation Immunobiology Group, University of Sydney Central Clinical School, Charles Perkins Centre, Faculty of Medicine and Health, Sydney, NSW, Australia
| | - Katherine Bremner
- Liver Immunology Group and AW Morrow Gastroenterology and Liver Centre, The University of Sydney and Royal Prince Alfred Hospital, Sydney, NSW, Australia
| | - Zane Wang
- Transplantation Immunobiology Group, University of Sydney Central Clinical School, Charles Perkins Centre, Faculty of Medicine and Health, Sydney, NSW, Australia
| | - Chuanmin Wang
- Transplantation Immunobiology Group, University of Sydney Central Clinical School, Charles Perkins Centre, Faculty of Medicine and Health, Sydney, NSW, Australia
| | - Szun Szun Tay
- Liver Immunology Group and AW Morrow Gastroenterology and Liver Centre, The University of Sydney and Royal Prince Alfred Hospital, Sydney, NSW, Australia
| | - Claire McGuffog
- Liver Immunology Group and AW Morrow Gastroenterology and Liver Centre, The University of Sydney and Royal Prince Alfred Hospital, Sydney, NSW, Australia
| | - Grant J Logan
- Gene Therapy Research Unit, Children's Medical Research Institute, The University of Sydney, Faculty of Medicine and Health and Sydney Children's Hospitals Network, Westmead, Australia
| | - Ian E Alexander
- Gene Therapy Research Unit, Children's Medical Research Institute, The University of Sydney, Faculty of Medicine and Health and Sydney Children's Hospitals Network, Westmead, Australia.,The University of Sydney, Sydney Medical School, Discipline of Child and Adolescent Health, Westmead, Australia
| | - Min Hu
- Centre for Transplant and Renal Research, Westmead Institute for Medical Research, The University of Sydney, Westmead, NSW, Australia
| | - Stephen I Alexander
- Centre for Kidney Research, Children's Hospital at Westmead, The University of Sydney, NSW, Australia
| | - Tim D Sparwasser
- Institute of Infection Immunology, Twincore, Centre for Experimental and Clinical Infection Research, Hannover Medical School, Germany
| | - Patrick Bertolino
- Liver Immunology Group and AW Morrow Gastroenterology and Liver Centre, The University of Sydney and Royal Prince Alfred Hospital, Sydney, NSW, Australia
| | - David G Bowen
- Transplantation Immunobiology Group, University of Sydney Central Clinical School, Charles Perkins Centre, Faculty of Medicine and Health, Sydney, NSW, Australia.,Liver Immunology Group and AW Morrow Gastroenterology and Liver Centre, The University of Sydney and Royal Prince Alfred Hospital, Sydney, NSW, Australia
| | - G Alex Bishop
- Transplantation Immunobiology Group, University of Sydney Central Clinical School, Charles Perkins Centre, Faculty of Medicine and Health, Sydney, NSW, Australia
| | - Alexandra Sharland
- Transplantation Immunobiology Group, University of Sydney Central Clinical School, Charles Perkins Centre, Faculty of Medicine and Health, Sydney, NSW, Australia
| |
Collapse
|
10
|
Alabdulmon W, Alhomaidan HT, Rasheed Z, Madar IH, Alasmael N, Alkhatib S, Al Ssadh H. CD74 a Potential Therapeutic Target for Breast Cancer Therapy: Interferon Gamma Up-regulates its Expression in CAMA-1 and MDA-MB-231 Cancer Cells. ACTA ACUST UNITED AC 2018. [DOI: 10.3923/ijcr.2018.58.69] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
11
|
Czaja AJ. Emerging therapeutic biomarkers of autoimmune hepatitis and their impact on current and future management. Expert Rev Gastroenterol Hepatol 2018. [PMID: 29540068 DOI: 10.1080/17474124.2018.1453356] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Autoimmune hepatitis lacks a quantifiable biomarker that is close to its pathogenic mechanisms and that accurately reflects inflammatory activity, correlates with treatment response, and ensures inactive disease before treatment withdrawal. Areas covered: Micro-ribonucleic acids, programmed death-1 protein and its ligands, macrophage migration inhibitory factor, soluble CD163, B cell activating factor, and metabolite patterns in blood were considered the leading candidates as therapeutic biomarkers after search of PubMed from August 1981 to August 2017 using the search words 'biomarkers of autoimmune hepatitis'. Expert commentary: Each of the candidate biomarkers is close to the putative pathogenic mechanisms of autoimmune hepatitis, and each has attributes that support its potential role as a surrogate marker of inflammatory activity that can be monitored during treatment. Future studies must demonstrate the superiority of each biomarker to conventional indices of inflammatory activity and validate their correlation with treatment response and outcome. A reliable therapeutic biomarker would facilitate the individualization of current management algorithms, ensure that pathogenic mechanisms were disrupted or eliminated prior to treatment withdrawal, and reduce the frequency of relapse or unnecessary protracted therapy. The biomarker might also prove to be a target of next-generation therapies.
Collapse
Affiliation(s)
- Albert J Czaja
- a Division of Gastroenterology and Hepatology , Mayo Clinic College of Medicine and Science , Rochester , MN , USA
| |
Collapse
|
12
|
Wagner SC, Ichim TE, Bogin V, Min WP, Silva F, Patel AN, Kesari S. Induction and characterization of anti-tumor endothelium immunity elicited by ValloVax therapeutic cancer vaccine. Oncotarget 2018; 8:28595-28613. [PMID: 28404894 PMCID: PMC5438675 DOI: 10.18632/oncotarget.15563] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2016] [Accepted: 01/24/2017] [Indexed: 12/22/2022] Open
Abstract
ValloVax is a placental endothelium derived vaccine which induces tissue-nonspecific antitumor immunity by blocking tumor angiogesis. To elucidate mechanisms of action, we showed that production of ValloVax, which involves treating placental endothelial cells with IFN-gamma, results in upregulation of HLA and costimulatory molecules. It was shown that in mixed lymphocyte reaction, ValloVax induces Type I cytokines and allo-proliferative responses. Plasma from ValloVax immunized mice was capable of killing in vitro tumor-like endothelium but not control endothelium. Using defined antigens associated with tumor endothelial cells, specific molecular entities were identified as being targeted by ValloVax induced antibodies. Binding of predominantly IgG antibodies to ValloVax cells was confirmed by flow cytometry. Further suggesting direct killing of tumor endothelial cells was expression of TUNEL positive cells, as well as, reduction in tumor oxygenation. Supporting a role for antibody mediated responses, cell depletion experiments suggested a predominant role of B cells in maintaining an intact anti-tumor endothelial response. Adoptive transfer experiments suggested that infusion of CD3+ T cells from immunized mice was sufficient to transfer tumor protection. Generation of memory T cells selective to tumor endothelial specific markers was observed. Functional confirmation of memory responses was observed in tumor rechallenge experiments. Furthermore, we observed that both PD-1 or CTLA-4 blockade augmented antitumor effects of ValloVax. These data suggest a T cell induced B cell mediated anti-tumor endothelial response and set the framework clinical trials through elucidation of mechanism of action.
