1
|
Song P, Chen T, Wang M, Li Z, Hu B, Yu Y, Ma J, Ge H, Wang N. Crystal structure of the Klebsiella pneumoniae fic toxin-antitoxin complex reveals a noncanonical FicT lacking AMPylation activity. Biochem Biophys Res Commun 2025; 771:152002. [PMID: 40403680 DOI: 10.1016/j.bbrc.2025.152002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2025] [Accepted: 05/10/2025] [Indexed: 05/24/2025]
Abstract
FIC (filamentation induced by cAMP) domain proteins regulate diverse cellular processes through post-translational modifications, typically AMPylation. In Klebsiella pneumoniae, the class I Fic toxin KpFicT and its cognate antitoxin KpFicA form a stable toxin-antitoxin complex whose function remains poorly understood. Here, we determined the 2.03 Å crystal structure of the KpFicTA complex and dissected its assembly and catalytic properties through biochemical assays. KpFicA comprises two helices, αinh and αA, which are both essential for stable complex formation, anchoring into complementary grooves of KpFicT. Sequence and functional analyses reveal that KpFicT carries a noncanonical HPFX (D/E)GNGR motif, with critical substitutions that abolish ATP binding and adenylation activity. Additionally, a flexible N-terminal loop of KpFicT occludes the nucleotide-binding pocket via an R138-D10 salt bridge. Disruption of this interaction partially restores ligand binding. Our results provide structural and mechanistic insights into the regulation of noncanonical Fic proteins and suggest that KpFicT has evolved a function distinct from classical AMPylation.
Collapse
Affiliation(s)
- Peifan Song
- Institute of Health Sciences and Technology, Institutes of Physical and Information Technology, Anhui University, Hefei, 230601, China
| | - Tiantian Chen
- Institute of Health Sciences and Technology, Institutes of Physical and Information Technology, Anhui University, Hefei, 230601, China
| | - Min Wang
- Institute of Health Sciences and Technology, Institutes of Physical and Information Technology, Anhui University, Hefei, 230601, China
| | - Zhihao Li
- Institute of Health Sciences and Technology, Institutes of Physical and Information Technology, Anhui University, Hefei, 230601, China
| | - Bowen Hu
- Institute of Health Sciences and Technology, Institutes of Physical and Information Technology, Anhui University, Hefei, 230601, China
| | - Yong Yu
- Institute of Health Sciences and Technology, Institutes of Physical and Information Technology, Anhui University, Hefei, 230601, China
| | - Jinming Ma
- Institute of Health Sciences and Technology, Institutes of Physical and Information Technology, Anhui University, Hefei, 230601, China.
| | - Honghua Ge
- Institute of Health Sciences and Technology, Institutes of Physical and Information Technology, Anhui University, Hefei, 230601, China.
| | - Na Wang
- Institute of Health Sciences and Technology, Institutes of Physical and Information Technology, Anhui University, Hefei, 230601, China.
| |
Collapse
|
2
|
Yen IY, Whitfield GB, Rubinstein JL, Burrows LL, Brun YV, Howell PL. Conformational changes in the motor ATPase CpaF facilitate a rotary mechanism of Tad pilus assembly. Nat Commun 2025; 16:3839. [PMID: 40268890 PMCID: PMC12019362 DOI: 10.1038/s41467-025-59009-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Accepted: 04/08/2025] [Indexed: 04/25/2025] Open
Abstract
The type IV pilus family uses PilT/VirB11-like ATPases to rapidly assemble and disassemble pilin subunits. Among these, the tight adherence (Tad) pilus performs both functions using a single bifunctional ATPase, CpaF. Here, we determine three conformationally distinct structures of CpaF hexamers with varying nucleotide occupancies by cryo-electron microscopy. Analysis of these structures suggest ATP binding and hydrolysis expand and rotate the hexamer pore clockwise while subsequent ADP release contracts the ATPase. Truncation of the intrinsically disordered region of CpaF in Caulobacter crescentus equally reduces pilus extension and retraction events observed using fluorescence microscopy, but does not reduce ATPase activity. AlphaFold3 modeling suggests that CpaF and other motors of the type IV filament superfamily employ conserved secondary structural features to engage their respective platform proteins. From these data, we propose that CpaF uses a clockwise, rotary mechanism of catalysis to assemble a right-handed, helical Tad pilus, a process broadly applicable to other single motor systems.
Collapse
Affiliation(s)
- Ian Y Yen
- Program in Molecular Medicine, Peter Gilgan Center for Research and Learning, The Hospital for Sick Children, Toronto, ON, Canada
- Department of Biochemistry, University of Toronto, Toronto, ON, Canada
| | - Gregory B Whitfield
- Département de Microbiologie, Infectiologie et Immunologie, Université de Montréal, Montréal, QC, Canada
| | - John L Rubinstein
- Program in Molecular Medicine, Peter Gilgan Center for Research and Learning, The Hospital for Sick Children, Toronto, ON, Canada
- Department of Biochemistry, University of Toronto, Toronto, ON, Canada
- Department of Medical Biophysics, University of Toronto, Toronto, ON, Canada
| | - Lori L Burrows
- Biochemistry and Biomedical Sciences and the Michael G. DeGroote Centre for Infectious Disease Research, McMaster University, Hamilton, ON, Canada.
| | - Yves V Brun
- Département de Microbiologie, Infectiologie et Immunologie, Université de Montréal, Montréal, QC, Canada.
| | - P Lynne Howell
- Program in Molecular Medicine, Peter Gilgan Center for Research and Learning, The Hospital for Sick Children, Toronto, ON, Canada.
- Department of Biochemistry, University of Toronto, Toronto, ON, Canada.
| |
Collapse
|
3
|
Neißner K, Frohnapfel C, Keller H, Duchardt‐Ferner E, Schneider V, Kamjou Z, Averhoff B, Wöhnert J. NMR Solution Structure of the N-Terminal GSPII Domain from the Thermus Thermophilus Traffic ATPase PilF and Reconstruction of its c-di-GMP Binding Capability. Chembiochem 2025; 26:e202400959. [PMID: 39960869 PMCID: PMC12002112 DOI: 10.1002/cbic.202400959] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2024] [Revised: 02/16/2025] [Indexed: 03/14/2025]
Abstract
The cyclic dinucleotide c-di-GMP is an important second messenger molecule in bacteria and interacts with a variety of receptor molecules including RNA and protein domains. An important class of c-di-GMP-binding protein domains are the general secretory pathway type II (GSPII) domains as exemplified by the N-terminal domain of the ATPase MshE from Vibrio cholerae (MshEN). MshEN binds monomeric c-di-GMP via two consecutive copies of a 24-residue sequence motif, which form a compact 4-α-helical bundle. The ATPase PilF from Thermus thermophilus regulates pilus formation, motility and DNA-uptake. Its N-terminal section contains three consecutive GSPII domains (GSPII-A-GSPII-C) all with considerable sequence homology to MshEN. While the GSPII-B and the GSPII-C domains bind c-di-GMP, the GSPII-A domain does not. To determine why it is incapable of c-di-GMP-binding we determined the NMR-solution structure of this domain. Our structure shows how small deviations in the consensus motif sequence, a stabilizing N-terminal helical capping motif and intersubdomain interactions absent in MshEN cooperate to prevent c-di-GMP-binding. By combining point mutations and truncations, we re-established the c-di-GMP binding capability. Our findings shed new light on the evolution and functional diversification of GSPII domains and the importance of sequence variations for protein activity in this domain family.
Collapse
Affiliation(s)
- Konstantin Neißner
- Center for Biomolecular Magnetic Resonance (BMRZ)Goethe-University Frankfurt/M.Max-von-Laue-Str. 960438FrankfurtGermany
- Institute for Molecular BiosciencesGoethe-University Frankfurt/MMax-von-Laue-Str. 960438FrankfurtGermany
| | - Carolin Frohnapfel
- Center for Biomolecular Magnetic Resonance (BMRZ)Goethe-University Frankfurt/M.Max-von-Laue-Str. 960438FrankfurtGermany
- Institute for Molecular BiosciencesGoethe-University Frankfurt/MMax-von-Laue-Str. 960438FrankfurtGermany
- Bruker Biospin GmbH &Co. KGRudolf-Plank-Str. 2376275EttlingenGermany
| | - Heiko Keller
- Center for Biomolecular Magnetic Resonance (BMRZ)Goethe-University Frankfurt/M.Max-von-Laue-Str. 960438FrankfurtGermany
- Institute for Molecular BiosciencesGoethe-University Frankfurt/MMax-von-Laue-Str. 960438FrankfurtGermany
| | - Elke Duchardt‐Ferner
- Center for Biomolecular Magnetic Resonance (BMRZ)Goethe-University Frankfurt/M.Max-von-Laue-Str. 960438FrankfurtGermany
- Institute for Molecular BiosciencesGoethe-University Frankfurt/MMax-von-Laue-Str. 960438FrankfurtGermany
| | - Vanessa Schneider
- Center for Biomolecular Magnetic Resonance (BMRZ)Goethe-University Frankfurt/M.Max-von-Laue-Str. 960438FrankfurtGermany
- Institute for Molecular BiosciencesGoethe-University Frankfurt/MMax-von-Laue-Str. 960438FrankfurtGermany
| | - Zeinab Kamjou
- Center for Biomolecular Magnetic Resonance (BMRZ)Goethe-University Frankfurt/M.Max-von-Laue-Str. 960438FrankfurtGermany
- Institute for Molecular BiosciencesGoethe-University Frankfurt/MMax-von-Laue-Str. 960438FrankfurtGermany
| | - Beate Averhoff
- Center for Biomolecular Magnetic Resonance (BMRZ)Goethe-University Frankfurt/M.Max-von-Laue-Str. 960438FrankfurtGermany
- Molecular Microbiology and BioenergeticsGoethe-University Frankfurt/M.Max-von-Laue-Str. 960438FrankfurtGermany
| | - Jens Wöhnert
- Institute for Molecular BiosciencesGoethe-University Frankfurt/M.Max-von-Laue-Str. 9, 60438FrankfurtGermany
- Center for Biomolecular Magnetic Resonance (BMRZ)Goethe-University Frankfurt/M.Max-von-Laue-Str. 960438FrankfurtGermany
- Institute for Molecular BiosciencesGoethe-University Frankfurt/MMax-von-Laue-Str. 960438FrankfurtGermany
| |
Collapse
|
4
|
Arkinson C, Dong KC, Gee CL, Martin A. Mechanisms and regulation of substrate degradation by the 26S proteasome. Nat Rev Mol Cell Biol 2025; 26:104-122. [PMID: 39362999 PMCID: PMC11772106 DOI: 10.1038/s41580-024-00778-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/23/2024] [Indexed: 10/05/2024]
Abstract
The 26S proteasome is involved in degrading and regulating the majority of proteins in eukaryotic cells, which requires a sophisticated balance of specificity and promiscuity. In this Review, we discuss the principles that underly substrate recognition and ATP-dependent degradation by the proteasome. We focus on recent insights into the mechanisms of conventional ubiquitin-dependent and ubiquitin-independent protein turnover, and discuss the plethora of modulators for proteasome function, including substrate-delivering cofactors, ubiquitin ligases and deubiquitinases that enable the targeting of a highly diverse substrate pool. Furthermore, we summarize recent progress in our understanding of substrate processing upstream of the 26S proteasome by the p97 protein unfoldase. The advances in our knowledge of proteasome structure, function and regulation also inform new strategies for specific inhibition or harnessing the degradation capabilities of the proteasome for the treatment of human diseases, for instance, by using proteolysis targeting chimera molecules or molecular glues.
Collapse
Affiliation(s)
- Connor Arkinson
- California Institute for Quantitative Biosciences, University of California at Berkeley, Berkeley, CA, USA
- Department of Molecular and Cell Biology, University of California at Berkeley, Berkeley, CA, USA
- Howard Hughes Medical Institute, University of California at Berkeley, Berkeley, CA, USA
| | - Ken C Dong
- Howard Hughes Medical Institute, University of California at Berkeley, Berkeley, CA, USA
| | - Christine L Gee
- California Institute for Quantitative Biosciences, University of California at Berkeley, Berkeley, CA, USA
- Department of Molecular and Cell Biology, University of California at Berkeley, Berkeley, CA, USA
- Howard Hughes Medical Institute, University of California at Berkeley, Berkeley, CA, USA
| | - Andreas Martin
- California Institute for Quantitative Biosciences, University of California at Berkeley, Berkeley, CA, USA.
- Department of Molecular and Cell Biology, University of California at Berkeley, Berkeley, CA, USA.
- Howard Hughes Medical Institute, University of California at Berkeley, Berkeley, CA, USA.
| |
Collapse
|
5
|
Wu J, Liu Y, Zhang Y, Wang X, Yan H, Zhu Y, Song J, Yu DJ. Identifying Protein-Nucleotide Binding Residues via Grouped Multi-task Learning and Pre-trained Protein Language Models. J Chem Inf Model 2025; 65:1040-1052. [PMID: 39788787 DOI: 10.1021/acs.jcim.4c02092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2025]
Abstract
The accurate identification of protein-nucleotide binding residues is crucial for protein function annotation and drug discovery. Numerous computational methods have been proposed to predict these binding residues, achieving remarkable performance. However, due to the limited availability and high variability of nucleotides, predicting binding residues for diverse nucleotides remains a significant challenge. To address these, we propose NucGMTL, a new grouped deep multi-task learning approach designed for predicting binding residues of all observed nucleotides in the BioLiP database. NucGMTL leverages pre-trained protein language models to generate robust sequence embedding and incorporates multi-scale learning along with scale-based self-attention mechanisms to capture a broader range of feature dependencies. To effectively harness the shared binding patterns across various nucleotides, deep multi-task learning is utilized to distill common representations, taking advantage of auxiliary information from similar nucleotides selected based on task grouping. Performance evaluation on benchmark data sets shows that NucGMTL achieves an average area under the Precision-Recall curve (AUPRC) of 0.594, surpassing other state-of-the-art methods. Further analyses highlight that the predominant advantage of NucGMTL can be reflected by its effective integration of grouped multi-task learning and pre-trained protein language models. The data set and source code are freely accessible at: https://github.com/jerry1984Y/NucGMTL.
Collapse
Affiliation(s)
- Jiashun Wu
- School of Computer Science and Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Yan Liu
- School of Information Engineering, Yangzhou University, Yangzhou 225100, China
| | - Ying Zhang
- School of Computer Science and Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Xiaoyu Wang
- Monash Biomedicine Discovery Institute and Department of Biochemistry and Molecular Biology, Monash University, Melbourne, VIC 3800, Australia
| | - He Yan
- College of Information Science and Technology & Artificial Intelligence, Nanjing Forestry University, Nanjing 210037, China
| | - Yiheng Zhu
- College of Artificial Intelligence, Nanjing Agricultural University, Nanjing 210095, China
| | - Jiangning Song
- Monash Biomedicine Discovery Institute and Department of Biochemistry and Molecular Biology, Monash University, Melbourne, VIC 3800, Australia
- Monash Data Futures Institute, Monash University, Melbourne, VIC 3800, Australia
| | - Dong-Jun Yu
- School of Computer Science and Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
| |
Collapse
|
6
|
Neißner K, Keller H, Kirchner L, Düsterhus S, Duchardt-Ferner E, Averhoff B, Wöhnert J. The structural basis for high-affinity c-di-GMP binding to the GSPII-B domain of the traffic ATPase PilF from Thermus thermophilus. J Biol Chem 2025; 301:108041. [PMID: 39615687 PMCID: PMC11731258 DOI: 10.1016/j.jbc.2024.108041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Revised: 11/18/2024] [Accepted: 11/22/2024] [Indexed: 12/28/2024] Open
Abstract
c-di-GMP is an important second messenger in bacteria regulating, for example motility, biofilm formation, cell wall biosynthesis, infectivity, and natural transformability. It binds to a multitude of intracellular receptors. This includes proteins containing general secretory pathway II (GSPII) domains such as the N-terminal domain of the Vibrio cholerae ATPase MshE (MshEN) which binds c-di-GMP with two copies of a 24-amino acids sequence motif. The traffic ATPase PilF from Thermus thermophilus is important for type IV pilus biogenesis, twitching motility, surface attachment, and natural DNA-uptake and contains three consecutive homologous GPSII domains. We show that only two of these domains bind c-di-GMP and define the structural basis for the exceptional high affinity of the GSPII-B domain for c-di-GMP, which is 83-fold higher than that of the prototypical MshEN domain. Our work establishes an extended consensus sequence for the c-di-GMP-binding motif and highlights the role of hydrophobic residues for high-affinity recognition of c-di-GMP. Our structure is the first example for a c-di-GMP-binding domain not relying on arginine residues for ligand recognition. We also show that c-di-GMP-binding induces local unwinding of an α-helical turn as well as subdomain reorientation to reinforce intermolecular contacts between c-di-GMP and the C-terminal subdomain. Abolishing c-di-GMP binding to GSPII-B reduces twitching motility and surface attachment but not natural DNA-uptake. Overall, our work contributes to a better characterization of c-di-GMP binding in this class of effector domains, allows the prediction of high-affinity c-di-GMP-binding family members, and advances our understanding of the importance of c-di-GMP binding for T4P-related functions.
