1
|
Ali H, AbdelMageed M, Olsson L, Lindmark G, Hammarström ML, Hammarström S, Sitohy B. Detection of lymph node metastasis in colon cancer by ectopically expressed fibroblast markers FOXQ1 and THBS2. Front Oncol 2023; 13:1297324. [PMID: 38156105 PMCID: PMC10754486 DOI: 10.3389/fonc.2023.1297324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Accepted: 11/22/2023] [Indexed: 12/30/2023] Open
Abstract
Introduction Approximately 25% of colon cancer (CC) patients having curative surgery will relapse. Therefore, it is crucial to identify patients with increased recurrence risk to offer them adjuvant chemotherapy. Three markers with prominent expression in fibroblasts: forkhead box Q1 (FOXQ1), matrix metalloproteinase-11 (MMP11), and thrombospondin-2 (THBS2), and the fibroblast expressed chemokine CXCL12 were selected for studies because of the critical role of fibroblasts in the microenvironment of the tumor. Methods The expression levels of the biomarkers were assessed in primary CC tumors, lymph nodes of CC patients and controls, and CC cell lines at mRNA and protein levels by real-time qRT-PCR and immunohistochemistry, respectively. Results FOXQ1, MMP11, and THBS2 mRNAs were expressed at significantly higher levels in primary tumors compared to normal colon (P=0.002, P<0.0001, and P<0.0001, respectively). In contrast, CXCL12 mRNA levels were higher in normal colon tissue. FOXQ1, MMP11, and THBS2 levels were also expressed at significantly higher levels in metastasis-positive lymph nodes compared to both metastasis-negative- and control nodes (P<0.0001/P=0.002, P<0.0001/P<0.0001, and P<0.0001/P<0.0001, respectively). Immuno-morphometry revealed that 30-40% of the tumor cells expressed FOXQ1, MMP11, and THBS2. FOXQ1 and THBS2 were barely detected in normal colon epithelium (P<0.0001), while MMP11 was expressed in normal colon epithelium at high levels. Discussion We conclude that CC tumor cells show ectopic expression of FOXQ1 and THBS2 possibly making these tumor cells independent of fibroblast cell support. The high expression levels of these two biomarkers in metastatic lymph nodes suggest that they are potential indicators of patients at risk for recurrence.
Collapse
Affiliation(s)
- Haytham Ali
- Department of Clinical Microbiology, Umeå University, Umeå, Sweden
- Department of Radiation Sciences, Oncology, Umeå University, Umeå, Sweden
- Department of Animal and Veterinary Sciences, College of Agricultural and Marine Sciences, Sultan Qaboos University, Muscat, Oman
| | - Manar AbdelMageed
- Department of Clinical Microbiology, Umeå University, Umeå, Sweden
- Department of Radiation Sciences, Oncology, Umeå University, Umeå, Sweden
- Department of Pathology, Faculty of Veterinary Medicine, Zagazig University, Zagazig, Egypt
| | - Lina Olsson
- Department of Clinical Microbiology, Umeå University, Umeå, Sweden
| | - Gudrun Lindmark
- Institution of Clinical Sciences, Lund University, Lund, Sweden
| | | | - Sten Hammarström
- Department of Clinical Microbiology, Umeå University, Umeå, Sweden
| | - Basel Sitohy
- Department of Clinical Microbiology, Umeå University, Umeå, Sweden
- Department of Radiation Sciences, Oncology, Umeå University, Umeå, Sweden
| |
Collapse
|
2
|
Belachew EB, Desta AF, Deneke DB, Gebremariam TY, Tefera DA, Atire FA, Alemayehu DH, Seyoum T, Bauer M, Girma S, Sewasew DT, Kantelhardt EJ, Tessema TS, Howe R. The expression of matrix metalloproteinase 2, 9 and 11 in Ethiopian breast cancer patients. BMC Res Notes 2023; 16:253. [PMID: 37798646 PMCID: PMC10557335 DOI: 10.1186/s13104-023-06518-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Accepted: 09/19/2023] [Indexed: 10/07/2023] Open
Abstract
INTRODUCTION Matrix metalloproteinases (MMPs) play a pathophysiological role in cancer initiation and progression. Numerous studies have examined an association between MMP-2, MMP-9, and MMP-11 expression and clinicopathological characteristics of breast cancer (BC); however, no research has been done on the MMP expression levels in BC cases from Ethiopia. MATERIALS AND METHODS A total of 58 formalin-fixed paraffin-embedded breast tissue samples encompassing 16 benign breast tumors and 42 BC were collected. The RNA was extracted and quantitative reverse-transcription PCR was performed. GraphPad Prism version 8.0.0 was used for statistical analysis. RESULTS The MMP-11 expression levels were significantly higher in breast cancer cases than in benign breast tumors (P = 0.012). Additionally, BC cases with positive lymph nodes and ER-positive receptors had higher MMP-11, MMP-9, and MMP-2 expression than cases with negative lymph nodes and ER-negative, respectively. The MMP-11 and MMP-9 expressions were higher in grade III and luminal A-like tumors than in grade I-II and other subtypes, respectively. CONCLUSION The MMP-11 expression was higher in BC than in benign breast tumors. Additionally, MMP-11, MMP-9, and MMP-2 were higher in BC with positive lymph nodes and estrogen receptors. Our findings suggest an important impact of MMPs in BC pathophysiology, particularly MMP-11.
