1
|
Motiwala T, Nyide B, Khoza T. Molecular dynamic simulations to assess the structural variability of ClpV from Enterobacter cloacae. FRONTIERS IN BIOINFORMATICS 2025; 5:1498916. [PMID: 40201065 PMCID: PMC11975955 DOI: 10.3389/fbinf.2025.1498916] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Accepted: 03/17/2025] [Indexed: 04/10/2025] Open
Abstract
The Enterobacter cloacae complex (ECC) consists of six Enterobacter species (E. cloacae, hormaechei, kobei, ludwigii, nimipressuralis and asburiae) that have emerged as nosocomial pathogens of interest, with E. cloacae and Enterobacter hormachei being the most frequently isolated ECC species in human clinical specimens and intensive care unit (ICU) patients. Many nosocomial outbreaks of E. cloacae have been related to transmission through contaminated surgical equipment and operative cleaning solutions. As this pathogen evades the action of antibiotics, it is important to find alternative targets to limit the devastating effects of these pathogens. ClpV is a Clp ATPase which dissociates and recycles the contracted sheath of the bacterial type VI secretion system (T6SS), thereby regulating bacterial populations and facilitating environmental colonization. Seventy-one Enterobacter strains were mined for Clp ATPase proteins. All the investigated strains contained ClpA, ClpB, ClpX and ClpV while only 20% contained ClpK. All the investigated strains contained more than one ClpV protein, and the ClpV proteins showed significant variations. Three ClpV proteins from E. cloacae strain E3442 were then investigated to determine the structural difference between each protein. Homology modelling showed the proteins to be structurally similar to each other, however the physicochemical characteristics of the proteins vary. Additionally, physicochemical analysis and molecular dynamic simulations showed that the proteins were highly dynamic and not significantly different from each other. Further investigation of the proteins in silico and in vitro in the presence and absence of various ligands and proteins could be performed to determine whether the proteins all interact with their surroundings in the same manner. This would allow one to determine why multiple homologs of the same protein are expressed by pathogens.
Collapse
Affiliation(s)
| | | | - Thandeka Khoza
- Department of Biochemistry, School of Life Sciences, Pietermaritzburg Campus, University of KwaZulu-Natal, Pietermaritzburg, South Africa
| |
Collapse
|
2
|
Annis MY, Ravenburg CM, van Wijk KJ. Uvr motifs regulate the chloroplast Clp chaperone-protease system. TRENDS IN PLANT SCIENCE 2025; 30:269-282. [PMID: 39448301 DOI: 10.1016/j.tplants.2024.09.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 09/12/2024] [Accepted: 09/24/2024] [Indexed: 10/26/2024]
Abstract
Chloroplast proteostasis relies on diverse proteases, including the essential Clp chaperone-protease system. Two chloroplast ClpC AAA+ chaperones and the plant-specific adaptor ClpF contain an Uvr motif with predicted coiled-coiled structures implicated in protein-protein interactions. Head-to-head contacts between Uvr motifs in middle (M)-domains regulate the oligomerization and activation of several bacterial Clp chaperones. Interestingly, in arabidopsis (Arabidopsis thaliana), this Uvr motif is found in six additional chloroplast proteins (Executer1, Executer2, and Uvr1-4). Here, we first summarize evidence that Uvr motifs regulate proteostasis in bacteria. Based on this evidence and recent results in arabidopsis, we postulate that arabidopsis Uvr motif proteins regulate chloroplast Clp proteolysis. We propose specific working hypotheses to test the function of the Uvr motif in chloroplast proteostasis.
Collapse
Affiliation(s)
- Marissa Y Annis
- Section of Plant Biology, School of Integrative Plant Sciences (SIPS), Cornell University, Ithaca, NY 14853, USA
| | - Claire M Ravenburg
- Section of Plant Biology, School of Integrative Plant Sciences (SIPS), Cornell University, Ithaca, NY 14853, USA
| | - Klaas J van Wijk
- Section of Plant Biology, School of Integrative Plant Sciences (SIPS), Cornell University, Ithaca, NY 14853, USA.
| |
Collapse
|
3
|
Lin J, Carman PJ, Gambogi CW, Kendsersky NM, Chuang E, Gates SN, Yokom AL, Rizo AN, Southworth DR, Shorter J. Design principles to tailor Hsp104 therapeutics. Cell Rep 2024; 43:115005. [PMID: 39671291 PMCID: PMC11815640 DOI: 10.1016/j.celrep.2024.115005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 09/27/2024] [Accepted: 11/06/2024] [Indexed: 12/15/2024] Open
Abstract
The hexameric AAA+ disaggregase, Hsp104, collaborates with Hsp70 and Hsp40 via its autoregulatory middle domain (MD) to solubilize aggregated proteins. However, how ATP- or ADP-specific MD configurations regulate Hsp104 hexamers remains poorly understood. Here, we define an ATP-specific network of interprotomer contacts between nucleotide-binding domain 1 (NBD1) and MD helix L1, which tunes Hsp70 collaboration. Manipulating this network can (1) reduce Hsp70 collaboration without enhancing activity, (2) generate Hsp104 hypomorphs that collaborate selectively with class B Hsp40s, (3) produce Hsp70-independent potentiated variants, or (4) create species barriers between Hsp104 and Hsp70. Conversely, ADP-specific intraprotomer contacts between MD helix L2 and NBD1 restrict activity, and their perturbation frequently potentiates Hsp104. Importantly, adjusting an NBD1:MD helix L1 rheostat via rational design enables finely tuned collaboration with Hsp70 to safely potentiate Hsp104, minimize off-target toxicity, and counteract FUS and TDP-43 proteinopathies in human cells. Thus, we establish design principles to tailor Hsp104 therapeutics.
Collapse
Affiliation(s)
- JiaBei Lin
- Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Peter J Carman
- Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Biochemistry and Molecular Biophysics Graduate Group, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Craig W Gambogi
- Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Biochemistry and Molecular Biophysics Graduate Group, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Nathan M Kendsersky
- Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Pharmacology Graduate Group, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Edward Chuang
- Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Pharmacology Graduate Group, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Stephanie N Gates
- Graduate Program in Chemical Biology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Adam L Yokom
- Graduate Program in Chemical Biology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Alexandrea N Rizo
- Graduate Program in Chemical Biology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Daniel R Southworth
- Department of Biochemistry and Biophysics and the Institute for Neurodegenerative Diseases, University of California, San Francisco, San Francisco, CA 94158, USA
| | - James Shorter
- Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Biochemistry and Molecular Biophysics Graduate Group, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Pharmacology Graduate Group, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA.
| |
Collapse
|
4
|
Buchholz HE, Dorweiler JE, Guereca S, Wisniewski BT, Shorter J, Manogaran AL. The middle domain of Hsp104 can ensure substrates are functional after processing. PLoS Genet 2024; 20:e1011424. [PMID: 39361717 PMCID: PMC11478891 DOI: 10.1371/journal.pgen.1011424] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Revised: 10/15/2024] [Accepted: 09/10/2024] [Indexed: 10/05/2024] Open
Abstract
Molecular chaperones play a central role in protein disaggregation. However, the molecular determinants that regulate this process are poorly understood. Hsp104 is an AAA+ ATPase that disassembles stress granules and amyloids in yeast through collaboration with Hsp70 and Hsp40. In vitro studies show that Hsp104 processes different types of protein aggregates by partially translocating or threading polypeptides through the central pore of the hexamer. However, it is unclear how Hsp104 processing influences client protein function in vivo. The middle domain (MD) of Hsp104 regulates ATPase activity and interactions with Hsp70. Here, we tested how MD variants, Hsp104A503S and Hsp104A503V, process different protein aggregates. We establish that engineered MD variants fail to resolve stress granules but retain prion fragmentation activity required for prion propagation. Using the Sup35 prion protein, our in vitro and in vivo data indicate that the MD variants can disassemble Sup35 aggregates, but the disaggregated protein has reduced GTPase and translation termination activity. These results suggest that the middle domain can play a role in sensing certain substrates and plays an essential role in ensuring the processed protein is functional.
Collapse
Affiliation(s)
- Hannah E. Buchholz
- Department of Biological Sciences, Marquette University, Milwaukee, Wisconsin, United States of America
| | - Jane E. Dorweiler
- Department of Biological Sciences, Marquette University, Milwaukee, Wisconsin, United States of America
| | - Sam Guereca
- Department of Biological Sciences, Marquette University, Milwaukee, Wisconsin, United States of America
| | - Brett T. Wisniewski
- Department of Biological Sciences, Marquette University, Milwaukee, Wisconsin, United States of America
| | - James Shorter
- Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Anita L. Manogaran
- Department of Biological Sciences, Marquette University, Milwaukee, Wisconsin, United States of America
| |
Collapse
|
5
|
Lin J, Carman PJ, Gambogi CW, Kendsersky NM, Chuang E, Gates SN, Yokom AL, Rizo AN, Southworth DR, Shorter J. Design principles to tailor Hsp104 therapeutics. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.04.26.591398. [PMID: 38712168 PMCID: PMC11071516 DOI: 10.1101/2024.04.26.591398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2024]
Abstract
The hexameric AAA+ disaggregase, Hsp104, collaborates with Hsp70 and Hsp40 via its autoregulatory middle domain (MD) to solubilize aggregated protein conformers. However, how ATP- or ADP-specific MD configurations regulate Hsp104 hexamers remains poorly understood. Here, we define an ATP-specific network of interprotomer contacts between nucleotide-binding domain 1 (NBD1) and MD helix L1, which tunes Hsp70 collaboration. Manipulating this network can: (a) reduce Hsp70 collaboration without enhancing activity; (b) generate Hsp104 hypomorphs that collaborate selectively with class B Hsp40s; (c) produce Hsp70-independent potentiated variants; or (d) create species barriers between Hsp104 and Hsp70. Conversely, ADP-specific intraprotomer contacts between MD helix L2 and NBD1 restrict activity, and their perturbation frequently potentiates Hsp104. Importantly, adjusting the NBD1:MD helix L1 rheostat via rational design enables finely tuned collaboration with Hsp70 to safely potentiate Hsp104, minimize off-target toxicity, and counteract FUS proteinopathy in human cells. Thus, we establish important design principles to tailor Hsp104 therapeutics.
Collapse
Affiliation(s)
- JiaBei Lin
- Department of Biochemistry and Biophysics, University of Pennsylvania, Philadelphia, PA 19104. U.S.A
| | - Peter J. Carman
- Department of Biochemistry and Biophysics, University of Pennsylvania, Philadelphia, PA 19104. U.S.A
- Biochemistry and Molecular Biophysics Graduate Group, University of Pennsylvania, Philadelphia, PA 19104. U.S.A
| | - Craig W. Gambogi
- Department of Biochemistry and Biophysics, University of Pennsylvania, Philadelphia, PA 19104. U.S.A
- Biochemistry and Molecular Biophysics Graduate Group, University of Pennsylvania, Philadelphia, PA 19104. U.S.A
| | - Nathan M. Kendsersky
- Department of Biochemistry and Biophysics, University of Pennsylvania, Philadelphia, PA 19104. U.S.A
- Pharmacology Graduate Group Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104. U.S.A
| | - Edward Chuang
- Department of Biochemistry and Biophysics, University of Pennsylvania, Philadelphia, PA 19104. U.S.A
- Pharmacology Graduate Group Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104. U.S.A
| | - Stephanie N. Gates
- Graduate Program in Chemical Biology, University of Michigan, Ann Arbor, MI 48109. U.S.A
- Current address: Department of Biochemistry, University of Missouri, Columbia, MO 65211. U.S.A
| | - Adam L. Yokom
- Graduate Program in Chemical Biology, University of Michigan, Ann Arbor, MI 48109. U.S.A
- Current address: Department of Biochemistry, University of Missouri, Columbia, MO 65211. U.S.A
| | - Alexandrea N. Rizo
- Graduate Program in Chemical Biology, University of Michigan, Ann Arbor, MI 48109. U.S.A
| | - Daniel R. Southworth
- Department of Biochemistry and Biophysics and the Institute for Neurodegenerative Diseases, University of California San Francisco, San Francisco, CA 94158. U.S.A
| | - James Shorter
- Department of Biochemistry and Biophysics, University of Pennsylvania, Philadelphia, PA 19104. U.S.A
- Biochemistry and Molecular Biophysics Graduate Group, University of Pennsylvania, Philadelphia, PA 19104. U.S.A
- Pharmacology Graduate Group Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104. U.S.A
| |
Collapse
|
6
|
Gabriela M, Barnes CBG, Leong D, Sleebs BE, Schneider MP, Littler DR, Crabb BS, de Koning‐Ward TF, Gilson PR. Sequence elements within the PEXEL motif and its downstream region modulate PTEX-dependent protein export in Plasmodium falciparum. Traffic 2024; 25:e12922. [PMID: 37926971 PMCID: PMC10952997 DOI: 10.1111/tra.12922] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 08/23/2023] [Accepted: 10/15/2023] [Indexed: 11/07/2023]
Abstract
The parasite Plasmodium falciparum causes the most severe form of malaria and to invade and replicate in red blood cells (RBCs), it exports hundreds of proteins across the encasing parasitophorous vacuole membrane (PVM) into this host cell. The exported proteins help modify the RBC to support rapid parasite growth and avoidance of the human immune system. Most exported proteins possess a conserved Plasmodium export element (PEXEL) motif with the consensus RxLxE/D/Q amino acid sequence, which acts as a proteolytic cleavage recognition site within the parasite's endoplasmic reticulum (ER). Cleavage occurs after the P1 L residue and is thought to help release the protein from the ER so it can be putatively escorted by the HSP101 chaperone to the parasitophorous vacuole space surrounding the intraerythrocytic parasite. HSP101 and its cargo are then thought to assemble with the rest of a Plasmodium translocon for exported proteins (PTEX) complex, that then recognises the xE/D/Q capped N-terminus of the exported protein and translocates it across the vacuole membrane into the RBC compartment. Here, we present evidence that supports a dual role for the PEXEL's conserved P2 ' position E/Q/D residue, first, for plasmepsin V cleavage in the ER, and second, for efficient PTEX mediated export across the PVM into the RBC. We also present evidence that the downstream 'spacer' region separating the PEXEL motif from the folded functional region of the exported protein controls cargo interaction with PTEX as well. The spacer must be of a sufficient length and permissive amino acid composition to engage the HSP101 unfoldase component of PTEX to be efficiently translocated into the RBC compartment.