Collapse
Affiliation(s)
- Konstantin Neißner
- Institute for Molecular Biosciences, Goethe-University Frankfurt/M., Frankfurt, Germany; Center for Biomolecular Magnetic Resonance (BMRZ), Goethe-University Frankfurt/M., Frankfurt, Germany
| | - Heiko Keller
- Institute for Molecular Biosciences, Goethe-University Frankfurt/M., Frankfurt, Germany; Center for Biomolecular Magnetic Resonance (BMRZ), Goethe-University Frankfurt/M., Frankfurt, Germany
| | - Lennart Kirchner
- Molecular Microbiology and Bioenergetics, Institute for Molecular Biosciences, Goethe-University Frankfurt/M., Frankfurt, Germany
| | - Stefanie Düsterhus
- Institute for Molecular Biosciences, Goethe-University Frankfurt/M., Frankfurt, Germany
| | - Elke Duchardt-Ferner
- Institute for Molecular Biosciences, Goethe-University Frankfurt/M., Frankfurt, Germany; Center for Biomolecular Magnetic Resonance (BMRZ), Goethe-University Frankfurt/M., Frankfurt, Germany
| | - Beate Averhoff
- Molecular Microbiology and Bioenergetics, Institute for Molecular Biosciences, Goethe-University Frankfurt/M., Frankfurt, Germany
| | - Jens Wöhnert
- Institute for Molecular Biosciences, Goethe-University Frankfurt/M., Frankfurt, Germany; Center for Biomolecular Magnetic Resonance (BMRZ), Goethe-University Frankfurt/M., Frankfurt, Germany.
| |
Collapse
|
7
|
Dar MA, Louder R, Cortes M, Chen R, Ma Q, Chakrabarti M, Umanah GKE, Dawson TM, Dawson VL. Cryo-EM Structure of AAA + ATPase Thorase Reveals Novel Helical Filament Formation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.11.22.624887. [PMID: 39605435 PMCID: PMC11601504 DOI: 10.1101/2024.11.22.624887] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/29/2024]
Abstract
The AAA+ ( A TPases a ssociated with a variety of cellular a ctivities) ATPase, Thorase, also known as ATAD1, plays multiple roles in synaptic plasticity, mitochondrial quality control and mTOR signaling through disassembling protein complexes like AMPAR and mTORC1 in an ATP-dependent manner. The Oligomerization of Thorase is crucial for its disassembly and remodeling functions. We show that wild-type Thorase forms long helical filaments in vitro , dependent on ATP binding but not hydrolysis. We report the Cryogenic Electron Microscopy (cryo-EM) structure of the Thorase filament at a resolution of 4 Å, revealing the dimeric arrangement of the basic repeating unit that is formed through a distinct interface compared to the hexameric MSP1/ATAD1E193Q assembly. Structure-guided mutagenesis confirms the role of critical amino acid residues required for filament formation, oligomerization and disassembly of mTORC1 protein complex. Together, our data reveals a novel filament structure of Thorase and provides critical information that elucidates the mechanism underlying Thorase filament formation and Thorase-mediated disassembly of the mTORC1 complex.
Collapse
|
8
|
Zimmermann N, Ishikawa T. Comparative structural study on axonemal and cytoplasmic dyneins. Cytoskeleton (Hoboken) 2024; 81:681-690. [PMID: 39073294 DOI: 10.1002/cm.21897] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 07/09/2024] [Accepted: 07/10/2024] [Indexed: 07/30/2024]
Abstract
Axonemal dyneins are the driving force of motile cilia, while cytoplasmic dyneins play an essential role in minus-end oriented intracellular transport. Their molecular structure is indispensable for an understanding of the molecular mechanism of ciliary beating and cargo transport. After some initial structural analysis of cytoplasmic dyneins, which are easier to manipulate with genetic engineering, using X-ray crystallography and single-particle cryo-electron microscopy, a number of atomic and pseudo-atomic structural analyses of axonemal dyneins have been published. Currently, several structures of dyneins in the post-power stroke conformation as well as a few structures in the pre-power stroke conformation are available. It will be worth systematically comparing conformations of dynein motor proteins from different sources and at different states, to understand their role in biological function. In this review, we will overview published high- and intermediate-resolution structures of cytoplasmic and axonemal dyneins, compare the high-resolution structures of their core motor domains and overall tail conformations at various nucleotide states, and discuss their force generation mechanism.
Collapse
Affiliation(s)
- Noemi Zimmermann
- Laboratory of Nanoscale Biology, Paul Scherrer Institute, Villigen, Switzerland
- Department of Biology, ETH Zurich, Zürich, Switzerland
| | - Takashi Ishikawa
- Laboratory of Nanoscale Biology, Paul Scherrer Institute, Villigen, Switzerland
- Department of Biology, ETH Zurich, Zürich, Switzerland
| |
Collapse
|
9
|
Shih TT, Sauer RT, Baker TA. How the double-ring ClpAP protease motor grips the substrate to unfold and degrade stable proteins. J Biol Chem 2024; 300:107861. [PMID: 39374782 PMCID: PMC11570520 DOI: 10.1016/j.jbc.2024.107861] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2024] [Revised: 09/06/2024] [Accepted: 09/27/2024] [Indexed: 10/09/2024] Open
Abstract
Loops in the axial channels of ClpAP and other AAA+ proteases bind a short peptide degron connected by a linker to the N- or C-terminal residue of a native protein to initiate degradation. ATP hydrolysis then powers pore-loop movements that translocate these segments through the channel until a native domain is pulled against the narrow channel entrance, creating an unfolding force. Substrate unfolding is thought to depend on strong contacts between pore loops and a subset of amino acids in the unstructured sequence directly preceding the folded domain. Here, we identify such contact sequences that promote grip for ClpAP and use ClpA structures to place these sequences within ClpA's two AAA+ rings. The positions and chemical nature of certain residues within an unstructured segment that are positioned to interact with the D2 ring have major positive effects on substrate unfolding, whereas segments located within the D1 ring have little consequence. Within the D2-bound segment, two short elements are critical for accelerating degradation; one is at the "top" of D2 and consists of at least two properly positioned nonslippery residues. In contrast, the second D2 element, which can be as short as one residue, is positioned to contact pore loops near the "bottom" of this ring. Comparison with similar studies for ClpXP reveals that positioning a well-gripped substrate sequence within the major unfoldase motor is more important than its proximity to the folded domain and that charged, polar, and hydrophobic residues all contribute favorable contacts to substrate grip.
Collapse
Affiliation(s)
- Tsai-Ting Shih
- Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| | - Robert T Sauer
- Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| | - Tania A Baker
- Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA.
| |
Collapse
|
10
|
Warnock JL, Ball JA, Najmi SM, Henes M, Vazquez A, Koshnevis S, Wieden HJ, Conn GL, Ghalei H. Differential roles of putative arginine fingers of AAA + ATPases Rvb1 and Rvb2. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.13.593962. [PMID: 38798342 PMCID: PMC11118528 DOI: 10.1101/2024.05.13.593962] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2024]
Abstract
The evolutionarily conserved AAA+ ATPases Rvb1 and Rvb2 proteins form a heteromeric complex (Rvb1/2) required for assembly or remodeling of macromolecular complexes in essential cellular processes ranging from chromatin remodeling to ribosome biogenesis. Rvb1 and Rvb2 have a high degree of sequence and structural similarity, and both contain the classical features of ATPases of their clade, including an N-terminal AAA+ subdomain with the Walker A motif, an insertion domain that typically interacts with various binding partners, and a C-terminal AAA+ subdomain containing a Walker B motif, the Sensor I and II motifs, and an arginine finger. In this study, we find that despite the high degree of structural similarity, Rvb1 and Rvb2 have distinct active sites that impact their activities and regulation within the Rvb1/2 complex. Using a combination of biochemical and genetic approaches, we show that replacing the homologous arginine fingers of Rvb1 and Rvb2 with different amino acids not only has distinct effects on the catalytic activity of the complex, but also impacts cell growth, and the Rvb1/2 interactions with binding partners. Using molecular dynamics simulations, we find that changes near the active site of Rvb1 and Rvb2 cause long-range effects on the protein dynamics in the insertion domain, suggesting a molecular basis for how enzymatic activity within the catalytic site of ATP hydrolysis can be relayed to other domains of the Rvb1/2 complex to modulate its function. Further, we show the impact that the arginine finger variants have on snoRNP biogenesis and validate the findings from molecular dynamics simulations using a targeted genetic screen. Together, our results reveal new aspects of the regulation of the Rvb1/2 complex by identifying a relay of long-range molecular communication from the ATPase active site of the complex to the binding site of cofactors. Most importantly, our findings suggest that despite high similarity and cooperation within the same protein complex, the two proteins have evolved with unique properties critical for the regulation and function of the Rvb1/2 complex.
Collapse
Affiliation(s)
- Jennifer L. Warnock
- Emory University School of Medicine, Department of Biochemistry, Atlanta, Georgia, USA
| | - Jacob A. Ball
- Emory University School of Medicine, Department of Biochemistry, Atlanta, Georgia, USA
| | - Saman M. Najmi
- Emory University School of Medicine, Department of Biochemistry, Atlanta, Georgia, USA
| | - Mina Henes
- Emory University School of Medicine, Department of Biochemistry, Atlanta, Georgia, USA
- Graduate Program in Biochemistry, Cell & Developmental Biology (BCDB), Emory University, Atlanta, Georgia, USA
- Medical Scientist Training Program, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Amanda Vazquez
- Department of Microbiology, Faculty of Science, University of Manitoba, Manitoba, Canada
| | - Sohail Koshnevis
- Emory University School of Medicine, Department of Biochemistry, Atlanta, Georgia, USA
| | - Hans-Joachim Wieden
- Department of Microbiology, Faculty of Science, University of Manitoba, Manitoba, Canada
| | - Graeme L. Conn
- Emory University School of Medicine, Department of Biochemistry, Atlanta, Georgia, USA
| | - Homa Ghalei
- Emory University School of Medicine, Department of Biochemistry, Atlanta, Georgia, USA
| |
Collapse
|
11
|
Hu D, Zhao Y, Zhu L, Li X, Zhang J, Cui X, Li W, Hao D, Yang Z, Wu F, Dong S, Su X, Huang F, Yu D. Genetic dissection of ten photosynthesis-related traits based on InDel- and SNP-GWAS in soybean. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2024; 137:96. [PMID: 38589730 DOI: 10.1007/s00122-024-04607-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Accepted: 03/21/2024] [Indexed: 04/10/2024]
Abstract
KEY MESSAGE A total of 416 InDels and 112 SNPs were significantly associated with soybean photosynthesis-related traits. GmIWS1 and GmCDC48 might be related to chlorophyll fluorescence and gas-exchange parameters, respectively. Photosynthesis is one of the main factors determining crop yield. A better understanding of the genetic architecture for photosynthesis is of great significance for soybean yield improvement. Our previous studies identified 5,410,112 single nucleotide polymorphisms (SNPs) from the resequencing data of 219 natural soybean accessions. Here, we identified 634,106 insertions and deletions (InDels) from these 219 accessions and used these InDel variations to perform principal component and linkage disequilibrium analysis of this population. The genome-wide association study (GWAS) were conducted on six chlorophyll fluorescence parameters (chlorophyll content, light energy absorbed per reaction center, quantum yield for electron transport, probability that a trapped exciton moves an electron into the electron transport chain beyond primary quinone acceptor, maximum quantum yield of photosystem II primary photochemistry in the dark-adapted state, performance index on absorption basis) and four gas-exchange parameters (intercellular carbon dioxide concentration, stomatal conductance, net photosynthesis rate, transpiration rate) and revealed 416 significant InDels and 112 significant SNPs. Based on GWAS results, GmIWS1 (encoding a transcription elongation factor) and GmCDC48 (encoding a cell division cycle protein) with the highest expression in the mapping region were determined as the candidate genes responsible for chlorophyll fluorescence and gas-exchange parameters, respectively. Further identification of favorable haplotypes with higher photosynthesis, seed weight and seed yield were carried out for GmIWS1 and GmCDC48. Overall, this study revealed the natural variations and candidate genes underlying the photosynthesis-related traits based on abundant phenotypic and genetic data, providing valuable insights into the genetic mechanisms controlling photosynthesis and yield in soybean.
Collapse
Affiliation(s)
- Dezhou Hu
- National Center for Soybean Improvement, State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Nanjing Agricultural University, Nanjing, 210095, China
- College of Life Sciences, Nanjing Agricultural University, Nanjing, 210095, China
| | - Yajun Zhao
- National Center for Soybean Improvement, State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Nanjing Agricultural University, Nanjing, 210095, China
| | - Lixun Zhu
- National Center for Soybean Improvement, State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Nanjing Agricultural University, Nanjing, 210095, China
| | - Xiao Li
- National Center for Soybean Improvement, State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Nanjing Agricultural University, Nanjing, 210095, China
| | - Jinyu Zhang
- Henan Collaborative Innovation Center of Modern Biological Breeding, School of Agriculture, Henan Institute of Science and Technology, Xinxiang, 453003, China
| | - Xuan Cui
- National Center for Soybean Improvement, State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Nanjing Agricultural University, Nanjing, 210095, China
| | - Wenlong Li
- National Center for Soybean Improvement, State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Nanjing Agricultural University, Nanjing, 210095, China
| | - Derong Hao
- Jiangsu Yanjiang Institute of Agricultural Sciences, Nantong, 226012, China
| | - Zhongyi Yang
- National Center for Soybean Improvement, State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Nanjing Agricultural University, Nanjing, 210095, China
| | - Fei Wu
- National Center for Soybean Improvement, State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Nanjing Agricultural University, Nanjing, 210095, China
| | - Shupeng Dong
- National Center for Soybean Improvement, State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Nanjing Agricultural University, Nanjing, 210095, China
| | - Xiaoyue Su
- National Center for Soybean Improvement, State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Nanjing Agricultural University, Nanjing, 210095, China
| | - Fang Huang
- National Center for Soybean Improvement, State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Nanjing Agricultural University, Nanjing, 210095, China.
| | - Deyue Yu
- National Center for Soybean Improvement, State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Nanjing Agricultural University, Nanjing, 210095, China.
| |
Collapse
|
12
|
Guan S, Li Z, Han Y, Tian A, Zhou S, Chen H, Peng G, Song Y. Crystal structure of the ATPase domain of porcine circovirus type 2 Rep protein. J Gen Virol 2024; 105. [PMID: 38506716 DOI: 10.1099/jgv.0.001972] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/21/2024] Open
Abstract
PCV2 belongs to the genus Circovirus in the family Circoviridae, whose genome is replicated by rolling circle replication (RCR). PCV2 Rep is a multifunctional enzyme that performs essential functions at multiple stages of viral replication. Rep is responsible for nicking and ligating single-stranded DNA and unwinding double-stranded DNA (dsDNA). However, the structure and function of the Rep are still poorly understood, which significantly impedes viral replication research. This study successfully resolved the structure of the PCV2 Rep ATPase domain (PRAD) using X-ray crystallography. Homologous structure search revealed that Rep belonged to the superfamily 3 (SF3) helicase, and multiple conserved residues were identified during sequence alignment with SF3 family members. Simultaneously, a hexameric PRAD model was generated for analysing characteristic structures and sites. Mutation of the conserved site and measurement of its activity showed that the hallmark motifs of the SF3 family influenced helicase activity by affecting ATPase activity and β-hairpin just caused the loss of helicase activity. The structural and functional analyses of the PRAD provide valuable insights for future research on PCV2 replication and antiviral strategies.
Collapse
Affiliation(s)
- Shuaiyin Guan
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, 430070, PR China
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, PR China
| | - Zhen Li
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, 430070, PR China
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, PR China
| | - Yang Han
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, 430070, PR China
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, PR China
| | - Ang Tian
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, 430070, PR China
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, PR China
| | - Saisai Zhou
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, 430070, PR China
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, PR China
| | - Huanchun Chen
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, 430070, PR China
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, PR China
| | - Guiqing Peng
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, 430070, PR China
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, PR China
| | - Yunfeng Song
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, 430070, PR China
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, PR China
| |
Collapse
|
13
|
Shein M, Hitzenberger M, Cheng TC, Rout SR, Leitl KD, Sato Y, Zacharias M, Sakata E, Schütz AK. Characterizing ATP processing by the AAA+ protein p97 at the atomic level. Nat Chem 2024; 16:363-372. [PMID: 38326645 PMCID: PMC10914628 DOI: 10.1038/s41557-024-01440-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Accepted: 01/04/2024] [Indexed: 02/09/2024]
Abstract
The human enzyme p97 regulates various cellular pathways by unfolding hundreds of protein substrates in an ATP-dependent manner, making it an essential component of protein homeostasis and an impactful pharmacological target. The hexameric complex undergoes substantial conformational changes throughout its catalytic cycle. Here we elucidate the molecular motions that occur at the active site in the temporal window immediately before and after ATP hydrolysis by merging cryo-EM, NMR spectroscopy and molecular dynamics simulations. p97 populates a metastable reaction intermediate, the ADP·Pi state, which is poised between hydrolysis and product release. Detailed snapshots reveal that the active site is finely tuned to trap and eventually discharge the cleaved phosphate. Signalling pathways originating at the active site coordinate the action of the hexamer subunits and couple hydrolysis with allosteric conformational changes. Our multidisciplinary approach enables a glimpse into the sophisticated spatial and temporal orchestration of ATP handling by a prototype AAA+ protein.
Collapse
Affiliation(s)
- Mikhail Shein
- Faculty for Chemistry and Pharmacy, Ludwig-Maximilians-Universität München, München, Germany
- Bavarian NMR Center, Technical University of Munich, Garching, Germany
- Institute of Structural Biology, Helmholtz Zentrum München, Neuherberg, Germany
| | - Manuel Hitzenberger
- Physics Department and Center of Protein Assemblies, Technical University of Munich, Garching, Germany.
| | - Tat Cheung Cheng
- Institute for Neuropathology, University Medical Center Göttingen, Göttingen, Germany
- Multiscale Bioimaging: from Molecular Machines to Networks of Excitable Cells (MBExC), University of Göttingen, Göttingen, Germany
| | - Smruti R Rout
- Multiscale Bioimaging: from Molecular Machines to Networks of Excitable Cells (MBExC), University of Göttingen, Göttingen, Germany
- Institute for Auditory Neuroscience, University Medical Center Göttingen, Göttingen, Germany
| | - Kira D Leitl
- Faculty for Chemistry and Pharmacy, Ludwig-Maximilians-Universität München, München, Germany
- Bavarian NMR Center, Technical University of Munich, Garching, Germany
- Institute of Structural Biology, Helmholtz Zentrum München, Neuherberg, Germany
| | - Yusuke Sato
- Center for Research on Green Sustainable Chemistry, Graduate School of Engineering, Tottori University, Tottori, Japan
- Department of Chemistry and Biotechnology, Graduate School of Engineering, Tottori University, Tottori, Japan
| | - Martin Zacharias
- Physics Department and Center of Protein Assemblies, Technical University of Munich, Garching, Germany.
| | - Eri Sakata
- Multiscale Bioimaging: from Molecular Machines to Networks of Excitable Cells (MBExC), University of Göttingen, Göttingen, Germany.