Collapse
Affiliation(s)
- Esmael Besufikad Belachew
- Biology Department, College of Natural and Computational Sciences, Mizan Tepi University, Mizan, Ethiopia.
- Department of Microbial, Cellular and Molecular Biology, College of Natural and Computational Sciences, Addis Ababa University, Addis Ababa, Ethiopia.
- Armauer Hansen Research Institute, Addis Ababa, Ethiopia.
| | - Adey Feleke Desta
- Department of Microbial, Cellular and Molecular Biology, College of Natural and Computational Sciences, Addis Ababa University, Addis Ababa, Ethiopia
| | - Dinikisira Bekele Deneke
- Armauer Hansen Research Institute, Addis Ababa, Ethiopia
- Department of Pathology, School of Medicine, College of Health Science, Tikur Anbessa Specialized Hospital, Addis Ababa University, Addis Ababa, Ethiopia
| | - Tewodros Yalew Gebremariam
- Department of Pathology, School of Medicine, College of Health Science, Tikur Anbessa Specialized Hospital, Addis Ababa University, Addis Ababa, Ethiopia
| | | | | | | | | | - Marcus Bauer
- Global Health Working Group, Martin Luther University Halle-Wittenberg, Halle (Saale), Germany
- Institute of Pathology, Martin Luther University Halle-Wittenberg, Halle (Saale), Germany
| | - Selfu Girma
- Armauer Hansen Research Institute, Addis Ababa, Ethiopia
| | | | - Eva J Kantelhardt
- Department of Gynecology, Martin Luther University Halle-Wittenberg, Halle (Saale), Germany
- Institute of Medical Epidemiology, Biostatistics, and Informatics, Martin Luther University Halle-Wittenberg, Halle (Saale), Germany
| | | | - Rawleigh Howe
- Armauer Hansen Research Institute, Addis Ababa, Ethiopia
| |
Collapse
|
3
|
Johnson D, Clases D, Fernández-Sánchez ML, Eiro N, González LO, Vizoso FJ, Doble PA, de Vega RG. Quantitative multiplexed analysis of MMP-11 and CD45 in metastatic breast cancer tissues by immunohistochemistry-assisted LA-ICP-MS. METALLOMICS : INTEGRATED BIOMETAL SCIENCE 2022; 14:6648710. [PMID: 35867868 DOI: 10.1093/mtomcs/mfac052] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2022] [Accepted: 06/30/2022] [Indexed: 11/14/2022]
Abstract
Breast cancer is the leading cause of cancer death and tremendous efforts are undertaken to limit dissemination and to provide effective treatment. Various histopathological parameters are routinely assessed in breast cancer biopsies to provide valuable diagnostic and prognostic information. MMP-11 and CD45 are tumour associated antigens and potentially valuable biomarkers for grading aggressiveness and metastatic probability. This paper presents methods for quantitative and multiplexed imaging of MMP-11 and CD45 in breast cancer tissues and investigates their potential for improved cancer characterisation and patient stratification. An immunohistochemistry (IHC)-assisted LA-ICP-MS method was successfully developed and optimised using lanthanide tagged monoclonal antibodies as proxies to determine spatial distributions and concentrations of the two breast cancer biomarkers. The labelling degree of antibodies was determined via size exclusion-inductively coupled plasma-tandem mass spectrometry (SEC-ICP-MS/MS) employing on-line calibration via post-column isotope dilution analysis. The calibration of spatial distributions of labelled lanthanides in tissues was performed by ablating mould prepared gelatine standards spiked with element standards. Knowledge of labelling degrees enabled the translation of lanthanide concentrations into biomarkers concentrations. k-means clustering was used to select tissue areas for statistical analysis and mean concentrations were compared for sets of metastatic, non-metastatic and healthy samples. MMP-11 was expressed in stroma surrounding tumour areas, while CD45 was predominantly found inside tumour areas of high cell density. There was no significant correlation between CD45 and metastasis (p = 0.70), however, MMP-11 was significantly upregulated (202%) in metastatic samples compared to non-metastatic (p = 0.0077) and healthy tissues (p = 0.0087).
