1
|
Pande S, Ghosh DK. Nuclear proteostasis imbalance in laminopathy-associated premature aging diseases. FASEB J 2023; 37:e23116. [PMID: 37498235 DOI: 10.1096/fj.202300878r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 06/15/2023] [Accepted: 07/13/2023] [Indexed: 07/28/2023]
Abstract
Laminopathies are a group of rare genetic disorders with heterogeneous clinical phenotypes such as premature aging, cardiomyopathy, lipodystrophy, muscular dystrophy, microcephaly, epilepsy, and so on. The cellular phenomena associated with laminopathy invariably show disruption of nucleoskeleton of lamina due to deregulated expression, localization, function, and interaction of mutant lamin proteins. Impaired spatial and temporal tethering of lamin proteins to the lamina or nucleoplasmic aggregation of lamins are the primary molecular events that can trigger nuclear proteotoxicity by modulating differential protein-protein interactions, sequestering quality control proteins, and initiating a cascade of abnormal post-translational modifications. Clearly, laminopathic cells exhibit moderate to high nuclear proteotoxicity, raising the question of whether an imbalance in nuclear proteostasis is involved in laminopathic diseases, particularly in diseases of early aging such as HGPS and laminopathy-associated premature aging. Here, we review nuclear proteostasis and its deregulation in the context of lamin proteins and laminopathies.
Collapse
Affiliation(s)
- Shruti Pande
- Department of Medical Genetics, Kasturba Medical College, Manipal, Manipal Academy of Higher Education, Manipal, India
| | - Debasish Kumar Ghosh
- Enteric Disease Division, Department of Microbiology, Kasturba Medical College, Manipal, Manipal Academy of Higher Education, Manipal, India
| |
Collapse
|
2
|
Moutaoufik MT, Tanguay RM. Analysis of insect nuclear small heat shock proteins and interacting proteins. Cell Stress Chaperones 2021; 26:265-274. [PMID: 32888179 PMCID: PMC7736433 DOI: 10.1007/s12192-020-01156-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2020] [Revised: 08/13/2020] [Accepted: 08/19/2020] [Indexed: 10/23/2022] Open
Abstract
The small heat shock proteins (sHsps) are a ubiquitous family of ATP-independent stress proteins found in all domains of life. Drosophila melanogaster Hsp27 (DmHsp27) is the only known nuclear sHsp in insect. Here analyzing sequences from HMMER, we identified 56 additional insect sHsps with conserved arginine-rich nuclear localization signal (NLS) in the N-terminal region. At this time, the exact role of nuclear sHsps remains unknown. DmHsp27 protein-protein interaction analysis from iRefIndex database suggests that this protein, in addition to a putative role of molecular chaperone, is likely involved in other nuclear processes (i.e., chromatin remodeling and transcription). Identification of DmHsp27 interactors should provide key insights on the cellular and molecular functions of this nuclear chaperone.
Collapse
Affiliation(s)
- Mohamed Taha Moutaoufik
- Lab of Cell & Developmental Genetics, Department of Cellular and Molecular Biology, Medical Biochemistry & Pathology, Medical School, Université Laval, Quebec, G1K 7P4, Canada
- Department of Biochemistry, University of Regina, Regina, SK, S4S 0A2, Canada
| | - Robert M Tanguay
- Lab of Cell & Developmental Genetics, Department of Cellular and Molecular Biology, Medical Biochemistry & Pathology, Medical School, Université Laval, Quebec, G1K 7P4, Canada.
| |
Collapse
|
3
|
Han Z, Joo Y, Lee J, Ko S, Xu R, Oh GH, Choi S, Hong JA, Choi HJ, Song JJ. High levels of Daxx due to low cellular levels of HSP25 in murine cancer cells result in inefficient adenovirus replication. Exp Mol Med 2019; 51:1-20. [PMID: 31615977 PMCID: PMC6802665 DOI: 10.1038/s12276-019-0321-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2018] [Revised: 07/17/2019] [Accepted: 07/22/2019] [Indexed: 11/25/2022] Open
Abstract
When the adenoviral protein E1B55K binds death domain-associated protein (Daxx), the proteasome-dependent degradation of Daxx is initiated, and adenoviral replication is effectively maintained. Here, we show that the cellular levels of Daxx differ between human and mouse cancer cell lines. Specifically, we observed higher cellular Daxx levels and the diminished replication of oncolytic adenovirus in mouse cancer cell lines, suggesting that cellular Daxx levels limit the replication of oncolytic adenoviruses that lack E1B55K in murine cells. Indeed, the replication of oncolytic adenoviruses that lack E1B55K was significantly increased following infection with oncolytic adenovirus expressing Daxx-specific shRNA. Cellular Daxx levels were decreased in mouse cells expressing heat shock protein 25 (HSP25; homolog of human HSP27) following heat shock or stable transfection with HSP25-bearing plasmids. Furthermore, Daxx expression in murine cell lines was primarily regulated at the transcriptional level via HSP25-mediated inhibition of the nuclear translocation of the signal transducer and activator of transcription 3 (stat3) protein, which typically upregulates Daxx transcription. Conversely, human HSP27 enhanced stat3 activity to increase Daxx transcription. Interestingly, human Daxx, but not mouse Daxx, was degraded as normal by ubiquitin-dependent lysosomal degradation; however, HSP27 downregulation induced the ubiquitin-independent proteasomal degradation of Daxx. Cancer therapies that use a virus to kill tumor cells may get a boost by suppressing a common, ubiquitously expressed protein called Daxx. The relatively new field of virotherapy uses engineered adenoviruses, which usually cause fevers, coughs, or sore throats, to attack tumor cells, enabling treatment of advanced stage cancers, or those that have spread through the body. However, the immune system can attack the therapeutic virus, preventing it from replicating and reducing its effectiveness. Hye Jin Choi and Jae Song at Yonsei University, Seoul, South Korea, and coworkers have been investigating ways to maximize replication of the therapeutic virus. They found that suppressing Daxx improved viral replication; further testing showed that suppressing Daxx acted via different mechanisms in mouse and human cancer cells. These results will help develop more effective virus-based cancer therapies.