Collapse
Affiliation(s)
- Mikha Gabriela
- Malaria Virulence and Drug Discovery GroupBurnet InstituteMelbourneVictoriaAustralia
- School of MedicineDeakin UniversityGeelongVictoriaAustralia
| | - Claudia B. G. Barnes
- Malaria Virulence and Drug Discovery GroupBurnet InstituteMelbourneVictoriaAustralia
| | - Dickson Leong
- Malaria Virulence and Drug Discovery GroupBurnet InstituteMelbourneVictoriaAustralia
| | - Brad E. Sleebs
- The Walter and Eliza Hall Institute of Medical ResearchParkvilleVictoriaAustralia
- Department of Medical BiologyThe University of MelbourneParkvilleVictoriaAustralia
| | | | - Dene R. Littler
- Infection and Immunity Program and Department of Biochemistry and Molecular Biology, Biomedicine Discovery InstituteMonash UniversityClaytonVictoriaAustralia
| | - Brendan S. Crabb
- Malaria Virulence and Drug Discovery GroupBurnet InstituteMelbourneVictoriaAustralia
- Department of Medical BiologyThe University of MelbourneParkvilleVictoriaAustralia
- Department of Microbiology and ImmunologyUniversity of MelbourneParkvilleVictoriaAustralia
- Department of ImmunologyMonash UniversityMelbourneVictoriaAustralia
| | - Tania F. de Koning‐Ward
- School of MedicineDeakin UniversityGeelongVictoriaAustralia
- Institute for Mental and Physical Health and Clinical Translation (IMPACT)Deakin UniversityGeelongVictoriaAustralia
| | - Paul R. Gilson
- Malaria Virulence and Drug Discovery GroupBurnet InstituteMelbourneVictoriaAustralia
- Department of Microbiology and ImmunologyUniversity of MelbourneParkvilleVictoriaAustralia
| |
Collapse
|
7
|
Knier AS, Davis EE, Buchholz HE, Dorweiler JE, Flannagan LE, Manogaran AL. The yeast molecular chaperone, Hsp104, influences transthyretin aggregate formation. Front Mol Neurosci 2022; 15:1050472. [PMID: 36590917 PMCID: PMC9802906 DOI: 10.3389/fnmol.2022.1050472] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Accepted: 10/19/2022] [Indexed: 12/23/2022] Open
Abstract
Patients with the fatal disorder Transthyretin Amyloidosis (ATTR) experience polyneuropathy through the progressive destruction of peripheral nervous tissue. In these patients, the transthyretin (TTR) protein dissociates from its functional tetrameric structure, misfolds, and aggregates into extracellular amyloid deposits that are associated with disease progression. These aggregates form large fibrillar structures as well as shorter oligomeric aggregates that are suspected to be cytotoxic. Several studies have shown that these extracellular TTR aggregates enter the cell and accumulate intracellularly, which is associated with increased proteostasis response. However, there are limited experimental models to study how proteostasis influences internalized TTR aggregates. Here, we use a humanized yeast system to recapitulate intracellular TTR aggregating protein in vivo. The yeast molecular chaperone Hsp104 is a disaggregase that has been shown to fragment amyloidogenic aggregates associated with certain yeast prions and reduce protein aggregation associated with human neurogenerative diseases. In yeast, we found that TTR forms both SDS-resistant oligomers and SDS-sensitive large molecular weight complexes. In actively dividing cultures, Hsp104 has no impact on oligomeric or large aggregate populations, yet overexpression of Hsp104 is loosely associated with an increase in overall aggregate size. Interestingly, a potentiating mutation in the middle domain of Hsp104 consistently results in an increase in overall TTR aggregate size. These data suggest a novel approach to aggregate management, where the Hsp104 variant shifts aggregate populations away from toxic oligomeric species to more inert larger aggregates. In aged cultures Hsp104 overexpression has no impact on TTR aggregation profiles suggesting that these chaperone approaches to shift aggregate populations are not effective with age, possibly due to proteostasis decline.
Collapse
|
8
|
Riven I, Mazal H, Iljina M, Haran G. Fast dynamics shape the function of the
AAA
+ machine
ClpB
: lessons from single‐molecule
FRET
spectroscopy. FEBS J 2022. [DOI: 10.1111/febs.16539] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Revised: 05/04/2022] [Accepted: 05/30/2022] [Indexed: 12/01/2022]
Affiliation(s)
- Inbal Riven
- Department of Chemical and Biological Physics Weizmann Institute of Science Rehovot Israel
| | - Hisham Mazal
- Department of Chemical and Biological Physics Weizmann Institute of Science Rehovot Israel
| | - Marija Iljina
- Department of Chemical and Biological Physics Weizmann Institute of Science Rehovot Israel
| | - Gilad Haran
- Department of Chemical and Biological Physics Weizmann Institute of Science Rehovot Israel
| |
Collapse
|
9
|
Mee Hayes E, Sirvio L, Ye Y. A Potential Mechanism for Targeting Aggregates With Proteasomes and Disaggregases in Liquid Droplets. Front Aging Neurosci 2022; 14:854380. [PMID: 35517053 PMCID: PMC9062979 DOI: 10.3389/fnagi.2022.854380] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Accepted: 02/18/2022] [Indexed: 01/26/2023] Open
Abstract
Insoluble protein deposits are hallmarks of neurodegenerative disorders and common forms of dementia. The aberrant aggregation of misfolded proteins involves a complex cascade of events that occur over time, from the cellular to the clinical phase of neurodegeneration. Declining neuronal health through increased cell stress and loss of protein homeostasis (proteostasis) functions correlate with the accumulation of aggregates. On the cellular level, increasing evidence supports that misfolded proteins may undergo liquid-liquid phase separation (LLPS), which is emerging as an important process to drive protein aggregation. Studying, the reverse process of aggregate disassembly and degradation has only recently gained momentum, following reports of enzymes with distinct aggregate-disassembly activities. In this review, we will discuss how the ubiquitin-proteasome system and disaggregation machineries such as VCP/p97 and HSP70 system may disassemble and/or degrade protein aggregates. In addition to their canonically associated functions, these enzymes appear to share a common feature: reversibly assembling into liquid droplets in an LLPS-driven manner. We review the role of LLPS in enhancing the disassembly of aggregates through locally increasing the concentration of these enzymes and their co-proteins together within droplet structures. We propose that such activity may be achieved through the concerted actions of disaggregase machineries, the ubiquitin-proteasome system and their co-proteins, all of which are condensed within transient aggregate-associated droplets (TAADs), ultimately resulting in aggregate clearance. We further speculate that sustained engagement of these enzymatic activities within TAADs will be detrimental to normal cellular functions, where these activities are required. The possibility of facilitating endogenous disaggregation and degradation activities within TAADs potentially represents a novel target for therapeutic intervention to restore protein homeostasis at the early stages of neurodegeneration.
Collapse
Affiliation(s)
- Emma Mee Hayes
- Division of Neuroscience, Department of Brain Sciences, Imperial College London, London, United Kingdom
- UK Dementia Research Institute at Imperial College London, London, United Kingdom
| | - Liina Sirvio
- Division of Neuroscience, Department of Brain Sciences, Imperial College London, London, United Kingdom
- UK Dementia Research Institute at Imperial College London, London, United Kingdom
| | - Yu Ye
- Division of Neuroscience, Department of Brain Sciences, Imperial College London, London, United Kingdom
- UK Dementia Research Institute at Imperial College London, London, United Kingdom
- *Correspondence: Yu Ye,
| |
Collapse
|
10
|
Ryan JJ, Bao A, Bell B, Ling C, Jackrel ME. Drivers of Hsp104 potentiation revealed by scanning mutagenesis of the middle domain. Protein Sci 2021; 30:1667-1685. [PMID: 34010483 DOI: 10.1002/pro.4126] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Revised: 05/11/2021] [Accepted: 05/18/2021] [Indexed: 01/03/2023]
Abstract
Hsp104, a yeast protein disaggregase, can be potentiated via numerous missense mutations at disparate locations throughout the coiled-coil middle domain (MD). Potentiated Hsp104 variants can counter the toxicity and misfolding of TDP-43, FUS, and α-synuclein, proteins which are implicated in neurodegenerative disorders. However, potentiated MD variants typically exhibit off-target toxicity. Further, it has remained confounding how numerous degenerate mutations confer potentiation, hampering engineering of therapeutic Hsp104 variants. Here, we sought to comprehensively define the key drivers of Hsp104 potentiation. Using scanning mutagenesis, we iteratively studied the effects of modulation at each position in the Hsp104 MD. Screening this library to identify enhanced variants reveals that missense mutations at 26% of positions in the MD yield variants that counter FUS toxicity. Modulation of the helix 2-helix 3/4 MD interface potentiates Hsp104, whereas mutations in the analogous helix 1-2 interface do not. Surprisingly, we find that there is a higher likelihood of enhancing Hsp104 activity against human disease substrates than impairing Hsp104 native function. We find that single mutations can broadly destabilize the MD structure and lead to functional potentiation, suggesting this may be a common mechanism conferring Hsp104 potentiation. Using this approach, we have demonstrated that modulation of the MD can yield engineered variants with decreased off-target effects.
Collapse
Affiliation(s)
- Jeremy J Ryan
- Department of Chemistry, Washington University, St. Louis, Missouri, USA
| | - Aaron Bao
- Department of Chemistry, Washington University, St. Louis, Missouri, USA
| | - Braxton Bell
- Department of Chemistry, Washington University, St. Louis, Missouri, USA
| | - Cendi Ling
- Department of Chemistry, Washington University, St. Louis, Missouri, USA
| | - Meredith E Jackrel
- Department of Chemistry, Washington University, St. Louis, Missouri, USA
| |
Collapse
|
11
|
Hsp100 Molecular Chaperone ClpB and Its Role in Virulence of Bacterial Pathogens. Int J Mol Sci 2021; 22:ijms22105319. [PMID: 34070174 PMCID: PMC8158500 DOI: 10.3390/ijms22105319] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Revised: 05/14/2021] [Accepted: 05/15/2021] [Indexed: 01/05/2023] Open
Abstract
This review focuses on the molecular chaperone ClpB that belongs to the Hsp100/Clp subfamily of the AAA+ ATPases and its biological function in selected bacterial pathogens, causing a variety of human infectious diseases, including zoonoses. It has been established that ClpB disaggregates and reactivates aggregated cellular proteins. It has been postulated that ClpB’s protein disaggregation activity supports the survival of pathogenic bacteria under host-induced stresses (e.g., high temperature and oxidative stress), which allows them to rapidly adapt to the human host and establish infection. Interestingly, ClpB may also perform other functions in pathogenic bacteria, which are required for their virulence. Since ClpB is not found in human cells, this chaperone emerges as an attractive target for novel antimicrobial therapies in combating bacterial infections.