Collapse
Affiliation(s)
- Dylan Johnson
- The Atomic Medicine Initiative, University of Technology Sydney, NSW, Australia
| | - David Clases
- The Atomic Medicine Initiative, University of Technology Sydney, NSW, Australia.,TESLA-Analytical Chemistry, Institute of Chemistry, University of Graz, Austria
| | | | - Noemi Eiro
- Research Unit, Hospital de Jove Foundation, Gijón, Spain
| | | | | | - Philip A Doble
- The Atomic Medicine Initiative, University of Technology Sydney, NSW, Australia
| | - Raquel Gonzalez de Vega
- The Atomic Medicine Initiative, University of Technology Sydney, NSW, Australia.,TESLA-Analytical Chemistry, Institute of Chemistry, University of Graz, Austria
| |
Collapse
|
4
|
Kim DJ, Iwasaki A, Chien AL, Kang S. UVB-mediated DNA damage induces matrix metalloproteinases to promote photoaging in an AhR- and SP1-dependent manner. JCI Insight 2022; 7:156344. [PMID: 35316219 PMCID: PMC9090247 DOI: 10.1172/jci.insight.156344] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Accepted: 03/18/2022] [Indexed: 11/17/2022] Open
Abstract
It is currently thought that UVB radiation drives photoaging of the skin primarily by generating ROS. In this model, ROS purportedly activates activator protein-1 to upregulate MMPs 1, 3, and 9, which then degrade collagen and other extracellular matrix components to produce wrinkles. However, these MMPs are expressed at relatively low levels and correlate poorly with wrinkles, suggesting that another mechanism distinct from ROS and MMP1/3/9 may be more directly associated with photoaging. Here we show that MMP2, which degrades type IV collagen, is abundantly expressed in human skin, increases with age in sun-exposed skin, and correlates robustly with aryl hydrocarbon receptor (AhR), a transcription factor directly activated by UV-generated photometabolites. Through mechanistic studies with HaCaT human immortalized keratinocytes, we found that AhR, specificity protein 1 (SP1), and other pathways associated with DNA damage are required for the induction of both MMP2 and MMP11 (another MMP implicated in photoaging), but not MMP1/3. Last, we found that topical treatment with AhR antagonists vitamin B12 and folic acid ameliorated UVB-induced wrinkle formation in mice while dampening MMP2 expression in the skin. These results directly implicate DNA damage in photoaging and reveal AhR as a potential target for preventing wrinkles.
Collapse
Affiliation(s)
- Daniel J Kim
- Department of Immunobiology, Yale University School of Medicine, New Haven, United States of America
| | - Akiko Iwasaki
- Department of Immunobiology, Yale University School of Medicine, New Haven, United States of America
| | - Anna L Chien
- Department of Dermatology, Johns Hopkins School of Medicine, Baltimore, United States of America
| | - Sewon Kang
- Department of Dermatology, Johns Hopkins School of Medicine, Baltimore, United States of America
| |
Collapse
|
5
|
The paradoxical role of matrix metalloproteinase-11 in cancer. Biomed Pharmacother 2021; 141:111899. [PMID: 34346316 DOI: 10.1016/j.biopha.2021.111899] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Revised: 06/15/2021] [Accepted: 07/01/2021] [Indexed: 02/08/2023] Open
Abstract
The microenvironment surrounding the tumor affects biological processes, such as cell proliferation, angiogenesis, apoptosis, and invasion. Therefore, the ability to change these environments is an important attribute for tumor cells to obtain specific functions necessary for growth and metastasis. Matrix metalloproteinases (MMPs) are zinc-dependent proteolytic metalloenzymes that facilitate protease-dependent tumor progression by degrading extracellular matrix (ECM) proteins, releasing cytokines, growth factors, and other cell surface molecules. As one of the most widely studied MMPs, MMP-11 is an important protease that is expressed in cancer cells, stromal cells, and the adjacent microenvironment. MMP-11 has a dual effect on tumors. On one hand, MMP-11 promotes tumor development by inhibiting apoptosis and promoting the migration and invasion of cancer cells in the early stage. On the other hand, in animal models, MMP-11 has a protective effect on tumor growth and metastasis at an advanced stage. Based on current findings regarding the importance of MMP-11 in altering the tumor microenvironment, there is a need to further understand how stromal cells and the ECM regulate tumor progression, which may result in the re-examination of MMPs as drug targets for cancer and other diseases. In this review, we summarize the dual role of MMP-11 in cancer and its potential clinical significance.