Collapse
Affiliation(s)
| | | | | | - Wei-Ping Min
- Department of Immunology, University of Western Ontario, London, Ontario, Canada
| | - Francisco Silva
- Department of Surgery, University of Miami School of Medicine, Miami, FL, USA
| | - Amit N Patel
- Department of Surgery, University of Miami School of Medicine, Miami, FL, USA
| | - Santosh Kesari
- John Wayne Cancer Institute and Pacific Neuroscience Institute, Santa Monica, CA, USA
| |
Collapse
|
13
|
Marin V, Poulsen K, Odena G, McMullen MR, Altamirano J, Sancho-Bru P, Tiribelli C, Caballeria J, Rosso N, Bataller R, Nagy LE. Hepatocyte-derived macrophage migration inhibitory factor mediates alcohol-induced liver injury in mice and patients. J Hepatol 2017; 67. [PMID: 28647568 PMCID: PMC5650516 DOI: 10.1016/j.jhep.2017.06.014] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
BACKGROUND & AIMS Macrophage migration inhibitory factor (MIF) is a multi-potent cytokine that contributes to the inflammatory response to injury. MIF is expressed by multiple cell types; however, the cellular source and actions of MIF in alcoholic liver disease (ALD) are not well known. Here we tested the hypothesis that non-myeloid cells, specifically hepatocytes, are an important cellular source of MIF in ALD. METHODS MIF expression was measured in HuH7 and differentiated THP-1 cells in response to ethanol. Ethanol-induced liver injury was assessed in C57BL/6 (WT) and Mif-/- bone marrow chimeras. MIF was measured in peripheral and suprahepatic serum, as well as visualized by immunohistochemistry in liver biopsies, from patients with alcoholic hepatitis (AH). RESULTS HuH7 hepatocytes, but not THP-1 macrophages, released MIF in response to ethanol challenge in culture. In chimeric mice expressing MIF in non-myeloid cells (Mif-/-→WT), chronic ethanol feeding increased ALT/AST, hepatic steatosis, and expression of cytokine/chemokine mRNA. In contrast, chimeric mice not expressing MIF in non-myeloid cells (WT→Mif-/-) were protected from ethanol-induced liver injury. Immunohistochemical staining of liver biopsies from patients with AH revealed a predominant localization of MIF to hepatocytes. Interestingly, the concentration of MIF in suprahepatic serum, but not peripheral serum, was positively correlated with clinical indicators of disease severity and with an increased risk of mortality in patients with AH. CONCLUSIONS Taken together, these data provide evidence that hepatocyte-derived MIF is critical in the pathogenesis of ALD in mice and likely contributes to liver injury in patients with AH. Lay summary: Alcoholic liver disease is a major cause of preventable mortality worldwide, and lacks specific pharmacological therapies. Recent studies have recognized that macrophage migration inhibitor factor (MIF) has a critical role in the inflammatory response to liver damage. However, the cells that produce this protein are still unknown. Our present findings reveal that hepatocytes, the main cell type in the liver, are primarily responsible for MIF production in response to alcohol, which promotes liver injury. Our study suggests that drugs inhibiting MIF production could be beneficial in treating patients with liver disease due to excessive alcohol consumption.
Collapse
Affiliation(s)
- Veronica Marin
- Italian Liver Foundation, AREA science Park, Trieste, Italy
| | - Kyle Poulsen
- Center for Liver Disease Research, Department of Pathobiology, Cleveland Clinic, Spain
| | - Gemma Odena
- Institut d'Investigacions Biomèdiques August Pi iSunyer (IDIBAPS), Barcelona, Spain
| | - Megan R McMullen
- Center for Liver Disease Research, Department of Pathobiology, Cleveland Clinic, Spain
| | - Jose Altamirano
- Institut d'Investigacions Biomèdiques August Pi iSunyer (IDIBAPS), Barcelona, Spain
| | - Pau Sancho-Bru
- Institut d'Investigacions Biomèdiques August Pi iSunyer (IDIBAPS), Barcelona, Spain
| | | | - Juan Caballeria
- Institut d'Investigacions Biomèdiques August Pi iSunyer (IDIBAPS), Barcelona, Spain; Hospital Clinic of Barcelona, Barcelona, Spain
| | - Natalia Rosso
- Italian Liver Foundation, AREA science Park, Trieste, Italy
| | - Ramon Bataller
- Division of Gastroenterology and Hepatology, Department of Medicine, University of North Carolina at Chapel Hill, NC, USA
| | - Laura E Nagy
- Center for Liver Disease Research, Department of Pathobiology, Cleveland Clinic, Spain; Department of Molecular Medicine, Case Western Reserve University, USA.
| |
Collapse
|
14
|
Meng Z, Klinngam W, Edman MC, Hamm-Alvarez SF. Interferon-γ treatment in vitro elicits some of the changes in cathepsin S and antigen presentation characteristic of lacrimal glands and corneas from the NOD mouse model of Sjögren's Syndrome. PLoS One 2017; 12:e0184781. [PMID: 28902875 PMCID: PMC5597228 DOI: 10.1371/journal.pone.0184781] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2016] [Accepted: 08/30/2017] [Indexed: 12/19/2022] Open
Abstract
Inflammation and impaired secretion by lacrimal and salivary glands are hallmarks of the autoimmune disease, Sjögren’s Syndrome. These changes in the lacrimal gland promote dryness and inflammation of the ocular surface, causing pain, irritation and corneal damage. The changes that initiate and sustain autoimmune inflammation in the lacrimal gland are not well-established. Here we demonstrate that interferon-γ (IFN-γ) is significantly elevated in lacrimal gland and tears of the male NOD mouse, a model of autoimmune dacryoadenitis which exhibits many ocular characteristics of Sjögren’s Syndrome, by 12 weeks of age early in lacrimal gland inflammation. Working either with primary cultured lacrimal gland acinar cells from BALB/c mice and/or rabbits, in vitro IFN-γ treatment for 48 hr decreased expression of Rab3D concurrent with increased expression of cathepsin S. Although total cellular cathepsin S activity was not commensurately increased, IFN-γ treated lacrimal gland acinar cells showed a significant increase in carbachol-stimulated secretion of cathepsin S similar to the lacrimal gland in disease. In vitro IFN-γ treatment did not increase the expression of most components of major histocompatibility complex (MHC) class II-mediated antigen presentation although antigen presentation was slightly but significantly stimulated in primary cultured lacrimal gland acinar cells. However, exposure of cultured human corneal epithelial cells to IFN-γ more robustly increased expression and activity of cathepsin S in parallel with increased expression and function of MHC class II-mediated antigen presentation. We propose that early elevations in IFN-γ contribute to specific features of ocular disease pathology in Sjögren’s Syndrome.
Collapse
Affiliation(s)
- Zhen Meng
- Department of Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Southern California, Los Angeles, California, United States of America
| | - Wannita Klinngam
- Department of Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Southern California, Los Angeles, California, United States of America
| | - Maria C. Edman
- Department of Ophthalmology, USC Roski Eye Institute and Keck School of Medicine, University of Southern California, Los Angeles, California, United States of America
| | - Sarah F. Hamm-Alvarez
- Department of Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Southern California, Los Angeles, California, United States of America
- Department of Ophthalmology, USC Roski Eye Institute and Keck School of Medicine, University of Southern California, Los Angeles, California, United States of America
- * E-mail:
| |
Collapse
|
15
|
Chen YD, Fang YT, Cheng YL, Lin CF, Hsu LJ, Wang SY, Anderson R, Chang CP, Lin YS. Exophagy of annexin A2 via RAB11, RAB8A and RAB27A in IFN-γ-stimulated lung epithelial cells. Sci Rep 2017; 7:5676. [PMID: 28720835 PMCID: PMC5516008 DOI: 10.1038/s41598-017-06076-4] [Citation(s) in RCA: 86] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2016] [Accepted: 06/07/2017] [Indexed: 12/09/2022] Open
Abstract
Annexin A2 (ANXA2), a phospholipid-binding protein, has multiple biological functions depending on its cellular localization. We previously demonstrated that IFN-γ-triggered ANXA2 secretion is associated with exosomal release. Here, we show that IFN-γ-induced autophagy is essential for the extracellular secretion of ANXA2 in lung epithelial cells. We observed colocalization of ANXA2-containing autophagosomes with multivesicular bodies (MVBs) after IFN-γ stimulation, followed by exosomal release. IFN-γ-induced exophagic release of ANXA2 could not be observed in ATG5-silenced or mutant RAB11-expressing cells. Furthermore, knockdown of RAB8A and RAB27A, but not RAB27B, reduced IFN-γ-triggered ANXA2 secretion. Surface translocation of ANXA2 enhanced efferocytosis by epithelial cells, and inhibition of different exophagic steps, including autophagosome formation, fusion of autophagosomes with MVBs, and fusion of amphisomes with plasma membrane, reduced ANXA2-mediated efferocytosis. Our data reveal a novel route of IFN-γ-induced exophagy of ANXA2.