Collapse
|
12
|
Yin Y, Feng X, Yu H, Fay A, Kovach A, Glickman MS, Li H. Structural basis for aggregate dissolution and refolding by the Mycobacterium tuberculosis ClpB-DnaK bi-chaperone system. Cell Rep 2021; 35:109166. [PMID: 34038719 PMCID: PMC8209680 DOI: 10.1016/j.celrep.2021.109166] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Revised: 12/30/2020] [Accepted: 05/03/2021] [Indexed: 11/30/2022] Open
Abstract
The M. tuberculosis (Mtb) ClpB is a protein disaggregase that helps to rejuvenate the bacterial cell. DnaK is a protein foldase that can function alone, but it can also bind to the ClpB hexamer to physically couple protein disaggregation with protein refolding, although the molecular mechanism is not well understood. Here, we report the cryo-EM analysis of the Mtb ClpB-DnaK bi-chaperone in the presence of ATPγS and a protein substrate. We observe three ClpB conformations in the presence of DnaK, identify a conserved TGIP loop linking the oligonucleotide/oligosaccharide-binding domain and the nucleotide-binding domain that is important for ClpB function, derive the interface between the regulatory middle domain of the ClpB and the DnaK nucleotide-binding domain, and find that DnaK binding stabilizes, but does not bend or tilt, the ClpB middle domain. We propose a model for the synergistic actions of aggregate dissolution and refolding by the Mtb ClpB-DnaK bi-chaperone system. Yin et al. use cryo-EM to analyze the structure of the Mycobacterium tuberculosis ClpB-DnaK bi-chaperone system. They find that the Mtb ClpB middle domain does not bend or tilt when interacting with DnaK. They therefore propose that the Mtb DnaK facilitates protein folding following protein disaggregation by ClpB.
Collapse
Affiliation(s)
- Yanting Yin
- Department of Structural Biology, Van Andel Institute, Grand Rapids, MI, USA
| | - Xiang Feng
- Department of Structural Biology, Van Andel Institute, Grand Rapids, MI, USA
| | - Hongjun Yu
- Department of Structural Biology, Van Andel Institute, Grand Rapids, MI, USA
| | - Allison Fay
- Immunology Program, Sloan Kettering Institute, New York, NY, USA
| | - Amanda Kovach
- Department of Structural Biology, Van Andel Institute, Grand Rapids, MI, USA
| | | | - Huilin Li
- Department of Structural Biology, Van Andel Institute, Grand Rapids, MI, USA.
| |
Collapse
|
13
|
Darling AL, Shorter J. Combating deleterious phase transitions in neurodegenerative disease. BIOCHIMICA ET BIOPHYSICA ACTA. MOLECULAR CELL RESEARCH 2021; 1868:118984. [PMID: 33549703 PMCID: PMC7965345 DOI: 10.1016/j.bbamcr.2021.118984] [Citation(s) in RCA: 60] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 01/21/2021] [Accepted: 01/22/2021] [Indexed: 12/11/2022]
Abstract
Protein aggregation is a hallmark of neurodegenerative diseases. However, the mechanism that induces pathogenic aggregation is not well understood. Recently, it has emerged that several of the pathological proteins found in an aggregated or mislocalized state in neurodegenerative diseases are also able to undergo liquid-liquid phase separation (LLPS) under physiological conditions. Although these phase transitions are likely important for various physiological functions, neurodegenerative disease-related mutations and conditions can alter the LLPS behavior of these proteins, which can elicit toxicity. Therefore, therapeutics that antagonize aberrant LLPS may be able to mitigate toxicity and aggregation that is ubiquitous in neurodegenerative disease. Here, we discuss the mechanisms by which aberrant protein phase transitions may contribute to neurodegenerative disease. We also outline potential therapeutic strategies to counter deleterious phases. State without borders: Membrane-less organelles and liquid-liquid phase transitions edited by Vladimir N Uversky.
Collapse
Affiliation(s)
- April L Darling
- Department of Biochemistry and Biophysics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA
| | - James Shorter
- Department of Biochemistry and Biophysics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA.
| |
Collapse
|
14
|
March ZM, Sweeney K, Kim H, Yan X, Castellano LM, Jackrel ME, Lin J, Chuang E, Gomes E, Willicott CW, Michalska K, Jedrzejczak RP, Joachimiak A, Caldwell KA, Caldwell GA, Shalem O, Shorter J. Therapeutic genetic variation revealed in diverse Hsp104 homologs. eLife 2020; 9:e57457. [PMID: 33319748 PMCID: PMC7785292 DOI: 10.7554/elife.57457] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Accepted: 12/14/2020] [Indexed: 12/11/2022] Open
Abstract
The AAA+ protein disaggregase, Hsp104, increases fitness under stress by reversing stress-induced protein aggregation. Natural Hsp104 variants might exist with enhanced, selective activity against neurodegenerative disease substrates. However, natural Hsp104 variation remains largely unexplored. Here, we screened a cross-kingdom collection of Hsp104 homologs in yeast proteotoxicity models. Prokaryotic ClpG reduced TDP-43, FUS, and α-synuclein toxicity, whereas prokaryotic ClpB and hyperactive variants were ineffective. We uncovered therapeutic genetic variation among eukaryotic Hsp104 homologs that specifically antagonized TDP-43 condensation and toxicity in yeast and TDP-43 aggregation in human cells. We also uncovered distinct eukaryotic Hsp104 homologs that selectively antagonized α-synuclein condensation and toxicity in yeast and dopaminergic neurodegeneration in C. elegans. Surprisingly, this therapeutic variation did not manifest as enhanced disaggregase activity, but rather as increased passive inhibition of aggregation of specific substrates. By exploring natural tuning of this passive Hsp104 activity, we elucidated enhanced, substrate-specific agents that counter proteotoxicity underlying neurodegeneration.
Collapse
Affiliation(s)
- Zachary M March
- Department of Biochemistry and Biophysics, Perelman School of Medicine at the University of PennsylvaniaPhiladelphiaUnited States
- Department of Biochemistry and Molecular Biophysics Graduate Group, Perelman School of Medicine at the University of PennsylvaniaPhiladelphiaUnited States
| | - Katelyn Sweeney
- Department of Genetics, Perelman School of Medicine at the University of PennsylvaniaPhiladelphiaUnited States
- Cell and Molecular Biology Graduate Group, Perelman School of Medicine at the University of PennsylvaniaPhiladelphiaUnited States
- Center for Cellular and Molecular Therapeutics, Children’s Hospital of PhiladelphiaPhiladelphiaUnited States
| | - Hanna Kim
- Department of Biological Sciences, The University of AlabamaTuscaloosaUnited States
| | - Xiaohui Yan
- Department of Biological Sciences, The University of AlabamaTuscaloosaUnited States
| | - Laura M Castellano
- Department of Biochemistry and Biophysics, Perelman School of Medicine at the University of PennsylvaniaPhiladelphiaUnited States
- Pharmacology Graduate Group, Perelman School of Medicine at the University of PennsylvaniaPhiladelphiaUnited States
| | - Meredith E Jackrel
- Department of Biochemistry and Biophysics, Perelman School of Medicine at the University of PennsylvaniaPhiladelphiaUnited States
| | - JiaBei Lin
- Department of Biochemistry and Biophysics, Perelman School of Medicine at the University of PennsylvaniaPhiladelphiaUnited States
| | - Edward Chuang
- Department of Biochemistry and Biophysics, Perelman School of Medicine at the University of PennsylvaniaPhiladelphiaUnited States
- Pharmacology Graduate Group, Perelman School of Medicine at the University of PennsylvaniaPhiladelphiaUnited States
| | - Edward Gomes
- Department of Biochemistry and Biophysics, Perelman School of Medicine at the University of PennsylvaniaPhiladelphiaUnited States
| | - Corey W Willicott
- Department of Biological Sciences, The University of AlabamaTuscaloosaUnited States
| | - Karolina Michalska
- Structural Biology Center, X-ray Science Division, Argonne National LaboratoryArgonneUnited States
- Department of Biochemistry and Molecular Biology, University of ChicagoChicagoUnited States
| | - Robert P Jedrzejczak
- Structural Biology Center, X-ray Science Division, Argonne National LaboratoryArgonneUnited States
| | - Andrzej Joachimiak
- Structural Biology Center, X-ray Science Division, Argonne National LaboratoryArgonneUnited States
- Department of Biochemistry and Molecular Biology, University of ChicagoChicagoUnited States
| | - Kim A Caldwell
- Department of Biological Sciences, The University of AlabamaTuscaloosaUnited States
| | - Guy A Caldwell
- Department of Biological Sciences, The University of AlabamaTuscaloosaUnited States
| | - Ophir Shalem
- Department of Genetics, Perelman School of Medicine at the University of PennsylvaniaPhiladelphiaUnited States
- Cell and Molecular Biology Graduate Group, Perelman School of Medicine at the University of PennsylvaniaPhiladelphiaUnited States
- Center for Cellular and Molecular Therapeutics, Children’s Hospital of PhiladelphiaPhiladelphiaUnited States
| | - James Shorter
- Department of Biochemistry and Biophysics, Perelman School of Medicine at the University of PennsylvaniaPhiladelphiaUnited States
- Department of Biochemistry and Molecular Biophysics Graduate Group, Perelman School of Medicine at the University of PennsylvaniaPhiladelphiaUnited States
- Cell and Molecular Biology Graduate Group, Perelman School of Medicine at the University of PennsylvaniaPhiladelphiaUnited States
- Pharmacology Graduate Group, Perelman School of Medicine at the University of PennsylvaniaPhiladelphiaUnited States
| |
Collapse
|
15
|
Kędzierska-Mieszkowska S, Arent Z. AAA+ Molecular Chaperone ClpB in Leptospira interrogans: Its Role and Significance in Leptospiral Virulence and Pathogenesis of Leptospirosis. Int J Mol Sci 2020; 21:E6645. [PMID: 32932775 PMCID: PMC7555560 DOI: 10.3390/ijms21186645] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Revised: 08/31/2020] [Accepted: 09/08/2020] [Indexed: 02/06/2023] Open
Abstract
Bacterial ClpB is an ATP-dependent disaggregase that belongs to the Hsp100/Clp subfamily of the AAA+ ATPases and cooperates with the DnaK chaperone system in the reactivation of aggregated proteins, as well as promotes bacterial survival under adverse environmental conditions, including thermal and oxidative stresses. In addition, extensive evidence indicates that ClpB supports the virulence of numerous bacteria, including pathogenic spirochaete Leptospira interrogans responsible for leptospirosis in animals and humans. However, the specific function of ClpB in leptospiral virulence still remains to be fully elucidated. Interestingly, ClpB was predicted as one of the L. interrogans hub proteins interacting with human proteins, and pathogen-host protein interactions are fundamental for successful invasion of the host immune system by bacteria. The aim of this review is to discuss the most important aspects of ClpB's function in L. interrogans, including contribution of ClpB to leptospiral virulence and pathogenesis of leptospirosis, a zoonotic disease with a significant impact on public health worldwide.
Collapse
Affiliation(s)
| | - Zbigniew Arent
- University Centre of Veterinary Medicine, University of Agriculture in Krakow, 30-059 Krakow, Poland;
| |
Collapse
|
16
|
Huang M, Zhao Y, Feng L, Zhu L, Zhan L, Chen X. Role of ClpB From Corynebacterium crenatum in Thermal Stress and Arginine Fermentation. Front Microbiol 2020; 11:1660. [PMID: 32765470 PMCID: PMC7380099 DOI: 10.3389/fmicb.2020.01660] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Accepted: 06/25/2020] [Indexed: 12/04/2022] Open
Abstract
ClpB, an ATP-dependent molecular chaperone, is involved in metabolic pathways and plays important roles in microorganisms under stress conditions. Metabolic pathways and stress resistance are important characteristics of industrially -relevant bacteria during fermentation. Nevertheless, ClpB-related observations have been rarely reported in industrially -relevant microorganisms. Herein, we found a homolog of ClpB from Corynebacterium crenatum. The amino acid sequence of ClpB was analyzed, and the recombinant ClpB protein was purified and characterized. The full function of ClpB requires DnaK as chaperone protein. For this reason, dnaK/clpB deletion mutants and the complemented strains were constructed to investigate the role of ClpB. The results showed that DnaK/ClpB is not essential for the survival of C. crenatum MT under pH and alcohol stresses. The ClpB-deficient or DnaK-deficient C. crenatum mutants showed weakened growth during thermal stress. In addition, the results demonstrated that deletion of the clpB gene affected glucose consumption and L-arginine, L-glutamate, and lactate production during fermentation.