Collapse
|
6
|
Kim HS, Kim MG, Min KW, Jung US, Kim DH. High MMP-11 expression associated with low CD8+ T cells decreases the survival rate in patients with breast cancer. PLoS One 2021; 16:e0252052. [PMID: 34038440 PMCID: PMC8153507 DOI: 10.1371/journal.pone.0252052] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Accepted: 05/10/2021] [Indexed: 12/23/2022] Open
Abstract
Matrix metalloproteinase-11 (MMP-11) promote cancer invasion and metastasis through degrading the extracellular matrix. Protein degradation by MMP-11 in tumor cells may progressively suppress cancer surveillance activities with blocking immune response in breast cancer. The aim of study is to analyze clinicopathological parameters, molecular interactions and anticancer immune response in patients with MMP-11 expression and to provide candidate target drugs. We investigated the clinicopathologic parameters, specific gene sets, tumor antigenicity, and immunologic relevance according to MMP-11 expression in 226 and 776 breast cancer patients from the Hanyang University Guri Hospital (HUGH) cohort and The Cancer Genome Atlas (TCGA) data, respectively. We analyzed pathway networks and in vitro drug response. High MMP-11 expression was associated with worse survival rate in breast cancer from HUGH cohort and TCGA data (all p < 0.05). In analysis of immunologic gene sets, high MMP-11 expression was related to low immune response such as CD8+T cell, CD4+T cell and B cell. In silico cytometry, there was a decrease of cancer testis antigen and low tumor infiltrating lymphocyte in patient with high MMP-11 expression: activated dendritic cell, CD8+T cell, CD4+ memory T cell, and memory B cell. In pathway networks, MMP-11 was linked to the pathways including low immune response, response to growth hormone and catabolic process. We found that pictilisib and AZ960 effectively inhibited the breast cancer cell lines with high MMP-11 expression. Strategies making use of MMP-11-related hub genes could contribute to better clinical management/research for patients with breast cancer.
Collapse
Affiliation(s)
- Hyung Suk Kim
- Division of Breast Surgery, Department of Surgery, Hanyang University Guri Hospital, Hanyang University College of Medicine, Guri, Gyeonggi-do, Republic of Korea
| | - Min Gyu Kim
- Department of Surgery, Hanyang University Guri Hospital, Hanyang University College of Medicine, Guri, Gyeonggi-do, Republic of Korea
| | - Kyueng-Whan Min
- Department of Pathology, Hanyang University Guri Hospital, Hanyang University College of Medicine, Guri, Gyeonggi-do, Republic of Korea
| | - Un Suk Jung
- Department of Obstetrics and Gynecology, Hanyang University Guri Hospital, Hanyang University College of Medicine, Guri, Gyeonggi-do, Republic of Korea
- * E-mail: (USJ); (DHK)
| | - Dong-Hoon Kim
- Department of Pathology, Kangbuk Samsung Hospital, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
- * E-mail: (USJ); (DHK)
| |
Collapse
|
7
|
Matrix Metalloproteinase 11 as a Novel Tumor Promoter and Diagnostic and Prognostic Biomarker for Pancreatic Ductal Adenocarcinoma. Pancreas 2020; 49:812-821. [PMID: 32590618 DOI: 10.1097/mpa.0000000000001583] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
OBJECTIVES Matrix metalloproteinase 11 (MMP-11) was found to be implicated in tumorigenesis in cancers. However, the significance of MMP-11 in pancreatic ductal adenocarcinoma (PDAC) is unclear. METHODS In the study, we detected malignant biological behaviors of pancreatic cancer after downregulation of MMP-11. Furthermore, we explored the possible mechanism, and the diagnostic value of serum MMP-11 level was analyzed in 116 patients with pathologically confirmed PDAC. In addition, we explored their prognostic value in PDAC. RESULTS We observed that MMP-11 could be expressed and activated in the cytoplasm of PDAC cells. Immunohistochemistry staining of PDAC tissues showed that MMP-11 was highly expressed in cancerous ductal epithelium instead of cancer stroma. We found that downregulation of MMP-11 inhibited proliferation of PDAC cell lines. The expression levels of cyclin-dependent kinase 4 and cyclin D1 were downregulated after MMP-11 knockdown. As for its clinical value, the serum level of MMP-11 was shown to be a potent promising diagnostic marker for PDAC. CONCLUSIONS Matrix metalloproteinase 11 may act as a tumor promoter, playing a positive role in PDAC development. Serum MMP-11 also has great potential to be a promising diagnostic marker for PDAC.