Collapse
Affiliation(s)
- Zhezhu Han
- Institute for Cancer Research, Yonsei University College of Medicine, Seoul, Korea.,Department of Oncology, Affiliated Hospital of Yanbian University, Yanji, Jilin Province, PR China
| | - Yeonsoo Joo
- Institute for Cancer Research, Yonsei University College of Medicine, Seoul, Korea.,Severance Biomedical Science Institute, Yonsei University College of Medicine, Seoul, Korea
| | - Jihyun Lee
- Institute for Cancer Research, Yonsei University College of Medicine, Seoul, Korea.,Severance Biomedical Science Institute, Yonsei University College of Medicine, Seoul, Korea
| | - Suwan Ko
- Institute for Cancer Research, Yonsei University College of Medicine, Seoul, Korea.,Severance Biomedical Science Institute, Yonsei University College of Medicine, Seoul, Korea
| | - Rong Xu
- Institute for Cancer Research, Yonsei University College of Medicine, Seoul, Korea
| | - Geun-Hyeok Oh
- Institute for Cancer Research, Yonsei University College of Medicine, Seoul, Korea.,Severance Biomedical Science Institute, Yonsei University College of Medicine, Seoul, Korea
| | - Soojin Choi
- Institute for Cancer Research, Yonsei University College of Medicine, Seoul, Korea.,Severance Biomedical Science Institute, Yonsei University College of Medicine, Seoul, Korea
| | - Jeong A Hong
- Institute for Cancer Research, Yonsei University College of Medicine, Seoul, Korea.,Severance Biomedical Science Institute, Yonsei University College of Medicine, Seoul, Korea
| | - Hye Jin Choi
- Department of Internal Medicine, Yonsei University College of Medicine, Seoul, Korea.
| | - Jae J Song
- Institute for Cancer Research, Yonsei University College of Medicine, Seoul, Korea. .,Severance Biomedical Science Institute, Yonsei University College of Medicine, Seoul, Korea.
| |
Collapse
|
4
|
Moutaoufik MT, Morrow G, Maaroufi H, Férard C, Finet S, Tanguay RM. Oligomerization and chaperone-like activity of Drosophila melanogaster small heat shock protein DmHsp27 and three arginine mutants in the alpha-crystallin domain. Cell Stress Chaperones 2017; 22:455-466. [PMID: 27933579 PMCID: PMC5465024 DOI: 10.1007/s12192-016-0748-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2016] [Revised: 11/09/2016] [Accepted: 11/10/2016] [Indexed: 11/30/2022] Open
Abstract
The small Hsp DmHsp27 from Drosophila melanogaster is one of the few small heat shock proteins (sHsps) found within the nucleus. We report that its dimerization is independent of disulfide bond formation and seems to rely on salt bridges. Unlike metazoan sHsps, DmHsp27 forms two populations of oligomers not in equilibrium. Mutations at highly conserved arginine residues in mammalian sHsps have been reported to be associated with protein conformational defects and intracellular aggregation. Independent mutation of three highly conserved arginines (R122, R131, and R135) to glycine in DmHsp27 results in only one population of higher molecular weight form. In vitro, the chaperone-like activity of wild-type DmHsp27 was comparable with that of its two isolated populations and to the single population of the R122G, R131G, and R135G using luciferase as substrate. However, using insulin, the chaperone-like activity of wild-type DmHsp27 was lower than that of R122G and R131G mutants. Altogether, the results characterize wild-type DmHsp27 and its alpha-crystallin domain (ACD) arginine mutants and may give insight into protection mechanism of sHsps.
Collapse
Affiliation(s)
- Mohamed Taha Moutaoufik
- Laboratoire de génétique cellulaire et développementale, Département de biologie moléculaire, de biochimie médicale et de pathologie, Institut de biologie intégrative et des systèmes (IBIS) and PROTEO, Université Laval, Québec, G1V 0A6, Canada
| | - Geneviève Morrow
- Laboratoire de génétique cellulaire et développementale, Département de biologie moléculaire, de biochimie médicale et de pathologie, Institut de biologie intégrative et des systèmes (IBIS) and PROTEO, Université Laval, Québec, G1V 0A6, Canada
| | - Halim Maaroufi
- Plate-forme de bio-informatique, Institut de biologie intégrative et des systèmes (IBIS), Université Laval, Québec, G1V 0A6, Canada
| | - Céline Férard
- IMPMC UMR7590, CNRS, UPMC Paris 6, 4 place Jussieu, Paris, France
| | - Stéphanie Finet
- IMPMC UMR7590, CNRS, UPMC Paris 6, 4 place Jussieu, Paris, France
| | - Robert M Tanguay
- Laboratoire de génétique cellulaire et développementale, Département de biologie moléculaire, de biochimie médicale et de pathologie, Institut de biologie intégrative et des systèmes (IBIS) and PROTEO, Université Laval, Québec, G1V 0A6, Canada.