Collapse
Affiliation(s)
- Mingzhu Huang
- Department of Life Science, Jiangxi Normal University, Nanchang, China.,Key Laboratory of Functional Small Organic Molecule of Ministry of Education, Jiangxi Normal University, Nanchang, China
| | - Yue Zhao
- Department of Life Science, Jiangxi Normal University, Nanchang, China
| | - Lin Feng
- Department of Life Science, Jiangxi Normal University, Nanchang, China
| | - Lingfeng Zhu
- Department of Life Science, Jiangxi Normal University, Nanchang, China
| | - Li Zhan
- Department of Life Science, Jiangxi Normal University, Nanchang, China
| | - Xuelan Chen
- Department of Life Science, Jiangxi Normal University, Nanchang, China.,Key Laboratory of Functional Small Organic Molecule of Ministry of Education, Jiangxi Normal University, Nanchang, China
| |
Collapse
|
17
|
Alam A, Golovliov I, Javed E, Kumar R, Ådén J, Sjöstedt A. Dissociation between the critical role of ClpB of Francisella tularensis for the heat shock response and the DnaK interaction and its important role for efficient type VI secretion and bacterial virulence. PLoS Pathog 2020; 16:e1008466. [PMID: 32275693 PMCID: PMC7182274 DOI: 10.1371/journal.ppat.1008466] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2019] [Revised: 04/24/2020] [Accepted: 03/06/2020] [Indexed: 01/20/2023] Open
Abstract
Francisella tularensis, a highly infectious, intracellular bacterium possesses an atypical type VI secretion system (T6SS), which is essential for its virulence. The chaperone ClpB, a member of the Hsp100/Clp family, is involved in Francisella T6SS disassembly and type VI secretion (T6S) is impaired in its absence. We asked if the role of ClpB for T6S was related to its prototypical role for the disaggregation activity. The latter is dependent on its interaction with the DnaK/Hsp70 chaperone system. Key residues of the ClpB-DnaK interaction were identified by molecular dynamic simulation and verified by targeted mutagenesis. Using such targeted mutants, it was found that the F. novicida ClpB-DnaK interaction was dispensable for T6S, intracellular replication, and virulence in a mouse model, although essential for handling of heat shock. Moreover, by mutagenesis of key amino acids of the Walker A, Walker B, and Arginine finger motifs of each of the two Nucleotide-Binding Domains, their critical roles for heat shock, T6S, intracellular replication, and virulence were identified. In contrast, the N-terminus was dispensable for heat shock, but required for T6S, intracellular replication, and virulence. Complementation of the ΔclpB mutant with a chimeric F. novicida ClpB expressing the N-terminal of Escherichia coli, led to reconstitution of the wild-type phenotype. Collectively, the data demonstrate that the ClpB-DnaK interaction does not contribute to T6S, whereas the N-terminal and NBD domains displayed critical roles for T6S and virulence.
Collapse
Affiliation(s)
- Athar Alam
- Department of Clinical Microbiology and Laboratory for Molecular Infection Medicine Sweden (MIMS), Umeå University, Umeå, Sweden
| | - Igor Golovliov
- Department of Clinical Microbiology and Laboratory for Molecular Infection Medicine Sweden (MIMS), Umeå University, Umeå, Sweden
| | - Eram Javed
- Department of Clinical Microbiology and Laboratory for Molecular Infection Medicine Sweden (MIMS), Umeå University, Umeå, Sweden
| | - Rajender Kumar
- Department of Clinical Microbiology and Laboratory for Molecular Infection Medicine Sweden (MIMS), Umeå University, Umeå, Sweden
| | - Jörgen Ådén
- Department of Chemistry, Umeå University, Umeå, Sweden
| | - Anders Sjöstedt
- Department of Clinical Microbiology and Laboratory for Molecular Infection Medicine Sweden (MIMS), Umeå University, Umeå, Sweden
- * E-mail:
| |
Collapse
|
18
|
Structural and kinetic basis for the regulation and potentiation of Hsp104 function. Proc Natl Acad Sci U S A 2020; 117:9384-9392. [PMID: 32277033 DOI: 10.1073/pnas.1921968117] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
Hsp104 provides a valuable model for the many essential proteostatic functions performed by the AAA+ superfamily of protein molecular machines. We developed and used a powerful hydrogen exchange mass spectrometry (HX MS) analysis that can provide positionally resolved information on structure, dynamics, and energetics of the Hsp104 molecular machinery, even during functional cycling. HX MS reveals that the ATPase cycle is rate-limited by ADP release from nucleotide-binding domain 1 (NBD1). The middle domain (MD) serves to regulate Hsp104 activity by slowing ADP release. Mutational potentiation accelerates ADP release, thereby increasing ATPase activity. It reduces time in the open state, thereby decreasing substrate protein loss. During active cycling, Hsp104 transits repeatedly between whole hexamer closed and open states. Under diverse conditions, the shift of open/closed balance can lead to premature substrate loss, normal processing, or the generation of a strong pulling force. HX MS exposes the mechanisms of these functions at near-residue resolution.
Collapse
|
19
|
Sweeny EA, Tariq A, Gurpinar E, Go MS, Sochor MA, Kan ZY, Mayne L, Englander SW, Shorter J. Structural and mechanistic insights into Hsp104 function revealed by synchrotron X-ray footprinting. J Biol Chem 2020; 295:1517-1538. [PMID: 31882541 PMCID: PMC7008382 DOI: 10.1074/jbc.ra119.011577] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2019] [Revised: 12/23/2019] [Indexed: 01/11/2023] Open
Abstract
Hsp104 is a hexameric AAA+ ring translocase, which drives protein disaggregation in nonmetazoan eukaryotes. Cryo-EM structures of Hsp104 have suggested potential mechanisms of substrate translocation, but precisely how Hsp104 hexamers disaggregate proteins remains incompletely understood. Here, we employed synchrotron X-ray footprinting to probe the solution-state structures of Hsp104 monomers in the absence of nucleotide and Hsp104 hexamers in the presence of ADP or ATPγS (adenosine 5'-O-(thiotriphosphate)). Comparing side-chain solvent accessibilities between these three states illuminated aspects of Hsp104 structure and guided design of Hsp104 variants to probe the disaggregase mechanism in vitro and in vivo We established that Hsp104 hexamers switch from a more-solvated state in ADP to a less-solvated state in ATPγS, consistent with switching from an open spiral to a closed ring visualized by cryo-EM. We pinpointed critical N-terminal domain (NTD), NTD-nucleotide-binding domain 1 (NBD1) linker, NBD1, and middle domain (MD) residues that enable intrinsic disaggregase activity and Hsp70 collaboration. We uncovered NTD residues in the loop between helices A1 and A2 that can be substituted to enhance disaggregase activity. We elucidated a novel potentiated Hsp104 MD variant, Hsp104-RYD, which suppresses α-synuclein, fused in sarcoma (FUS), and TDP-43 toxicity. We disambiguated a secondary pore-loop in NBD1, which collaborates with the NTD and NBD1 tyrosine-bearing pore-loop to drive protein disaggregation. Finally, we defined Leu-601 in NBD2 as crucial for Hsp104 hexamerization. Collectively, our findings unveil new facets of Hsp104 structure and mechanism. They also connect regions undergoing large changes in solvation to functionality, which could have profound implications for protein engineering.
Collapse
Affiliation(s)
- Elizabeth A Sweeny
- Department of Biochemistry and Biophysics, University of Pennsylvania, Philadelphia, Pennsylvania 19104; Biochemistry and Molecular Biophysics Graduate Group, University of Pennsylvania, Philadelphia, Pennsylvania 19104.
| | - Amber Tariq
- Department of Biochemistry and Biophysics, University of Pennsylvania, Philadelphia, Pennsylvania 19104
| | - Esin Gurpinar
- Department of Biochemistry and Biophysics, University of Pennsylvania, Philadelphia, Pennsylvania 19104
| | - Michelle S Go
- Department of Biochemistry and Biophysics, University of Pennsylvania, Philadelphia, Pennsylvania 19104
| | - Matthew A Sochor
- Department of Biochemistry and Biophysics, University of Pennsylvania, Philadelphia, Pennsylvania 19104; Biochemistry and Molecular Biophysics Graduate Group, University of Pennsylvania, Philadelphia, Pennsylvania 19104
| | - Zhong-Yuan Kan
- Department of Biochemistry and Biophysics, University of Pennsylvania, Philadelphia, Pennsylvania 19104; Johnson Research Foundation, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104
| | - Leland Mayne
- Department of Biochemistry and Biophysics, University of Pennsylvania, Philadelphia, Pennsylvania 19104; Johnson Research Foundation, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104
| | - S Walter Englander
- Department of Biochemistry and Biophysics, University of Pennsylvania, Philadelphia, Pennsylvania 19104; Biochemistry and Molecular Biophysics Graduate Group, University of Pennsylvania, Philadelphia, Pennsylvania 19104; Johnson Research Foundation, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104
| | - James Shorter
- Department of Biochemistry and Biophysics, University of Pennsylvania, Philadelphia, Pennsylvania 19104; Biochemistry and Molecular Biophysics Graduate Group, University of Pennsylvania, Philadelphia, Pennsylvania 19104.
| |
Collapse
|
20
|
Abstract
Parkinson's disease is characterized by the aggregation of the presynaptic protein α-synuclein and its deposition into pathologic Lewy bodies. While extensive research has been carried out on mediators of α-synuclein aggregation, molecular facilitators of α-synuclein disaggregation are still generally unknown. We investigated the role of molecular chaperones in both preventing and disaggregating α-synuclein oligomers and fibrils, with a focus on the mammalian disaggregase complex. Here, we show that overexpression of the chaperone Hsp110 is sufficient to reduce α-synuclein aggregation in a mammalian cell culture model. Additionally, we demonstrate that Hsp110 effectively mitigates α-synuclein pathology in vivo through the characterization of transgenic Hsp110 and double-transgenic α-synuclein/Hsp110 mouse models. Unbiased analysis of the synaptic proteome of these mice revealed that overexpression of Hsp110 can override the protein changes driven by the α-synuclein transgene. Furthermore, overexpression of Hsp110 is sufficient to prevent endogenous α-synuclein templating and spread following injection of aggregated α-synuclein seeds into brain, supporting a role for Hsp110 in the prevention and/or disaggregation of α-synuclein pathology.
Collapse
|
21
|
Tariq A, Lin J, Noll MM, Torrente MP, Mack KL, Murillo OH, Jackrel ME, Shorter J. Potentiating Hsp104 activity via phosphomimetic mutations in the middle domain. FEMS Yeast Res 2019; 18:4969683. [PMID: 29788207 DOI: 10.1093/femsyr/foy042] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2017] [Accepted: 04/10/2018] [Indexed: 12/13/2022] Open
Abstract
Hsp104 is a hexameric AAA + ATPase and protein disaggregase found in yeast, which can be potentiated via mutations in its middle domain (MD) to counter toxic phase separation by TDP-43, FUS and α-synuclein connected to devastating neurodegenerative disorders. Subtle missense mutations in the Hsp104 MD can enhance activity, indicating that post-translational modification of specific MD residues might also potentiate Hsp104. Indeed, several serine and threonine residues throughout Hsp104 can be phosphorylated in vivo. Here, we introduce phosphomimetic aspartate or glutamate residues at these positions and assess Hsp104 activity. Remarkably, phosphomimetic T499D/E and S535D/E mutations in the MD enable Hsp104 to counter TDP-43, FUS and α-synuclein aggregation and toxicity in yeast, whereas T499A/V/I and S535A do not. Moreover, Hsp104T499E and Hsp104S535E exhibit enhanced ATPase activity and Hsp70-independent disaggregase activity in vitro. We suggest that phosphorylation of T499 or S535 may elicit enhanced Hsp104 disaggregase activity in a reversible and regulated manner.
Collapse
Affiliation(s)
| | - JiaBei Lin
- Department of Biochemistry and Biophysics
| | | | | | - Korrie L Mack
- Department of Biochemistry and Biophysics
- Biochemistry and Molecular Biophysics Graduate Group, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | | | | | | |
Collapse
|
22
|
Tunable microsecond dynamics of an allosteric switch regulate the activity of a AAA+ disaggregation machine. Nat Commun 2019; 10:1438. [PMID: 30926805 PMCID: PMC6440998 DOI: 10.1038/s41467-019-09474-6] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2018] [Accepted: 03/14/2019] [Indexed: 12/13/2022] Open
Abstract
Large protein machines are tightly regulated through allosteric communication channels. Here we demonstrate the involvement of ultrafast conformational dynamics in allosteric regulation of ClpB, a hexameric AAA+ machine that rescues aggregated proteins. Each subunit of ClpB contains a unique coiled-coil structure, the middle domain (M domain), proposed as a control element that binds the co-chaperone DnaK. Using single-molecule FRET spectroscopy, we probe the M domain during the chaperone cycle and find it to jump on the microsecond time scale between two states, whose structures are determined. The M-domain jumps are much faster than the overall activity of ClpB, making it an effectively continuous, tunable switch. Indeed, a series of allosteric interactions are found to modulate the dynamics, including binding of nucleotides, DnaK and protein substrates. This mode of dynamic control enables fast cellular adaptation and may be a general mechanism for the regulation of cellular machineries. Large protein machines are tightly regulated through allosteric communication channels. Here authors use single-molecule FRET and demonstrate the involvement of ultrafast conformational dynamics in the allosteric regulation of ClpB, a hexameric AAA+ machine that rescues aggregated proteins.