Collapse
Affiliation(s)
- Ying-Da Chen
- Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Yi-Ting Fang
- Department of Microbiology and Immunology, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Yi-Lin Cheng
- Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Tainan, Taiwan.,Department of Microbiology and Immunology, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Chiou-Feng Lin
- Center of Infectious Disease and Signaling Research, College of Medicine, National Cheng Kung University, Tainan, Taiwan.,Department of Microbiology and Immunology, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Li-Jin Hsu
- Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Tainan, Taiwan.,Center of Infectious Disease and Signaling Research, College of Medicine, National Cheng Kung University, Tainan, Taiwan.,Department of Medical Laboratory Science and Biotechnology, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Shu-Ying Wang
- Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Tainan, Taiwan.,Department of Microbiology and Immunology, College of Medicine, National Cheng Kung University, Tainan, Taiwan.,Center of Infectious Disease and Signaling Research, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Robert Anderson
- Center of Infectious Disease and Signaling Research, College of Medicine, National Cheng Kung University, Tainan, Taiwan.,Departments of Microbiology & Immunology and Pediatrics, and Canadian Center for Vaccinology, Dalhousie University, Halifax, Canada
| | - Chih-Peng Chang
- Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Tainan, Taiwan. .,Department of Microbiology and Immunology, College of Medicine, National Cheng Kung University, Tainan, Taiwan. .,Center of Infectious Disease and Signaling Research, College of Medicine, National Cheng Kung University, Tainan, Taiwan.
| | - Yee-Shin Lin
- Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Tainan, Taiwan. .,Department of Microbiology and Immunology, College of Medicine, National Cheng Kung University, Tainan, Taiwan. .,Center of Infectious Disease and Signaling Research, College of Medicine, National Cheng Kung University, Tainan, Taiwan.
| |
Collapse
|
16
|
Weiskirchen R, Tacke F. Cellular and molecular functions of hepatic stellate cells in inflammatory responses and liver immunology. Hepatobiliary Surg Nutr 2015; 3:344-63. [PMID: 25568859 DOI: 10.3978/j.issn.2304-3881.2014.11.03] [Citation(s) in RCA: 105] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/12/2014] [Accepted: 10/17/2014] [Indexed: 12/11/2022]
Abstract
The liver is a central immunological organ. Liver resident macrophages, Kupffer cells (KC), but also sinusoidal endothelial cells, dendritic cells (DC) and other immune cells are involved in balancing immunity and tolerance against pathogens, commensals or food antigens. Hepatic stellate cells (HSCs) have been primarily characterized as the main effector cells in liver fibrosis, due to their capacity to transdifferentiate into collagen-producing myofibroblasts (MFB). More recent studies elucidated the fundamental role of HSC in liver immunology. HSC are not only the major storage site for dietary vitamin A (Vit A) (retinol, retinoic acid), which is essential for proper function of the immune system. This pericyte further represents a versatile source of many soluble immunological active factors including cytokines [e.g., interleukin 17 (IL-17)] and chemokines [C-C motif chemokine (ligand) 2 (CCL2)], may act as an antigen presenting cell (APC), and has autophagy activity. Additionally, it responds to many immunological triggers via toll-like receptors (TLR) (e.g., TLR4, TLR9) and transduces signals through pathways and mediators traditionally found in immune cells, including the Hedgehog (Hh) pathway or inflammasome activation. Overall, HSC promote rather immune-suppressive responses in homeostasis, like induction of regulatory T cells (Treg), T cell apoptosis (via B7-H1, PDL-1) or inhibition of cytotoxic CD8 T cells. In conditions of liver injury, HSC are important sensors of altered tissue integrity and initiators of innate immune cell activation. Vice versa, several immune cell subtypes interact directly or via soluble mediators with HSC. Such interactions include the mutual activation of HSC (towards MFB) and macrophages or pro-apoptotic signals from natural killer (NK), natural killer T (NKT) and gamma-delta T cells (γδ T-cells) on activated HSC. Current directions of research investigate the immune-modulating functions of HSC in the environment of liver tumors, cellular heterogeneity or interactions promoting HSC deactivation during resolution of liver fibrosis. Understanding the role of HSC as central regulators of liver immunology may lead to novel therapeutic strategies for chronic liver diseases.
Collapse
Affiliation(s)
- Ralf Weiskirchen
- 1 Institute of Molecular Pathobiochemistry, Experimental Gene Therapy and Clinical Chemistry, 2 Department of Internal Medicine III, RWTH University Hospital Aachen, Aachen, Germany
| | - Frank Tacke
- 1 Institute of Molecular Pathobiochemistry, Experimental Gene Therapy and Clinical Chemistry, 2 Department of Internal Medicine III, RWTH University Hospital Aachen, Aachen, Germany
| |
Collapse
|
17
|
Gressner OA, Gao C. Monitoring fibrogenic progression in the liver. Clin Chim Acta 2014; 433:111-22. [PMID: 24607331 DOI: 10.1016/j.cca.2014.02.021] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2013] [Revised: 02/21/2014] [Accepted: 02/23/2014] [Indexed: 02/07/2023]
Abstract
The clinical course of chronic liver diseases is significantly dependent on the progression rate of fibrosis which is the unstructured replacement of injured parenchyma by extracellular matrix. Despite intensive studies, the clinical opportunities for patients with fibrosing liver diseases have not improved. This will be changed by increasing knowledge of new pathogenetic mechanisms, which complement the "canonical principle" of fibrogenesis. The latter is based on the activation of hepatic stellate cells and their transdifferentiation to myofibroblasts induced by hepatocellular injury and consecutive inflammatory mediators such as TGF-β. Stellate cells express a broad spectrum of matrix components. New mechanisms indicate that the heterogeneous pool of (myo-)fibroblasts can be supplemented by epithelial-mesenchymal transition (EMT) from cholangiocytes and potentially also from hepatocytes to fibroblasts, by influx of bone marrow-derived fibrocytes in the damaged liver tissue and by differentiation of a subgroup of monocytes to fibroblasts after homing in the damaged tissue. These processes are regulated by the cytokines TGF-β and BMP-7, chemokines, colony-stimulating factors, metalloproteinases and numerous trapping proteins. They offer innovative diagnostic and therapeutic options. As an example, modulation of TGF-β/BMP-7 ratio changes the rate of EMT, and so the simultaneous determination of these parameters and of the connective tissue growth factor (CTGF) in serum might provide information on fibrogenic activity. Also, proteomic and glycomic approaches of serum are under investigation to set up specific protein profiles in patients with liver fibrosis. The aim of this article is to present the current pathogenetic concepts of liver fibrosis and to discuss established and novel diagnostic approaches to reflect the process of hepatic fibrogenesis in the medical laboratory.
Collapse
Affiliation(s)
| | - Chunfang Gao
- Department of Laboratory Medicine, Eastern Hepatobiliary Surgical Hospital, Second Military Medical University, Shanghai, China.
| |
Collapse
|
18
|
Assis DN, Leng L, Du X, Zhang CK, Grieb G, Merk M, Garcia AB, McCrann C, Chapiro J, Meinhardt A, Mizue Y, Nikolic-Paterson DJ, Bernhagen J, Kaplan MM, Zhao H, Boyer JL, Bucala R. The role of macrophage migration inhibitory factor in autoimmune liver disease. Hepatology 2014; 59:580-91. [PMID: 23913513 PMCID: PMC3877200 DOI: 10.1002/hep.26664] [Citation(s) in RCA: 84] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/04/2012] [Accepted: 07/28/2013] [Indexed: 01/24/2023]
Abstract
UNLABELLED The role of the cytokine, macrophage migration inhibitory factor (MIF), and its receptor, CD74, was assessed in autoimmune hepatitis (AIH) and primary biliary cirrhosis (PBC). Two MIF promoter polymorphisms, a functional -794 CATT5-8 microsatellite repeat (rs5844572) and a -173 G/C single-nucleotide polymorphism (rs755622), were analyzed in DNA samples from over 500 patients with AIH, PBC, and controls. We found a higher frequency of the proinflammatory and high-expression -794 CATT7 allele in AIH, compared to PBC, whereas lower frequency was found in PBC, compared to both AIH and healthy controls. MIF and soluble MIF receptor (CD74) were measured by enzyme-linked immunosorbent assay in 165 serum samples of AIH, PBC, and controls. Circulating serum and hepatic MIF expression was elevated in patients with AIH and PBC versus healthy controls. We also identified a truncated circulating form of the MIF receptor, CD74, that is released from hepatic stellate cells and that binds MIF, neutralizing its signal transduction activity. Significantly higher levels of CD74 were found in patients with PBC versus AIH and controls. CONCLUSIONS These data suggest a distinct genetic and immunopathogenic basis for AIH and PBC at the MIF locus. Circulating MIF and MIF receptor profiles distinguish PBC from the more inflammatory phenotype of AIH and may play a role in pathogenesis and as biomarkers of these diseases.