| |
Collapse
|
5
|
Carra S, Alberti S, Arrigo PA, Benesch JL, Benjamin IJ, Boelens W, Bartelt-Kirbach B, Brundel BJJM, Buchner J, Bukau B, Carver JA, Ecroyd H, Emanuelsson C, Finet S, Golenhofen N, Goloubinoff P, Gusev N, Haslbeck M, Hightower LE, Kampinga HH, Klevit RE, Liberek K, Mchaourab HS, McMenimen KA, Poletti A, Quinlan R, Strelkov SV, Toth ME, Vierling E, Tanguay RM. The growing world of small heat shock proteins: from structure to functions. Cell Stress Chaperones 2017; 22:601-611. [PMID: 28364346 PMCID: PMC5465036 DOI: 10.1007/s12192-017-0787-8] [Citation(s) in RCA: 118] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/15/2017] [Indexed: 12/21/2022] Open
Abstract
Small heat shock proteins (sHSPs) are present in all kingdoms of life and play fundamental roles in cell biology. sHSPs are key components of the cellular protein quality control system, acting as the first line of defense against conditions that affect protein homeostasis and proteome stability, from bacteria to plants to humans. sHSPs have the ability to bind to a large subset of substrates and to maintain them in a state competent for refolding or clearance with the assistance of the HSP70 machinery. sHSPs participate in a number of biological processes, from the cell cycle, to cell differentiation, from adaptation to stressful conditions, to apoptosis, and, even, to the transformation of a cell into a malignant state. As a consequence, sHSP malfunction has been implicated in abnormal placental development and preterm deliveries, in the prognosis of several types of cancer, and in the development of neurological diseases. Moreover, mutations in the genes encoding several mammalian sHSPs result in neurological, muscular, or cardiac age-related diseases in humans. Loss of protein homeostasis due to protein aggregation is typical of many age-related neurodegenerative and neuromuscular diseases. In light of the role of sHSPs in the clearance of un/misfolded aggregation-prone substrates, pharmacological modulation of sHSP expression or function and rescue of defective sHSPs represent possible routes to alleviate or cure protein conformation diseases. Here, we report the latest news and views on sHSPs discussed by many of the world's experts in the sHSP field during a dedicated workshop organized in Italy (Bertinoro, CEUB, October 12-15, 2016).
Collapse
Affiliation(s)
- Serena Carra
- Department of Biomedical, Metabolic and Neural Sciences, and Centre for Neuroscience and Neurotechnology, University of Modena and Reggio Emilia, via G. Campi 287, 41125 Modena, Italy
| | - Simon Alberti
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany
| | - Patrick A. Arrigo
- Université de Lyon, 69622 Lyon, France
- CNRS, UMR 5310, INSERM U1217, Institut NeuroMyoGène, Université Lyon 1, 69100 Villeurbanne, France
| | | | - Ivor J. Benjamin
- Department of Biochemistry, University of Utah, Salt Lake City, UT 84112-5650 USA
| | - Wilbert Boelens
- Biomolecular Chemistry, 284, Radboud University, PO Box 9101, 6500 HB Nijmegen, The Netherlands
| | | | - Bianca J. J. M. Brundel
- Department of Clinical Pharmacy and Pharmacology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
- Department of Physiology, Institute for Cardiovascular Research, VU University Medical Center, Amsterdam, The Netherlands
| | | | - Bernd Bukau
- Center for Molecular Biology of the University of Heidelberg (ZMBH), DKFZ-ZMBH Alliance, Im Neuenheimer Feld 282, 69120 Heidelberg, Germany
- German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120 Heidelberg, Germany
| | - John A. Carver
- The Research School of Chemistry, The Australian National University, Acton, ACT 2601 Australia
| | - Heath Ecroyd
- Illawara Health and Medical Research Institute, School of Biological Sciences, University of Wollongong, Wollongong, NSW 2522 Australia
| | - Cecilia Emanuelsson
- Department of Biochemistry and Structural Biology, Center for Molecular Protein Science, Lund University, 221 00 Lund, Sweden
| | - Stephanie Finet
- IMPMC UMR7590, CNRS, UPMC Paris 6, 4 place Jussieu, Paris, France
| | - Nikola Golenhofen
- Institute of Anatomy and Cell Biology, University of Ulm, 89081 Ulm, Germany
| | - Pierre Goloubinoff
- Department of Plant Molecular Biology, Faculty of Biology and Medicine, University of Lausanne, Lausanne, Switzerland
| | - Nikolai Gusev
- Department of Biochemistry, School of Biology, Moscow State University, Moscow, 119991 Russia
| | | | - Lawrence E. Hightower
- Department of Molecular & Cell Biology, University of Connecticut, 91 North Eagleville Road, Storrs, CT 06269-3125 USA
| | - Harm H. Kampinga
- Department of Cell Biology, University Medical Center Groningen, University of Groningen, 9713 GZ Groningen, The Netherlands
| | - Rachel E. Klevit
- Department of Biochemistry, University of Washington, Seattle, WA 98195 USA
| | - Krzysztof Liberek
- Department of Molecular and Cellular Biology, Intercollegiate Faculty of Biotechnology, University of Gdańsk and the Medical University of Gdańsk, Gdańsk, Poland
| | - Hassane S. Mchaourab
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN 37232 USA
| | - Kathryn A. McMenimen
- Departments of Pathology, Biological Chemistry, and Medicinal Chemistry and the Life Sciences Institute, University of Michigan, Ann Arbor, MI USA
| | - Angelo Poletti
- Dipartimento di Scienze Farmacologiche e Biomolecolari (DiSFeB), Centro di Eccellenza sulle Malattie Neurodegenerative, Università degli Studi di Milano, Milan, Italy
| | - Roy Quinlan
- Department of Biosciences and the Biophysical Sciences Institute, University of Durham, Durham, UK