- Institute for Auditory Neuroscience, University Medical Center Göttingen, Göttingen, Germany.
| | - Anne K Schütz
- Faculty for Chemistry and Pharmacy, Ludwig-Maximilians-Universität München, München, Germany.
- Bavarian NMR Center, Technical University of Munich, Garching, Germany.
- Institute of Structural Biology, Helmholtz Zentrum München, Neuherberg, Germany.
| |
Collapse
|
14
|
Gaudó P, de Tomás-Mateo E, Garrido-Pérez N, Santana A, Ruiz-Pesini E, Montoya J, Bayona-Bafaluy P. "ATAD3C regulates ATAD3A assembly and function in the mitochondrial membrane". Free Radic Biol Med 2024; 211:114-126. [PMID: 38092275 DOI: 10.1016/j.freeradbiomed.2023.12.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 11/28/2023] [Accepted: 12/07/2023] [Indexed: 12/21/2023]
Abstract
Mitochondrial ATAD3A is an ATPase Associated with diverse cellular Activities (AAA) domain containing enzyme, involved in the structural organization of the inner mitochondrial membrane and of increasing importance in childhood disease. In humans, two ATAD3A paralogs arose by gene duplication during evolution: ATAD3B and ATAD3C. Here we investigate the cellular activities of the ATAD3C paralog that has been considered a pseudogene. We detected unique ATAD3C peptides in HEK 293T cells, with expression similar to that in human tissues, and showed that it is an integral membrane protein that exposes its carboxy-terminus to the intermembrane space. Overexpression of ATAD3C, but not of ATAD3A, in fibroblasts caused a decrease in cell proliferation and oxygen consumption rate, and an increase of cellular ROS. This was due to the incorporation of ATAD3C monomers in ATAD3A complex in the mitochondrial membrane reducing its size. Consistent with a negative regulation of ATAD3A function in mitochondrial membrane organization, ATAD3C expression led to increased accumulation of respiratory chain dimeric CIII in the inner membrane, to the detriment to that assembled in respiratory supercomplexes. Our results demonstrate a negative dominant role of the ATAD3C paralog with implications for mitochondrial OXPHOS function and suggest that its expression regulates ATAD3A in the cell.
Collapse
Affiliation(s)
- Paula Gaudó
- Biochemistry and Molecular Biology Department. Universidad de Zaragoza, 50009- and 50013, Zaragoza, Spain
| | - Elena de Tomás-Mateo
- Biochemistry and Molecular Biology Department. Universidad de Zaragoza, 50009- and 50013, Zaragoza, Spain
| | - Nuria Garrido-Pérez
- Biochemistry and Molecular Biology Department. Universidad de Zaragoza, 50009- and 50013, Zaragoza, Spain; Institute for Health Research (IIS) de Aragón, 50009, Zaragoza, Spain; Rare Diseases Networking Biomedical Research Centre (CIBERER), 28029, Madrid, Spain; Institute for Biocomputation and Physics of Complex Systems, University of Zaragoza, 50018, Zaragoza, Spain
| | - Alfredo Santana
- Research Institute of Biomedical and Health Sciences (IUIBS), University of Las Palmas de Gran Canaria, 35001, Las Palmas de Gran Canaria, Spain; Clinical Genetics Unit, Complejo Hospitarlario Universitario Insular-Materno Infantil de Las Palamas de Gran Canaria, 35016, Las Palmas de Gran Canaria, Spain
| | - Eduardo Ruiz-Pesini
- Institute for Health Research (IIS) de Aragón, 50009, Zaragoza, Spain; Rare Diseases Networking Biomedical Research Centre (CIBERER), 28029, Madrid, Spain.
| | - Julio Montoya
- Biochemistry and Molecular Biology Department. Universidad de Zaragoza, 50009- and 50013, Zaragoza, Spain; Institute for Health Research (IIS) de Aragón, 50009, Zaragoza, Spain; Rare Diseases Networking Biomedical Research Centre (CIBERER), 28029, Madrid, Spain
| | - Pilar Bayona-Bafaluy
- Biochemistry and Molecular Biology Department. Universidad de Zaragoza, 50009- and 50013, Zaragoza, Spain; Institute for Health Research (IIS) de Aragón, 50009, Zaragoza, Spain; Rare Diseases Networking Biomedical Research Centre (CIBERER), 28029, Madrid, Spain; Institute for Biocomputation and Physics of Complex Systems, University of Zaragoza, 50018, Zaragoza, Spain.
| |
Collapse
|
15
|
Albisetti A, Hälg S, Zoltner M, Mäser P, Wiedemar N. Suramin action in African trypanosomes involves a RuvB-like DNA helicase. Int J Parasitol Drugs Drug Resist 2023; 23:44-53. [PMID: 37757728 PMCID: PMC10520940 DOI: 10.1016/j.ijpddr.2023.09.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 09/15/2023] [Accepted: 09/19/2023] [Indexed: 09/29/2023]
Abstract
Suramin is one of the oldest drugs in use today. It is still the treatment of choice for the hemolymphatic stage of African sleeping sickness caused by Trypanosoma brucei rhodesiense, and it is also used for surra in camels caused by Trypanosoma evansi. Yet despite one hundred years of use, suramin's mode of action is not fully understood. Suramin is a polypharmacological molecule that inhibits diverse proteins. Here we demonstrate that a DNA helicase of the pontin/ruvB-like 1 family, termed T. brucei RuvBL1, is involved in suramin resistance in African trypanosomes. Bloodstream-form T. b. rhodesiense under long-term selection for suramin resistance acquired a homozygous point mutation, isoleucine-312 to valine, close to the ATP binding site of T. brucei RuvBL1. The introduction of this missense mutation, by reverse genetics, into drug-sensitive trypanosomes significantly decreased their sensitivity to suramin. Intriguingly, the corresponding residue of T. evansi RuvBL1 was found mutated in a suramin-resistant field isolate, in that case to a leucine. RuvBL1 (Tb927.4.1270) is predicted to build a heterohexameric complex with RuvBL2 (Tb927.4.2000). RNAi-mediated silencing of gene expression of either T. brucei RuvBL1 or RuvBL2 caused cell death within 72 h. At 36 h after induction of RNAi, bloodstream-form trypanosomes exhibited a cytokinesis defect resulting in the accumulation of cells with two nuclei and two or more kinetoplasts. Taken together, these data indicate that RuvBL1 DNA helicase is involved in suramin action in African trypanosomes.
Collapse
Affiliation(s)
- Anna Albisetti
- Swiss Tropical and Public Health Institute, Kreuzstrasse 2, 4123, Allschwil, Switzerland; University of Basel, Petersplatz 1, 4001, Basel, Switzerland
| | - Silvan Hälg
- Swiss Tropical and Public Health Institute, Kreuzstrasse 2, 4123, Allschwil, Switzerland; University of Basel, Petersplatz 1, 4001, Basel, Switzerland
| | - Martin Zoltner
- Department of Parasitology, Faculty of Science, Charles University in Prague, Biocev, Vestec, Czech Republic
| | - Pascal Mäser
- Swiss Tropical and Public Health Institute, Kreuzstrasse 2, 4123, Allschwil, Switzerland; University of Basel, Petersplatz 1, 4001, Basel, Switzerland
| | - Natalie Wiedemar
- Swiss Tropical and Public Health Institute, Kreuzstrasse 2, 4123, Allschwil, Switzerland; University of Basel, Petersplatz 1, 4001, Basel, Switzerland.
| |
Collapse
|
16
|
Shvarev D, Scholz AI, Moeller A. Conformational variability of cyanobacterial ChlI, the AAA+ motor of magnesium chelatase involved in chlorophyll biosynthesis. mBio 2023; 14:e0189323. [PMID: 37737632 PMCID: PMC10653834 DOI: 10.1128/mbio.01893-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Accepted: 08/02/2023] [Indexed: 09/23/2023] Open
Abstract
IMPORTANCE Photosynthesis is an essential life process that relies on chlorophyll. In photosynthetic organisms, chlorophyll synthesis involves multiple steps and depends on magnesium chelatase. This enzyme complex is responsible for inserting magnesium into the chlorophyll precursor, but the molecular mechanism of this process is not fully understood. By using cryogenic electron microscopy and conducting functional analyses, we have discovered that the motor subunit ChlI of magnesium chelatase undergoes conformational changes in the presence of ATP. Our findings offer new insights into how energy is transferred from ChlI to the other components of magnesium chelatase. This information significantly contributes to our understanding of the initial step in chlorophyll biosynthesis and lays the foundation for future studies on the entire process of chlorophyll production.
Collapse
Affiliation(s)
- Dmitry Shvarev
- Structural Biology Section, Department of Biology/Chemistry, Osnabrück University, Osnabrück, Lower Saxony, Germany
| | - Alischa Ira Scholz
- Structural Biology Section, Department of Biology/Chemistry, Osnabrück University, Osnabrück, Lower Saxony, Germany
| | - Arne Moeller
- Structural Biology Section, Department of Biology/Chemistry, Osnabrück University, Osnabrück, Lower Saxony, Germany
- Center of Cellular Nanoanalytics Osnabrück (CellNanOs), Osnabrück University, Osnabrück, Germany
| |
Collapse
|
17
|
Betancourt D, Lawal T, Tomko RJ. Wiggle and Shake: Managing and Exploiting Conformational Dynamics during Proteasome Biogenesis. Biomolecules 2023; 13:1223. [PMID: 37627288 PMCID: PMC10452565 DOI: 10.3390/biom13081223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 08/01/2023] [Accepted: 08/03/2023] [Indexed: 08/27/2023] Open
Abstract
The 26S proteasome is the largest and most complicated protease known, and changes to proteasome assembly or function contribute to numerous human diseases. Assembly of the 26S proteasome from its ~66 individual polypeptide subunits is a highly orchestrated process requiring the concerted actions of both intrinsic elements of proteasome subunits, as well as assistance by extrinsic, dedicated proteasome assembly chaperones. With the advent of near-atomic resolution cryo-electron microscopy, it has become evident that the proteasome is a highly dynamic machine, undergoing numerous conformational changes in response to ligand binding and during the proteolytic cycle. In contrast, an appreciation of the role of conformational dynamics during the biogenesis of the proteasome has only recently begun to emerge. Herein, we review our current knowledge of proteasome assembly, with a particular focus on how conformational dynamics guide particular proteasome biogenesis events. Furthermore, we highlight key emerging questions in this rapidly expanding area.
Collapse
Affiliation(s)
| | | | - Robert J. Tomko
- Department of Biomedical Sciences, Florida State University College of Medicine, Tallahassee, FL 32306, USA; (D.B.); (T.L.)
| |
Collapse
|
18
|
Yuan L, Yu X, Xiao H, Deng S, Xia H, Xu H, Yang Y, Deng H. Identification of novel compound heterozygous variants in the DNAH1 gene of a Chinese family with left-right asymmetry disorder. Front Mol Biosci 2023; 10:1190162. [PMID: 37457836 PMCID: PMC10345202 DOI: 10.3389/fmolb.2023.1190162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Accepted: 06/19/2023] [Indexed: 07/18/2023] Open
Abstract
Most internal organs in humans and other vertebrates exhibit striking left-right asymmetry in position and structure. Variation of normal organ positioning results in left-right asymmetry disorders and presents as internal organ reversal or randomization. Up to date, at least 82 genes have been identified as the causative genetic factors of left-right asymmetry disorders. This study sought to discover potential pathogenic variants responsible for left-right asymmetry disorder present in a Han-Chinese family using whole exome sequencing combined with Sanger sequencing. Novel compound heterozygous variants, c.5690A>G (p.Asn1897Ser) and c.7759G>A (p.Val2587Met), in the dynein axonemal heavy chain 1 gene (DNAH1), were found in the proband and absent in unaffected family members. Conservation analysis has shown that the variants affect evolutionarily conserved residues, which may impact the tertiary structure of the DNAH1 protein. The novel compound heterozygous variants may potentially bear responsibility for left-right asymmetry disorder, which results from a perturbation of left-right axis coordination at the earliest embryonic development stages. This study broadens the variant spectrum of left-right asymmetry disorders and may be helpful for genetic counseling and healthcare management for the diagnosed individual, and promotes a greater understanding of the pathophysiology.
Collapse
Affiliation(s)
- Lamei Yuan
- Health Management Center, The Third Xiangya Hospital, Central South University, Changsha, China
- Center for Experimental Medicine, The Third Xiangya Hospital, Central South University, Changsha, China
- Disease Genome Research Center, Central South University, Changsha, China
- Department of Neurology, The Third Xiangya Hospital, Central South University, Changsha, China
| | - Xuehui Yu
- Health Management Center, The Third Xiangya Hospital, Central South University, Changsha, China
- Center for Experimental Medicine, The Third Xiangya Hospital, Central South University, Changsha, China
| | - Heng Xiao
- Health Management Center, The Third Xiangya Hospital, Central South University, Changsha, China
- Center for Experimental Medicine, The Third Xiangya Hospital, Central South University, Changsha, China
| | - Sheng Deng
- Department of Pharmacy, Xiangya Hospital, Central South University, Changsha, China
| | - Hong Xia
- Department of Emergency, The Third Xiangya Hospital, Central South University, Changsha, China
| | - Hongbo Xu
- Center for Experimental Medicine, The Third Xiangya Hospital, Central South University, Changsha, China
| | - Yan Yang
- Department of Neurology, The Third Xiangya Hospital, Central South University, Changsha, China
| | - Hao Deng
- Health Management Center, The Third Xiangya Hospital, Central South University, Changsha, China
- Center for Experimental Medicine, The Third Xiangya Hospital, Central South University, Changsha, China
- Disease Genome Research Center, Central South University, Changsha, China
- Department of Neurology, The Third Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
19
|
Valimehr S, Sethi A, Shukla M, Bhattacharyya S, Kazemi M, Rouiller I. Molecular Mechanisms Driving and Regulating the AAA+ ATPase VCP/p97, an Important Therapeutic Target for Treating Cancer, Neurological and Infectious Diseases. Biomolecules 2023; 13:biom13050737. [PMID: 37238606 DOI: 10.3390/biom13050737] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 03/15/2023] [Accepted: 04/13/2023] [Indexed: 05/28/2023] Open
Abstract
p97/VCP, a highly conserved type II ATPase associated with diverse cellular activities (AAA+ ATPase), is an important therapeutic target in the treatment of neurodegenerative diseases and cancer. p97 performs a variety of functions in the cell and facilitates virus replication. It is a mechanochemical enzyme that generates mechanical force from ATP-binding and hydrolysis to perform several functions, including unfolding of protein substrates. Several dozens of cofactors/adaptors interact with p97 and define the multifunctionality of p97. This review presents the current understanding of the molecular mechanism of p97 during the ATPase cycle and its regulation by cofactors and small-molecule inhibitors. We compare detailed structural information obtained in different nucleotide states in the presence and absence of substrates and inhibitors. We also review how pathogenic gain-of-function mutations modify the conformational changes of p97 during the ATPase cycle. Overall, the review highlights how the mechanistic knowledge of p97 helps in designing pathway-specific modulators and inhibitors.
Collapse
Affiliation(s)
- Sepideh Valimehr
- Department of Biochemistry & Pharmacology, The University of Melbourne, Melbourne, VIC 3010, Australia
- Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Melbourne, VIC 3010, Australia
- Bio21 Ian Holmes Imaging Centre, Department of Biochemistry & Pharmacology, The University of Melbourne, Melbourne, VIC 3010, Australia
- ARC Centre for Cryo-Electron Microscopy of Membrane Proteins, The University of Melbourne, Melbourne, VIC 3010, Australia
| | - Ashish Sethi
- Department of Biochemistry & Pharmacology, The University of Melbourne, Melbourne, VIC 3010, Australia
- Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Melbourne, VIC 3010, Australia
- Australian Nuclear Science Technology Organisation, The Australian Synchrotron, 800 Blackburn Rd, Clayton, VIC 3168, Australia
| | - Manjari Shukla
- Department of Bioscience and Bioengineering, Indian Institute of Technology Jodhpur, Jodhpur 342030, Rajasthan, India
| | - Sudipta Bhattacharyya
- Department of Bioscience and Bioengineering, Indian Institute of Technology Jodhpur, Jodhpur 342030, Rajasthan, India
| | - Mohsen Kazemi
- Department of Biochemistry & Pharmacology, The University of Melbourne, Melbourne, VIC 3010, Australia
- Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Melbourne, VIC 3010, Australia
- ARC Centre for Cryo-Electron Microscopy of Membrane Proteins, The University of Melbourne, Melbourne, VIC 3010, Australia
| | - Isabelle Rouiller
- Department of Biochemistry & Pharmacology, The University of Melbourne, Melbourne, VIC 3010, Australia
- Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Melbourne, VIC 3010, Australia
- ARC Centre for Cryo-Electron Microscopy of Membrane Proteins, The University of Melbourne, Melbourne, VIC 3010, Australia
| |
Collapse
|
20
|
Weitao T, Grandinetti G, Guo P. Revolving ATPase motors as asymmetrical hexamers in translocating lengthy dsDNA via conformational changes and electrostatic interactions in phi29, T7, herpesvirus, mimivirus, E. coli, and Streptomyces. EXPLORATION (BEIJING, CHINA) 2023; 3:20210056. [PMID: 37324034 PMCID: PMC10191066 DOI: 10.1002/exp.20210056] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/17/2021] [Accepted: 04/28/2022] [Indexed: 06/17/2023]
Abstract
Investigations of the parallel architectures of biomotors in both prokaryotic and eukaryotic systems suggest a similar revolving mechanism in the use of ATP to drive translocation of the lengthy double-stranded (ds)DNA genomes. This mechanism is exemplified by the dsDNA packaging motor of bacteriophage phi29 that operates through revolving but not rotating dsDNA to "Push through a one-way valve". This unique and novel revolving mechanism discovered in phi29 DNA packaging motor was recently reported in other systems including the dsDNA packaging motor of herpesvirus, the dsDNA ejecting motor of bacteriophage T7, the plasmid conjugation machine TraB in Streptomyces, the dsDNA translocase FtsK of gram-negative bacteria, and the genome-packaging motor in mimivirus. These motors exhibit an asymmetrical hexameric structure for transporting the genome via an inch-worm sequential action. This review intends to delineate the revolving mechanism from a perspective of conformational changes and electrostatic interactions. In phi29, the positively charged residues Arg-Lys-Arg in the N-terminus of the connector bind the negatively charged interlocking domain of pRNA. ATP binding to an ATPase subunit induces the closed conformation of the ATPase. The ATPase associates with an adjacent subunit to form a dimer facilitated by the positively charged arginine finger. The ATP-binding induces a positive charging on its DNA binding surface via an allostery mechanism and thus the higher affinity for the negatively charged dsDNA. ATP hydrolysis induces an expanded conformation of the ATPase with a lower affinity for dsDNA due to the change of the surface charge, but the (ADP+Pi)-bound subunit in the dimer undergoes a conformational change that repels dsDNA. The positively charged lysine rings of the connector attract dsDNA stepwise and periodically to keep its revolving motion along the channel wall, thus maintaining the one-way translocation of dsDNA without reversal and sliding out. The finding of the presence of the asymmetrical hexameric architectures of many ATPases that use the revolving mechanism may provide insights into the understanding of translocation of the gigantic genomes including chromosomes in complicated systems without coiling and tangling to speed up dsDNA translocation and save energy.