Collapse
|
8
|
Yang H, Jiang P, Liu D, Wang HQ, Deng Q, Niu X, Lu L, Dai H, Wang H, Yang W. Matrix Metalloproteinase 11 Is a Potential Therapeutic Target in Lung Adenocarcinoma. Mol Ther Oncolytics 2019; 14:82-93. [PMID: 31024988 PMCID: PMC6477516 DOI: 10.1016/j.omto.2019.03.012] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2018] [Accepted: 03/27/2019] [Indexed: 12/29/2022] Open
Abstract
Lung cancer is one of the leading causes of cancer-associated death, with the etiology largely unknown. The aim of this study was to identify key driver genes with therapeutic potentials in lung adenocarcinoma (LUAD). Transcriptome microarray data from four GEO datasets (GEO: GSE7670, GSE10072, GSE68465, and GSE43458) were jointly analyzed for differentially expressed genes (DEGs). Ontologic analysis showed that most of the upregulated DEGs enriched in collagen catabolic and fibril organization processes were regulated by matrix metalloproteinases (MMPs). Matrix metalloproteinase 11 (MMP11), the highest upregulated MMP family member in LUAD-transformed cells, acted in an autocrine manner and was significantly increased in sera of LUAD patients. MMP11 depletion severely impaired LUAD cell proliferation, migration, and invasion in vitro, in line with retarded tumor growth in xenograft models. Treatment of different human LUAD cell lines with anti-MMP11 antibody significantly retarded cell growth and migration. Administration of anti-MMP11 antibody at a dose of 1 μg/g body weight significantly suppressed tumor growth in xenograft models. These findings indicate that MMP11 is a key cancer driver gene in LUAD and is an appealing target for antibody therapy.
Collapse
Affiliation(s)
- Haoran Yang
- Anhui Province Key Laboratory of Medical Physics and Technology, Center of Medical Physics and Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, China
- University of Science and Technology of China, Hefei 230026, China
- Cancer Hospital, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, China
| | - Peng Jiang
- Anhui Province Key Laboratory of Medical Physics and Technology, Center of Medical Physics and Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, China
- University of Science and Technology of China, Hefei 230026, China
- Cancer Hospital, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, China
| | - Dongyan Liu
- Anhui Province Key Laboratory of Medical Physics and Technology, Center of Medical Physics and Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, China
- University of Science and Technology of China, Hefei 230026, China
- Cancer Hospital, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, China
| | - Hong-Qiang Wang
- Biological Molecular Information System Lab., Institute of Intelligent Machines, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, China
| | - Qingmei Deng
- Cancer Hospital, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, China
| | - Xiaojie Niu
- Department of Anatomy, Shanxi Medical University, Taiyuan 030024, China
| | - Li Lu
- Department of Anatomy, Shanxi Medical University, Taiyuan 030024, China
| | - Haiming Dai
- Anhui Province Key Laboratory of Medical Physics and Technology, Center of Medical Physics and Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, China
- Cancer Hospital, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, China
| | - Hongzhi Wang