| | - Sergei V. Strelkov
- Laboratory for Biocrystallography, Department of Pharmaceutical and Pharmacological Sciences, KU Leuven, Leuven, Belgium
| | - Melinda E. Toth
- Laboratory of Animal Genetics and Molecular Neurobiology, Institute of Biochemistry, Biological Research Centre, Szeged, Hungary
| | - Elizabeth Vierling
- Biochemistry and Molecular Biology, University of Massachusetts, Amherst, MA 01003 USA
- Department of Chemistry and Biochemistry, University of Arizona, Tucson, AZ 85721 USA
| | - Robert M. Tanguay
- Laboratory of Cell & Developmental Genetics, IBIS, and Department of Molecular Biology, Medical Biochemistry and Pathology, Medical School, Université Laval, Québec (Qc), G1V 0A6 Canada
| |
Collapse
|
6
|
Moutaoufik MT, Morrow G, Finet S, Tanguay RM. Effect of N-terminal region of nuclear Drosophila melanogaster small heat shock protein DmHsp27 on function and quaternary structure. PLoS One 2017; 12:e0177821. [PMID: 28520783 PMCID: PMC5433770 DOI: 10.1371/journal.pone.0177821] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2017] [Accepted: 05/03/2017] [Indexed: 01/12/2023] Open
Abstract
The importance of the N-terminal region (NTR) in the oligomerization and chaperone-like activity of the Drosophila melanogaster small nuclear heat shock protein DmHsp27 was investigated by mutagenesis using size exclusion chromatography and native gel electrophoresis. Mutation of two sites of phosphorylation in the N-terminal region, S58 and S75, did not affect the oligomerization equilibrium or the intracellular localization of DmHsp27 when transfected into mammalian cells. Deletion or mutation of specific residues within the NTR region delineated a motif (FGFG) important for the oligomeric structure and chaperone-like activity of this sHsp. While deletion of the full N-terminal region, resulted in total loss of chaperone-like activity, removal of the (FGFG) at position 29 to 32 or single mutation of F29A/Y, G30R and G32R enhanced oligomerization and chaperoning capacity under non-heat shock conditions in the insulin assay suggesting the importance of this site for chaperone activity. Unlike mammalian sHsps DmHsp27 heat activation leads to enhanced association of oligomers to form large structures of approximately 1100 kDa. A new mechanism of thermal activation for DmHsp27 is presented.
Collapse
Affiliation(s)
- Mohamed Taha Moutaoufik
- Laboratoire de génétique cellulaire et développementale, Département de biologie moléculaire, biochimie médicale et pathologie, Institut de biologie intégrative et des systèmes (IBIS) and PROTEO, Université Laval, Québec, Canada
| | - Geneviève Morrow
- Laboratoire de génétique cellulaire et développementale, Département de biologie moléculaire, biochimie médicale et pathologie, Institut de biologie intégrative et des systèmes (IBIS) and PROTEO, Université Laval, Québec, Canada
| | - Stéphanie Finet
- IMPMC UMR7590, CNRS, UPMC Paris 6, 4 place Jussieu, Paris, France
| | - Robert M. Tanguay
- Laboratoire de génétique cellulaire et développementale, Département de biologie moléculaire, biochimie médicale et pathologie, Institut de biologie intégrative et des systèmes (IBIS) and PROTEO, Université Laval, Québec, Canada
- * E-mail:
| |
Collapse
|
7
|
Economou K, Kotsiliti E, Mintzas AC. Stage and cell-specific expression and intracellular localization of the small heat shock protein Hsp27 during oogenesis and spermatogenesis in the Mediterranean fruit fly, Ceratitis capitata. JOURNAL OF INSECT PHYSIOLOGY 2017; 96:64-72. [PMID: 27756555 DOI: 10.1016/j.jinsphys.2016.10.010] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2016] [Revised: 10/12/2016] [Accepted: 10/13/2016] [Indexed: 06/06/2023]
Abstract
The cell-specific expression and intracellular distribution of the small heat protein Hsp27 was investigated in the ovaries and testes of the Mediterranean fruit fly, Ceratitis capitata (medfly), under both normal and heat shock conditions. For this study, a gfp-hsp27 strain was used to detect the chimeric protein by confocal microscopy. In unstressed ovaries, the protein was expressed throughout egg development in a stage and cell-specific pattern. In germarium, the protein was detected in the cytoplasm of the somatic cells in both unstressed and heat-shocked ovaries. In the early stages of oogenesis of unstressed ovaries, the protein was mainly located in the perinuclear region of the germ cells and in the cytoplasm of the follicle cells, while in later stages (9-10) it was distributed in the cytoplasm of the germ cells. In late stages (12-14), the protein changed localization pattern and was exclusively associated with the nuclei of the somatic cells. In heat shocked ovaries, the protein was mainly located in the nuclei of the somatic cells throughout egg chamber's development. In unstressed testes, the chimeric protein was detected in the nuclei of primary spermatocytes and in the filamentous structures of spermatid bundles, called actin cones. Interestingly, after a heat shock, the protein presented the same cell-specific localization pattern as in unstressed testes. Furthermore, the protein was also detected in the nuclei of the epithelial cells of the deferent duct, the accessory glands and the ejaculatory bulb. Our data suggest that medfly Hsp27 may have cell-specific functions, especially in the nucleus. Moreover, the association of this protein to actin cones during spermatid individualization, suggests a possible role of the protein in the formation and stabilization of actin cones.