Collapse
Affiliation(s)
- Tao Weitao
- UT Southwestern Medical CenterCenter for the Genetics of Host DefenseDallasTXUSA
- College of Science and MathematicsSouthwest Baptist UniversityBolivarMOUSA
| | - Giovanna Grandinetti
- Center for Electron Microscopy and AnalysisThe Ohio State UniversityColumbusOHUSA
| | - Peixuan Guo
- Center for RNA Nanobiotechnology and NanomedicineDivision of Pharmaceutics and Pharmacology, College of PharmacyDorothy M. Davis Heart and Lung Research Institute, James Comprehensive Cancer Center, College of MedicineThe Ohio State UniversityColumbusOHUSA
| |
Collapse
|
21
|
Doran MH, Rynkiewicz MJ, Rasicci D, Bodt SM, Barry ME, Bullitt E, Yengo CM, Moore JR, Lehman W. Conformational changes linked to ADP release from human cardiac myosin bound to actin-tropomyosin. J Gen Physiol 2023; 155:e202213267. [PMID: 36633586 PMCID: PMC9859928 DOI: 10.1085/jgp.202213267] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Revised: 11/11/2022] [Accepted: 12/14/2022] [Indexed: 01/13/2023] Open
Abstract
Following binding to the thin filament, β-cardiac myosin couples ATP-hydrolysis to conformational rearrangements in the myosin motor that drive myofilament sliding and cardiac ventricular contraction. However, key features of the cardiac-specific actin-myosin interaction remain uncertain, including the structural effect of ADP release from myosin, which is rate-limiting during force generation. In fact, ADP release slows under experimental load or in the intact heart due to the afterload, thereby adjusting cardiac muscle power output to meet physiological demands. To further elucidate the structural basis of this fundamental process, we used a combination of cryo-EM reconstruction methodologies to determine structures of the human cardiac actin-myosin-tropomyosin filament complex at better than 3.4 Å-resolution in the presence and in the absence of Mg2+·ADP. Focused refinements of the myosin motor head and its essential light chains in these reconstructions reveal that small changes in the nucleotide-binding site are coupled to significant rigid body movements of the myosin converter domain and a 16-degree lever arm swing. Our structures provide a mechanistic framework to understand the effect of ADP binding and release on human cardiac β-myosin, and offer insights into the force-sensing mechanism displayed by the cardiac myosin motor.
Collapse
Affiliation(s)
- Matthew H. Doran
- School of Medicine, Department of Physiology and Biophysics, Boston University, Boston, MA, USA
- Department of Biological Chemistry and Molecular Pharmacology, Blavatnik Institute, Harvard Medical School, Boston, MA, USA
| | - Michael J. Rynkiewicz
- School of Medicine, Department of Physiology and Biophysics, Boston University, Boston, MA, USA
| | - David Rasicci
- Department of Cellular and Molecular Physiology, Penn State College of Medicine, Hershey, PA, USA
| | - Skylar M.L. Bodt
- Department of Cellular and Molecular Physiology, Penn State College of Medicine, Hershey, PA, USA
| | - Meaghan E. Barry
- Department of Biological Science, University of Massachusetts Lowell, Lowell, MA, USA
| | - Esther Bullitt
- School of Medicine, Department of Physiology and Biophysics, Boston University, Boston, MA, USA
| | - Christopher M. Yengo
- Department of Cellular and Molecular Physiology, Penn State College of Medicine, Hershey, PA, USA
| | - Jeffrey R. Moore
- Department of Biological Science, University of Massachusetts Lowell, Lowell, MA, USA
| | - William Lehman
- School of Medicine, Department of Physiology and Biophysics, Boston University, Boston, MA, USA
| |
Collapse
|
22
|
Sušjan-Leite P, Hafner-Bratkovič I. Assessing the ATP Binding Ability of NLRP3 from Cell Lysates by a Pull-down Assay. Methods Mol Biol 2023; 2696:257-267. [PMID: 37578728 DOI: 10.1007/978-1-0716-3350-2_17] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/15/2023]
Abstract
NACHT-, LRR-, and PYD-containing protein 3 (NLRP3) is a member of AAA+ ATPase family that upon activation forms inflammasomes. Several studies demonstrated that ATP binding and hydrolysis are important for NLRP3 function as an inflammasome sensor. Furthermore, compounds targeting ATP binding motifs and interfering with ATPase activity of NLRP3 inhibit NLRP3 inflammasome formation. Measuring ATPase activity of proteins and binding of radiolabeled ATP to specified proteins are well-established methods that require purified protein. Here, we describe a method for assessing NLRP3 binding to ATP using ATP-conjugated beads and lysates of cells that either express endogenous NLRP3 or are transfected with plasmids encoding NLRP3. Efficiency of binding is followed after elution from the beads and detection with Western blot and immunolabelling. The method can be used to evaluate the functionality of NLRP3 variants or to check whether compounds or NLRP3 binding partners interfere with binding of ATP.
Collapse
Affiliation(s)
- Petra Sušjan-Leite
- Department of Synthetic Biology and Immunology, National Institute of Chemistry, Ljubljana, Slovenia
| | - Iva Hafner-Bratkovič
- Department of Synthetic Biology and Immunology, National Institute of Chemistry, Ljubljana, Slovenia.
- EN-FIST Centre of Excellence, Ljubljana, Slovenia.
| |
Collapse
|
23
|
Brinkschulte R, Fußhöller DM, Hoss F, Rodríguez-Alcázar JF, Lauterbach MA, Kolbe CC, Rauen M, Ince S, Herrmann C, Latz E, Geyer M. ATP-binding and hydrolysis of human NLRP3. Commun Biol 2022; 5:1176. [PMID: 36329210 PMCID: PMC9633759 DOI: 10.1038/s42003-022-04120-2] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Accepted: 10/17/2022] [Indexed: 11/06/2022] Open
Abstract
The innate immune system uses inflammasomal proteins to recognize danger signals and fight invading pathogens. NLRP3, a multidomain protein belonging to the family of STAND ATPases, is characterized by its central nucleotide-binding NACHT domain. The incorporation of ATP is thought to correlate with large conformational changes in NLRP3, leading to an active state of the sensory protein. Here we analyze the intrinsic ATP hydrolysis activity of recombinant NLRP3 by reverse phase HPLC. Wild-type NLRP3 appears in two different conformational states that exhibit an approximately fourteen-fold different hydrolysis activity in accordance with an inactive, autoinhibited state and an open, active state. The impact of canonical residues in the nucleotide binding site as the Walker A and B motifs and sensor 1 and 2 is analyzed by site directed mutagenesis. Cellular experiments show that reduced NLRP3 hydrolysis activity correlates with higher ASC specking after inflammation stimulation. Addition of the kinase NEK7 does not change the hydrolysis activity of NLRP3. Our data provide a comprehensive view on the function of conserved residues in the nucleotide-binding site of NLRP3 and the correlation of ATP hydrolysis with inflammasome activity. Analysis of the inflammasome-forming protein NLRP3 provides insights into the function of conserved residues in the ATP-binding site of NLRP3 and the correlation of ATP hydrolysis with inflammasome activation.
Collapse
Affiliation(s)
- Rebecca Brinkschulte
- Institute of Structural Biology, University of Bonn, Venusberg-Campus 1, 53127, Bonn, Germany
| | - David M Fußhöller
- Institute of Structural Biology, University of Bonn, Venusberg-Campus 1, 53127, Bonn, Germany
| | - Florian Hoss
- Institute of Innate Immunity, University of Bonn, Venusberg-Campus 1, 53127, Bonn, Germany
| | | | - Mario A Lauterbach
- Institute of Innate Immunity, University of Bonn, Venusberg-Campus 1, 53127, Bonn, Germany
| | - Carl-Christian Kolbe
- Institute of Innate Immunity, University of Bonn, Venusberg-Campus 1, 53127, Bonn, Germany
| | - Melanie Rauen
- Institute of Structural Biology, University of Bonn, Venusberg-Campus 1, 53127, Bonn, Germany
| | - Semra Ince
- Physical Chemistry I, Ruhr University Bochum, 44780, Bochum, Germany
| | | | - Eicke Latz
- Institute of Innate Immunity, University of Bonn, Venusberg-Campus 1, 53127, Bonn, Germany
| | - Matthias Geyer
- Institute of Structural Biology, University of Bonn, Venusberg-Campus 1, 53127, Bonn, Germany.
| |
Collapse
|
24
|
Viñegra de la Torre N, Vayssières A, Obeng-Hinneh E, Neumann U, Zhou Y, Lázaro A, Roggen A, Sun H, Stolze SC, Nakagami H, Schneeberger K, Timmers T, Albani MC. FLOWERING REPRESSOR AAA + ATPase 1 is a novel regulator of perennial flowering in Arabis alpina. THE NEW PHYTOLOGIST 2022; 236:729-744. [PMID: 35832005 DOI: 10.1111/nph.18374] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Accepted: 07/04/2022] [Indexed: 06/15/2023]
Abstract
Arabis alpina is a polycarpic perennial, in which PERPETUAL FLOWERING1 (PEP1) regulates flowering and perennial traits in a vernalization-dependent manner. Mutagenesis screens of the pep1 mutant established the role of other flowering time regulators in PEP1-parallel pathways. Here we characterized three allelic enhancers of pep1 (eop002, 085 and 091) which flower early. We mapped the causal mutations and complemented mutants with the identified gene. Using quantitative reverse transcriptase PCR and reporter lines, we determined the protein spatiotemporal expression patterns and localization within the cell. We also characterized its role in Arabidopsis thaliana using CRISPR and in A. alpina by introgressing mutant alleles into a wild-type background. These mutants carried lesions in an AAA+ ATPase of unknown function, FLOWERING REPRESSOR AAA+ ATPase 1 (AaFRAT1). AaFRAT1 was detected in the vasculature of young leaf primordia and the rib zone of flowering shoot apical meristems. At the subcellular level, AaFRAT1 was localized at the interphase between the endoplasmic reticulum and peroxisomes. Introgression lines carrying Aafrat1 alleles required less vernalization to flower and reduced number of vegetative axillary branches. By contrast, A. thaliana CRISPR lines showed weak flowering phenotypes. AaFRAT1 contributes to flowering time regulation and the perennial growth habit of A. alpina.
Collapse
Affiliation(s)
- Natanael Viñegra de la Torre
- Institute for Plant Sciences, University of Cologne, Zülpicher Str. 47b, 50674, Cologne, Germany
- Max Planck Institute for Plant Breeding Research, Carl-von-Linné Weg 10, 50829, Cologne, Germany
- Cluster of Excellence on Plant Sciences "From Complex Traits towards Synthetic Modules", 40225, Düsseldorf, Germany
| | - Alice Vayssières
- Institute for Plant Sciences, University of Cologne, Zülpicher Str. 47b, 50674, Cologne, Germany
- Max Planck Institute for Plant Breeding Research, Carl-von-Linné Weg 10, 50829, Cologne, Germany
- Cluster of Excellence on Plant Sciences "From Complex Traits towards Synthetic Modules", 40225, Düsseldorf, Germany
| | - Evelyn Obeng-Hinneh
- Institute for Plant Sciences, University of Cologne, Zülpicher Str. 47b, 50674, Cologne, Germany
- Max Planck Institute for Plant Breeding Research, Carl-von-Linné Weg 10, 50829, Cologne, Germany
- Cluster of Excellence on Plant Sciences "From Complex Traits towards Synthetic Modules", 40225, Düsseldorf, Germany
| | - Ulla Neumann
- Max Planck Institute for Plant Breeding Research, Carl-von-Linné Weg 10, 50829, Cologne, Germany
| | - Yanhao Zhou
- Institute for Plant Sciences, University of Cologne, Zülpicher Str. 47b, 50674, Cologne, Germany
- Max Planck Institute for Plant Breeding Research, Carl-von-Linné Weg 10, 50829, Cologne, Germany
- Cluster of Excellence on Plant Sciences "From Complex Traits towards Synthetic Modules", 40225, Düsseldorf, Germany
| | - Ana Lázaro
- Institute for Plant Sciences, University of Cologne, Zülpicher Str. 47b, 50674, Cologne, Germany
- Max Planck Institute for Plant Breeding Research, Carl-von-Linné Weg 10, 50829, Cologne, Germany
- Cluster of Excellence on Plant Sciences "From Complex Traits towards Synthetic Modules", 40225, Düsseldorf, Germany
| | - Adrian Roggen
- Institute for Plant Sciences, University of Cologne, Zülpicher Str. 47b, 50674, Cologne, Germany
- Max Planck Institute for Plant Breeding Research, Carl-von-Linné Weg 10, 50829, Cologne, Germany
| | - Hequan Sun
- Max Planck Institute for Plant Breeding Research, Carl-von-Linné Weg 10, 50829, Cologne, Germany
| | - Sara C Stolze
- Max Planck Institute for Plant Breeding Research, Carl-von-Linné Weg 10, 50829, Cologne, Germany
| | - Hirofumi Nakagami
- Max Planck Institute for Plant Breeding Research, Carl-von-Linné Weg 10, 50829, Cologne, Germany
| | - Korbinian Schneeberger
- Max Planck Institute for Plant Breeding Research, Carl-von-Linné Weg 10, 50829, Cologne, Germany
| | - Ton Timmers
- Max Planck Institute for Plant Breeding Research, Carl-von-Linné Weg 10, 50829, Cologne, Germany
| | - Maria C Albani
- Institute for Plant Sciences, University of Cologne, Zülpicher Str. 47b, 50674, Cologne, Germany
- Max Planck Institute for Plant Breeding Research, Carl-von-Linné Weg 10, 50829, Cologne, Germany
- Cluster of Excellence on Plant Sciences "From Complex Traits towards Synthetic Modules", 40225, Düsseldorf, Germany
| |
Collapse
|
25
|
Kozlova MI, Shalaeva DN, Dibrova DV, Mulkidjanian AY. Common Mechanism of Activated Catalysis in P-loop Fold Nucleoside Triphosphatases-United in Diversity. Biomolecules 2022; 12:1346. [PMID: 36291556 PMCID: PMC9599734 DOI: 10.3390/biom12101346] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2022] [Revised: 08/20/2022] [Accepted: 09/14/2022] [Indexed: 11/16/2022] Open
Abstract
To clarify the obscure hydrolysis mechanism of ubiquitous P-loop-fold nucleoside triphosphatases (Walker NTPases), we analysed the structures of 3136 catalytic sites with bound Mg-NTP complexes or their analogues. Our results are presented in two articles; here, in the second of them, we elucidated whether the Walker A and Walker B sequence motifs-common to all P-loop NTPases-could be directly involved in catalysis. We found that the hydrogen bonds (H-bonds) between the strictly conserved, Mg-coordinating Ser/Thr of the Walker A motif ([Ser/Thr]WA) and aspartate of the Walker B motif (AspWB) are particularly short (even as short as 2.4 ångströms) in the structures with bound transition state (TS) analogues. Given that a short H-bond implies parity in the pKa values of the H-bond partners, we suggest that, in response to the interactions of a P-loop NTPase with its cognate activating partner, a proton relocates from [Ser/Thr]WA to AspWB. The resulting anionic [Ser/Thr]WA alkoxide withdraws a proton from the catalytic water molecule, and the nascent hydroxyl attacks the gamma phosphate of NTP. When the gamma-phosphate breaks away, the trapped proton at AspWB passes by the Grotthuss relay via [Ser/Thr]WA to beta-phosphate and compensates for its developing negative charge that is thought to be responsible for the activation barrier of hydrolysis.