- Anhui Province Key Laboratory of Medical Physics and Technology, Center of Medical Physics and Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, China
- Cancer Hospital, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, China
| | - Wulin Yang
- Anhui Province Key Laboratory of Medical Physics and Technology, Center of Medical Physics and Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, China
- Cancer Hospital, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, China
| |
Collapse
|
9
|
Huang C, Wu XF, Wang XL. Trichostatin a inhibits phenotypic transition and induces apoptosis of the TAF-treated normal colonic epithelial cells through regulation of TGF-β pathway. Int J Biochem Cell Biol 2019; 114:105565. [PMID: 31278993 DOI: 10.1016/j.biocel.2019.105565] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2019] [Revised: 06/24/2019] [Accepted: 07/03/2019] [Indexed: 12/15/2022]
Abstract
Tumor-associated fibroblasts (TAFs) contribute to transdifferentiation of stromal cells in tumor microenvironment. Epithelial-mesenchymal transition (EMT) is a procedure of phenotypic remodeling of epithelial cells and extensively exists in local tumoral stroma. Histone deacetylase (HDAC) inhibitor Tricostatin A (TSA) and sodium butyrate (SB) are reported to play important roles in the regulation of biological behaviour of cancer cells. However, whether TSA or SB is involved in control of EMT in colon epithelial cells induced by TAFs remains unidentified. In present study, we used conditioned medium (CM) form TAF-like CCD-18Co cells to stimulate 2D- and 3D-cultured colon epithelial HCoEpiC cells for 24 h and 4 d. We found that the CCD-18Co CM triggered multiple morphological changes in HCoEpiCs including prolonged cell diameters, down-regulation of E-cadherin and up-regulation of vimentin and α-SMA. Besides, ZEB1 and Snail expression and migration were also promoted by the CM. These phenomena were abolised by 5 μg/ml LY364947, a TGF-β receptor inhibitor. CCD-18Co induced up-regulation of HDAC1 and HDAC2 in the 2D and 3D models, while no change of HDAC4 exprerssion was found. Treatment of 2 μg/ml TSA reversed the CCD-18Co-induced morphological changes and migration of the HCoEpiCs, and suppressed the downregulation of E-cadherin and upregulation of vimentin, α-SMA, ZEB1 and Snail. However, the suppressive effect of 4 mg/ml SB on the EMT was not observed. TSA down-regulated the expressions of Smad2/3, p-Smad2/3 amd HDAC4. Besides, TSA promoted the apoptosis rate (36.84 ± 6.52%) comparing with the CCD-18Co-treated HCoEpiCs (3.52 ± 0.85%, P < 0.05), with promotion of Bax (0.5893±0.0498 in 2D and 0.8867±0.0916 in 3D) and reduction of Bcl-2 (0.0476±0.0053 in 2D and 0.0294±0.0075 in 3D). TSA stimulated expression of phosphorylated-p38 MAPK in 2D (0.3472±0.0249) and 3D (0.3188±0.0248). After pre-treatment with p38 MAPK inhibitor VX-702 (0.5 mg/ml), the apoptosis rate of TSA was decreased in 2D (10.32%) and 3D (5.26%). Our observations demonstrate that epigenetic treatment with HDAC inhibitor TSA may be a useful therapeutic tool for the reversion of TAF-induced EMT in colon epithelium through mediating canonical Smads pathway and non-canonical p38 MAPK signalling.
Collapse
Affiliation(s)
- Chao Huang
- Department of Traditional Chinese Medicine, Affiliated Bao'an Hospital of Shenzhen, Southern Medical University, Shenzhen, 518100, China.