Collapse
Affiliation(s)
- Katerina Economou
- University of Patras, Department of Biology, University Campus, 26504 Rio, Greece.
| | - Elena Kotsiliti
- University of Patras, Department of Biology, University Campus, 26504 Rio, Greece.
| | | |
Collapse
|
8
|
Singh MK, Tiwari PK. Cloning & sequence identification of Hsp27 gene and expression analysis of the protein on thermal stress in Lucilia cuprina. INSECT SCIENCE 2016; 23:555-568. [PMID: 25755181 DOI: 10.1111/1744-7917.12216] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 01/16/2015] [Indexed: 06/04/2023]
Abstract
Hsp27, a highly conserved small molecular weight heat shock protein, is widely known to be developmentally regulated and heat inducible. Its role in thermotolerance is also implicated. This study is a sequel of our earlier studies to understand the molecular organization of heat shock genes/proteins and their role in development and thermal adaptation in a sheep pest, Lucilia cuprina (blowfly), which exhibits unusually high adaptability to a variety of environmental stresses, including heat and chemicals. In this report our aim was to understand the evolutionary relationship of Lucilia hsp27 gene/protein with those of other species and its role in thermal adaptation. We sequence characterized the Lchsp27 gene (coding region) and analyzed its expression in various larval and adult tissues under normal as well as heat shock conditions. The nucleotide sequence analysis of 678 bps long-coding region of Lchsp27 exhibited closest evolutionary proximity with Drosophila (90.09%), which belongs to the same order, Diptera. Heat shock caused significant enhancement in the expression of Lchsp27 gene in all the larval and adult tissues examined, however, in a tissue specific manner. Significantly, in Malpighian tubules, while the heat-induced level of hsp27 transcript (mRNA) appeared increased as compared to control, the protein level remained unaltered and nuclear localized. We infer that Lchsp27 may have significant role in the maintenance of cellular homeostasis, particularly, during summer months, when the fly remains exposed to high heat in its natural habitat.
Collapse
Affiliation(s)
- Manish K Singh
- Center for Genomics, Molecular & Human Genetics, Jiwaji University, Gwalior, 474011, India
- Cytogenetics Laboratory, Department of Zoology, Banaras Hindu University, Varanasi, 221005, India
| | - Pramod K Tiwari
- Center for Genomics, Molecular & Human Genetics, Jiwaji University, Gwalior, 474011, India
| |
Collapse
|
9
|
Hull R, Oosthuysen B, Cajee UF, Mokgohloa L, Nweke E, Antunes RJ, Coetzer THT, Ntwasa M. The Drosophila retinoblastoma binding protein 6 family member has two isoforms and is potentially involved in embryonic patterning. Int J Mol Sci 2015; 16:10242-66. [PMID: 25955646 PMCID: PMC4463644 DOI: 10.3390/ijms160510242] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2015] [Accepted: 03/13/2015] [Indexed: 12/16/2022] Open
Abstract
The human retinoblastoma binding protein 6 (RBBP6) is implicated in esophageal, lung, hepatocellular and colon cancers. Furthermore, RBBP6 was identified as a strong marker for colon cancer prognosis and as a predisposing factor in familial myeloproliferative neoplasms. Functionally, the mammalian protein interacts with p53 and enhances the activity of Mdm2, the prototypical negative regulator of p53. However, since RBBP6 (known as PACT in mice) exists in multiple isoforms and pact-/- mice exhibit a more severe phenotype than mdm2-/- mutants, it must possess some Mdm2-independent functions. The function of the invertebrate homologue is poorly understood. This is complicated by the absence of the Mdm2 gene in both Drosophila and Caenorhabditis elegans. We have experimentally identified the promoter region of Snama, the Drosophila homologue, analyzed potential transcription factor binding sites and confirmed the existence of an additional isoform. Using band shift and co-immunoprecipitation assays combined with mass spectrometry, we found evidence that this gene may be regulated by, amongst others, DREF, which regulates hundreds of genes related to cell proliferation. The potential transcription factors for Snama fall into distinct functional groups, including anteroposterior embryonic patterning and nucleic acid metabolism. Significantly, previous work in mice shows that pact-/- induces an anteroposterior phenotype in embryos when rescued by simultaneous deletion of p53. Taken together, these observations indicate the significance of RBBP6 proteins in carcinogenesis and in developmental defects.
Collapse
Affiliation(s)
- Rodney Hull
- School of Molecular & Cell Biology, University of the Witwatersrand, Johannesburg, South Africa Private Bag 3, WITS-2050 Johannesburg, South Africa.
| | - Brent Oosthuysen
- School of Molecular & Cell Biology, University of the Witwatersrand, Johannesburg, South Africa Private Bag 3, WITS-2050 Johannesburg, South Africa.
| | - Umar-Faruq Cajee
- School of Molecular & Cell Biology, University of the Witwatersrand, Johannesburg, South Africa Private Bag 3, WITS-2050 Johannesburg, South Africa.
| | - Lehlogonolo Mokgohloa
- School of Molecular & Cell Biology, University of the Witwatersrand, Johannesburg, South Africa Private Bag 3, WITS-2050 Johannesburg, South Africa.