Collapse
Affiliation(s)
- Maria I. Kozlova
- School of Physics, Osnabrueck University, D-49069 Osnabrueck, Germany
| | - Daria N. Shalaeva
- School of Physics, Osnabrueck University, D-49069 Osnabrueck, Germany
| | - Daria V. Dibrova
- School of Physics, Osnabrueck University, D-49069 Osnabrueck, Germany
| | - Armen Y. Mulkidjanian
- School of Physics, Osnabrueck University, D-49069 Osnabrueck, Germany
- Center of Cellular Nanoanalytics, Osnabrueck University, D-49069 Osnabrueck, Germany
| |
Collapse
|
26
|
Kozlova MI, Shalaeva DN, Dibrova DV, Mulkidjanian AY. Common Patterns of Hydrolysis Initiation in P-loop Fold Nucleoside Triphosphatases. Biomolecules 2022; 12:1345. [PMID: 36291554 PMCID: PMC9599529 DOI: 10.3390/biom12101345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2022] [Revised: 08/20/2022] [Accepted: 09/14/2022] [Indexed: 11/24/2022] Open
Abstract
The P-loop fold nucleoside triphosphate (NTP) hydrolases (also known as Walker NTPases) function as ATPases, GTPases, and ATP synthases, are often of medical importance, and represent one of the largest and evolutionarily oldest families of enzymes. There is still no consensus on their catalytic mechanism. To clarify this, we performed the first comparative structural analysis of more than 3100 structures of P-loop NTPases that contain bound substrate Mg-NTPs or their analogues. We proceeded on the assumption that structural features common to these P-loop NTPases may be essential for catalysis. Our results are presented in two articles. Here, in the first, we consider the structural elements that stimulate hydrolysis. Upon interaction of P-loop NTPases with their cognate activating partners (RNA/DNA/protein domains), specific stimulatory moieties, usually Arg or Lys residues, are inserted into the catalytic site and initiate the cleavage of gamma phosphate. By analyzing a plethora of structures, we found that the only shared feature was the mechanistic interaction of stimulators with the oxygen atoms of gamma-phosphate group, capable of causing its rotation. One of the oxygen atoms of gamma phosphate coordinates the cofactor Mg ion. The rotation must pull this oxygen atom away from the Mg ion. This rearrangement should affect the properties of the other Mg ligands and may initiate hydrolysis according to the mechanism elaborated in the second article.
Collapse
Affiliation(s)
- Maria I. Kozlova
- School of Physics, Osnabrueck University, D-49069 Osnabrueck, Germany
| | - Daria N. Shalaeva
- School of Physics, Osnabrueck University, D-49069 Osnabrueck, Germany
| | - Daria V. Dibrova
- School of Physics, Osnabrueck University, D-49069 Osnabrueck, Germany
| | - Armen Y. Mulkidjanian
- School of Physics, Osnabrueck University, D-49069 Osnabrueck, Germany
- Center of Cellular Nanoanalytics, Osnabrueck University, D-49069 Osnabrueck, Germany
| |
Collapse
|
27
|
Wald J, Fahrenkamp D, Goessweiner-Mohr N, Lugmayr W, Ciccarelli L, Vesper O, Marlovits TC. Mechanism of AAA+ ATPase-mediated RuvAB-Holliday junction branch migration. Nature 2022; 609:630-639. [PMID: 36002576 PMCID: PMC9477746 DOI: 10.1038/s41586-022-05121-1] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Accepted: 07/18/2022] [Indexed: 12/12/2022]
Abstract
The Holliday junction is a key intermediate formed during DNA recombination across all kingdoms of life1. In bacteria, the Holliday junction is processed by two homo-hexameric AAA+ ATPase RuvB motors, which assemble together with the RuvA-Holliday junction complex to energize the strand-exchange reaction2. Despite its importance for chromosome maintenance, the structure and mechanism by which this complex facilitates branch migration are unknown. Here, using time-resolved cryo-electron microscopy, we obtained structures of the ATP-hydrolysing RuvAB complex in seven distinct conformational states, captured during assembly and processing of a Holliday junction. Five structures together resolve the complete nucleotide cycle and reveal the spatiotemporal relationship between ATP hydrolysis, nucleotide exchange and context-specific conformational changes in RuvB. Coordinated motions in a converter formed by DNA-disengaged RuvB subunits stimulate hydrolysis and nucleotide exchange. Immobilization of the converter enables RuvB to convert the ATP-contained energy into a lever motion, which generates the pulling force driving the branch migration. We show that RuvB motors rotate together with the DNA substrate, which, together with a progressing nucleotide cycle, forms the mechanistic basis for DNA recombination by continuous branch migration. Together, our data decipher the molecular principles of homologous recombination by the RuvAB complex, elucidate discrete and sequential transition-state intermediates for chemo-mechanical coupling of hexameric AAA+ motors and provide a blueprint for the design of state-specific compounds targeting AAA+ motors.
Collapse
Affiliation(s)
- Jiri Wald
- Institute of Structural and Systems Biology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.
- Centre for Structural Systems Biology, Hamburg, Germany.
- Deutsches Elektronen Synchrotron (DESY), Hamburg, Germany.
- Institute of Molecular Biotechnology GmbH (IMBA), Austrian Academy of Sciences, Vienna, Austria.
- Research Institute of Molecular Pathology (IMP), Vienna, Austria.
| | - Dirk Fahrenkamp
- Institute of Structural and Systems Biology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.
- Centre for Structural Systems Biology, Hamburg, Germany.
- Deutsches Elektronen Synchrotron (DESY), Hamburg, Germany.
| | - Nikolaus Goessweiner-Mohr
- Institute of Structural and Systems Biology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Centre for Structural Systems Biology, Hamburg, Germany
- Deutsches Elektronen Synchrotron (DESY), Hamburg, Germany
- Institute of Molecular Biotechnology GmbH (IMBA), Austrian Academy of Sciences, Vienna, Austria
- Research Institute of Molecular Pathology (IMP), Vienna, Austria
- Institute of Biophysics, Johannes Kepler University (JKU), Linz, Austria
| | - Wolfgang Lugmayr
- Institute of Structural and Systems Biology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Centre for Structural Systems Biology, Hamburg, Germany
- Deutsches Elektronen Synchrotron (DESY), Hamburg, Germany
- Institute of Molecular Biotechnology GmbH (IMBA), Austrian Academy of Sciences, Vienna, Austria
- Research Institute of Molecular Pathology (IMP), Vienna, Austria
| | - Luciano Ciccarelli
- Institute of Structural and Systems Biology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Centre for Structural Systems Biology, Hamburg, Germany
- Institute of Molecular Biotechnology GmbH (IMBA), Austrian Academy of Sciences, Vienna, Austria
- Research Institute of Molecular Pathology (IMP), Vienna, Austria
- GlaxoSmithKline Vaccines, Siena, Italy
| | - Oliver Vesper
- Institute of Structural and Systems Biology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Centre for Structural Systems Biology, Hamburg, Germany
- Deutsches Elektronen Synchrotron (DESY), Hamburg, Germany
- Institute of Molecular Biotechnology GmbH (IMBA), Austrian Academy of Sciences, Vienna, Austria
- Research Institute of Molecular Pathology (IMP), Vienna, Austria
| | - Thomas C Marlovits
- Institute of Structural and Systems Biology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.
- Centre for Structural Systems Biology, Hamburg, Germany.
- Deutsches Elektronen Synchrotron (DESY), Hamburg, Germany.
- Institute of Molecular Biotechnology GmbH (IMBA), Austrian Academy of Sciences, Vienna, Austria.
- Research Institute of Molecular Pathology (IMP), Vienna, Austria.
| |
Collapse
|
28
|
Harari A, Zoltsman G, Levin T, Rosenzweig R. Hsp104 N-terminal domain interaction with substrates plays a regulatory role in protein disaggregation. FEBS J 2022; 289:5359-5377. [PMID: 35305079 PMCID: PMC9541529 DOI: 10.1111/febs.16441] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Revised: 02/01/2022] [Accepted: 03/17/2022] [Indexed: 01/19/2023]
Abstract
Heat shock protein 104 (Hsp104) protein disaggregases are powerful molecular machines that harness the energy derived from ATP binding and hydrolysis to disaggregate a wide range of protein aggregates and amyloids, as well as to assist in yeast prion propagation. Little is known, however, about how Hsp104 chaperones recognize such a diversity of substrates, or indeed the contribution of the substrate‐binding N‐terminal domain (NTD) to Hsp104 function. Herein, we present a NMR spectroscopy study, which structurally characterizes the Hsp104 NTD‐substrate interaction. We show that the NTD includes a substrate‐binding groove that specifically recognizes exposed hydrophobic stretches in unfolded, misfolded, amyloid and prion substrates of Hsp104. In addition, we find that the NTD itself has chaperoning activities which help to protect the exposed hydrophobic regions of its substrates from further misfolding and aggregation, thereby priming them for threading through the Hsp104 central channel. We further demonstrate that mutations to this substrate‐binding groove abolish Hsp104 activation by client proteins and keep the chaperone in a partially inhibited state. The Hsp104 variant with these mutations also exhibited significantly reduced disaggregation activity and cell survival at extreme temperatures. Together, our findings provide both a detailed characterization of the NTD‐substrate complex and insight into the functional regulatory role of the NTD in protein disaggregation and yeast thermotolerance.
Collapse
Affiliation(s)
- Anna Harari
- Department of Chemical and Structural Biology, Weizmann Institute of Science, Rehovot, Israel
| | - Guy Zoltsman
- Department of Chemical and Structural Biology, Weizmann Institute of Science, Rehovot, Israel
| | - Tal Levin
- Department of Chemical and Structural Biology, Weizmann Institute of Science, Rehovot, Israel
| | - Rina Rosenzweig
- Department of Chemical and Structural Biology, Weizmann Institute of Science, Rehovot, Israel
| |
Collapse
|
29
|
Cooperativity in ATP Hydrolysis by MopR Is Modulated by Its Signal Reception Domain and by Its Protein and Phenol Concentrations. J Bacteriol 2022; 204:e0017922. [PMID: 35862728 PMCID: PMC9380524 DOI: 10.1128/jb.00179-22] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
The NtrC family of AAA+ proteins are bacterial transcriptional regulators that control σ54-dependent RNA polymerase transcription under certain stressful conditions. MopR, which is a member of this family, is responsive to phenol and stimulates its degradation. Biochemical studies to understand the role of ATP and phenol in oligomerization and allosteric regulation, which are described here, show that MopR undergoes concentration-dependent oligomerization in which dimers assemble into functional hexamers. The oligomerization occurs in a nucleation-dependent manner with a tetrameric intermediate. Additionally, phenol binding is shown to be responsible for shifting MopR's equilibrium from a repressed state (high affinity toward ATP) to a functionally active, derepressed state with low-affinity for ATP. Based on these findings, we propose a model for allosteric regulation of MopR. IMPORTANCE The NtrC family of bacterial transcriptional regulators are enzymes with a modular architecture that harbor a signal sensing domain followed by a AAA+ domain. MopR, a NtrC family member, responds to phenol and activates phenol adaptation pathways that are transcribed by σ54-dependent RNA polymerases. Our results show that for efficient ATP hydrolysis, MopR assembles as functional hexamers and that this activity of MopR is regulated by its effector (phenol), ATP, and protein concentration. Our findings, and the kinetic methods we employ, should be useful in dissecting the allosteric mechanisms of other AAA+ proteins, in general, and NtrC family members in particular.
Collapse
|
30
|
Kudzhaev AM, Andrianova AG, Gustchina AE, Smirnov IV, Rotanova TV. ATP-Dependent Lon Proteases in the Cellular Protein Quality Control System. RUSSIAN JOURNAL OF BIOORGANIC CHEMISTRY 2022. [DOI: 10.1134/s1068162022040136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
31
|
Sharma N, Osman C. Yme2, a putative RNA recognition motif and AAA+ domain containing protein, genetically interacts with the mitochondrial protein export machinery. Biol Chem 2022; 403:807-817. [PMID: 35100666 PMCID: PMC9284673 DOI: 10.1515/hsz-2021-0398] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Accepted: 01/19/2022] [Indexed: 02/04/2023]
Abstract
The mitochondrial respiratory chain is composed of nuclear as well as mitochondrial-encoded subunits. A variety of factors mediate co-translational integration of mtDNA-encoded proteins into the inner membrane. In Saccharomyces cerevisiae, Mdm38 and Mba1 are ribosome acceptors that recruit the mitochondrial ribosome to the inner membrane, where the insertase Oxa1, facilitates membrane integration of client proteins. The protein Yme2 has previously been shown to be localized in the inner mitochondrial membrane and has been implicated in mitochondrial protein biogenesis, but its mode of action remains unclear. Here, we show that multiple copies of Yme2 assemble into a high molecular weight complex. Using a combination of bioinformatics and mutational analyses, we find that Yme2 possesses an RNA recognition motif (RRM), which faces the mitochondrial matrix and a AAA+ domain that is located in the intermembrane space. We further show that YME2 genetically interacts with MDM38, MBA1 and OXA1, which links the function of Yme2 to the mitochondrial protein biogenesis machinery.
Collapse
Affiliation(s)
- Nupur Sharma
- Faculty of Biology, Ludwig Maximilian University Munich, D-82152Planegg-Martinsried, Germany
- Graduate School of Life Sciences, Ludwig Maximilian University Munich, D-82152Planegg-Martinsried, Germany
| | - Christof Osman
- Faculty of Biology, Ludwig Maximilian University Munich, D-82152Planegg-Martinsried, Germany
- Graduate School of Life Sciences, Ludwig Maximilian University Munich, D-82152Planegg-Martinsried, Germany
| |
Collapse
|
32
|
Bobrovskyy M, Oh SY, Missiakas D. Contribution of the EssC ATPase to the assembly of the type 7b secretion system in Staphylococcus aureus. J Biol Chem 2022; 298:102318. [PMID: 35921891 PMCID: PMC9436818 DOI: 10.1016/j.jbc.2022.102318] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Revised: 07/07/2022] [Accepted: 07/13/2022] [Indexed: 11/28/2022] Open
Abstract
Secretion systems utilize ATPase activity to facilitate the translocation of proteins into and across membranes. In bacteria, the universally conserved SecA ATPase binds a large repertoire of preproteins and interacts with the SecYEG translocon. In contrast, the type 7b secretion system (T7bSS) of Staphylococcus aureus supports the secretion of a restricted subset of proteins. T7bSSs are found in several Firmicutes as gene clusters encoding secreted WXG100 proteins and FtsK/SpoIIIE-like ATPase. In S. aureus, this ATPase is called EssC and comprises two cytosolic forkhead-associated domains (FHA1–2), two membrane-spanning segments (TM1–2), and four cytosolic modules named DUF (domain of unknown function) and ATPases1-3 (D1D2D3). However, a detailed understanding of the interactions of EssC in the T7bSS is not clear. Here, we tagged EssC and performed affinity chromatography of detergent-solubilized extracts of wild type and isogenic mutants of S. aureus. We found that EssC recruits EsaA, EssA, and EssB in a complex referred to as the ESS (ESAT-6 like secretion system) translocon, and secreted substrates were not required for translocon assembly. Furthermore, deletions of FHA1 and DUF rendered EssC unstable, whereas FHA2 was required for association with EssB. This interaction was independent of EsaA, but EsaA was required to recruit EssA to the EssC–EssB complex. Finally, we show that assembly of the ESS translocon was impaired upon mutation of D2 structural motifs. Together, our data indicate that the ESS translocon is maintained fully assembled at the plasma membrane and that D2 is fundamental in sustaining the integrity of this complex.
Collapse
Affiliation(s)
- Maksym Bobrovskyy
- Department of Microbiology, University of Chicago, Chicago, Illinois, USA
| | - So Young Oh
- Howard Taylor Ricketts Laboratory, University of Chicago, Lemont, Illinois, USA
| | - Dominique Missiakas
- Department of Microbiology, University of Chicago, Chicago, Illinois, USA; Howard Taylor Ricketts Laboratory, University of Chicago, Lemont, Illinois, USA.
| |
Collapse
|
33
|
Judy RM, Sheedy CJ, Gardner BM. Insights into the Structure and Function of the Pex1/Pex6 AAA-ATPase in Peroxisome Homeostasis. Cells 2022; 11:2067. [PMID: 35805150 PMCID: PMC9265785 DOI: 10.3390/cells11132067] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Revised: 06/25/2022] [Accepted: 06/26/2022] [Indexed: 02/01/2023] Open
Abstract
The AAA-ATPases Pex1 and Pex6 are required for the formation and maintenance of peroxisomes, membrane-bound organelles that harbor enzymes for specialized metabolism. Together, Pex1 and Pex6 form a heterohexameric AAA-ATPase capable of unfolding substrate proteins via processive threading through a central pore. Here, we review the proposed roles for Pex1/Pex6 in peroxisome biogenesis and degradation, discussing how the unfolding of potential substrates contributes to peroxisome homeostasis. We also consider how advances in cryo-EM, computational structure prediction, and mechanisms of related ATPases are improving our understanding of how Pex1/Pex6 converts ATP hydrolysis into mechanical force. Since mutations in PEX1 and PEX6 cause the majority of known cases of peroxisome biogenesis disorders such as Zellweger syndrome, insights into Pex1/Pex6 structure and function are important for understanding peroxisomes in human health and disease.
Collapse
Affiliation(s)
| | | | - Brooke M. Gardner
- Department of Molecular, Cellular, and Developmental Biology, University of California, Santa Barbara, CA 93106, USA; (R.M.J.); (C.J.S.)
| |
Collapse
|
34
|
Mishra D, Srinivasan R. Catching a Walker in the Act-DNA Partitioning by ParA Family of Proteins. Front Microbiol 2022; 13:856547. [PMID: 35694299 PMCID: PMC9178275 DOI: 10.3389/fmicb.2022.856547] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Accepted: 04/28/2022] [Indexed: 12/01/2022] Open
Abstract
Partitioning the replicated genetic material is a crucial process in the cell cycle program of any life form. In bacteria, many plasmids utilize cytoskeletal proteins that include ParM and TubZ, the ancestors of the eukaryotic actin and tubulin, respectively, to segregate the plasmids into the daughter cells. Another distinct class of cytoskeletal proteins, known as the Walker A type Cytoskeletal ATPases (WACA), is unique to Bacteria and Archaea. ParA, a WACA family protein, is involved in DNA partitioning and is more widespread. A centromere-like sequence parS, in the DNA is bound by ParB, an adaptor protein with CTPase activity to form the segregation complex. The ParA ATPase, interacts with the segregation complex and partitions the DNA into the daughter cells. Furthermore, the Walker A motif-containing ParA superfamily of proteins is associated with a diverse set of functions ranging from DNA segregation to cell division, cell polarity, chemotaxis cluster assembly, cellulose biosynthesis and carboxysome maintenance. Unifying principles underlying the varied range of cellular roles in which the ParA superfamily of proteins function are outlined. Here, we provide an overview of the recent findings on the structure and function of the ParB adaptor protein and review the current models and mechanisms by which the ParA family of proteins function in the partitioning of the replicated DNA into the newly born daughter cells.