Collapse
|
23
|
Hydrogen exchange reveals Hsp104 architecture, structural dynamics, and energetics in physiological solution. Proc Natl Acad Sci U S A 2019; 116:7333-7342. [PMID: 30918129 DOI: 10.1073/pnas.1816184116] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Hsp104 is a large AAA+ molecular machine that can rescue proteins trapped in amorphous aggregates and stable amyloids by drawing substrate protein into its central pore. Recent cryo-EM studies image Hsp104 at high resolution. We used hydrogen exchange mass spectrometry analysis (HX MS) to resolve and characterize all of the functionally active and inactive elements of Hsp104, many not accessible to cryo-EM. At a global level, HX MS confirms the one noncanonical interprotomer interface in the Hsp104 hexamer as a marker for the spiraled conformation revealed by cryo-EM and measures its fast conformational cycling under ATP hydrolysis. Other findings enable reinterpretation of the apparent variability of the regulatory middle domain. With respect to detailed mechanism, HX MS determines the response of each Hsp104 structural element to the different bound adenosine nucleotides (ADP, ATP, AMPPNP, and ATPγS). They are distinguished most sensitively by the two Walker A nucleotide-binding segments. Binding of the ATP analog, ATPγS, tightly restructures the Walker A segments and drives the global open-to-closed/extended transition. The global transition carries part of the ATP/ATPγS-binding energy to the somewhat distant central pore. The pore constricts and the tyrosine and other pore-related loops become more tightly structured, which seems to reflect the energy-requiring directional pull that translocates the substrate protein. ATP hydrolysis to ADP allows Hsp104 to relax back to its lowest energy open state ready to restart the cycle.
Collapse
|
24
|
Isolation and Identification of Putative Protein Substrates of the AAA+ Molecular Chaperone ClpB from the Pathogenic Spirochaete Leptospira interrogans. Int J Mol Sci 2018; 19:ijms19041234. [PMID: 29670056 PMCID: PMC5979558 DOI: 10.3390/ijms19041234] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2018] [Revised: 04/13/2018] [Accepted: 04/15/2018] [Indexed: 01/22/2023] Open
Abstract
Bacterial ClpB is an ATP-dependent Hsp100 chaperone that reactivates aggregated proteins in cooperation with the DnaK chaperone system and promotes survival of bacteria under stress conditions. A large number of publications also indicate that ClpB supports the virulence of bacteria, including a pathogenic spirochaete Leptospira interrogans responsible for leptospirosis in both animals and humans. However, the exact role of ClpB in bacterial pathogenicity remains poorly characterized. It can be assumed that ClpB, due to its role as the molecular chaperone, mediates refolding of essential bacterial proteins, including the known virulence factors, which may become prone to aggregation under infection-induced stresses. In this study, we identified putative substrates of ClpB from L. interrogans (ClpBLi). For this purpose, we used a proteomic approach combining the ClpB-Trap affinity pull-down assays, Liquid chromatography-tandem mass spectrometry (LC-MS-MS/MS), and bioinformatics analyses. Most of the identified proteins were enzymes predominantly associated with major metabolic pathways like the tricarboxylic acid (TCA) cycle, glycolysis–gluconeogenesis and amino acid and fatty acid metabolism. Based on our proteomic study, we suggest that ClpB can support the virulence of L.interrogans by protecting the conformational integrity and catalytic activity of multiple metabolic enzymes, thus maintaining energy homeostasis in pathogen cells.
Collapse
|
25
|
Abstract
By assisting in the proteolysis, disaggregation and refolding of the aggregated proteins, Caseinolytic proteases (Clps) enhance the cellular survival under stress conditions. In the current study, comparative roles of two such Clps, ClpA (involved in proteolysis) and ClpB (involved in protein disaggregation and refolding) in the survival of Salmonella Typhimurium (S. Typhimurium) under different stresses and in virulence have been investigated. clpA and clpB gene deletion mutant strains (∆clpA and ∆clpB) of S. Typhimurium have been hypersensitive to 42 °C, HOCl and paraquat. However, the ∆clpB strain was comparatively much more susceptible (p < 0.001) to the above stresses than ∆clpA strain. ∆clpB strain also showed reduced survival (p < 0.001) in poultry macrophages. The hypersusceptibilities of ∆clpB strain to oxidants and macrophages were restored in plasmid based complemented (∆clpB + pclpB) strain. Further, the ∆clpB strain was defective for colonization in the poultry caecum and showed decreased dissemination to the spleen and liver. Our findings suggest that the role of ClpB is more important than the role of ClpA for the survival of S. Typhimurium under stress and colonization in chickens.
Collapse
|
26
|
Cordova JC, Olivares AO, Lang MJ. Mechanically Watching the ClpXP Proteolytic Machinery. Methods Mol Biol 2018; 1486:317-341. [PMID: 27844434 DOI: 10.1007/978-1-4939-6421-5_12] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Energy-dependent protein degradation is studied through the dual bead ClpXP motility assay. Processing of folded proteins involves recognition, unfolding, translocation, and degradation stages. A dual optical trap, in a passive force-clamp geometry, exhibits bead-to-bead displacements that directly follow subprocesses underlying protein degradation. Discrete nanometer-scale displacements of the bead position reveal steps, dwells and pauses during the unfolding and translocation substeps. With a few structural modifications to the protease machinery and an engineered substrate, the assay represents a "chassis" for the measurement of a wide range of substrates and related machinery. The methods described faithfully record our assay as implemented, including substrate design, wet assay preparation, and the motility assay experiment protocol. The strategies herein permit adaptation of the ClpXP mechanical assay to a wide range of protein degradation systems.
Collapse
Affiliation(s)
- Juan Carlos Cordova
- Department of Chemical and Biomolecular Engineering, Vanderbilt University, 308-A Olin Hall, VU Mailbox: PMB 351604, Nashville, TN, 37235, USA
| | - Adrian O Olivares
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Matthew J Lang
- Department of Chemical and Biomolecular Engineering and Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, 308-A Olin Hall, VU Mailbox: PMB 351604, Nashville, TN, 37235, USA.
| |
Collapse
|
27
|
Miller JM, Chaudhary H, Marsee JD. Phylogenetic analysis predicts structural divergence for proteobacterial ClpC proteins. J Struct Biol 2017; 201:52-62. [PMID: 29129755 DOI: 10.1016/j.jsb.2017.11.003] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2017] [Revised: 11/06/2017] [Accepted: 11/08/2017] [Indexed: 12/29/2022]
Abstract
Regulated proteolysis is required in all organisms for the removal of misfolded or degradation-tagged protein substrates in cellular quality control pathways. The molecular machines that catalyze this process are known as ATP-dependent proteases with examples that include ClpAP and ClpCP. Clp/Hsp100 subunits form ring-structures that couple the energy of ATP binding and hydrolysis to protein unfolding and subsequent translocation of denatured protein into the compartmentalized ClpP protease for degradation. Copies of the clpA, clpC, clpE, clpK, and clpL genes are present in all characterized bacteria and their gene products are highly conserved in structure and function. However, the evolutionary relationship between these proteins remains unclear. Here we report a comprehensive phylogenetic analysis that suggests divergent evolution yielded ClpA from an ancestral ClpC protein and that ClpE/ClpL represent intermediates between ClpA/ClpC. This analysis also identifies a group of proteobacterial ClpC proteins that are likely not functional in regulated proteolysis. Our results strongly suggest that bacterial ClpC proteins should not be assumed to all function identically due to the structural differences identified here.
Collapse
Affiliation(s)
- Justin M Miller
- Middle Tennessee State University, Department of Chemistry, 1301 East Main Street, Murfreesboro, TN 37132, United States.
| | - Hamza Chaudhary
- Middle Tennessee State University, Department of Chemistry, 1301 East Main Street, Murfreesboro, TN 37132, United States
| | - Justin D Marsee
- Middle Tennessee State University, Department of Chemistry, 1301 East Main Street, Murfreesboro, TN 37132, United States
| |
Collapse
|
28
|
Human TorsinA can function in the yeast cytosol as a molecular chaperone. Biochem J 2017; 474:3439-3454. [PMID: 28871039 PMCID: PMC5628414 DOI: 10.1042/bcj20170395] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2017] [Revised: 08/25/2017] [Accepted: 09/01/2017] [Indexed: 11/17/2022]
Abstract
TorsinA (TorA) is an AAA+ (ATPases associated with diverse cellular activities) ATPase linked to dystonia type 1 (DYT1), a neurological disorder that leads to uncontrollable muscular movements. Although DYT1 is linked to a 3 bp deletion in the C-terminus of TorA, the biological function of TorA remains to be established. Here, we use the yeast Saccharomyces cerevisiae as a tractable in vivo model to explore TorA function. We demonstrate that TorA can protect yeast cells against different forms of environmental stress and show that in the absence of the molecular disaggregase Hsp104, TorA can refold heat-denatured luciferase in vivo in an ATP-dependent manner. However, this activity requires TorA to be translocated to the cytoplasm from the endoplasmic reticulum in order to access and process cytoplasmic protein aggregates. Furthermore, mutational or chemical inactivation of the ATPase activity of TorA blocks this activity. We also find that TorA can inhibit the propagation of certain conformational variants of [PSI+], the aggregated prion form of the endogenous Sup35 protein. Finally, we show that while cellular localisation remains unchanged in the dystonia-linked TorA mutant ΔE302-303, the ability of this mutant form of TorA to protect against cellular stress and to facilitate protein refolding is impaired, consistent with it being a loss-of-function mutation.
Collapse
|
29
|
Shorter J. Engineering therapeutic protein disaggregases. Mol Biol Cell 2017; 27:1556-60. [PMID: 27255695 PMCID: PMC4865313 DOI: 10.1091/mbc.e15-10-0693] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2016] [Accepted: 03/23/2016] [Indexed: 11/11/2022] Open
Abstract
Therapeutic agents are urgently required to cure several common and fatal neurodegenerative disorders caused by protein misfolding and aggregation, including amyotrophic lateral sclerosis (ALS), Parkinson's disease (PD), and Alzheimer's disease (AD). Protein disaggregases that reverse protein misfolding and restore proteins to native structure, function, and localization could mitigate neurodegeneration by simultaneously reversing 1) any toxic gain of function of the misfolded form and 2) any loss of function due to misfolding. Potentiated variants of Hsp104, a hexameric AAA+ ATPase and protein disaggregase from yeast, have been engineered to robustly disaggregate misfolded proteins connected with ALS (e.g., TDP-43 and FUS) and PD (e.g., α-synuclein). However, Hsp104 has no metazoan homologue. Metazoa possess protein disaggregase systems distinct from Hsp104, including Hsp110, Hsp70, and Hsp40, as well as HtrA1, which might be harnessed to reverse deleterious protein misfolding. Nevertheless, vicissitudes of aging, environment, or genetics conspire to negate these disaggregase systems in neurodegenerative disease. Thus, engineering potentiated human protein disaggregases or isolating small-molecule enhancers of their activity could yield transformative therapeutics for ALS, PD, and AD.
Collapse
Affiliation(s)
- James Shorter
- Department of Biochemistry and Biophysics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104
| |
Collapse
|
30
|
Krajewska J, Modrak-Wójcik A, Arent ZJ, Więckowski D, Zolkiewski M, Bzowska A, Kędzierska-Mieszkowska S. Characterization of the molecular chaperone ClpB from the pathogenic spirochaete Leptospira interrogans. PLoS One 2017; 12:e0181118. [PMID: 28700685 PMCID: PMC5507356 DOI: 10.1371/journal.pone.0181118] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2017] [Accepted: 06/26/2017] [Indexed: 11/18/2022] Open
Abstract
Leptospira interrogans is a spirochaete responsible for leptospirosis in mammals. The molecular mechanisms of the Leptospira virulence remain mostly unknown. Recently, it has been demonstrated that an AAA+ chaperone ClpB (a member of the Hsp100 family) from L. interrogans (ClpBLi) is not only essential for survival of Leptospira under the thermal and oxidative stresses, but also during infection of a host. The aim of this study was to provide further insight into the role of ClpB in the pathogenic spirochaetes and explore its biochemical properties. We found that a non-hydrolysable ATP analogue, ATPγS, but not AMP-PNP induces the formation of ClpBLi hexamers and stabilizes the associated form of the chaperone. ADP also induces structural changes in ClpBLi and promotes its self-assembly, but does not produce full association into the hexamers. We also demonstrated that ClpBLi exhibits a weak ATPase activity that is stimulated by κ-casein and poly-lysine, and may mediate protein disaggregation independently from the DnaK chaperone system. Unexpectedly, the presence of E. coli DnaK/DnaJ/GrpE did not significantly affect the disaggregation activity of ClpBLi and ClpBLi did not substitute for the ClpBEc function in the clpB-null E. coli strain. This result underscores the species-specificity of the ClpB cooperation with the co-chaperones and is most likely due to a loss of interactions between the ClpBLi middle domain and the E. coli DnaK. We also found that ClpBLi interacts more efficiently with the aggregated G6PDH in the presence of ATPγS rather than ATP. Our results indicate that ClpB's importance during infection might be due to its role as a molecular chaperone involved in reactivation of protein aggregates.