Collapse
Affiliation(s)
- David N. Assis
- Department of Medicine, Yale University School of Medicine, 300 Cedar Street, New Haven, CT 06520, USA
| | - Lin Leng
- Department of Medicine, Yale University School of Medicine, 300 Cedar Street, New Haven, CT 06520, USA
| | - Xin Du
- Department of Medicine, Yale University School of Medicine, 300 Cedar Street, New Haven, CT 06520, USA
| | - Clarence K. Zhang
- Department of Biostatistics, Yale School of Public Health, 60 College Street, New Haven, CT 06520, USA
| | - Gerrit Grieb
- Department of Medicine, Yale University School of Medicine, 300 Cedar Street, New Haven, CT 06520, USA,Institute of Biochemistry and Molecular Cell Biology, RWTH Aachen University, Pauwelsstraße 30, D-52074 Aachen, Germany,Department of Plastic Surgery, RWTH Aachen University, Pauwelsstraße 30, D-52074 Aachen, Germany
| | - Melanie Merk
- Department of Medicine, Yale University School of Medicine, 300 Cedar Street, New Haven, CT 06520, USA
| | - Alvaro Baeza Garcia
- Department of Medicine, Yale University School of Medicine, 300 Cedar Street, New Haven, CT 06520, USA
| | - Catherine McCrann
- Department of Medicine, Yale University School of Medicine, 300 Cedar Street, New Haven, CT 06520, USA
| | - Julius Chapiro
- Department of Medicine, Yale University School of Medicine, 300 Cedar Street, New Haven, CT 06520, USA,Department of Anatomy and Cell Biology, Justus-Liebig-University, 35385 Giessen, Germany
| | - Andreas Meinhardt
- Department of Anatomy and Cell Biology, Justus-Liebig-University, 35385 Giessen, Germany
| | - Yuka Mizue
- Sapporo Immuno Diagnostic Laboratory, Sapporo, Japan
| | - David J. Nikolic-Paterson
- Department of Nephrology and Monash University Department of Medicine, Monash Medical Centre, 246 Clayton Road, Clayton, Victoria, 3168, Australia
| | - Jürgen Bernhagen
- Institute of Biochemistry and Molecular Cell Biology, RWTH Aachen University, Pauwelsstraße 30, D-52074 Aachen, Germany
| | - Marshall M. Kaplan
- Division of Gastroenterology, Tufts Medical Center, 800 Washington Street, Boston, MA 02111, USA
| | - Hongyu Zhao
- Department of Biostatistics, Yale School of Public Health, 60 College Street, New Haven, CT 06520, USA
| | - James L. Boyer
- Department of Medicine, Yale University School of Medicine, 300 Cedar Street, New Haven, CT 06520, USA
| | - Richard Bucala
- Department of Medicine, Yale University School of Medicine, 300 Cedar Street, New Haven, CT 06520, USA
| |
Collapse
|
19
|
Vaithilingam A, Lai NY, Duong E, Boucau J, Xu Y, Shimada M, Gandhi M, Le Gall S. A simple methodology to assess endolysosomal protease activity involved in antigen processing in human primary cells. BMC Cell Biol 2013; 14:35. [PMID: 23937268 PMCID: PMC3751085 DOI: 10.1186/1471-2121-14-35] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2013] [Accepted: 08/06/2013] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Endolysosomes play a key role in maintaining the homeostasis of the cell. They are made of a complex set of proteins that degrade lipids, proteins and sugars. Studies involving endolysosome contribution to cellular functions such as MHC class I and II epitope production have used recombinant endolysosomal proteins, knockout mice that lack one of the enzymes or purified organelles from human tissue. Each of these approaches has some caveats in analyzing endolysosomal enzyme functions. RESULTS In this study, we have developed a simple methodology to assess endolysosomal protease activity. By varying the pH in crude lysate from human peripheral blood mononuclear cells (PBMCs), we documented increased endolysosomal cathepsin activity in acidic conditions. Using this new method, we showed that the degradation of HIV peptides in low pH extracts analyzed by mass spectrometry followed similar kinetics and degradation patterns as those performed with purified endolysosomes. CONCLUSION By using crude lysate in the place of purified organelles this method will be a quick and useful tool to assess endolysosomal protease activities in primary cells of limited availability. This quick method will especially be useful to screen peptide susceptibility to degradation in endolysosomal compartments for antigen processing studies, following which detailed analysis using purified organelles may be used to study specific peptides.
Collapse
Affiliation(s)
- Archana Vaithilingam
- Ragon Institute of MGH, MIT and Harvard, 400 Technology Square, Cambridge, MA 02139, USA
| | | | | | | | | | | | | | | |
Collapse
|
20
|
Zhou J, Li L, Cai ZH. Identification of putative cathepsin S in mangrove red snapper Lutjanus argentimaculatus and its role in antigen presentation. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2012; 37:28-38. [PMID: 22210546 DOI: 10.1016/j.dci.2011.12.011] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2011] [Revised: 12/16/2011] [Accepted: 12/19/2011] [Indexed: 05/31/2023]
Abstract
Cathepsin S (CTSS) is a key enzyme employed in the histocompatibility complex (MHC) class II-restricted antigens, which are presented by processing class II-associated invariant chains and loaded antigen peptides into class II molecules. To date, little is known about the character and function of CTSS in fish. In the present study, we screened and identified a CTSS cDNA sequence from the mangrove red snapper head kidney cDNA library. The full-length CTSS cDNA contained 1339-bp nucleotide acids encoding 337 amino acids. The sequence shared high identity and similarity with other known cathepsins, especially CTSS (about 56-78% and 79-89%, respectively). Like other cathepsins, the deduced peptide consisted of regions with N-terminal signal peptides, propeptides, and mature peptides. A typical ERWNIN motif in L-like cathepsins and three conservative catalytic activity sites forming a catalytic triad active center were respectively identified in the pro-peptide and mature peptide regions of CTSS. Phylogenetic analysis revealed that mangrove red snapper CTSS was located in the CTSS clade belonging to the L-like cathepsin group, and evolved from the same ancestry. To further characterize the biological activity of the putative CTSS of mangrove snapper, CTSS was expressed in Escherichia coli M15 strains. Like other mammalian CTSS, the recombinant CTSS (rCTSS) had autocatalytic activation properties, can remove pro-peptides, and can release active mature peptides. Active CTSS had the ability to catalyze Z-Phe-Arg-AMC substrates in acidic conditions (pH 5.0) and weak alkaline environments (pH 7.5); this activity could be blocked by the cysteine protease inhibitor E-64. Active CTSS can process recombinant Ii chains (invariant chains) in a stepwise manner in vitro. The results indicate that mangrove red snapper CTSS is a lysosomal cysteine protease family member with a key role in antigen processing in fish.