Collapse
Affiliation(s)
- Dipika Mishra
- School of Biological Sciences, National Institute of Science Education and Research, Bhubaneswar, India
- Homi Bhabha National Institutes, Mumbai, India
| | - Ramanujam Srinivasan
- School of Biological Sciences, National Institute of Science Education and Research, Bhubaneswar, India
- Homi Bhabha National Institutes, Mumbai, India
| |
Collapse
|
35
|
Lo HH, Chang HC, Liao CT, Hsiao YM. Expression and function of clpS and clpA in Xanthomonas campestris pv. campestris. Antonie van Leeuwenhoek 2022; 115:589-607. [PMID: 35322326 DOI: 10.1007/s10482-022-01725-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2021] [Accepted: 03/02/2022] [Indexed: 10/18/2022]
Abstract
ATP-dependent proteases (FtsH, Lon, and Clp family proteins) are ubiquitous in bacteria and play essential roles in numerous regulatory cell processes. Xanthomonas campestris pv. campestris is a Gram-negative pathogen that can cause black rot diseases in crucifers. The genome of X. campestris pv. campestris has several clp genes, namely, clpS, clpA, clpX, clpP, clpQ, and clpY. Among these genes, only clpX and clpP is known to be required for pathogenicity. Here, we focused on two uncharacterized clp genes (clpS and clpA) that encode the adaptor (ClpS) and ATPase subunit (ClpA) of the ClpAP protease complex. Transcriptional analysis revealed that the expression of clpS and clpA was growth phase-dependent and affected by the growth temperature. The inactivation of clpA, but not of clpS, resulted in susceptibility to high temperature and attenuated virulence in the host plant. The altered phenotypes of the clpA mutant could be complemented in trans. Site-directed mutagenesis revealed that K223 and K504 were the amino acid residues critical for ClpA function in heat tolerance. The protein expression profile shown by the clpA mutant in response to heat stress was different from that exhibited by the wild type. In summary, we characterized two clp genes (clpS and clpA) by examining their expression profiles and functions in different processes, including stress tolerance and pathogenicity. We demonstrated that clpS and clpA were expressed in a temperature-dependent manner and that clpA was required for the survival at high temperature and full virulence of X. campestris pv. campestris. This work represents the first time that clpS and clpA were characterized in Xanthomonas.
Collapse
Affiliation(s)
- Hsueh-Hsia Lo
- Department of Medical Laboratory Science and Biotechnology, Central Taiwan University of Science and Technology, Taichung, 40601, Taiwan
| | - Hsiao-Ching Chang
- Department of Medical Laboratory Science and Biotechnology, Central Taiwan University of Science and Technology, Taichung, 40601, Taiwan
| | - Chao-Tsai Liao
- Department of Medical Laboratory Science and Biotechnology, Central Taiwan University of Science and Technology, Taichung, 40601, Taiwan
| | - Yi-Min Hsiao
- Department of Medical Laboratory Science and Biotechnology, Central Taiwan University of Science and Technology, Taichung, 40601, Taiwan.
| |
Collapse
|
36
|
Lan J, Huang J, Tao X, Gao Y, Zhang L, Huang W, Luo J, Liu C, Deng Y, Liu L, Liu X. Evaluation of the TRIP13 level in breast cancer and insights into potential molecular pathways. J Cell Mol Med 2022; 26:2673-2685. [PMID: 35322916 PMCID: PMC9077308 DOI: 10.1111/jcmm.17278] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Revised: 02/10/2022] [Accepted: 02/27/2022] [Indexed: 11/29/2022] Open
Abstract
TRIP13 is a member of the large superfamily of the AAA + ATPase proteins and is associated with a variety of activities. Emerging evidence has shown that TRIP13 may serve as an oncogene. However, the function of TRIP13 in breast cancer (BC) has not yet been elucidated. Here, a variety of bioinformatic tools and laboratory experiments were combined to analyse the expression patterns, prognostic value and functional network of TRIP13 in BC. Multiple databases and immunohistochemistry (IHC) indicated a higher TRIP13 expression in BC tissue compared with normal tissue. TRIP13 was highly expressed in lung metastatic lesions compared with primary tumours in a 4T1 cell implantation BALB/c mouse model of BC. Kaplan–Meier plots also revealed that high TRIP13 expression correlated with poor survival in patients with BC. Furthermore, gene set enrichment analysis revealed that TRIP13 was primarily enriched in the signalling pathway of PI3K‐AKT‐mTOR. Suppressing TRIP13 could inhibit the expression of related genes, as well as the proliferation and migration of BC cell. Finally, 10 hub genes with a high score of connectivity were filtered from the protein–protein interaction (PPI) network, including MAD2L1, CDC20, CDC5L, CDK1, CCNA2, BUB1B, RAD51, SPO11, KIF11 and AURKB. Thus, TRIP13 may be a promising prognostic biomarker and an effective therapeutic target for BC.
Collapse
Affiliation(s)
- Jin Lan
- Department of General Surgery, The Third Affiliated Hospital of Southern Medical University, Guangzhou, China
| | - Jingzhan Huang
- Department of General Surgery, The Third Affiliated Hospital of Southern Medical University, Guangzhou, China
| | - Xinyi Tao
- Department of General Surgery, The Third Affiliated Hospital of Southern Medical University, Guangzhou, China
| | - Yuan Gao
- Department of General Surgery, The Third Affiliated Hospital of Southern Medical University, Guangzhou, China
| | - Longshan Zhang
- Department of Radiation Oncology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Weiqiang Huang
- Department of Radiation Oncology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Junjie Luo
- Department of General Surgery, The Third Affiliated Hospital of Southern Medical University, Guangzhou, China
| | - Chuqin Liu
- Department of General Surgery, The Third Affiliated Hospital of Southern Medical University, Guangzhou, China
| | - Yunyao Deng
- Department of General Surgery, The Third Affiliated Hospital of Southern Medical University, Guangzhou, China
| | - Lixin Liu
- Department of General Surgery, The Third Affiliated Hospital of Southern Medical University, Guangzhou, China
| | - Xiaolong Liu
- Department of General Surgery, The Third Affiliated Hospital of Southern Medical University, Guangzhou, China
| |
Collapse
|
37
|
Shen Y, Gomez-Blanco J, Petassi MT, Peters JE, Ortega J, Guarné A. Structural basis for DNA targeting by the Tn7 transposon. Nat Struct Mol Biol 2022; 29:143-151. [PMID: 35173349 DOI: 10.1038/s41594-022-00724-8] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2021] [Accepted: 01/03/2022] [Indexed: 12/19/2022]
Abstract
Tn7 transposable elements are unique for their highly specific, and sometimes programmable, target-site selection mechanisms and precise insertions. All the elements in the Tn7 family utilize an AAA+ adaptor (TnsC) to coordinate target-site selection with transpososome assembly and to prevent insertions at sites already containing a Tn7 element. Owing to its multiple functions, TnsC is considered the linchpin in the Tn7 element. Here we present the high-resolution cryo-EM structure of TnsC bound to DNA using a gain-of-function variant of the protein and a DNA substrate that together recapitulate the recruitment to a specific DNA target site. TnsC forms an asymmetric ring on target DNA that segregates target-site selection and interaction with the paired-end complex to opposite faces of the ring. Unlike most AAA+ ATPases, TnsC uses a DNA distortion to find the target site but does not remodel DNA to activate transposition. By recognizing pre-distorted substrates, TnsC creates a built-in regulatory mechanism where ATP hydrolysis abolishes ring formation proximal to an existing element. This work unveils how Tn7 and Tn7-like elements determine the strict spacing between the target and integration sites.
Collapse
Affiliation(s)
- Yao Shen
- Department of Biochemistry, McGill University, Montreal, Quebec, Canada.,Centre de Recherche and Biologie Structurale, McGill University, Montreal, Quebec, Canada
| | - Josue Gomez-Blanco
- Department of Biochemistry, McGill University, Montreal, Quebec, Canada.,Centre de Recherche and Biologie Structurale, McGill University, Montreal, Quebec, Canada
| | | | - Joseph E Peters
- Department of Microbiology, Cornell University, Ithaca, NY, USA
| | - Joaquin Ortega
- Centre de Recherche and Biologie Structurale, McGill University, Montreal, Quebec, Canada.,Department of Anatomy and Cell Biology, McGill University Montreal, Montreal, Quebec, Canada
| | - Alba Guarné
- Department of Biochemistry, McGill University, Montreal, Quebec, Canada. .,Centre de Recherche and Biologie Structurale, McGill University, Montreal, Quebec, Canada.
| |
Collapse
|
38
|
Structure of the NLRP3 decamer bound to the cytokine release inhibitor CRID3. Nature 2022; 604:184-189. [PMID: 35114687 DOI: 10.1038/s41586-022-04467-w] [Citation(s) in RCA: 165] [Impact Index Per Article: 55.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Accepted: 01/18/2022] [Indexed: 11/09/2022]
Abstract
NLRP3 is an intracellular sensor protein whose activation by a broad spectrum of exogenous and endogenous stimuli leads to inflammasome formation and pyroptosis1,2. The conformational states of NLRP3 and the way antagonistic small molecules act at the molecular level remain poorly understood2,3. Here we report the cryo-electron microscopy structures of full-length human NLRP3 in its native form and complexed with the inhibitor CRID3 (also named MCC950)4. Inactive, ADP-bound NLRP3 is a decamer composed of homodimers of intertwined LRR domains that assemble back-to-back as pentamers. The NACHT domain is located at the apical axis of this spherical structure. One PYD dimer is additionally formed inside the LRR cage. Molecular contacts between the concave sites of two opposing LRRs are mediated by an acidic loop extending from an LRR transition segment. Binding of CRID3 significantly stabilizes the NACHT and LRR domains relative to each other, allowing structural resolution of 3.8-4.2 Å. CRID3 binds into a cleft, connecting four subdomains of the NACHT with the transition LRR. Its central sulfonylurea group interacts with the Walker A motif of the NLRP3 nucleotide-binding domain and is sandwiched between two arginines, explaining the specificity of NLRP3 for this chemical entity. With the determination of the binding site of this lead therapeutic, specific targeting of NLRP3 for the treatment of autoinflammatory and autoimmune diseases and rational drug optimization are within reach.
Collapse
|
39
|
Warren JT, Cupo RR, Wattanasirakul P, Spencer DH, Locke AE, Makaryan V, Bolyard AA, Kelley ML, Kingston NL, Shorter J, Bellanné-Chantelot C, Donadieu J, Dale DC, Link DC. Heterozygous variants of CLPB are a cause of severe congenital neutropenia. Blood 2022; 139:779-791. [PMID: 34115842 PMCID: PMC8814677 DOI: 10.1182/blood.2021010762] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2021] [Accepted: 05/19/2021] [Indexed: 02/05/2023] Open
Abstract
Severe congenital neutropenia is an inborn disorder of granulopoiesis. Approximately one third of cases do not have a known genetic cause. Exome sequencing of 104 persons with congenital neutropenia identified heterozygous missense variants of CLPB (caseinolytic peptidase B) in 5 severe congenital neutropenia cases, with 5 more cases identified through additional sequencing efforts or clinical sequencing. CLPB encodes an adenosine triphosphatase that is implicated in protein folding and mitochondrial function. Prior studies showed that biallelic mutations of CLPB are associated with a syndrome of 3-methylglutaconic aciduria, cataracts, neurologic disease, and variable neutropenia. However, 3-methylglutaconic aciduria was not observed and, other than neutropenia, these clinical features were uncommon in our series. Moreover, the CLPB variants are distinct, consisting of heterozygous variants that cluster near the adenosine triphosphate-binding pocket. Both genetic loss of CLPB and expression of CLPB variants result in impaired granulocytic differentiation of human hematopoietic progenitor cells and increased apoptosis. These CLPB variants associate with wild-type CLPB and inhibit its adenosine triphosphatase and disaggregase activity in a dominant-negative fashion. Finally, expression of CLPB variants is associated with impaired mitochondrial function but does not render cells more sensitive to endoplasmic reticulum stress. Together, these data show that heterozygous CLPB variants are a new and relatively common cause of congenital neutropenia and should be considered in the evaluation of patients with congenital neutropenia.
Collapse
Affiliation(s)
- Julia T Warren
- Division of Hematology-Oncology, Department of Pediatrics, Washington University School of Medicine, Saint Louis, MO
| | - Ryan R Cupo
- Department of Biochemistry and Biophysics, Pharmacology Graduate Group, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA
| | - Peeradol Wattanasirakul
- Division of Oncology, Department of Medicine, Washington University School of Medicine, St, MO
| | - David H Spencer
- Division of Oncology, Department of Medicine, Washington University School of Medicine, St, MO
| | - Adam E Locke
- Division of Oncology, Department of Medicine, Washington University School of Medicine, St, MO
| | - Vahagn Makaryan
- Department of Medicine, University of Washington, Seattle, WA
| | | | | | - Natalie L Kingston
- Medical Scientist Training Program, Washington University School of Medicine, St, MO
| | - James Shorter
- Department of Biochemistry and Biophysics, Pharmacology Graduate Group, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA
| | - Christine Bellanné-Chantelot
- Département de Génétique, Assistance Publique-Hôpitaux de Paris (AP-HP), Hôpital Pitié Salpêtrière, Sorbonne Université, Paris, France; and
| | - Jean Donadieu
- Sorbonne Université, INSERM, AP-HP, Registre français des Neutropénies Chroniques, Centre de Référence des Neutropénies Chroniques, Hôpital Trousseau, Service Hémato Oncologie Pédiatrique, Paris, France
| | - David C Dale
- Department of Medicine, University of Washington, Seattle, WA
| | - Daniel C Link
- Division of Oncology, Department of Medicine, Washington University School of Medicine, St, MO
| |
Collapse
|
40
|
A Structural Perspective of Reps from CRESS-DNA Viruses and Their Bacterial Plasmid Homologues. Viruses 2021; 14:v14010037. [PMID: 35062241 PMCID: PMC8780604 DOI: 10.3390/v14010037] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Revised: 12/14/2021] [Accepted: 12/15/2021] [Indexed: 11/17/2022] Open
Abstract
Rolling circle replication (RCR) is ubiquitously used by cellular and viral systems for genome and plasmid replication. While the molecular mechanism of RCR has been described, the structural mechanism is desperately lacking. Circular-rep encoded single stranded DNA (CRESS-DNA) viruses employ a viral encoded replicase (Rep) to initiate RCR. The recently identified prokaryotic homologues of Reps may also be responsible for initiating RCR. Reps are composed of an endonuclease, oligomerization, and ATPase domain. Recent structural studies have provided structures for all these domains such that an overall mechanism of RCR initiation can begin to be synthesized. However, structures of Rep in complex with its various DNA substrates and/or ligands are lacking. Here we provide a 3D bioinformatic review of the current structural information available for Reps. We combine an excess of 1590 sequences with experimental and predicted structural data from 22 CRESS-DNA groups to identify similarities and differences between Reps that lead to potentially important functional sites. Experimental studies of these sites may shed light on how Reps execute their functions. Furthermore, we identify Rep-substrate or Rep-ligand structures that are urgently needed to better understand the structural mechanism of RCR.
Collapse
|
41
|
Jing XQ, Li WQ, Zhou MR, Shi PT, Zhang R, Shalmani A, Muhammad I, Wang GF, Liu WT, Chen KM. Rice Carbohydrate-Binding Malectin-Like Protein, OsCBM1, Contributes to Drought-Stress Tolerance by Participating in NADPH Oxidase-Mediated ROS Production. RICE (NEW YORK, N.Y.) 2021; 14:100. [PMID: 34874506 PMCID: PMC8651890 DOI: 10.1186/s12284-021-00541-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2021] [Accepted: 11/28/2021] [Indexed: 05/13/2023]
Abstract
Carbohydrate-binding malectin/malectin-like domain-containing proteins (CBMs) are a recently identified protein subfamily of lectins that participates various functional bioprocesses in the animal, bacterial, and plant kingdoms. However, little is known the roles of CBMs in rice development and stress response. In this study, OsCBM1, which encodes a protein containing only one malectin-like domain, was cloned and characterized. OsCBM1 is localized in both the endoplasmic reticulum and plasma membrane. Its transcripts are dominantly expressed in leaves and could be significantly stimulated by a number of phytohormone applications and abiotic stress treatments. Overexpression of OsCBM1 increased drought tolerance and reactive oxygen species production in rice, whereas the knockdown of the gene decreased them. OsCBM1 physically interacts with OsRbohA, a NADPH oxidase, and the expression of OsCBM1 in osrbohA, an OsRbohA-knockout mutant, is significantly downregulated under both normal growth and drought stress conditions. Meanwhile, OsCBM1 can also physically interacts with OsRacGEF1, a specific guanine nucleotide exchange factor for the Rop/Rac GTPase OsRac1, and transient coexpression of OsCBM1 with OaRacGEF1 significantly enhanced ROS production. Further transcriptome analysis showed that multiple signaling regulatory mechanisms are involved in the OsCBM1-mediated processes. All these results suggest that OsCBM1 participates in NADPH oxidase-mediated ROS production by interacting with OsRbohA and OsRacGEF1, contributing to drought stress tolerance of rice. Multiple signaling pathways are likely involved in the OsCBM1-mediated stress tolerance in rice.