| | - Ekene Nweke
- School of Molecular & Cell Biology, University of the Witwatersrand, Johannesburg, South Africa Private Bag 3, WITS-2050 Johannesburg, South Africa.
| | - Ricardo Jorge Antunes
- School of Molecular & Cell Biology, University of the Witwatersrand, Johannesburg, South Africa Private Bag 3, WITS-2050 Johannesburg, South Africa.
| | - Theresa H T Coetzer
- School of Life Sciences, University of KwaZulu-Natal (Pietermaritzburg campus); 3209 Scottsville, South Africa.
| | - Monde Ntwasa
- School of Molecular & Cell Biology, University of the Witwatersrand, Johannesburg, South Africa Private Bag 3, WITS-2050 Johannesburg, South Africa.
| |
Collapse
|
10
|
Castro GN, Cayado-Gutiérrez N, Zoppino FCM, Fanelli MA, Cuello-Carrión FD, Sottile M, Nadin SB, Ciocca DR. Effects of temozolomide (TMZ) on the expression and interaction of heat shock proteins (HSPs) and DNA repair proteins in human malignant glioma cells. Cell Stress Chaperones 2015; 20:253-65. [PMID: 25155585 PMCID: PMC4326375 DOI: 10.1007/s12192-014-0537-0] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2014] [Revised: 07/30/2014] [Accepted: 08/10/2014] [Indexed: 12/21/2022] Open
Abstract
We previously reported the association of HSPA1A and HSPB1 with high-grade astrocytomas, suggesting that these proteins might be involved in disease outcome and response to treatment. With the aim to better understand the resistance/susceptibility processes associated to temozolomide (TMZ) treatment, the current study was performed in three human malignant glioma cell lines by focusing on several levels: (a) apoptotic index and senescence, (b) DNA damage, and (c) interaction of HSPB1 with players of the DNA damage response. Three human glioma cell lines, Gli36, U87, and DBTRG, were treated with TMZ evaluating cell viability and survival, apoptosis, senescence, and comets (comet assay). The expression of HSPA (HSPA1A and HSPA8), HSPB1, O6-methylguanine-DNA methyltransferase (MGMT), MLH1, and MSH2 was determined by immunocytochemistry, immunofluorescence, and Western blot. Immunoprecipitation was used to analyze protein interaction. The cell lines exhibited differences in viability, apoptosis, and senescence after TMZ administration. We then focused on Gli36 cells (relatively unstudied) which showed very low recovery capacity following TMZ treatment, and this was related to high DNA damage levels; however, the cells maintained their viability. In these cells, MGMT, MSH2, HSPA, and HSPB1 levels increased significantly after TMZ administration. In addition, MSH2 and HSPB1 proteins appeared co-localized by confocal microscopy. This co-localization increased after TMZ treatment, and in immunoprecipitation analysis, MSH2 and HSPB1 appeared interacting. In contrast, HSPB1 did not interact with MGMT. We show in glioma cells the biological effects of TMZ and how this drug affects the expression levels of heat shock proteins (HSPs), MGMT, MSH2, and MLH1. In Gli36 cells, the results suggest that interactions between HSPB1 and MSH2, including co-nuclear localization, may be important in determining cell sensitivity to TMZ.
Collapse
Affiliation(s)
- Gisela Natalia Castro
- />Oncology Laboratory, IMBECU-CCT, CONICET, National Research Council, Av. Dr. Ruiz Leal s/n, Parque General San Martín, CP 5500 Mendoza, Argentina
| | - Niubys Cayado-Gutiérrez
- />Oncology Laboratory, IMBECU-CCT, CONICET, National Research Council, Av. Dr. Ruiz Leal s/n, Parque General San Martín, CP 5500 Mendoza, Argentina
| | - Felipe Carlos Martín Zoppino
- />Oncology Laboratory, IMBECU-CCT, CONICET, National Research Council, Av. Dr. Ruiz Leal s/n, Parque General San Martín, CP 5500 Mendoza, Argentina
| | - Mariel Andrea Fanelli
- />Oncology Laboratory, IMBECU-CCT, CONICET, National Research Council, Av. Dr. Ruiz Leal s/n, Parque General San Martín, CP 5500 Mendoza, Argentina
| | - Fernando Darío Cuello-Carrión
- />Oncology Laboratory, IMBECU-CCT, CONICET, National Research Council, Av. Dr. Ruiz Leal s/n, Parque General San Martín, CP 5500 Mendoza, Argentina
| | - Mayra Sottile
- />Tumor Biology Laboratory, IMBECU-CCT, CONICET, National Research Council, Av. Dr. Ruiz Leal s/n, Parque General San Martín, CP 5500 Mendoza, Argentina
| | - Silvina Beatriz Nadin
- />Tumor Biology Laboratory, IMBECU-CCT, CONICET, National Research Council, Av. Dr. Ruiz Leal s/n, Parque General San Martín, CP 5500 Mendoza, Argentina
| | - Daniel Ramón Ciocca
- />Oncology Laboratory, IMBECU-CCT, CONICET, National Research Council, Av. Dr. Ruiz Leal s/n, Parque General San Martín, CP 5500 Mendoza, Argentina
| |
Collapse
|
11
|
Drosophila Small Heat Shock Proteins: An Update on Their Features and Functions. HEAT SHOCK PROTEINS 2015. [DOI: 10.1007/978-3-319-16077-1_25] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
12
|
Cano LQ, Lavery DN, Bevan CL. Mini-review: Foldosome regulation of androgen receptor action in prostate cancer. Mol Cell Endocrinol 2013; 369:52-62. [PMID: 23395916 DOI: 10.1016/j.mce.2013.01.023] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/20/2012] [Revised: 01/28/2013] [Accepted: 01/29/2013] [Indexed: 11/24/2022]
Abstract
Steroid hormone receptors play diverse roles in many aspects of human physiology including cell division, apoptosis and homeostasis, tissue differentiation, sexual development and response to stress. These ligand-activated transcription factors require the functional activity of numerous chaperone and chaperone-associated proteins, collectively termed the foldosome, at the crucial step of ligand recognition and binding. Since the initial isolation of foldosome components and pioneering research by Pratt, Toft and colleagues we understand much regarding cytosolic receptor function. The classical view, that the role of foldosome components is restricted to the cytosol, has been modified over recent years by research highlighting additional roles of chaperone proteins in nuclear translocation and target gene expression. Further, dysregulation of chaperone activity and expression has been implicated in various cancers, including breast and prostate cancer. Consequently, the foldosome provides an attractive therapeutic target in steroid hormone receptor-driven malignancies. This review summarises current knowledge of how the foldosome impacts upon androgen receptor signalling, which is the key therapeutic target on prostate cancer, and how foldosome components may be used as biomarkers or therapeutic targets in this disease.