Collapse
Affiliation(s)
- Jin Zhou
- The Division of Ocean Science and Technology, Graduate School at Shenzhen, Tsinghua University, Shenzhen, PR China
| | | | | |
Collapse
|
21
|
Liu A, Fang H, Dirsch O, Jin H, Dahmen U. Early release of macrophage migration inhibitory factor after liver ischemia and reperfusion injury in rats. Cytokine 2011; 57:150-7. [PMID: 22136975 DOI: 10.1016/j.cyto.2011.11.009] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2011] [Revised: 11/04/2011] [Accepted: 11/07/2011] [Indexed: 10/14/2022]
Abstract
Macrophage migration inhibitory factor (MIF) is an important mediator of ischemia/reperfusion (I/R) injury in heart, brain and intestine. We previously demonstrated that MIF was released during warm/cold ischemia in vitro. However, the role of MIF in liver I/R injury remains unclear. We aimed to test the hypothesis that MIF acts as an early proinflammatory cytokine and could mediate the inflammatory injury in liver I/R. Rats (n=6 per group) were subjected to 90 min warm ischemia followed by 0.5h, 6h and 24h reperfusion, respectively to liver transplantation (LTx) after 6h of cold ischemia followed by 24h of reperfusion. The expression of MIF, its receptor (cluster of differentiation 74 (CD74)) and the downstream inflammatory cytokines (tumor necrosis factor-alpha (TNF-α) and interleukin-1 beta (IL-1β)) were analyzed. Peritoneal macrophages were cultured for 6h alone or in the presence of effluent from cold-preserved livers or effluent depleted of MIF. Warm I/R increased hepatic MIF-mRNA and protein expression. MIF-protein was released into peripheral circulation in vivo with a maximum at 0.5h after reperfusion. Induction of MIF-expression was associated with the expression of proinflammatory cytokines and its receptor in both models. MIF released by isolated cold preserved livers, induced TNF-α and IL-1β production by cultured peritoneal macrophages. Intrahepatic upregulation of MIF, release into systemic circulation and the associated upregulation of the proinflammatory mediators suggest a role of MIF in mediating the inflammatory response to I/R injury. Blocking experiments will help to elucidate its role as potential molecular target for preventing hepatic I/R injury.
Collapse
Affiliation(s)
- Anding Liu
- Experimental Transplantation Surgery, Department of General, Visceral and Vascular Surgery, Friedrich-Schiller-University Jena, Jena 07747, Germany
| | | | | | | | | |
Collapse
|
22
|
Macrophage migration inhibitory factor (MIF) exerts antifibrotic effects in experimental liver fibrosis via CD74. Proc Natl Acad Sci U S A 2011; 108:17444-9. [PMID: 21969590 DOI: 10.1073/pnas.1107023108] [Citation(s) in RCA: 118] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Macrophage migration inhibitory factor (MIF) is a pleiotropic inflammatory cytokine that has been implicated in various inflammatory diseases. Chronic inflammation is a mainstay of liver fibrosis, a leading cause of morbidity worldwide, but the role of MIF in liver scarring has not yet been elucidated. Here we have uncovered an unexpected antifibrotic role for MIF. Mice genetically deleted in Mif (Mif(-/-)) showed strongly increased fibrosis in two models of chronic liver injury. Pronounced liver fibrosis in Mif(-/-) mice was associated with alterations in fibrosis-relevant genes, but not by a changed intrahepatic immune cell infiltration. Next, a direct impact of MIF on hepatic stellate cells (HSC) was assessed in vitro. Although MIF alone had only marginal effects on HSCs, it markedly inhibited PDGF-induced migration and proliferation of these cells. The inhibitory effects of MIF were mediated by CD74, which we detected as the most abundant known MIF receptor on HSCs. MIF promoted the phosphorylation of AMP-activated protein kinase (AMPK) in a CD74-dependent manner and, in turn, inhibition of AMPK reversed the inhibition of PDGF-induced HSC activation by MIF. The pivotal role of CD74 in MIF-mediated antifibrotic properties was further supported by augmented liver scarring of Cd74(-/-) mice. Moreover, mice treated with recombinant MIF displayed a reduced fibrogenic response in vivo. In conclusion, we describe a previously unexplored antifibrotic function of MIF that is mediated by the CD74/AMPK signaling pathway in HSCs. The results imply MIF and CD74 as targets for treatment of liver diseases.
Collapse
|
23
|
Koch KS, Leffert HL. Ectopic expression of CD74 in Ikkβ-deleted mouse hepatocytes. Acta Histochem 2011; 113:428-35. [PMID: 20569972 DOI: 10.1016/j.acthis.2010.03.004] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2010] [Revised: 03/12/2010] [Accepted: 03/15/2010] [Indexed: 12/22/2022]
Abstract
CD74, a Type II membrane glycoprotein and MHC class II chaperone involved in antigen processing, is normally expressed by cells associated with the immune system. CD74 also forms heterodimers with CD44 to generate receptors to macrophage migration inhibitory factor (MIF), a proinflammatory cytokine. Following targeted Alb-Cre-mediated deletion of Ikkβ in Ikkβ(Δhep) mice (Ikkβ(F/F):Alb-Cre, a strain highly susceptible to chemically induced hepatotoxicity and hepatocarcinogenesis), CD74 is expressed abundantly by adult hepatocytes throughout liver acini, albeit more intensely in midzonal-to-centrilobular regions. By comparison, CD74 expression is not observed in Ikkβ(F/F) hepatocytes, nor is it augmented in the livers of Ikkβ(+/+):Alb-Cre mice; CD74 is barely detectable in cultured embryonic fibroblasts from Ikkβ(-/-) mice. Microarray profiling shows that constitutive CD74 expression in Ikkβ(Δhep) hepatocytes is accompanied by significantly augmented expression of CD44 and key genes associated with antigen processing and host defense, including MHC class II I-Aα, I-Aβ, and I-Eβ chains, CIITA and CD86. Taken together, these observations suggest that Ikkβ(Δhep) hepatocytes might express functional capacities for class II-restricted antigen presentation and heightened responsiveness to MIF-signaling, and also suggest further roles for intrahepatocellular IKKβ in the suppression or inactivation of molecules normally associated with the formation and differentiation of cells of the immune system.
Collapse
|
24
|
Coordinated involvement of cathepsins S, D and cystatin C in the commitment of hematopoietic stem cells to dendritic cells. Int J Biochem Cell Biol 2011; 43:775-83. [PMID: 21315176 DOI: 10.1016/j.biocel.2011.02.001] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2010] [Revised: 01/29/2011] [Accepted: 02/01/2011] [Indexed: 02/02/2023]
Abstract
The identity of biochemical players which underpin the commitment of CD34(+) hematopoietic stem cells to immunogenic or tolerogenic dendritic cells is largely unknown. To explore this issue, we employed a previously established cell-based system amenable to shift dendritic cell differentiation from the immunogenic into the tolerogenic pathway upon supplementation with a conventional cytokine cocktail containing thrombopoietin (TPO) and IL-16. We show that stringent regulation of cathepsins S and D, two proteases involved in antigen presentation, is crucial to engage cell commitment to either route. In response to TPO+IL-16-dependent signaling, both cathepsins undergo earlier maturation and down-regulation. Additionally, cystatin C orchestrates cathepsin S expression through a tight but reversible interaction that, based on a screen of adult stem cells from disparate origins, CD14(+) cells, primary fibroblasts and the MCF7 cell line, appears unique to CD34(+) stem cells from peripheral and cord blood. As shown by CD4(+) T cell proliferation in mixed-lymphocyte reactions, cell commitment to either pathway is disrupted upon cathepsin knockdown by RNAi. Surprisingly, similar effects were also observed upon gene overexpression, which prompts atypically accelerated maturation of cathepsins S and D in cells of the immunogenic pathway, similar to the tolerogenic route. Furthermore, RNAi studies revealed that cystatin C is a proteolytic target of cathepsin D and has a direct, causal impact on cell differentiation. Together, these findings uncover a novel biochemical cluster that is subject to time-controlled and rigorously balanced expression to mediate specific stem cell commitment at the crossroads towards tolerance or immunity.