Collapse
Affiliation(s)
- Xiu-Qing Jing
- State Key Laboratory of Crop Stress Biology in Arid Area, College of Life Sciences, Northwest A&F University, Yangling, 712100 Shaanxi China
- Department of Biology, Taiyuan Normal University, Taiyuan, 030619 Shanxi China
| | - Wen-Qiang Li
- State Key Laboratory of Crop Stress Biology in Arid Area, College of Life Sciences, Northwest A&F University, Yangling, 712100 Shaanxi China
| | - Meng-Ru Zhou
- State Key Laboratory of Crop Stress Biology in Arid Area, College of Life Sciences, Northwest A&F University, Yangling, 712100 Shaanxi China
| | - Peng-Tao Shi
- State Key Laboratory of Crop Stress Biology in Arid Area, College of Life Sciences, Northwest A&F University, Yangling, 712100 Shaanxi China
| | - Ran Zhang
- State Key Laboratory of Crop Stress Biology in Arid Area, College of Life Sciences, Northwest A&F University, Yangling, 712100 Shaanxi China
| | - Abdullah Shalmani
- State Key Laboratory of Crop Stress Biology in Arid Area, College of Life Sciences, Northwest A&F University, Yangling, 712100 Shaanxi China
| | - Izhar Muhammad
- State Key Laboratory of Crop Stress Biology in Arid Area, College of Life Sciences, Northwest A&F University, Yangling, 712100 Shaanxi China
| | - Gang-Feng Wang
- State Key Laboratory of Crop Stress Biology in Arid Area, College of Life Sciences, Northwest A&F University, Yangling, 712100 Shaanxi China
| | - Wen-Ting Liu
- State Key Laboratory of Crop Stress Biology in Arid Area, College of Life Sciences, Northwest A&F University, Yangling, 712100 Shaanxi China
| | - Kun-Ming Chen
- State Key Laboratory of Crop Stress Biology in Arid Area, College of Life Sciences, Northwest A&F University, Yangling, 712100 Shaanxi China
| |
Collapse
|
42
|
Khan YA, White KI, Brunger AT. The AAA+ superfamily: a review of the structural and mechanistic principles of these molecular machines. Crit Rev Biochem Mol Biol 2021; 57:156-187. [PMID: 34632886 DOI: 10.1080/10409238.2021.1979460] [Citation(s) in RCA: 67] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
ATPases associated with diverse cellular activities (AAA+ proteins) are a superfamily of proteins found throughout all domains of life. The hallmark of this family is a conserved AAA+ domain responsible for a diverse range of cellular activities. Typically, AAA+ proteins transduce chemical energy from the hydrolysis of ATP into mechanical energy through conformational change, which can drive a variety of biological processes. AAA+ proteins operate in a variety of cellular contexts with diverse functions including disassembly of SNARE proteins, protein quality control, DNA replication, ribosome assembly, and viral replication. This breadth of function illustrates both the importance of AAA+ proteins in health and disease and emphasizes the importance of understanding conserved mechanisms of chemo-mechanical energy transduction. This review is divided into three major portions. First, the core AAA+ fold is presented. Next, the seven different clades of AAA+ proteins and structural details and reclassification pertaining to proteins in each clade are described. Finally, two well-known AAA+ proteins, NSF and its close relative p97, are reviewed in detail.
Collapse
Affiliation(s)
- Yousuf A Khan
- Department of Molecular and Cellular Physiology, Stanford University, Stanford, CA, USA.,Department of Neurology and Neurological Sciences, Stanford University, Stanford, CA, USA.,Department of Structural Biology, Stanford University, Stanford, CA, USA.,Department of Photon Science, Stanford University, Stanford, CA, USA.,Center for Biomedical Informatics Research, Stanford University, Stanford, CA, USA
| | - K Ian White
- Department of Molecular and Cellular Physiology, Stanford University, Stanford, CA, USA.,Department of Neurology and Neurological Sciences, Stanford University, Stanford, CA, USA.,Department of Structural Biology, Stanford University, Stanford, CA, USA.,Department of Photon Science, Stanford University, Stanford, CA, USA.,Howard Hughes Medical Institute, Stanford University, Stanford, CA, USA
| | - Axel T Brunger
- Department of Molecular and Cellular Physiology, Stanford University, Stanford, CA, USA.,Department of Neurology and Neurological Sciences, Stanford University, Stanford, CA, USA.,Department of Structural Biology, Stanford University, Stanford, CA, USA.,Department of Photon Science, Stanford University, Stanford, CA, USA.,Howard Hughes Medical Institute, Stanford University, Stanford, CA, USA
| |
Collapse
|
43
|
Riehl J, Rijal R, Nitz L, Clemen CS, Hofmann A, Eichinger L. Domain Organization of the UBX Domain Containing Protein 9 and Analysis of Its Interactions With the Homohexameric AAA + ATPase p97 (Valosin-Containing Protein). Front Cell Dev Biol 2021; 9:748860. [PMID: 34631722 PMCID: PMC8495200 DOI: 10.3389/fcell.2021.748860] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Accepted: 08/31/2021] [Indexed: 11/13/2022] Open
Abstract
The abundant homohexameric AAA + ATPase p97 (also known as valosin-containing protein, VCP) is highly conserved from Dictyostelium discoideum to human and a pivotal factor of cellular protein homeostasis as it catalyzes the unfolding of proteins. Owing to its fundamental function in protein quality control pathways, it is regulated by more than 30 cofactors, including the UBXD protein family, whose members all carry an Ubiquitin Regulatory X (UBX) domain that enables binding to p97. One member of this latter protein family is the largely uncharacterized UBX domain containing protein 9 (UBXD9). Here, we analyzed protein-protein interactions of D. discoideum UBXD9 with p97 using a series of N- and C-terminal truncation constructs and probed the UBXD9 interactome in D. discoideum. Pull-down assays revealed that the UBX domain (amino acids 384-466) is necessary and sufficient for p97 interactions and that the N-terminal extension of the UBX domain, which folds into a β0-α- 1-α0 lariat structure, is required for the dissociation of p97 hexamers. Functionally, this finding is reflected by strongly reduced ATPase activity of p97 upon addition of full length UBXD9 or UBXD9261-573. Results from Blue Native PAGE as well as structural model prediction suggest that hexamers of UBXD9 or UBXD9261-573 interact with p97 hexamers and disrupt the p97 subunit interactions via insertion of a helical lariat structure, presumably by destabilizing the p97 D1:D1' intermolecular interface. We thus propose that UBXD9 regulates p97 activity in vivo by shifting the quaternary structure equilibrium from hexamers to monomers. Using three independent approaches, we further identified novel interaction partners of UBXD9, including glutamine synthetase type III as well as several actin-binding proteins. These findings suggest a role of UBXD9 in the organization of the actin cytoskeleton, and are in line with the hypothesized oligomerization-dependent mechanism of p97 regulation.
Collapse
Affiliation(s)
- Jana Riehl
- Medical Faculty, Center for Biochemistry, Institute of Biochemistry I, University of Cologne, Cologne, Germany
| | - Ramesh Rijal
- Department of Biology, College Station, Texas A&M University, Texas, TX, United States
| | - Leonie Nitz
- Medical Faculty, Center for Biochemistry, Institute of Biochemistry I, University of Cologne, Cologne, Germany
| | - Christoph S. Clemen
- Medical Faculty, Center for Biochemistry, Institute of Biochemistry I, University of Cologne, Cologne, Germany
- German Aerospace Center, Institute of Aerospace Medicine, Cologne, Germany
- Medical Faculty, Center for Physiology and Pathophysiology, Institute of Vegetative Physiology, University of Cologne, Cologne, Germany
| | - Andreas Hofmann
- Department of Veterinary Biosciences, Melbourne Veterinary School, The University of Melbourne, Parkville, VIC, Australia
| | - Ludwig Eichinger
- Medical Faculty, Center for Biochemistry, Institute of Biochemistry I, University of Cologne, Cologne, Germany
| |
Collapse
|
44
|
Ramzan S, Tennstedt S, Tariq M, Khan S, Noor Ul Ayan H, Ali A, Munz M, Thiele H, Korejo AA, Mughal AR, Jamal SZ, Nürnberg P, Baig SM, Erdmann J, Ahmad I. A Novel Missense Mutation in TNNI3K Causes Recessively Inherited Cardiac Conduction Disease in a Consanguineous Pakistani Family. Genes (Basel) 2021; 12:genes12081282. [PMID: 34440456 PMCID: PMC8395014 DOI: 10.3390/genes12081282] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Revised: 08/15/2021] [Accepted: 08/16/2021] [Indexed: 11/16/2022] Open
Abstract
Cardiac conduction disease (CCD), which causes altered electrical impulse propagation in the heart, is a life-threatening condition with high morbidity and mortality. It exhibits genetic and clinical heterogeneity with diverse pathomechanisms, but in most cases, it disrupts the synchronous activity of impulse-generating nodes and impulse-conduction underlying the normal heartbeat. In this study, we investigated a consanguineous Pakistani family comprised of four patients with CCD. We applied whole exome sequencing (WES) and co-segregation analysis, which identified a novel homozygous missense mutation (c.1531T>C;(p.Ser511Pro)) in the highly conserved kinase domain of the cardiac troponin I-interacting kinase (TNNI3K) encoding gene. The behaviors of mutant and native TNNI3K were compared by performing all-atom long-term molecular dynamics simulations, which revealed changes at the protein surface and in the hydrogen bond network. Furthermore, intra and intermolecular interaction analyses revealed that p.Ser511Pro causes structural variation in the ATP-binding pocket and the homodimer interface. These findings suggest p.Ser511Pro to be a pathogenic variant. Our study provides insights into how the variant perturbs the TNNI3K structure-function relationship, leading to a disease state. This is the first report of a recessive mutation in TNNI3K and the first mutation in this gene identified in the Pakistani population.
Collapse
Affiliation(s)
- Shafaq Ramzan
- Institute for Cardiogenetics, University of Lübeck, 23562 Lübeck, Germany; (S.R.); (S.T.); (H.N.U.A.); (M.M.); (J.E.)
- National Institute for Biotechnology and Genetic Engineering (NIBGE-C), Institute of Engineering and Applied Sciences (PIEAS), Islamabad 44000, Pakistan; (M.T.); (S.K.); (A.A.); (S.M.B.)
| | - Stephanie Tennstedt
- Institute for Cardiogenetics, University of Lübeck, 23562 Lübeck, Germany; (S.R.); (S.T.); (H.N.U.A.); (M.M.); (J.E.)
- DZHK (German Research Centre for Cardiovascular Research) Partner Site Hamburg/Lübeck/Kiel, 23562 Lübeck, Germany
- University Heart Center Lübeck, 23562 Lübeck, Germany
| | - Muhammad Tariq
- National Institute for Biotechnology and Genetic Engineering (NIBGE-C), Institute of Engineering and Applied Sciences (PIEAS), Islamabad 44000, Pakistan; (M.T.); (S.K.); (A.A.); (S.M.B.)
| | - Sheraz Khan
- National Institute for Biotechnology and Genetic Engineering (NIBGE-C), Institute of Engineering and Applied Sciences (PIEAS), Islamabad 44000, Pakistan; (M.T.); (S.K.); (A.A.); (S.M.B.)
| | - Hafiza Noor Ul Ayan
- Institute for Cardiogenetics, University of Lübeck, 23562 Lübeck, Germany; (S.R.); (S.T.); (H.N.U.A.); (M.M.); (J.E.)
- National Institute for Biotechnology and Genetic Engineering (NIBGE-C), Institute of Engineering and Applied Sciences (PIEAS), Islamabad 44000, Pakistan; (M.T.); (S.K.); (A.A.); (S.M.B.)
| | - Aamir Ali
- National Institute for Biotechnology and Genetic Engineering (NIBGE-C), Institute of Engineering and Applied Sciences (PIEAS), Islamabad 44000, Pakistan; (M.T.); (S.K.); (A.A.); (S.M.B.)
| | - Matthias Munz
- Institute for Cardiogenetics, University of Lübeck, 23562 Lübeck, Germany; (S.R.); (S.T.); (H.N.U.A.); (M.M.); (J.E.)
- DZHK (German Research Centre for Cardiovascular Research) Partner Site Hamburg/Lübeck/Kiel, 23562 Lübeck, Germany
| | - Holger Thiele
- Cologne Center for Genomics (CCG), University of Cologne, Faculty of Medicine, University Hospital Cologne, 50931 Cologne, Germany; (H.T.); (P.N.)
| | - Asad Aslam Korejo
- National Institute of Cardiovascular Disease, Karachi 75510, Pakistan; (A.A.K.); (S.Z.J.)
| | | | - Syed Zahid Jamal
- National Institute of Cardiovascular Disease, Karachi 75510, Pakistan; (A.A.K.); (S.Z.J.)
| | - Peter Nürnberg
- Cologne Center for Genomics (CCG), University of Cologne, Faculty of Medicine, University Hospital Cologne, 50931 Cologne, Germany; (H.T.); (P.N.)
- Center for Molecular Medicine Cologne (CMMC), University of Cologne, Faculty of Medicine, University Hospital Cologne, 50931 Cologne, Germany
| | - Shahid Mahmood Baig
- National Institute for Biotechnology and Genetic Engineering (NIBGE-C), Institute of Engineering and Applied Sciences (PIEAS), Islamabad 44000, Pakistan; (M.T.); (S.K.); (A.A.); (S.M.B.)
- Department of Biological and Biomedical Sciences, Aga Khan University, Karachi 74000, Pakistan
- Pakistan Science Foundation (PSF), 1-Constitution Avenue, G-5/2, Islamabad 44000, Pakistan
| | - Jeanette Erdmann
- Institute for Cardiogenetics, University of Lübeck, 23562 Lübeck, Germany; (S.R.); (S.T.); (H.N.U.A.); (M.M.); (J.E.)
- DZHK (German Research Centre for Cardiovascular Research) Partner Site Hamburg/Lübeck/Kiel, 23562 Lübeck, Germany
- University Heart Center Lübeck, 23562 Lübeck, Germany
| | - Ilyas Ahmad
- Institute for Cardiogenetics, University of Lübeck, 23562 Lübeck, Germany; (S.R.); (S.T.); (H.N.U.A.); (M.M.); (J.E.)
- DZHK (German Research Centre for Cardiovascular Research) Partner Site Hamburg/Lübeck/Kiel, 23562 Lübeck, Germany
- University Heart Center Lübeck, 23562 Lübeck, Germany
- Correspondence: ; Tel.: +49-(0)451-3101-8320
| |
Collapse
|
45
|
Maimoni Campanella JE, Ramos Junior SL, Rodrigues Kiraly VT, Severo Gomes AA, de Barros AC, Mateos PA, Freitas FZ, de Mattos Fontes MR, Borges JC, Bertolini MC. Biochemical and biophysical characterization of the RVB-1/RVB-2 protein complex, the RuvBL/RVB homologues in Neurospora crassa. Biochimie 2021; 191:11-26. [PMID: 34375717 DOI: 10.1016/j.biochi.2021.08.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 07/08/2021] [Accepted: 08/04/2021] [Indexed: 11/20/2022]
Abstract
The RVB proteins, composed of the conservative paralogs, RVB1 and RVB2, belong to the AAA+ (ATPases Associated with various cellular Activities) protein superfamily and are present in archaea and eukaryotes. The most distinct structural features are their ability to interact with each other forming the RVB1/2 complex and their participation in several macromolecular protein complexes leading them to be involved in many biological processes. We report here the biochemical and biophysical characterization of the Neurospora crassa RVB-1/RVB-2 complex. Chromatographic analyses revealed that the complex (APO) predominantly exists as a dimer in solution although hexamers were also observed. Nucleotides influence the oligomerization state, while ATP favors hexamers formation, ADP favors the formation of multimeric states, likely dodecamers, and the Molecular Dynamics (MD) simulations revealed the contribution of certain amino acid residues in the nucleotide stabilization. The complex binds to dsDNA fragments and exhibits ATPase activity, which is strongly enhanced in the presence of DNA. In addition, both GFP-fused proteins are predominantly nuclear, and their nuclear localization signals (NLS) interact with importin-α (NcIMPα). Our findings show that some properties are specific of the fungus proteins despite of their high identity to orthologous proteins. They are essential proteins in N. crassa, and the phenotypic defects exhibited by the heterokaryotic strains, mainly related to growth and development, indicate N. crassa as a promising organism to investigate additional biological and structural aspects of these proteins.
Collapse
Affiliation(s)
- Jonatas Erick Maimoni Campanella
- Departamento de Bioquímica e Química Orgânica, Instituto de Química, Universidade Estadual Paulista, UNESP, 14.800-060, Araraquara, SP, Brazil
| | - Sergio Luiz Ramos Junior
- Departamento de Química e Física Molecular, Instituto de Química de São Carlos, Universidade de São Paulo, USP, 13.560-970, São Carlos, SP, Brazil
| | - Vanessa Thomaz Rodrigues Kiraly
- Departamento de Química e Física Molecular, Instituto de Química de São Carlos, Universidade de São Paulo, USP, 13.560-970, São Carlos, SP, Brazil
| | - Antoniel Augusto Severo Gomes
- Departamento de Biofísica e Farmacologia, Instituto de Biociências, Universidade Estadual Paulista, UNESP, 18.618-689, Botucatu, SP, Brazil
| | - Andrea Coelho de Barros
- Departamento de Biofísica e Farmacologia, Instituto de Biociências, Universidade Estadual Paulista, UNESP, 18.618-689, Botucatu, SP, Brazil
| | - Pablo Acera Mateos
- Departamento de Bioquímica e Química Orgânica, Instituto de Química, Universidade Estadual Paulista, UNESP, 14.800-060, Araraquara, SP, Brazil
| | - Fernanda Zanolli Freitas
- Departamento de Bioquímica e Química Orgânica, Instituto de Química, Universidade Estadual Paulista, UNESP, 14.800-060, Araraquara, SP, Brazil
| | - Marcos Roberto de Mattos Fontes
- Departamento de Biofísica e Farmacologia, Instituto de Biociências, Universidade Estadual Paulista, UNESP, 18.618-689, Botucatu, SP, Brazil
| | - Júlio Cesar Borges
- Departamento de Química e Física Molecular, Instituto de Química de São Carlos, Universidade de São Paulo, USP, 13.560-970, São Carlos, SP, Brazil
| | - Maria Célia Bertolini
- Departamento de Bioquímica e Química Orgânica, Instituto de Química, Universidade Estadual Paulista, UNESP, 14.800-060, Araraquara, SP, Brazil.
| |
Collapse
|
46
|
Li X, Song H, Wang J, Zhang D, Shan X, Yang B, Kang Y, Qian A, Zhang L, Sun W. Functional analysis of fis in Aeromonas veronii TH0426 reveals a key role in the regulation of virulence. Microb Pathog 2021; 159:105123. [PMID: 34364977 DOI: 10.1016/j.micpath.2021.105123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Revised: 08/01/2021] [Accepted: 08/02/2021] [Indexed: 10/20/2022]
Abstract
Aeromonas veronii is a comorbid pathogen that can infect humans, and animals including various aquatic organisms. In recent years, an increasing number of cases of A. veronii infection has been reported, indicating serious risks. This bacterium not only threatens public health and safety but also causes considerable economic loss in the aquaculture industry. Currently, some understanding of the pathogenic mechanism of A. veronii has been obtained. In this study, we first constructed the A. veronii TH0426 fis gene deletion strain Δfis and the complementation strain C-fis through homologous recombination technology. The results showed that the adhesion and invasion ability of the Δfis strain towards Epithelioma papulosum cyprini (EPC) cells and the cytotoxicity were 3.8-fold and 1.38-fold lower, respectively, than those of the wild-type strain. In the zebrafish infection model, the lethality of the deleted strain is 3-fold that of the wild strain. In addition, the bacterial load of the deletion strain Δfis in crucian carp was significantly lower than the wild-type strain, and the load decreased with time. In summary, deletion of the fis gene led to a decrease in the virulence of A. veronii. Our research results showed that the deletion of the fis gene significantly reduces the virulence and adhesion ability of A. veronii TH0426. Therefore, the fis gene plays a vital role in the pathogenesis of A. veronii TH0426. This preliminary study of the function of the fis gene in A. veronii will help researchers further understand the pathogenic mechanism of A. veronii.