Collapse
Affiliation(s)
- Laia Querol Cano
- Department of Surgery and Cancer, Imperial Centre for Translational and Experimental Medicine, Hammersmith Hospital Campus, Imperial College London, London, United Kingdom
| | | | | |
Collapse
|
13
|
Guo K, Gan L, Zhang S, Cui FJ, Cun W, Li Y, Kang NX, Gao MD, Liu KY. Translocation of HSP27 into liver cancer cell nucleus may be associated with phosphorylation and O-GlcNAc glycosylation. Oncol Rep 2012; 28:494-500. [PMID: 22664592 DOI: 10.3892/or.2012.1844] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2011] [Accepted: 01/16/2012] [Indexed: 11/06/2022] Open
Abstract
It has been reported that the dynamic interplay between O-GlcNAcylation and O-phosphorylation is responsible for altering the activity or localization of heat-shock proteins. The aim of this study was to determine whether dynamic interplay between O-GlcNAcylation and O-phosphorylation of HSP27 in hepatocellular cancer (HCC) cells affect its entry into the nucleus. We demonstrate that the entry of HSP27 into the nucleus correlated with its phosphorylation through transfecting HCC cells with plasmids coding for wild-type HSP27 (HSP27-WT), its non-phosphorylatable (HSP27-3A) and pseudophosphorylated (HSP27-3D) mutants, however, not all of the endogenous or exogenous nuclear HSP27 was modified by phosphorylation. We observed that HSP27 was modified with O-GlcNAc glycosylation in HCC cells and report that at conserved Ser residues of HSP27, alternative phosphorylation and O-GlcNAc modification can be predicted by the YinOYang 1.2 method. Furthermore, after P79350 or combined SB203580 and PUGNAc treatment, increased nuclear import of HSP27-WT and HSP27-3D implied that the entry of HSP27 into the nucleus was not only correlated with phosphorylation, but also with O-GlcNAc glycosylation. Collectively, O-GlcNAcylation of HSP27 in HCC cells may be a novel regulatory mode of HSP27 function, particularly for its entry into the nucleus. Crosstalk or interplay between glycosylation and phosphorylation of HSP27 could regulate its subcellular localization and biological functions in liver cancer.
Collapse
Affiliation(s)
- Kun Guo
- Liver Cancer Institute, Zhongshan Hospital, and Research Center for Cancer, Institute of Biomedical Science, Fudan University, Shanghai 200032, PR China
| | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Morrow G, Tanguay RM. Small heat shock protein expression and functions during development. Int J Biochem Cell Biol 2012; 44:1613-21. [PMID: 22502646 DOI: 10.1016/j.biocel.2012.03.009] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2012] [Revised: 03/15/2012] [Accepted: 03/19/2012] [Indexed: 11/19/2022]
Abstract
The expression of small heat shock proteins is tightly regulated during development in multiple organisms. As housekeeping proteins, small heat shock proteins help protect cells from apoptosis, stabilize the cytoskeleton and contribute to proteostasis. Consistently, depletion of one small heat shock protein is usually not detrimental due to a certain level of redundancy between the functions of each small heat shock protein. However, while their stress-induced expression is regulated by heat shock factors, their constitutive expression is under the control of other specific transcription factors, suggesting the existence of very specialized functions. This review focuses on the expression patterns and functions of small heat shock proteins in various organisms during development. This article is part of a Directed Issue entitled: Small HSPs in physiology and pathology.