Collapse
Affiliation(s)
- Joanna Krajewska
- Department of General and Medical Biochemistry, University of Gdańsk, Faculty of Biology, Gdańsk, Poland
| | - Anna Modrak-Wójcik
- Division of Biophysics, Institute of Experimental Physics, Faculty of Physics, University of Warsaw, Warsaw, Poland
| | - Zbigniew J. Arent
- University Centre of Veterinary Medicine UJ-UR, University of Agriculture in Krakow, Krakow, Poland
| | - Daniel Więckowski
- Department of General and Medical Biochemistry, University of Gdańsk, Faculty of Biology, Gdańsk, Poland
| | - Michal Zolkiewski
- Department of Biochemistry and Molecular Biophysics, Kansas State University, Manhattan, Kansas, United States of America
| | - Agnieszka Bzowska
- Division of Biophysics, Institute of Experimental Physics, Faculty of Physics, University of Warsaw, Warsaw, Poland
| | | |
Collapse
|
31
|
Fundamental Characteristics of AAA+ Protein Family Structure and Function. ARCHAEA-AN INTERNATIONAL MICROBIOLOGICAL JOURNAL 2016; 2016:9294307. [PMID: 27703410 PMCID: PMC5039278 DOI: 10.1155/2016/9294307] [Citation(s) in RCA: 73] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/11/2016] [Accepted: 07/21/2016] [Indexed: 12/22/2022]
Abstract
Many complex cellular events depend on multiprotein complexes known as molecular machines to efficiently couple the energy derived from adenosine triphosphate hydrolysis to the generation of mechanical force. Members of the AAA+ ATPase superfamily (ATPases Associated with various cellular Activities) are critical components of many molecular machines. AAA+ proteins are defined by conserved modules that precisely position the active site elements of two adjacent subunits to catalyze ATP hydrolysis. In many cases, AAA+ proteins form a ring structure that translocates a polymeric substrate through the central channel using specialized loops that project into the central channel. We discuss the major features of AAA+ protein structure and function with an emphasis on pivotal aspects elucidated with archaeal proteins.
Collapse
|
32
|
Clare DK, Saibil HR. ATP-driven molecular chaperone machines. Biopolymers 2016; 99:846-59. [PMID: 23877967 PMCID: PMC3814418 DOI: 10.1002/bip.22361] [Citation(s) in RCA: 65] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2013] [Accepted: 07/08/2013] [Indexed: 01/17/2023]
Abstract
This review is focused on the mechanisms by which ATP binding and hydrolysis drive chaperone machines assisting protein folding and unfolding. A survey of the key, general chaperone systems Hsp70 and Hsp90, and the unfoldase Hsp100 is followed by a focus on the Hsp60 chaperonin machine which is understood in most detail. Cryo-electron microscopy analysis of the E. coli Hsp60 GroEL reveals intermediate conformations in the ATPase cycle and in substrate folding. These structures suggest a mechanism by which GroEL can forcefully unfold and then encapsulate substrates for subsequent folding in isolation from all other binding surfaces.
Collapse
Affiliation(s)
- Daniel K Clare
- Department of Crystallography, Institute of Structural and Molecular Biology, Birkbeck College, University of London, Malet Street, London WC1E 7HX, UK
| | | |
Collapse
|
33
|
Prion-like domains as epigenetic regulators, scaffolds for subcellular organization, and drivers of neurodegenerative disease. Brain Res 2016; 1647:9-18. [PMID: 26996412 PMCID: PMC5003744 DOI: 10.1016/j.brainres.2016.02.037] [Citation(s) in RCA: 163] [Impact Index Per Article: 18.1] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2016] [Revised: 02/19/2016] [Accepted: 02/20/2016] [Indexed: 12/12/2022]
Abstract
Key challenges faced by all cells include how to spatiotemporally organize complex biochemistry and how to respond to environmental fluctuations. The budding yeast Saccharomyces cerevisiae harnesses alternative protein folding mediated by yeast prion domains (PrDs) for rapid evolution of new traits in response to environmental stress. Increasingly, it is appreciated that low complexity domains similar in amino acid composition to yeast PrDs (prion-like domains; PrLDs) found in metazoa have a prominent role in subcellular cytoplasmic organization, especially in relation to RNA homeostasis. In this review, we highlight recent advances in our understanding of the role of prions in enabling rapid adaptation to environmental stress in yeast. We also present the complete list of human proteins with PrLDs and discuss the prevalence of the PrLD in nucleic-acid binding proteins that are often connected to neurodegenerative disease, including: ataxin 1, ataxin 2, FUS, TDP-43, TAF15, EWSR1, hnRNPA1, and hnRNPA2. Recent paradigm-shifting advances establish that PrLDs undergo phase transitions to liquid states, which contribute to the structure and biophysics of diverse membraneless organelles. This structural functionality of PrLDs, however, simultaneously increases their propensity for deleterious protein-misfolding events that drive neurodegenerative disease. We suggest that even these PrLD-misfolding events are not irreversible and can be mitigated by natural or engineered protein disaggregases, which could have important therapeutic applications.
Collapse
|
34
|
Lin J, Lucius AL. Examination of ClpB Quaternary Structure and Linkage to Nucleotide Binding. Biochemistry 2016; 55:1758-71. [PMID: 26891079 DOI: 10.1021/acs.biochem.6b00122] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Escherichia coli caseinolytic peptidase B (ClpB) is a molecular chaperone with the unique ability to catalyze protein disaggregation in collaboration with the KJE system of chaperones. Like many AAA+ molecular motors, ClpB assembles into hexameric rings, and this reaction is thermodynamically linked to nucleotide binding. Here we show that ClpB exists in a dynamic equilibrium of monomers, dimers, tetramers, and hexamers in the presence of both limiting and excess ATPγS. We find that ClpB monomer is only able to bind one nucleotide, whereas all 12 sites in the hexameric ring are bound by nucleotide at saturating concentrations. Interestingly, dimers and tetramers exhibit stoichiometries of ∼3 and 7, respectively, which is one fewer than the maximum number of binding sites in the formed oligomer. This observation suggests an open conformation for the intermediates based on the need for an adjacent monomer to fully form the binding pocket. We also report the protein-protein interaction constants for dimers, tetramers, and hexamers and their dependencies on nucleotide. These interaction constants make it possible to predict the concentration of hexamers present and able to bind to cochaperones and polypeptide substrates. Such information is essential for the interpretation of many in vitro studies. Finally, the strategies presented here are broadly applicable to a large number of AAA+ molecular motors that assemble upon nucleotide binding and interact with partner proteins.
Collapse
Affiliation(s)
- JiaBei Lin
- Department of Chemistry, The University of Alabama at Birmingham , 1530 Third Avenue S, Birmingham, Alabama 35294-1240, United States
| | - Aaron L Lucius
- Department of Chemistry, The University of Alabama at Birmingham , 1530 Third Avenue S, Birmingham, Alabama 35294-1240, United States
| |
Collapse
|
35
|
Mack KL, Shorter J. Engineering and Evolution of Molecular Chaperones and Protein Disaggregases with Enhanced Activity. Front Mol Biosci 2016; 3:8. [PMID: 27014702 PMCID: PMC4791398 DOI: 10.3389/fmolb.2016.00008] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2016] [Accepted: 02/29/2016] [Indexed: 11/17/2022] Open
Abstract
Cells have evolved a sophisticated proteostasis network to ensure that proteins acquire and retain their native structure and function. Critical components of this network include molecular chaperones and protein disaggregases, which function to prevent and reverse deleterious protein misfolding. Nevertheless, proteostasis networks have limits, which when exceeded can have fatal consequences as in various neurodegenerative disorders, including Parkinson's disease and amyotrophic lateral sclerosis. A promising strategy is to engineer proteostasis networks to counter challenges presented by specific diseases or specific proteins. Here, we review efforts to enhance the activity of individual molecular chaperones or protein disaggregases via engineering and directed evolution. Remarkably, enhanced global activity or altered substrate specificity of various molecular chaperones, including GroEL, Hsp70, ClpX, and Spy, can be achieved by minor changes in primary sequence and often a single missense mutation. Likewise, small changes in the primary sequence of Hsp104 yield potentiated protein disaggregases that reverse the aggregation and buffer toxicity of various neurodegenerative disease proteins, including α-synuclein, TDP-43, and FUS. Collectively, these advances have revealed key mechanistic and functional insights into chaperone and disaggregase biology. They also suggest that enhanced chaperones and disaggregases could have important applications in treating human disease as well as in the purification of valuable proteins in the pharmaceutical sector.
Collapse
Affiliation(s)
- Korrie L Mack
- Department of Biochemistry and Biophysics, Perelman School of Medicine at the University of PennsylvaniaPhiladelphia, PA, USA; Biochemistry and Molecular Biophysics Graduate Group, Perelman School of Medicine at the University of PennsylvaniaPhiladelphia, PA, USA
| | - James Shorter
- Department of Biochemistry and Biophysics, Perelman School of Medicine at the University of PennsylvaniaPhiladelphia, PA, USA; Biochemistry and Molecular Biophysics Graduate Group, Perelman School of Medicine at the University of PennsylvaniaPhiladelphia, PA, USA
| |
Collapse
|
36
|
Abstract
Protein misfolding and aggregation underpin several fatal neurodegenerative diseases, including Parkinson's disease (PD), amyotrophic lateral sclerosis (ALS), and frontotemporal dementia (FTD). There are no treatments that directly antagonize the protein-misfolding events that cause these disorders. Agents that reverse protein misfolding and restore proteins to native form and function could simultaneously eliminate any deleterious loss-of-function or toxic gain-of-function caused by misfolded conformers. Moreover, a disruptive technology of this nature would eliminate self-templating conformers that spread pathology and catalyze formation of toxic, soluble oligomers. Here, we highlight our efforts to engineer Hsp104, a protein disaggregase from yeast, to more effectively disaggregate misfolded proteins connected with PD, ALS, and FTD. Remarkably subtle modifications of Hsp104 primary sequence yielded large gains in protective activity against deleterious α-synuclein, TDP-43, FUS, and TAF15 misfolding. Unusually, in many cases loss of amino acid identity at select positions in Hsp104 rather than specific mutation conferred a robust therapeutic gain-of-function. Nevertheless, the misfolding and toxicity of EWSR1, an RNA-binding protein with a prion-like domain linked to ALS and FTD, could not be buffered by potentiated Hsp104 variants, indicating that further amelioration of disaggregase activity or sharpening of substrate specificity is warranted. We suggest that neuroprotection is achievable for diverse neurodegenerative conditions via surprisingly subtle structural modifications of existing chaperones.
Collapse
Affiliation(s)
- Meredith E Jackrel
- a Department of Biochemistry and Biophysics ; Perelman School of Medicine at the University of Pennsylvania ; Philadelphia , PA USA
| | | |
Collapse
|
37
|
Paço A, Brígido C, Alexandre A, Mateos PF, Oliveira S. The Symbiotic Performance of Chickpea Rhizobia Can Be Improved by Additional Copies of the clpB Chaperone Gene. PLoS One 2016; 11:e0148221. [PMID: 26845770 PMCID: PMC4741418 DOI: 10.1371/journal.pone.0148221] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2015] [Accepted: 01/14/2016] [Indexed: 12/03/2022] Open
Abstract
The ClpB chaperone is known to be involved in bacterial stress response. Moreover, recent studies suggest that this protein has also a role in the chickpea-rhizobia symbiosis. In order to improve both stress tolerance and symbiotic performance of a chickpea microsymbiont, the Mesorhizobium mediterraneum UPM-Ca36T strain was genetically transformed with pPHU231 containing an extra-copy of the clpB gene. To investigate if the clpB-transformed strain displays an improved stress tolerance, bacterial growth was evaluated under heat and acid stress conditions. In addition, the effect of the extra-copies of the clpB gene in the symbiotic performance was evaluated using plant growth assays (hydroponic and pot trials). The clpB-transformed strain is more tolerant to heat shock than the strain transformed with pPHU231, supporting the involvement of ClpB in rhizobia heat shock tolerance. Both plant growth assays showed that ClpB has an important role in chickpea-rhizobia symbiosis. The nodulation kinetics analysis showed a higher rate of nodule appearance with the clpB-transformed strain. This strain also induced a greater number of nodules and, more notably, its symbiotic effectiveness increased ~60% at pH5 and 83% at pH7, compared to the wild-type strain. Furthermore, a higher frequency of root hair curling was also observed in plants inoculated with the clpB-transformed strain, compared to the wild-type strain. The superior root hair curling induction, nodulation ability and symbiotic effectiveness of the clpB-transformed strain may be explained by an increased expression of symbiosis genes. Indeed, higher transcript levels of the nodulation genes nodA and nodC (~3 folds) were detected in the clpB-transformed strain. The improvement of rhizobia by addition of extra-copies of the clpB gene may be a promising strategy to obtain strains with enhanced stress tolerance and symbiotic effectiveness, thus contributing to their success as crop inoculants, particularly under environmental stresses. This is the first report on the successful improvement of a rhizobium with a chaperone gene.