Collapse
|
25
|
Bomble M, Tacke F, Rink L, Kovalenko E, Weiskirchen R. Analysis of antigen-presenting functionality of cultured rat hepatic stellate cells and transdifferentiated myofibroblasts. Biochem Biophys Res Commun 2010; 396:342-7. [PMID: 20403338 DOI: 10.1016/j.bbrc.2010.04.094] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2010] [Accepted: 04/14/2010] [Indexed: 11/27/2022]
Abstract
Here, we demonstrate that hepatic stellate cells (HSC) isolated from Lewis rats have in vitro antigen-presentation cell (APC) functionality and are able to process and present exogenous antigens. We show activation of a major histocompatibility complex II (RT1BI)-restricted T-cell hybridoma specific for guinea pig myelin basic protein (gpMBP) after coculture with HSC. During transdifferentiation of HSC into myofibroblasts (MFB) the APC function was markedly decreased but restorable by addition of interferon-gamma (IFN-gamma). Based on our findings we conclude that HSC play a key role in hepatic immune function and that IFN-gamma treatment might mediate its beneficial therapeutic effects via activation of APC function in MFB.
Collapse
Affiliation(s)
- Michael Bomble
- Institute of Clinical Chemistry and Pathobiochemistry, RWTH-University Hospital, D-52074 Aachen, Germany
| | | | | | | | | |
Collapse
|
26
|
Koch KS, Leffert HL. Hypothesis: Targeted Ikkβ deletion upregulates MIF signaling responsiveness and MHC class II expression in mouse hepatocytes. Hepat Med 2010; 2010:39-47. [PMID: 23997575 PMCID: PMC3756905 DOI: 10.2147/hmer.s7208] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Macrophage migration inhibitory factor (MIF) is causally related to the pathogenesis of chronic liver disease but its hepatocellular mechanisms of action are largely unknown. Scattered reports in the literature hint at functional connections between the expression of MIF and major histocompatibility complex (MHC) Class II molecules. Not surprisingly, these relationships have not yet been explored in hepatocytes because MIF and MHC Class II cell surface receptors are commonly expressed by other cell types including various antigen presenting cells of the immune system. On the other hand, mounting evidence suggests that heteromeric MIF receptors share a common molecule with intracellular MHC Class II complexes, viz., CD74, which also serves as the MHC Class II chaperone; and, while it is unclear what cancer-related role(s) MHC Class II receptors might play, increasing evidence suggests that MIF and CD74 are also implicated in the biology of hepatocellular carcinoma. These reports are provocative for two reasons: firstly, IkkβΔhep mice carrying hepatocyte-targeted deletions of Ikkβ, an IκB kinase complex subunit required for the activation of the transcription factor NF-κB (nuclear factor-κB), have been shown to display heightened susceptibilities to hepatotoxins and chemical hepatocarcinogens; secondly, microarray profiling observations indicate that IkkβΔhep hepatocytes constitutively and “ectopically” overexpress genes, particularly CD74, CD44 (a MIF-receptor subunit) and MHC Class II I-A/E β and I-A α chains, and gene families that regulate host immune process and immune defense responses. These findings together suggest that IkkβΔhep mice might express functional MIF and MHC Class II receptors, leading to increased hepatocellular sensitivity to MIF signaling as well as to the unusual property of antigen presentation; both functions might contribute to the heightened liver disease phenotypes of IkkβΔhep mice. The findings raise questions about the potential existence of cohorts of human patients with genetic abnormalities of Ikkβ that might confer heightened susceptibility to liver disease including hepatocellular carcinoma.
Collapse
Affiliation(s)
- Katherine S Koch
- Hepatocyte Growth Control and Stem Cell Laboratory, Department of Pharmacology, School of Medicine, University of California, San Diego, CA, USA
| | | |
Collapse
|
27
|
Lim MCC, Maubach G, Zhuo L. TGF-beta1 down-regulates connexin 43 expression and gap junction intercellular communication in rat hepatic stellate cells. Eur J Cell Biol 2009; 88:719-30. [PMID: 19781809 DOI: 10.1016/j.ejcb.2009.08.003] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2009] [Revised: 08/11/2009] [Accepted: 08/11/2009] [Indexed: 12/27/2022] Open
Abstract
Intercellular communication is an important tool used by the cells to effectively regulate concerted responses. Hepatic stellate cells (HSCs) communicate to each other through functional gap junctions composed of connexin 43 (Cx43) proteins. We show that exogenous human TGF-beta1 (hTGF-beta1), a pro-fibrotic stimulus, decreases Cx43 mRNA and protein in a rat HSC cell line and primary HSCs. Furthermore, hTGF-beta1 increases the phosphorylation of Cx43 at serine 368. These effects lead to a decrease in the gap junction intercellular communication between the HSCs, as shown by gap-FRAP analysis. We also observe the binding of Snai1, from the nuclear extract of HSCs, to a Snai1 consensus sequence in the Cx43 promoter. In the same context, Snai1 siRNA transfection results in an up-regulation of Cx43 suggesting that TGF-beta1 may regulate Cx43 via Snai1. In addition, we demonstrate that the knockdown of Cx43 by siRNA transfection results in a slower proliferation of HSCs. These findings illuminate a new effect of TGF-beta1 in HSCs, namely the regulation of intercellular communication by affecting the expression level and the phosphorylation state of Cx43 through Snai1 signaling.
Collapse
Affiliation(s)
- Michelle Chin Chia Lim
- Institute of Bioengineering and Nanotechnology, 31 Biopolis Way, The Nanos, #04-01, Singapore 138669, Singapore
| | | | | |
Collapse
|
28
|
Martin-Ventura JL, Madrigal-Matute J, Munoz-Garcia B, Blanco-Colio LM, Van Oostrom M, Zalba G, Fortuno A, Gomez-Guerrero C, Ortega L, Ortiz A, Diez J, Egido J. Increased CD74 expression in human atherosclerotic plaques: contribution to inflammatory responses in vascular cells. Cardiovasc Res 2009; 83:586-94. [DOI: 10.1093/cvr/cvp141] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
29
|
Smedsrød B, Le Couteur D, Ikejima K, Jaeschke H, Kawada N, Naito M, Knolle P, Nagy L, Senoo H, Vidal-Vanaclocha F, Yamaguchi N. Hepatic sinusoidal cells in health and disease: update from the 14th International Symposium. Liver Int 2009; 29:490-501. [PMID: 19210626 DOI: 10.1111/j.1478-3231.2009.01979.x] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
This review aims to give an update of the field of the hepatic sinusoid, supported by references to presentations given at the 14th International Symposium on Cells of the Hepatic Sinusoid (ISCHS2008), which was held in Tromsø, Norway, August 31-September 4, 2008. The subtitle of the symposium, 'Integrating basic and clinical hepatology', signified the inclusion of both basal and applied clinical results of importance in the field of liver sinusoidal physiology and pathophysiology. Of nearly 50 oral presentations, nine were invited tutorial lectures. The authors of the review have avoided writing a 'flat summary' of the presentations given at ISCHS2008, and instead focused on important novel information. The tutorial presentations have served as a particularly important basis in the preparation of this update. In this review, we have also included references to recent literature that may not have been covered by the ISCHS2008 programme. The sections of this review reflect the scientific programme of the symposium (http://www.ub.uit.no/munin/bitstream/10037/1654/1/book.pdf): 1. Liver sinusoidal endothelial cells. 2. Kupffer cells. 3. Hepatic stellate cells. 4. Immunology. 5. Tumor/metastasis. Symposium abstracts are referred to by a number preceded by the letter A.