Collapse
Affiliation(s)
- Xintong Li
- College of Veterinary Medicine, College of Animal Science and Technology, Jilin Provincial Engineering Research Center of Animal Probiotics, Key Laboratory of Animal Production and Product Quality Safety of Ministry of Education, Jilin Agricultural University, Changchun, Jilin, 130118, China
| | - Haichao Song
- College of Veterinary Medicine, College of Animal Science and Technology, Jilin Provincial Engineering Research Center of Animal Probiotics, Key Laboratory of Animal Production and Product Quality Safety of Ministry of Education, Jilin Agricultural University, Changchun, Jilin, 130118, China
| | - Jinglin Wang
- College of Veterinary Medicine, College of Animal Science and Technology, Jilin Provincial Engineering Research Center of Animal Probiotics, Key Laboratory of Animal Production and Product Quality Safety of Ministry of Education, Jilin Agricultural University, Changchun, Jilin, 130118, China
| | - Dongxing Zhang
- College of Veterinary Medicine, College of Animal Science and Technology, Jilin Provincial Engineering Research Center of Animal Probiotics, Key Laboratory of Animal Production and Product Quality Safety of Ministry of Education, Jilin Agricultural University, Changchun, Jilin, 130118, China
| | - Xiaofeng Shan
- College of Veterinary Medicine, College of Animal Science and Technology, Jilin Provincial Engineering Research Center of Animal Probiotics, Key Laboratory of Animal Production and Product Quality Safety of Ministry of Education, Jilin Agricultural University, Changchun, Jilin, 130118, China
| | - Bintong Yang
- College of Veterinary Medicine, College of Animal Science and Technology, Jilin Provincial Engineering Research Center of Animal Probiotics, Key Laboratory of Animal Production and Product Quality Safety of Ministry of Education, Jilin Agricultural University, Changchun, Jilin, 130118, China; College of Life Science, Changchun Sci-Tech University, Changchun, Jilin, 130600, China
| | - Yuanhuan Kang
- College of Veterinary Medicine, College of Animal Science and Technology, Jilin Provincial Engineering Research Center of Animal Probiotics, Key Laboratory of Animal Production and Product Quality Safety of Ministry of Education, Jilin Agricultural University, Changchun, Jilin, 130118, China
| | - Aidong Qian
- College of Veterinary Medicine, College of Animal Science and Technology, Jilin Provincial Engineering Research Center of Animal Probiotics, Key Laboratory of Animal Production and Product Quality Safety of Ministry of Education, Jilin Agricultural University, Changchun, Jilin, 130118, China
| | - Lei Zhang
- College of Veterinary Medicine, College of Animal Science and Technology, Jilin Provincial Engineering Research Center of Animal Probiotics, Key Laboratory of Animal Production and Product Quality Safety of Ministry of Education, Jilin Agricultural University, Changchun, Jilin, 130118, China
| | - Wuwen Sun
- College of Veterinary Medicine, College of Animal Science and Technology, Jilin Provincial Engineering Research Center of Animal Probiotics, Key Laboratory of Animal Production and Product Quality Safety of Ministry of Education, Jilin Agricultural University, Changchun, Jilin, 130118, China.
| |
Collapse
|
47
|
Nandi P, Li S, Columbres RCA, Wang F, Williams DR, Poh YP, Chou TF, Chiu PL. Structural and Functional Analysis of Disease-Linked p97 ATPase Mutant Complexes. Int J Mol Sci 2021; 22:ijms22158079. [PMID: 34360842 PMCID: PMC8347982 DOI: 10.3390/ijms22158079] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Revised: 07/22/2021] [Accepted: 07/25/2021] [Indexed: 01/14/2023] Open
Abstract
IBMPFD/ALS is a genetic disorder caused by a single amino acid mutation on the p97 ATPase, promoting ATPase activity and cofactor dysregulation. The disease mechanism underlying p97 ATPase malfunction remains unclear. To understand how the mutation alters the ATPase regulation, we assembled a full-length p97R155H with its p47 cofactor and first visualized their structures using single-particle cryo-EM. More than one-third of the population was the dodecameric form. Nucleotide presence dissociates the dodecamer into two hexamers for its highly elevated function. The N-domains of the p97R155H mutant all show up configurations in ADP- or ATPγS-bound states. Our functional and structural analyses showed that the p47 binding is likely to impact the p97R155H ATPase activities via changing the conformations of arginine fingers. These functional and structural analyses underline the ATPase dysregulation with the miscommunication between the functional modules of the p97R155H.
Collapse
Affiliation(s)
- Purbasha Nandi
- Biodesign Center for Applied Structural Discovery, School of Molecular Sciences, Arizona State University, Tempe, AZ 85287, USA;
| | - Shan Li
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA; (S.L.); (R.C.A.C.); (F.W.); (Y.-P.P.)
| | - Rod Carlo A. Columbres
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA; (S.L.); (R.C.A.C.); (F.W.); (Y.-P.P.)
| | - Feng Wang
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA; (S.L.); (R.C.A.C.); (F.W.); (Y.-P.P.)
| | | | - Yu-Ping Poh
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA; (S.L.); (R.C.A.C.); (F.W.); (Y.-P.P.)
| | - Tsui-Fen Chou
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA; (S.L.); (R.C.A.C.); (F.W.); (Y.-P.P.)
- Correspondence: (T.-F.C.); (P.-L.C.)
| | - Po-Lin Chiu
- Biodesign Center for Applied Structural Discovery, School of Molecular Sciences, Arizona State University, Tempe, AZ 85287, USA;
- Correspondence: (T.-F.C.); (P.-L.C.)
| |
Collapse
|
48
|
Mechanism of DNA Interaction and Translocation by the Replicase of a Circular Rep-Encoding Single-Stranded DNA Virus. mBio 2021; 12:e0076321. [PMID: 34311576 PMCID: PMC8406172 DOI: 10.1128/mbio.00763-21] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Circular Rep-encoding single-stranded DNA (CRESS-DNA) viruses infect members from all three domains of life (Archaea, Prokarya, and Eukarya). The replicase (Rep) from these viruses is responsible for initiating rolling circle replication (RCR) of their genomes. Rep is a multifunctional enzyme responsible for nicking and ligating ssDNA and unwinding double-stranded DNA (dsDNA). We report the structure of porcine circovirus 2 (PCV2) Rep bound to ADP and single-stranded DNA (ssDNA), and Rep bound to ADP and double-stranded DNA (dsDNA). The structures demonstrate Rep to be a member of the superfamily 3 (SF3) of ATPases Associated with diverse cellular Activities (AAA+) superfamily clade 4. At the Rep N terminus is an endonuclease domain (ED) that is responsible for ssDNA nicking and ligation, in the center of Rep is an oligomerization domain (OD) responsible for hexamerization, and at the C terminus is an ATPase domain (AD) responsible for ssDNA/dsDNA interaction and translocation. The Rep AD binds to DNA such that the ED faces the replication fork. The six AD spiral around the DNA to interact with the backbone phosphates from four consecutive nucleotides. Three of the six AD are able to sense the backbone phosphates from the second strand of dsDNA. Heterogeneous classification of the data demonstrates the ED and AD to be mobile. Furthermore, we demonstrate that Rep exhibits basal nucleoside triphosphatase (NTPase) activity.
Collapse
|
49
|
Monino‐Lopez D, Nijenhuis M, Kodde L, Kamoun S, Salehian H, Schentsnyi K, Stam R, Lokossou A, Abd‐El‐Haliem A, Visser RG, Vossen JH. Allelic variants of the NLR protein Rpi-chc1 differentially recognize members of the Phytophthora infestans PexRD12/31 effector superfamily through the leucine-rich repeat domain. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2021; 107:182-197. [PMID: 33882622 PMCID: PMC8362081 DOI: 10.1111/tpj.15284] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Revised: 03/30/2021] [Accepted: 04/12/2021] [Indexed: 05/22/2023]
Abstract
Phytophthora infestans is a pathogenic oomycete that causes the infamous potato late blight disease. Resistance (R) genes from diverse Solanum species encode intracellular receptors that trigger effective defense responses upon the recognition of cognate RXLR avirulence (Avr) effector proteins. To deploy these R genes in a durable fashion in agriculture, we need to understand the mechanism of effector recognition and the way the pathogen evades recognition. In this study, we cloned 16 allelic variants of the Rpi-chc1 gene from Solanum chacoense and other Solanum species, and identified the cognate P. infestans RXLR effectors. These tools were used to study effector recognition and co-evolution. Functional and non-functional alleles of Rpi-chc1 encode coiled-coil nucleotide-binding leucine-rich repeat (CNL) proteins, being the first described representatives of the CNL16 family. These alleles have distinct patterns of RXLR effector recognition. While Rpi-chc1.1 recognized multiple PexRD12 (Avrchc1.1) proteins, Rpi-chc1.2 recognized multiple PexRD31 (Avrchc1.2) proteins, both belonging to the PexRD12/31 effector superfamily. Domain swaps between Rpi-chc1.1 and Rpi-chc1.2 revealed that overlapping subdomains in the leucine-rich repeat (LRR) domain are responsible for the difference in effector recognition. This study showed that Rpi-chc1.1 and Rpi-chc1.2 evolved to recognize distinct members of the same PexRD12/31 effector family via the LRR domain. The biased distribution of polymorphisms suggests that exchange of LRRs during host-pathogen co-evolution can lead to novel recognition specificities. These insights will guide future strategies to breed durable resistant varieties.
Collapse
Affiliation(s)
- Daniel Monino‐Lopez
- Plant BreedingWageningen University & ResearchDroevendaalsesteeg 1Wageningen6708PBThe Netherlands
| | - Maarten Nijenhuis
- Plant BreedingWageningen University & ResearchDroevendaalsesteeg 1Wageningen6708PBThe Netherlands
- Present address:
Agrico ResearchBurchtweg 17Bant8314PPThe Netherlands
| | - Linda Kodde
- Plant BreedingWageningen University & ResearchDroevendaalsesteeg 1Wageningen6708PBThe Netherlands
| | - Sophien Kamoun
- The Sainsbury LaboratoryUniversity of East AngliaNorwich Research Park, NorwichUK
| | - Hamed Salehian
- Plant BreedingWageningen University & ResearchDroevendaalsesteeg 1Wageningen6708PBThe Netherlands
| | - Kyrylo Schentsnyi
- Plant BreedingWageningen University & ResearchDroevendaalsesteeg 1Wageningen6708PBThe Netherlands
- Present address:
Center for Plant Molecular BiologyAuf der Morgenstelle 32Tübingen2076Germany
| | - Remco Stam
- Plant BreedingWageningen University & ResearchDroevendaalsesteeg 1Wageningen6708PBThe Netherlands
- Present address:
Technical University MunichMunichGermany
| | - Anoma Lokossou
- Plant BreedingWageningen University & ResearchDroevendaalsesteeg 1Wageningen6708PBThe Netherlands
| | - Ahmed Abd‐El‐Haliem
- Plant BreedingWageningen University & ResearchDroevendaalsesteeg 1Wageningen6708PBThe Netherlands
- Present address:
Rijk Zwaan Breeding B.VBurgemeester Crezéelaan 40De Lier2678KXThe Netherlands
| | - Richard G.F. Visser
- Plant BreedingWageningen University & ResearchDroevendaalsesteeg 1Wageningen6708PBThe Netherlands
| | - Jack H. Vossen
- Plant BreedingWageningen University & ResearchDroevendaalsesteeg 1Wageningen6708PBThe Netherlands
| |
Collapse
|
50
|
Gastaldi S, Boscaro V, Gianquinto E, Sandall CF, Giorgis M, Marini E, Blua F, Gallicchio M, Spyrakis F, MacDonald JA, Bertinaria M. Chemical Modulation of the 1-(Piperidin-4-yl)-1,3-dihydro-2 H-benzo[d]imidazole-2-one Scaffold as a Novel NLRP3 Inhibitor. Molecules 2021; 26:molecules26133975. [PMID: 34209843 PMCID: PMC8271538 DOI: 10.3390/molecules26133975] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Revised: 06/23/2021] [Accepted: 06/23/2021] [Indexed: 02/06/2023] Open
Abstract
In the search for new chemical scaffolds able to afford NLRP3 inflammasome inhibitors, we used a pharmacophore-hybridization strategy by combining the structure of the acrylic acid derivative INF39 with the 1-(piperidin-4-yl)1,3-dihydro-2H-benzo[d]imidazole-2-one substructure present in HS203873, a recently identified NLRP3 binder. A series of differently modulated benzo[d]imidazole-2-one derivatives were designed and synthesised. The obtained compounds were screened in vitro to test their ability to inhibit NLRP3-dependent pyroptosis and IL-1β release in PMA-differentiated THP-1 cells stimulated with LPS/ATP. The selected compounds were evaluated for their ability to reduce the ATPase activity of human recombinant NLRP3 using a newly developed assay. From this screening, compounds 9, 13 and 18, able to concentration-dependently inhibit IL-1β release in LPS/ATP-stimulated human macrophages, emerged as the most promising NLRP3 inhibitors of the series. Computational simulations were applied for building the first complete model of the NLRP3 inactive state and for identifying possible binding sites available to the tested compounds. The analyses led us to suggest a mechanism of protein–ligand binding that might explain the activity of the compounds.
Collapse
Affiliation(s)
- Simone Gastaldi
- Department of Drug Science and Technology, University of Turin, Via Giuria 9, 10125 Torino, Italy; (S.G.); (V.B.); (E.G.); (M.G.); (E.M.); (F.B.); (M.G.); (F.S.)
| | - Valentina Boscaro
- Department of Drug Science and Technology, University of Turin, Via Giuria 9, 10125 Torino, Italy; (S.G.); (V.B.); (E.G.); (M.G.); (E.M.); (F.B.); (M.G.); (F.S.)
| | - Eleonora Gianquinto
- Department of Drug Science and Technology, University of Turin, Via Giuria 9, 10125 Torino, Italy; (S.G.); (V.B.); (E.G.); (M.G.); (E.M.); (F.B.); (M.G.); (F.S.)
| | - Christina F. Sandall
- Department of Biochemistry & Molecular Biology, Cumming School of Medicine, University of Calgary, 3280 Hospital Drive NW, Calgary, AB T2N 4Z6, Canada; (C.F.S.); (J.A.M.)
| | - Marta Giorgis
- Department of Drug Science and Technology, University of Turin, Via Giuria 9, 10125 Torino, Italy; (S.G.); (V.B.); (E.G.); (M.G.); (E.M.); (F.B.); (M.G.); (F.S.)
| | - Elisabetta Marini
- Department of Drug Science and Technology, University of Turin, Via Giuria 9, 10125 Torino, Italy; (S.G.); (V.B.); (E.G.); (M.G.); (E.M.); (F.B.); (M.G.); (F.S.)
| | - Federica Blua
- Department of Drug Science and Technology, University of Turin, Via Giuria 9, 10125 Torino, Italy; (S.G.); (V.B.); (E.G.); (M.G.); (E.M.); (F.B.); (M.G.); (F.S.)
| | - Margherita Gallicchio
- Department of Drug Science and Technology, University of Turin, Via Giuria 9, 10125 Torino, Italy; (S.G.); (V.B.); (E.G.); (M.G.); (E.M.); (F.B.); (M.G.); (F.S.)
| | - Francesca Spyrakis
- Department of Drug Science and Technology, University of Turin, Via Giuria 9, 10125 Torino, Italy; (S.G.); (V.B.); (E.G.); (M.G.); (E.M.); (F.B.); (M.G.); (F.S.)
| | - Justin A. MacDonald
- Department of Biochemistry & Molecular Biology, Cumming School of Medicine, University of Calgary, 3280 Hospital Drive NW, Calgary, AB T2N 4Z6, Canada; (C.F.S.); (J.A.M.)
| | - Massimo Bertinaria
- Department of Drug Science and Technology, University of Turin, Via Giuria 9, 10125 Torino, Italy; (S.G.); (V.B.); (E.G.); (M.G.); (E.M.); (F.B.); (M.G.); (F.S.)
- Correspondence: ; Tel.: +39-011-6707146
| |
Collapse
|