Collapse
Affiliation(s)
- Ana Paço
- ICAAM–Instituto de Ciências Agrárias e Ambientais Mediterrânicas (Laboratório de Microbiologia do Solo), Universidade de Évora, Núcleo da Mitra, Ap. 94, 7002–554, Évora, Portugal
| | - Clarisse Brígido
- ICAAM–Instituto de Ciências Agrárias e Ambientais Mediterrânicas (Laboratório de Microbiologia do Solo), Universidade de Évora, Núcleo da Mitra, Ap. 94, 7002–554, Évora, Portugal
- IIFA–Instituto de Investigação e Formação Avançada, Universidade de Évora, Ap. 94, 7002–554, Évora, Portugal
| | - Ana Alexandre
- ICAAM–Instituto de Ciências Agrárias e Ambientais Mediterrânicas (Laboratório de Microbiologia do Solo), Universidade de Évora, Núcleo da Mitra, Ap. 94, 7002–554, Évora, Portugal
- IIFA–Instituto de Investigação e Formação Avançada, Universidade de Évora, Ap. 94, 7002–554, Évora, Portugal
| | - Pedro F. Mateos
- Departamento de Microbiología y Genética, Centro Hispano Luso de Investigaciones Agrarias, Universidad de Salamanca, 37007, Salamanca, Spain
| | - Solange Oliveira
- ICAAM–Instituto de Ciências Agrárias e Ambientais Mediterrânicas (Laboratório de Microbiologia do Solo), Universidade de Évora, Núcleo da Mitra, Ap. 94, 7002–554, Évora, Portugal
| |
Collapse
|
38
|
Zolkiewski M, Chesnokova LS, Witt SN. Reactivation of Aggregated Proteins by the ClpB/DnaK Bi-Chaperone System. CURRENT PROTOCOLS IN PROTEIN SCIENCE 2016; 83:28.10.1-28.10.18. [PMID: 26836408 DOI: 10.1002/0471140864.ps2810s83] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Protein aggregation is a common problem in protein biochemistry and is linked to many cellular pathologies and human diseases. The molecular chaperone ClpB can resolubilize and reactivate aggregated proteins. This unit describes the procedure for following reactivation of an aggregated enzyme glucose-6-phosphate dehydrogenase mediated by ClpB from Escherichia coli in cooperation with another molecular chaperone, DnaK. The procedures for purification of these chaperones are also described.
Collapse
Affiliation(s)
- Michal Zolkiewski
- Department of Biochemistry and Molecular Biophysics, Kansas State University, Manhattan, Kansas
| | - Liudmila S Chesnokova
- Department of Microbiology and Immunology, Louisiana State University Health Sciences Center, Shreveport, Louisiana
| | - Stephan N Witt
- Department of Biochemistry and Molecular Biology and Department of Pharmacology, Toxicology and Neuroscience, Louisiana State University Health Sciences Center, Shreveport, Louisiana
| |
Collapse
|
39
|
Torrente MP, Chuang E, Noll MM, Jackrel ME, Go MS, Shorter J. Mechanistic Insights into Hsp104 Potentiation. J Biol Chem 2016; 291:5101-15. [PMID: 26747608 DOI: 10.1074/jbc.m115.707976] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2015] [Indexed: 12/25/2022] Open
Abstract
Potentiated variants of Hsp104, a protein disaggregase from yeast, can dissolve protein aggregates connected to neurodegenerative diseases such as Parkinson disease and amyotrophic lateral sclerosis. However, the mechanisms underlying Hsp104 potentiation remain incompletely defined. Here, we establish that 2-3 subunits of the Hsp104 hexamer must bear an A503V potentiating mutation to elicit enhanced disaggregase activity in the absence of Hsp70. We also define the ATPase and substrate-binding modalities needed for potentiated Hsp104(A503V) activity in vitro and in vivo. Hsp104(A503V) disaggregase activity is strongly inhibited by the Y257A mutation that disrupts substrate binding to the nucleotide-binding domain 1 (NBD1) pore loop and is abolished by the Y662A mutation that disrupts substrate binding to the NBD2 pore loop. Intriguingly, Hsp104(A503V) disaggregase activity responds to mixtures of ATP and adenosine 5'-(γ-thio)-triphosphate (a slowly hydrolyzable ATP analogue) differently from Hsp104. Indeed, an altered pattern of ATP hydrolysis and altered allosteric signaling between NBD1 and NBD2 are likely critical for potentiation. Hsp104(A503V) variants bearing inactivating Walker A or Walker B mutations in both NBDs are inoperative. Unexpectedly, however, Hsp104(A503V) retains potentiated activity upon introduction of sensor-1 mutations that reduce ATP hydrolysis at NBD1 (T317A) or NBD2 (N728A). Hsp104(T317A/A503V) and Hsp104(A503V/N728A) rescue TDP-43 (TAR DNA-binding protein 43), FUS (fused in sarcoma), and α-synuclein toxicity in yeast. Thus, Hsp104(A503V) displays a more robust activity that is unperturbed by sensor-1 mutations that greatly reduce Hsp104 activity in vivo. Indeed, ATPase activity at NBD1 or NBD2 is sufficient for Hsp104 potentiation. Our findings will empower design of ameliorated therapeutic disaggregases for various neurodegenerative diseases.
Collapse
Affiliation(s)
| | - Edward Chuang
- From the Department of Biochemistry and Biophysics and the Pharmacology Graduate Group, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104
| | - Megan M Noll
- From the Department of Biochemistry and Biophysics and
| | | | - Michelle S Go
- From the Department of Biochemistry and Biophysics and
| | - James Shorter
- From the Department of Biochemistry and Biophysics and the Pharmacology Graduate Group, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104
| |
Collapse
|
40
|
Muthusamy SK, Dalal M, Chinnusamy V, Bansal KC. Differential Regulation of Genes Coding for Organelle and Cytosolic ClpATPases under Biotic and Abiotic Stresses in Wheat. FRONTIERS IN PLANT SCIENCE 2016; 7:929. [PMID: 27446158 PMCID: PMC4923199 DOI: 10.3389/fpls.2016.00929] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2015] [Accepted: 06/10/2016] [Indexed: 05/06/2023]
Abstract
A sub-group of class I Caseinolytic proteases (Clps) function as molecular chaperone and confer thermotolerance to plants. We identified class I Clp family consisting of five ClpB/HSP100, two ClpC, and two ClpD genes from bread wheat. Phylogenetic analysis showed that these genes were highly conserved across grass genomes. Subcellular localization prediction revealed that TaClpC and TaClpD subgroup proteins and TaClpB1 proteins are potentially targeted to chloroplast, while TaClpB5 to mitochondria, and TaClpB2, TaClpB3, and TaClpB4 to cytoplasm. Spatio-temporal expression pattern analysis revealed that four TaClpB and TaClpD2 genes are expressed in majority of all tissues and developmental stages of wheat. Real-time RT-PCR analysis of expression levels of Clp genes in seven wheat genotypes under different abiotic stresses revealed that genes coding for the cytosolic Clps namely TaClpB2 and TaClpB3 were upregulated under heat, salt and oxidative stress but were downregulated by cold stress in most genotypes. In contrast, genes coding for the chloroplastic Clps TaClpC1, TaClpC2, and TaClpD1 genes were significantly upregulated by mainly by cold stress in most genotypes, while TaClpD2 gene was upregulated >2 fold by salt stress in DBW16. The TaClpB5 gene coding for mitochondrial Clp was upregulated in all genotypes under heat, salt and oxidative stresses. In addition, we found that biotic stresses also upregulated TaClpB4 and TaClpD1. Among biotic stresses, Tilletia caries induced TaClpB2, TaClpB3, TaClpC1, and TaClpD1. Differential expression pattern under different abiotic and biotic stresses and predicted differential cellular localization of Clps suggest their non-redundant organelle and stress-specific roles. Our results also suggest the potential role of Clps in cold, salt and biotic stress responses in addition to the previously established role in thermotolerance of wheat.
Collapse
Affiliation(s)
- Senthilkumar K. Muthusamy
- ICAR-National Research Centre on Plant BiotechnologyNew Delhi, India
- Division of Crop Improvement, ICAR-Indian Institute of Wheat and Barley ResearchKarnal, India
| | - Monika Dalal
- ICAR-National Research Centre on Plant BiotechnologyNew Delhi, India
| | - Viswanathan Chinnusamy
- Division of Plant Physiology, ICAR-Indian Agricultural Research InstituteNew Delhi, India
| | - Kailash C. Bansal
- ICAR-National Research Centre on Plant BiotechnologyNew Delhi, India
- ICAR-National Bureau of Plant Genetic ResourcesNew Delhi, India
- *Correspondence: Kailash C. Bansal
| |
Collapse
|
41
|
Mechanistic and Structural Insights into the Prion-Disaggregase Activity of Hsp104. J Mol Biol 2015; 428:1870-85. [PMID: 26608812 DOI: 10.1016/j.jmb.2015.11.016] [Citation(s) in RCA: 73] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2015] [Revised: 11/11/2015] [Accepted: 11/12/2015] [Indexed: 11/23/2022]
Abstract
Hsp104 is a dynamic ring translocase and hexameric AAA+ protein found in yeast, which couples ATP hydrolysis to disassembly and reactivation of proteins trapped in soluble preamyloid oligomers, disordered protein aggregates, and stable amyloid or prion conformers. Here, we highlight advances in our structural understanding of Hsp104 and how Hsp104 deconstructs Sup35 prions. Although the atomic structure of Hsp104 hexamers remains uncertain, volumetric reconstruction of Hsp104 hexamers in ATPγS, ADP-AlFx (ATP hydrolysis transition-state mimic), and ADP via small-angle x-ray scattering has revealed a peristaltic pumping motion upon ATP hydrolysis. This pumping motion likely drives directional substrate translocation across the central Hsp104 channel. Hsp104 initially engages Sup35 prions immediately C-terminal to their cross-β structure. Directional pulling by Hsp104 then resolves N-terminal cross-β structure in a stepwise manner. First, Hsp104 fragments the prion. Second, Hsp104 unfolds cross-β structure. Third, Hsp104 releases soluble Sup35. Deletion of the Hsp104 N-terminal domain yields a hypomorphic disaggregase, Hsp104(∆N), with an altered pumping mechanism. Hsp104(∆N) fragments Sup35 prions without unfolding cross-β structure or releasing soluble Sup35. Moreover, Hsp104(∆N) activity cannot be enhanced by mutations in the middle domain that potentiate disaggregase activity. Thus, the N-terminal domain is critical for the full repertoire of Hsp104 activities.
Collapse
|
42
|
Shrestha A, Megeney LA. Yeast proteinopathy models: a robust tool for deciphering the basis of neurodegeneration. MICROBIAL CELL 2015; 2:458-465. [PMID: 28357271 PMCID: PMC5354604 DOI: 10.15698/mic2015.12.243] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Protein quality control or proteostasis is an essential determinant of basic cell health and aging. Eukaryotic cells have evolved a number of proteostatic mechanisms to ensure that proteins retain functional conformation, or are rapidly degraded when proteins misfold or self-aggregate. Disruption of proteostasis is now widely recognized as a key feature of aging related illness, specifically neurodegenerative disease. For example, Alzheimer’s disease, Huntington’s disease, Parkinson’s disease and Amyotrophic Lateral Sclerosis (ALS) each target and afflict distinct neuronal cell subtypes, yet this diverse array of human pathologies share the defining feature of aberrant protein aggregation within the affected cell population. Here, we review the use of budding yeast as a robust proxy to study the intersection between proteostasis and neurodegenerative disease. The humanized yeast model has proven to be an amenable platform to identify both, conserved proteostatic mechanisms across eukaryotic phyla and novel disease specific molecular dysfunction. Moreover, we discuss the intriguing concept that yeast specific proteins may be utilized as bona fide therapeutic agents, to correct proteostasis errors across various forms of neurodegeneration.
Collapse
Affiliation(s)
- Amit Shrestha
- Ottawa Hospital Research Institute, Regenerative Medicine Program, Sprott Centre for Stem Cell Research, The Ottawa Hospital, Ottawa, Ontario, Canada. ; Department of Cellular and Molecular Medicine University of Ottawa, Ottawa, Ontario, Canada
| | - Lynn A Megeney
- Ottawa Hospital Research Institute, Regenerative Medicine Program, Sprott Centre for Stem Cell Research, The Ottawa Hospital, Ottawa, Ontario, Canada. ; Department of Cellular and Molecular Medicine University of Ottawa, Ottawa, Ontario, Canada ; Department of Medicine, University of Ottawa, Ottawa, Ontario, Canada
| |
Collapse
|
43
|
Mokry DZ, Abrahão J, Ramos CH. Disaggregases, molecular chaperones that resolubilize protein aggregates. ACTA ACUST UNITED AC 2015; 87:1273-92. [DOI: 10.1590/0001-3765201520140671] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The process of folding is a seminal event in the life of a protein, as it is essential for proper protein function and therefore cell physiology. Inappropriate folding, or misfolding, can not only lead to loss of function, but also to the formation of protein aggregates, an insoluble association of polypeptides that harm cell physiology, either by themselves or in the process of formation. Several biological processes have evolved to prevent and eliminate the existence of non-functional and amyloidogenic aggregates, as they are associated with several human pathologies. Molecular chaperones and heat shock proteins are specialized in controlling the quality of the proteins in the cell, specifically by aiding proper folding, and dissolution and clearance of already formed protein aggregates. The latter is a function of disaggregases, mainly represented by the ClpB/Hsp104 subfamily of molecular chaperones, that are ubiquitous in all organisms but, surprisingly, have no orthologs in the cytosol of metazoan cells. This review aims to describe the characteristics of disaggregases and to discuss the function of yeast Hsp104, a disaggregase that is also involved in prion propagation and inheritance.