Collapse
Affiliation(s)
- Bård Smedsrød
- Department of Cell Biology and Histology, Institute of Medical Biology, University of Tromsø, Tromsø, Norway.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Ding Z, Maubach G, Masamune A, Zhuo L. Glial fibrillary acidic protein promoter targets pancreatic stellate cells. Dig Liver Dis 2009; 41:229-36. [PMID: 18602878 DOI: 10.1016/j.dld.2008.05.001] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/26/2008] [Revised: 04/25/2008] [Accepted: 05/05/2008] [Indexed: 12/11/2022]
Abstract
BACKGROUND Pancreatic fibrosis is one of the clinical manifestations of chronic pancreatitis and pancreatic cancer. Pancreatic stellate cells (PSCs) have been recognised as principal effector cells in the development of pancreatic fibrosis. The ability to specifically address PSCs might offer a potential for developing a targeted therapy for pancreatic fibrosis. AIM Characterisation of the 2.2kb hGFAP (human glial fibrillary acidic protein) promoter for its usefulness to express reporter genes specifically in PSCs in vitro and in vivo. METHODS 2.2kb hGFAP-LacZ reporter expressions were examined in four immortalised PSC lines and two non-PSCs, meanwhile, GFAP-LacZ transgenic mice were used to detect LacZ reporter in pancreas tissue. Several kinase inhibitors, vitamin A and its metabolites were applied to study the regulation of 2.2kb hGFAP promoter in PSCs. RESULTS Our results showed that the 2.2kb hGFAP promoter is capable of regulating the expression of reporter genes exclusively in immortalised and primary PSCs, as well as in PSCs of transgenic GFAP-LacZ mice. When a PSC cell line transfected with the LacZ reporter (SAM-K/LacZ/C1) was treated with different anti-fibrotic agents and kinase inhibitors, the transgenic beta-galactosidase activity was found to be regulated by multiple signalling pathways known to be involved in the PSC activation. CONCLUSIONS This study provides the proof of concept for using the 2.2kb hGFAP promoter to specifically manipulate PSCs for the development of targeted gene and/or drug therapy in pancreatic fibrosis, and for the screening of anti-fibrotic agents.
Collapse
Affiliation(s)
- Z Ding
- Institute of Bioengineering and Nanotechnology, Singapore
| | | | | | | |
Collapse
|
31
|
Maubach G, Lim MCC, Zhuo L. Nuclear cathepsin F regulates activation markers in rat hepatic stellate cells. Mol Biol Cell 2008; 19:4238-48. [PMID: 18667530 PMCID: PMC2555962 DOI: 10.1091/mbc.e08-03-0291] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2008] [Revised: 07/14/2008] [Accepted: 07/23/2008] [Indexed: 12/12/2022] Open
Abstract
Activation of hepatic stellate cells during liver fibrosis is a major event facilitating an increase in extracellular matrix deposition. The up-regulation of smooth muscle alpha-actin and collagen type I is indicative of the activation process. The involvement of cysteine cathepsins, a class of lysosomal cysteine proteases, has not been studied in conjunction with the activation process of hepatic stellate cells. Here we report a nuclear cysteine protease activity partially attributed to cathepsin F, which co-localizes with nuclear speckles. This activity can be regulated by treatment with retinol/palmitic acid, known to reduce the hepatic stellate cell activation. The treatment for 48 h leads to a decrease in activity, which is coupled to an increase in cystatin B and C transcripts. Cystatin B knockdown experiments during the same treatment confirm the regulation of the nuclear activity by cystatin B. We demonstrate further that the inhibition of the nuclear activity by E-64d, a cysteine protease inhibitor, results in a differential regulation of smooth muscle alpha-actin and collagen type I transcripts. On the other hand, cathepsin F small interfering RNA transfection leads to a decrease in nuclear activity and a transcriptional down-regulation of both activation markers. These findings indicate a possible link between nuclear cathepsin F activity and the transcriptional regulation of hepatic stellate cell activation markers.
Collapse
Affiliation(s)
- Gunter Maubach
- Department of Tissue Engineering, Institute of Bioengineering and Nanotechnology, Singapore 138669
| | - Michelle Chin Chia Lim
- Department of Tissue Engineering, Institute of Bioengineering and Nanotechnology, Singapore 138669
| | - Lang Zhuo
- Department of Tissue Engineering, Institute of Bioengineering and Nanotechnology, Singapore 138669
| |
Collapse
|
32
|
Gressner OA, Rizk MS, Kovalenko E, Weiskirchen R, Gressner AM. Changing the pathogenetic roadmap of liver fibrosis? Where did it start; where will it go? J Gastroenterol Hepatol 2008; 23:1024-35. [PMID: 18505415 DOI: 10.1111/j.1440-1746.2008.05345.x] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The pathophysiology of liver injury has attracted the interest of experimentalists and clinicians over many centuries. With the discovery of liver-specific pericytes - formerly called fat-storing cells, Ito-cells, lipocytes, and currently designated as hepatic stellate cells (HSC) - the insight into the cellular and molecular pathobiology of liver fibrosis has evolved and the pivotal role of HSC as a precursor cell-type for extracellular matrix-producing myofibroblasts has been established. Although activation and transdifferentiation of HSC to myofibroblasts is still regarded as the pathogenetic key mechanism of fibrogenesis, recent studies point to a prominent heterogeneity of the origin of myofibroblasts. Currently, the generation of matrix-synthesizing fibroblasts by epithelial-mesenchymal transition, by influx of bone marrow-derived fibrocytes into damaged liver tissue, and by differentiation of circulating monocytes to fibroblasts after homing in the injured liver are discussed as important complementary mechanisms to enlarge the pool of (myo-)fibroblasts in the fibrosing liver. Among the molecular mediators, transforming growth factor-beta (TGF-beta) plays a central role, which is controlled by the bone-morphogenetic protein (BMP)-7, an important antagonist of TGF-beta action. The newly discovered pathways supplement the linear concept of HSC activation to myofibroblasts, point to fibrosis as a systemic response involving extrahepatic organs and reactions, add further evidence to a more or less uniform concept of organ fibrosis in general (e.g. liver, lung, kidney), and offer innovative approaches for the development of non-invasive biomarkers and antifibrotic trials.
Collapse
Affiliation(s)
- Olav A Gressner
- Institute of Clinical Chemistry and Pathobiochemistry, RWTH-University Hospital, Aachen, Germany.
| | | | | | | | | |
Collapse
|
33
|
Enhanced expression and activation of pro-inflammatory transcription factors distinguish aneurysmal from atherosclerotic aorta: IL-6- and IL-8-dominated inflammatory responses prevail in the human aneurysm. Clin Sci (Lond) 2008; 114:687-97. [PMID: 18078385 DOI: 10.1042/cs20070352] [Citation(s) in RCA: 88] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Inflammation plays a key role in the pathogenesis of an AAA (abdominal aortic aneurysm); however, the nature of the inflammatory factors and cellular response(s) involved in AAA growth is controversial. In the present study, we set out to determine the aortic levels of inflammatory cytokines in relation to downstream inflammatory transcription factors and cellular responses. A comparison of AAA wall samples with atherosclerotic wall samples taken from the same aortic region allowed AAA-specific inflammatory parameters to be identified that distinguish AAAs from ASD (aortic atherosclerotic disease). RT-PCR (real-time PCR), ELISA, Western blotting and immunohistochemistry were combined to assess cytokines and transcription factors at the mRNA and protein level, and their activation status. Compared with ASD, inflammatory parameters associated with Th1-type [T-bet, IL (interleukin)-2, IFN-gamma (interferon-gamma), TNF-alpha (tumour necrosis factor-alpha), IL-1alpha and cytotoxic T-cells] and Th2-type [GATA3, IL-4, IL-10, IL-13 and B-cells] responses were all increased in AAA samples. Evaluation of major downstream inflammatory transcription factors revealed higher baseline levels of C/EBP (CCAAT/enhancer-binding protein) alpha, beta and delta in the AAA samples. Baseline p65 NF-kappaB (nuclear factor kappaB) and c-Jun [AP-1 (activator protein-1)] levels were comparable, but their activated forms were strongly increased in the AAA samples. Downstream target genes of p65 NF-kappaB, c-Jun, IL-6 and IL-8 were hyperexpressed. Molecular and cellular processes associated with IL-6 and IL-8 hyperactivation were enhanced in the AAA samples, i.e. the expression of phospho-STAT-3 (signal transducer and activator of transcription-3) and perforin were elevated, and the content of plasma cells, neutrophils and vasa vasorum was increased. In conclusion, our findings demonstrate that an AAA is a general inflammatory condition which is characterized by enhanced expression and activation of pro-inflammatory transcription factors, accompanied by IL-6 and IL-8 hyperexpression and exaggerated downstream cellular responses, which together clearly distinguish an AAA from ASD.