Collapse
Affiliation(s)
- Geneviève Morrow
- Laboratory of Cell and Developmental Genetics, Department of Molecular Biology, Medical Biochemistry and Pathology, Institut de Biologie Intégrative et des Systèmes and PROTEO, Université Laval, Québec, Canada G1V 0A6
| | | |
Collapse
|
15
|
Zhang D, Ke L, Mackovicova K, Van Der Want JJL, Sibon OCM, Tanguay RM, Morrow G, Henning RH, Kampinga HH, Brundel BJJM. Effects of different small HSPB members on contractile dysfunction and structural changes in a Drosophila melanogaster model for Atrial Fibrillation. J Mol Cell Cardiol 2011; 51:381-9. [PMID: 21745477 DOI: 10.1016/j.yjmcc.2011.06.008] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/22/2011] [Revised: 06/08/2011] [Accepted: 06/10/2011] [Indexed: 11/15/2022]
Abstract
The most common clinical tachycardia, Atrial Fibrillation (AF), is a progressive disease, caused by cardiomyocyte remodeling, which finally results in contractile dysfunction and AF persistence. Recently, we identified a protective role of heat shock proteins (HSPs), especially the small HSPB1 member, against tachycardia remodeling in experimental AF models. Our understanding of tachycardia remodeling and anti-remodeling drugs is currently hampered by the lack of suitable (genetic) manipulatable in vivo models for rapid screening of key targets in remodeling. We hypothesized that Drosophila melanogaster can be exploited to study tachycardia remodeling and protective effects of HSPs by drug treatments or by utilizing genetically manipulated small HSP-overexpressing strains. Tachypacing of Drosophila pupae resulted in gradual and significant cardiomyocyte remodeling, demonstrated by reduced contraction rate, increase in arrhythmic episodes and reduction in heart wall shortening, compared to normal paced pupae. Heat shock, or pre-treatment with HSP-inducers GGA and BGP-15, resulted in endogenous HSP overexpression and protection against tachycardia remodeling. DmHSP23 overexpressing Drosophilas were protected against tachycardia remodeling, in contrast to overexpression of other small HSPs (DmHSP27, DmHSP67Bc, DmCG4461, DmCG7409, and DmCG14207). (Ultra)structural evaluation of the tachypaced heart wall revealed loss of sarcomeres and mitochondrial damage which were absent in tachypaced DmHSP23 overexpressing Drosophila. In addition, tachypacing induced a significant increase in calpain activity, which was prevented in tachypaced Drosophila overexpressing DmHSP23. Tachypacing of Drosophila resulted in cardiomyocyte remodeling, which was prevented by general HSP-inducing treatments and overexpression of a single small HSP, DmHSP23. Thus, tachypaced D. melanogaster can be used as an in vivo model system for rapid identification of novel targets to combat AF associated cardiomyocyte remodeling.
Collapse
Affiliation(s)
- Deli Zhang
- Department of Clinical Pharmacology, University Institute for Drug Exploration, University of Groningen, University Medical Center Groningen, The Netherlands
| | | | | | | | | | | | | | | | | | | |
Collapse
|
16
|
HSPB7 is a SC35 speckle resident small heat shock protein. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2009; 1793:1343-53. [PMID: 19464326 DOI: 10.1016/j.bbamcr.2009.05.005] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2008] [Revised: 05/13/2009] [Accepted: 05/15/2009] [Indexed: 01/15/2023]
Abstract
BACKGROUND The HSPB family is one of the more diverse families within the group of HSP families. Some members have chaperone-like activities and/or play a role in cytoskeletal stabilization. Some members also show a dynamic, stress-induced translocation to SC35 splicing speckles. If and how these features are interrelated and if they are shared by all members are yet unknown. METHODS Tissue expression data and interaction and co-regulated gene expression data of the human HSPB members was analyzed using bioinformatics. Using a gene expression library, sub-cellular distribution of the diverse members was analyzed by confocal microscopy. Chaperone activity was measured using a cellular luciferase refolding assay. RESULTS Online databases did not accurately predict the sub-cellular distribution of all the HSPB members. A novel and non-predicted finding was that HSPB7 constitutively localized to SC35 splicing speckles, driven by its N-terminus. Unlike HSPB1 and HSPB5, that chaperoned heat unfolded substrates and kept them folding competent, HSPB7 did not support refolding. CONCLUSION Our data suggest a non-chaperone-like role of HSPB7 at SC35 speckles. GENERAL SIGNIFICANCE The functional divergence between HSPB members seems larger than previously expected and also includes non-canonical members lacking classical chaperone-like functions.
Collapse
|
17
|
Chen LJ, Su YC, Hong JR. Betanodavirus non-structural protein B1: A novel anti-necrotic death factor that modulates cell death in early replication cycle in fish cells. Virology 2009; 385:444-54. [PMID: 19136133 DOI: 10.1016/j.virol.2008.11.048] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2008] [Revised: 11/03/2008] [Accepted: 11/25/2008] [Indexed: 12/30/2022]
Abstract
The functions of the Betanodavirus non-structural protein B1 is still unknown. We examined B1 expression patterns and investigated novel cell death regulatory functions for this viral protein following RGNNV infection in fish cells. The B1 gene (336 nt) was cloned from the redspotted grouper nervous necrosis virus (RGNNV) genome. B1 mRNA was rapidly expressed in the fish cells from viral RNA3 at 12 h post-infection (p.i.). At the protein level, expression was low at 12 h p.i., and then increased rapidly between 24 h and 72 h p.i. In RGNNV-infected, B1-containing fish cells, over expression of RGNNV B1 reduced Annexin-V positive cells by 50% and 65% at 48 h and 72 h p.i., respectively, and decreased loss of mitochondrial membrane potential (MMP) by 20% and 70% at 48 h and 72 h p.i., respectively. Finally, B1 knockdown during RGNNV infection using anti-sense RNA increased necrotic cell death and reduced cell viability during the early replication cycle (24 h p.i.). Our results suggest that B1 is an early expression protein that has an anti-necrotic cell death function which reduces the MMP loss and enhances viral host cell viability. This finding provides new insights into RNA viral pathogenesis and disease control.
Collapse
Affiliation(s)
- Lei-Jia Chen
- Laboratory of Molecular Virology and Biotechnology, Institute of Biotechnology; National Cheng Kung University, Tainan 701, Taiwan
| | | | | |
Collapse
|