Collapse
Affiliation(s)
| | - Josielle Abrahão
- Universidade Estadual de Campinas, Brazil; Universidade Estadual de Campinas, Brazil
| | | |
Collapse
|
44
|
Castellano LM, Bart SM, Holmes VM, Weissman D, Shorter J. Repurposing Hsp104 to Antagonize Seminal Amyloid and Counter HIV Infection. ACTA ACUST UNITED AC 2015; 22:1074-86. [PMID: 26256479 DOI: 10.1016/j.chembiol.2015.07.007] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2014] [Revised: 06/30/2015] [Accepted: 07/07/2015] [Indexed: 11/30/2022]
Abstract
Naturally occurring proteolytic fragments of prostatic acid phosphatase (PAP248-286 and PAP85-120) and semenogelins (SEM1 and SEM2) form amyloid fibrils in seminal fluid, which capture HIV virions and promote infection. For example, PAP248-286 fibrils, termed SEVI (semen-derived enhancer of viral infection), can potentiate HIV infection by several orders of magnitude. Here, we design three disruptive technologies to rapidly antagonize seminal amyloid by repurposing Hsp104, an amyloid-remodeling nanomachine from yeast. First, Hsp104 and an enhanced engineered variant, Hsp104(A503V), directly remodel SEVI and PAP85-120 fibrils into non-amyloid forms. Second, we elucidate catalytically inactive Hsp104 scaffolds that do not remodel amyloid structure, but cluster SEVI, PAP85-120, and SEM1(45-107) fibrils into larger assemblies. Third, we modify Hsp104 to interact with the chambered protease ClpP, which enables coupled remodeling and degradation to irreversibly clear SEVI and PAP85-120 fibrils. Each strategy diminished the ability of seminal amyloid to promote HIV infection, and could have therapeutic utility.
Collapse
Affiliation(s)
- Laura M Castellano
- Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Pharmacology Graduate Group, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Stephen M Bart
- Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Cell and Molecular Biology Graduate Group, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Veronica M Holmes
- Division of Infectious Diseases, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Drew Weissman
- Division of Infectious Diseases, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - James Shorter
- Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Pharmacology Graduate Group, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Cell and Molecular Biology Graduate Group, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA.
| |
Collapse
|
45
|
Chaperone-assisted protein aggregate reactivation: Different solutions for the same problem. Arch Biochem Biophys 2015; 580:121-34. [PMID: 26159839 DOI: 10.1016/j.abb.2015.07.006] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2015] [Revised: 07/02/2015] [Accepted: 07/04/2015] [Indexed: 12/15/2022]
Abstract
The oligomeric AAA+ chaperones Hsp104 in yeast and ClpB in bacteria are responsible for the reactivation of aggregated proteins, an activity essential for cell survival during severe stress. The protein disaggregase activity of these members of the Hsp100 family is linked to the activity of chaperones from the Hsp70 and Hsp40 families. The precise mechanism by which these proteins untangle protein aggregates remains unclear. Strikingly, Hsp100 proteins are not present in metazoans. This does not mean that animal cells do not have a disaggregase activity, but that this activity is performed by the Hsp70 system and a representative of the Hsp110 family instead of a Hsp100 protein. This review describes the actual view of Hsp100-mediated aggregate reactivation, including the ATP-induced conformational changes associated with their disaggregase activity, the dynamics of the oligomeric assembly that is regulated by its ATPase cycle and the DnaK system, and the tight allosteric coupling between the ATPase domains within the hexameric ring complexes. The lack of homologs of these disaggregases in metazoans has suggested that they might be used as potential targets to develop antimicrobials. The current knowledge of the human disaggregase machinery and the role of Hsp110 are also discussed.
Collapse
|
46
|
Affiliation(s)
- Ratnesh Chandra Mishra
- Department of Plant Molecular Biology, University of Delhi South Campus, New Delhi, India
| | - Anil Grover
- Department of Plant Molecular Biology, University of Delhi South Campus, New Delhi, India
| |
Collapse
|
47
|
Coşkun KA, Tutar Y. Isolation and characterization of Heat Shock Protein 100-Batu1 from Toxoplasma gondii RH strain. Exp Parasitol 2015; 153:91-97. [PMID: 25728232 DOI: 10.1016/j.exppara.2015.02.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2014] [Revised: 02/20/2015] [Accepted: 02/22/2015] [Indexed: 10/23/2022]
Abstract
Toxoplasma gondii is an intracellular parasitic protozoon which infects human and most warm-blooded animals. Almost one-third of the world's population is affected by life-threatening infection of T. gondii tachyzoites form. Slow growing, transmissible and encysted bradyzoites forms are composed after tachyzoites stage. Cellular and environmental stresses induce conversion of tachyzoites from bradyzoites and this condition is associated with Heat Shock Protein (Hsps) family. Hsp100 is a member of this protein family, and coordinates to disassemble protein aggregates with Hsp70 and Hsp40 in an ATP dependent manner. Several proteins are involved during this stage differentiation and Hsp100 may help them to be in their native soluble form to perform their function as observed in other organisms. For this purpose, Hsp100-Batu1 was isolated from T. gondii RH strain to characterize its biochemical properties in this current study. Hsp100 proteins play a role in survival and virulence of pathogens as shown in the literature. Therefore, manipulation of protein-protein interaction may perturb T. gondii infection and impair conversion to tachyzoites by inhibiting Hsp100 function. Therefore, results of this work present a potential route for vaccination or immunotherapy.
Collapse
Affiliation(s)
- Kübra Açıkalın Coşkun
- Department of Bioengineering, Faculty of Natural Sciences and Engineering, Gaziosmanpaşa University, Tokat, Turkey
| | - Yusuf Tutar
- Division of Biochemistry, Department of Basic Sciences, Faculty of Pharmacy, Cumhuriyet University, Sivas, Turkey.
| |
Collapse
|
48
|
Torrente MP, Castellano LM, Shorter J. Suramin inhibits Hsp104 ATPase and disaggregase activity. PLoS One 2014; 9:e110115. [PMID: 25299406 PMCID: PMC4192545 DOI: 10.1371/journal.pone.0110115] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2014] [Accepted: 09/17/2014] [Indexed: 12/16/2022] Open
Abstract
Hsp104 is a hexameric AAA+ protein that utilizes energy from ATP hydrolysis to dissolve disordered protein aggregates as well as amyloid fibers. Interestingly, Hsp104 orthologues are found in all kingdoms of life except animals. Thus, Hsp104 could represent an interesting drug target. Specific inhibition of Hsp104 activity might antagonize non-metazoan parasites that depend on a potent heat shock response, while producing little or no side effects to the host. However, no small molecule inhibitors of Hsp104 are known except guanidinium chloride. Here, we screen over 16,000 small molecules and identify 16 novel inhibitors of Hsp104 ATPase activity. Excluding compounds that inhibited Hsp104 activity by non-specific colloidal effects, we defined Suramin as an inhibitor of Hsp104 ATPase activity. Suramin is a polysulphonated naphthylurea and is used as an antiprotozoal drug for African Trypanosomiasis. Suramin also interfered with Hsp104 disaggregase, unfoldase, and translocase activities, and the inhibitory effect of Suramin was not rescued by Hsp70 and Hsp40. Suramin does not disrupt Hsp104 hexamers and does not effectively inhibit ClpB, the E. coli homolog of Hsp104, establishing yet another key difference between Hsp104 and ClpB behavior. Intriguingly, a potentiated Hsp104 variant, Hsp104A503V, is more sensitive to Suramin than wild-type Hsp104. By contrast, Hsp104 variants bearing inactivating sensor-1 mutations in nucleotide-binding domain (NBD) 1 or 2 are more resistant to Suramin. Thus, Suramin depends upon ATPase events at both NBDs to exert its maximal effect. Suramin could develop into an important mechanistic probe to study Hsp104 structure and function.
Collapse
Affiliation(s)
- Mariana P. Torrente
- Department of Biochemistry and Biophysics, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Laura M. Castellano
- Department of Biochemistry and Biophysics, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
- Pharmacology Graduate Group, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - James Shorter
- Department of Biochemistry and Biophysics, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
- Pharmacology Graduate Group, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
- * E-mail:
| |
Collapse
|
49
|
Abstract
In recent years, application of serine integrases for genomic engineering has increased in popularity. The factor-independence and unidirectionality of these large serine recombinases makes them well suited for reactions such as site-directed vector integration and cassette exchange in a wide variety of organisms. In order to generate information that might be useful for altering the specificity of serine integrases and to improve their efficiency, we tested a hybridization strategy that has been successful with several small serine recombinases. We created chimeras derived from three characterized members of the serine integrase family, phiC31, phiBT1, and TG1 integrases, by joining their amino- and carboxy-terminal portions. We found that several phiBT1-phiC31 (BC) and phiC31-TG1 (CT) hybrid integrases are active in E. coli. BC chimeras function on native att-sites and on att-sites that are hybrids between those of the two donor enzymes, while CT chimeras only act on the latter att-sites. A BC hybrid, BC{−1}, was also active in human HeLa cells. Our work is the first to demonstrate chimeric serine integrase activity. This analysis sheds light on integrase structure and function, and establishes a potentially tractable means to probe the specificity of the thousands of putative large serine recombinases that have been revealed by bioinformatics studies.
Collapse
Affiliation(s)
- Alfonso P Farruggio
- Department of Genetics, Stanford University School of Medicine, 300 Pasteur Drive, Stanford, CA 94305-5120, USA
| | - Michele P Calos
- Department of Genetics, Stanford University School of Medicine, 300 Pasteur Drive, Stanford, CA 94305-5120, USA
| |
Collapse
|
50
|
Carroni M, Kummer E, Oguchi Y, Wendler P, Clare DK, Sinning I, Kopp J, Mogk A, Bukau B, Saibil HR. Head-to-tail interactions of the coiled-coil domains regulate ClpB activity and cooperation with Hsp70 in protein disaggregation. eLife 2014; 3:e02481. [PMID: 24843029 PMCID: PMC4023160 DOI: 10.7554/elife.02481] [Citation(s) in RCA: 102] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
The hexameric AAA+ chaperone ClpB reactivates aggregated proteins in cooperation with the Hsp70 system. Essential for disaggregation, the ClpB middle domain (MD) is a coiled-coil propeller that binds Hsp70. Although the ClpB subunit structure is known, positioning of the MD in the hexamer and its mechanism of action are unclear. We obtained electron microscopy (EM) structures of the BAP variant of ClpB that binds the protease ClpP, clearly revealing MD density on the surface of the ClpB ring. Mutant analysis and asymmetric reconstructions show that MDs adopt diverse positions in a single ClpB hexamer. Adjacent, horizontally oriented MDs form head-to-tail contacts and repress ClpB activity by preventing Hsp70 interaction. Tilting of the MD breaks this contact, allowing Hsp70 binding, and releasing the contact in adjacent subunits. Our data suggest a wavelike activation of ClpB subunits around the ring.DOI: http://dx.doi.org/10.7554/eLife.02481.001.
Collapse
Affiliation(s)
- Marta Carroni
- Department of Crystallography, Birkbeck College, University of London, London, United Kingdom
| | - Eva Kummer
- Zentrum für Molekulare Biologie, Universität Heidelberg, Heidelberg, Germany
| | - Yuki Oguchi
- Zentrum für Molekulare Biologie, Universität Heidelberg, Heidelberg, Germany
| | - Petra Wendler
- Gene Center, Ludwig-Maximilians-University Munich, Munich, Germany
| | - Daniel K Clare
- Department of Crystallography, Birkbeck College, University of London, London, United Kingdom
| | - Irmgard Sinning
- Biochemie-Zentrum, Universität Heidelberg, Heidelberg, Germany
| | - Jürgen Kopp
- Biochemie-Zentrum, Universität Heidelberg, Heidelberg, Germany
| | - Axel Mogk
- Zentrum für Molekulare Biologie, Universität Heidelberg, Heidelberg, Germany
| | - Bernd Bukau
- Zentrum für Molekulare Biologie, Universität Heidelberg, Heidelberg, Germany
| | - Helen R Saibil
- Department of Crystallography, Birkbeck College, University of London, London, United Kingdom
| |
Collapse
|