Collapse
|
34
|
Gressner OA, Weiskirchen R, Gressner AM. Biomarkers of hepatic fibrosis, fibrogenesis and genetic pre-disposition pending between fiction and reality. J Cell Mol Med 2008; 11:1031-51. [PMID: 17979881 PMCID: PMC4401271 DOI: 10.1111/j.1582-4934.2007.00092.x] [Citation(s) in RCA: 75] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Fibrosis is a frequent, life-threatening complication of most chronic liver diseases. Despite major achievements in the understanding of its pathogenesis, the translation of this knowledge into clinical practice is still limited. In particular, non-invasive and reliable (serum-) biomarkers indicating the activity of fibrogenesis are scarce. Class I biomarkers are defined as serum components having a direct relation to the mechanism of fibrogenesis, either as secreted matrix-related components of activated hepatic stellate cells and fibroblasts or as mediators of extracellular matrix (ECM) synthesis or turnover. They reflect primarily the activity of the fibrogenic process. Many of them, however, proved to be disappointing with regard to sensitivity and speci-ficity. Up to now hyaluronan turned out to be the relative best type I serum marker. Class II biomarkers comprise in general rather simple standard laboratory tests, which are grouped into panels. They fulfil most criteria for detection and staging of fibrosis and to a lesser extent grading of fibrogenic activity. More than 20 scores are currently available, among which Fibrotest™ is the most popular one. However, the diagnostic use of many of these scores is still limited and standardization of the assays is only partially realized. Combining of panel markers in sequential algorithms might increase their diagnostic validity. The translation of genetic pre-disposition biomarkers into clinical practice has not yet started, but some polymorphisms indicate a link to progression and outcome of fibrogenesis. Parallel to serum markers non-invasive physical techniques, for example, transient elastography, are developed, which can be combined with serum tests and profiling of serum proteins and glycans.
Collapse
Affiliation(s)
- O A Gressner
- Institute of Clinical Chemistry and Pathobiochemistry, Central Laboratory, RWTH-University Hospital, Aachen, Germany.
| | | | | |
Collapse
|
35
|
Winau F, Quack C, Darmoise A, Kaufmann SHE. Starring stellate cells in liver immunology. Curr Opin Immunol 2007; 20:68-74. [PMID: 18068343 DOI: 10.1016/j.coi.2007.10.006] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2007] [Accepted: 10/31/2007] [Indexed: 02/07/2023]
Abstract
Stellate cells are star-shaped cells located in the liver and mediate a multitude of primarily non-immunological functions. They play a pivotal role in the metabolism of vitamin A and store 80% of total body retinol. Upon activation, stellate cells differentiate to myofibroblasts for production of extracellular matrix, leading to liver fibrosis. Moreover, activated stellate cells regulate liver blood flow through vasoconstriction implicated in portal hypertension. Earlier work demonstrated stellate cell derived secretion of chemokines and cytokines such as transforming growth factor beta (TGF-beta), suggesting an association with immunological processes. Indeed, recent evidence indicated that hepatic stellate cells perform potent APC function for stimulation of NKT cells as well as CD8 and CD4 T cells. Additionally, stellate cell mediated antigen presentation induced protective immunity against bacterial infection. Current experiments reveal that the presenting ability of stellate cells is the key to antigen-dependent T cell instruction by vitamin A derived retinoic acid. Finally, future studies will show whether in the firmament of immunology stellate cells will represent fixed or falling stars.
Collapse
Affiliation(s)
- Florian Winau
- Max-Planck-Institute for Infection Biology, Department of Immunology, Charitéplatz 1, 10117 Berlin, Germany.
| | | | | | | |
Collapse
|
36
|
Herrmann J, Gressner AM, Weiskirchen R. Immortal hepatic stellate cell lines: useful tools to study hepatic stellate cell biology and function? J Cell Mol Med 2007; 11:704-22. [PMID: 17760834 PMCID: PMC3823251 DOI: 10.1111/j.1582-4934.2007.00060.x] [Citation(s) in RCA: 85] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
At the cellular level, the activation and transdifferentiation of quiescent hepatic stellate cells (HSC) into myofibroblasts is the key process involved in hepatic fibrogenesis that is associated with an increased and altered deposition of extracellular matrix components in the liver. The temporal sequence of molecular events associated with stellate cell activation turned out to be appropriately mimicked when HSC isolated from normal livers are cultured on uncoated plastic surface. Therefore, cultured primary cells isolated from rodents and human beings are common in vitro models in investigations addressing these issues of hepatic stellate biology and function. However, the limited supply, cost-effective isolation procedure and the ever growing need have resulted in efforts to establish immortalized stellate cell lines having the advantage of virtually unlimited access. They allow rapid screening for disease-associated factors and restrict the necessary number of animal experiments. From the first description of an immortal HSC line in 1986, a huge number of studies were conducted with these established cell lines. However, differences in morphology, growth characteristics and anomalies of chromosome number and structure make the applications of these models questionable. Here, we summarize the history and cellular characteristics of respective cell lines and discuss the differences of continuous HSC lines and their primary counterparts.
Collapse
Affiliation(s)
- Jens Herrmann
- *Correspondence to: Prof. Dr R. WEISKIRCHEN Institute of Clinical Chemistry and Pathobiochemistry, RWTH University Hospital, D-52074 Aachen, Germany. Tel.: +49 24 1 80 88 68 3 Fax: +49 24 1 80 82 5 12 E-mail:
| | | | - Ralf Weiskirchen
- *Correspondence to: Prof. Dr R. WEISKIRCHEN Institute of Clinical Chemistry and Pathobiochemistry, RWTH University Hospital, D-52074 Aachen, Germany. Tel.: +49 24 1 80 88 68 3 Fax: +49 24 1 80 82 5 12 E-mail:
| |
Collapse
|
37
|
Gressner OA, Weiskirchen R, Gressner AM. Evolving concepts of liver fibrogenesis provide new diagnostic and therapeutic options. COMPARATIVE HEPATOLOGY 2007; 6:7. [PMID: 17663771 PMCID: PMC1994681 DOI: 10.1186/1476-5926-6-7] [Citation(s) in RCA: 107] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/30/2007] [Accepted: 07/30/2007] [Indexed: 12/22/2022]
Abstract
Despite intensive studies, the clinical opportunities for patients with fibrosing liver diseases have not improved. This will be changed by increasing knowledge of new pathogenetic mechanisms, which complement the "canonical principle" of fibrogenesis. The latter is based on the activation of hepatic stellate cells and their transdifferentiation to myofibroblasts induced by hepatocellular injury and consecutive inflammatory mediators such as TGF-beta. Stellate cells express a broad spectrum of matrix components. New mechanisms indicate that the heterogeneous pool of (myo-)fibroblasts can be supplemented by epithelial-mesenchymal transition (EMT) from cholangiocytes and potentially also from hepatocytes to fibroblasts, by influx of bone marrow-derived fibrocytes in the damaged liver tissue and by differentiation of a subgroup of monocytes to fibroblasts after homing in the damaged tissue. These processes are regulated by the cytokines TGF-beta and BMP-7, chemokines, colony-stimulating factors, metalloproteinases and numerous trapping proteins. They offer innovative diagnostic and therapeutic options. As an example, modulation of TGF-beta/BMP-7 ratio changes the rate of EMT, and so the simultaneous determination of these parameters and of connective tissue growth factor (CTGF) in serum might provide information on fibrogenic activity. The extension of pathogenetic concepts of fibrosis will provide new therapeutic possibilities of interference with the fibrogenic mechanism in liver and other organs.
Collapse
Affiliation(s)
- Olav A Gressner
- Institute of Clinical Chemistry and Pathobiochemistry, RWTH-University Hospital, Aachen, Germany
| | - Ralf Weiskirchen
- Institute of Clinical Chemistry and Pathobiochemistry, RWTH-University Hospital, Aachen, Germany
| | - Axel M Gressner
- Institute of Clinical Chemistry and Pathobiochemistry, RWTH-University Hospital, Aachen, Germany
| |
Collapse
|