| | - Xiao-Fen Wu
- Department of Endocrinology, The 940th Hospital of Joint Logistics Support Force of Chinese People's Liberation Army, Lanzhou, 730050, China
| | - Xiu-Lian Wang
- Health Management Centre, Affiliated Bao'an Hospital of Traditional Chinese Medicine of Shenzhen, Traditional Chinese Medicine University Of Guangzhou, Shenzhen, 518100, China
| |
Collapse
|
10
|
Zhao Y, Ma J, Fan Y, Wang Z, Tian R, Ji W, Zhang F, Niu R. TGF-β transactivates EGFR and facilitates breast cancer migration and invasion through canonical Smad3 and ERK/Sp1 signaling pathways. Mol Oncol 2018; 12:305-321. [PMID: 29215776 PMCID: PMC5830653 DOI: 10.1002/1878-0261.12162] [Citation(s) in RCA: 116] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2017] [Revised: 10/31/2017] [Accepted: 11/13/2017] [Indexed: 01/19/2023] Open
Abstract
Transforming growth factor-beta (TGF-β) functions as a potent proliferation inhibitor and apoptosis inducer in the early stages of breast cancer, yet promotes cancer aggressiveness in the advanced stages. The dual effect of TGF-β on cancer development is known as TGF-β paradox, and the remarkable functional conversion of TGF-β is a pivotal and controversial phenomenon that has been widely investigated for decades. This phenomenon may be attributed to the cross talk between TGF-β signaling and other pathways, including EGF receptor (EGFR) signaling during cancer progression. However, the underlying mechanism by which TGF-β shifts its role from a tumor suppressor to a cancer promoter remains elusive. In this study, TGF-β is positively correlated with EGFR expression in breast cancer tissues, and a functional linkage is observed between TGF-β signaling and EGFR transactivation in breast cancer cell lines. TGF-β promotes the migration and invasion abilities of breast cancer cells, along with the increase in EGFR expression. EGFR is also essential for TGF-β-induced enhancement of these abilities of breast cancer cells. Canonical Smad3 signaling and ERK/Sp1 signaling pathways mediate TGF-β-induced EGFR upregulation. Hence, our study provided insights into a novel mechanism by which TGF-β supports breast cancer progression.
Collapse
Affiliation(s)
- Yuanyuan Zhao
- Public LaboratoryNational Clinical Research Center for CancerTianjin Medical University Cancer Institute and HospitalChina
- Key Laboratory of Cancer Prevention and TherapyTianjinChina
- Tianjin's Clinical Research Center for CancerChina
- Key Laboratory of Breast Cancer Prevention and TherapyMinistry of EducationTianjin Medical UniversityChina
| | - Jing Ma
- Public LaboratoryNational Clinical Research Center for CancerTianjin Medical University Cancer Institute and HospitalChina
- Key Laboratory of Cancer Prevention and TherapyTianjinChina
- Tianjin's Clinical Research Center for CancerChina
- Key Laboratory of Breast Cancer Prevention and TherapyMinistry of EducationTianjin Medical UniversityChina
| | - Yanling Fan
- Public LaboratoryNational Clinical Research Center for CancerTianjin Medical University Cancer Institute and HospitalChina
- Key Laboratory of Cancer Prevention and TherapyTianjinChina
- Tianjin's Clinical Research Center for CancerChina
- Key Laboratory of Breast Cancer Prevention and TherapyMinistry of EducationTianjin Medical UniversityChina
| | - Zhiyong Wang
- Public LaboratoryNational Clinical Research Center for CancerTianjin Medical University Cancer Institute and HospitalChina
- Key Laboratory of Cancer Prevention and TherapyTianjinChina
- Tianjin's Clinical Research Center for CancerChina
- Key Laboratory of Breast Cancer Prevention and TherapyMinistry of EducationTianjin Medical UniversityChina
| | - Ran Tian
- Public LaboratoryNational Clinical Research Center for CancerTianjin Medical University Cancer Institute and HospitalChina
- Key Laboratory of Cancer Prevention and TherapyTianjinChina
- Tianjin's Clinical Research Center for CancerChina
- Key Laboratory of Breast Cancer Prevention and TherapyMinistry of EducationTianjin Medical UniversityChina
| | - Wei Ji
- Public LaboratoryNational Clinical Research Center for CancerTianjin Medical University Cancer Institute and HospitalChina
- Key Laboratory of Cancer Prevention and TherapyTianjinChina
- Tianjin's Clinical Research Center for CancerChina
- Key Laboratory of Breast Cancer Prevention and TherapyMinistry of EducationTianjin Medical UniversityChina
| | - Fei Zhang
- Public LaboratoryNational Clinical Research Center for CancerTianjin Medical University Cancer Institute and HospitalChina
- Key Laboratory of Cancer Prevention and TherapyTianjinChina
- Tianjin's Clinical Research Center for CancerChina
- Key Laboratory of Breast Cancer Prevention and TherapyMinistry of EducationTianjin Medical UniversityChina
| | - Ruifang Niu
- Public LaboratoryNational Clinical Research Center for CancerTianjin Medical University Cancer Institute and HospitalChina
- Key Laboratory of Cancer Prevention and TherapyTianjinChina
- Tianjin's Clinical Research Center for CancerChina
- Key Laboratory of Breast Cancer Prevention and TherapyMinistry of EducationTianjin Medical UniversityChina
| |
Collapse
|
11
|
Colorectal Cancer: From the Genetic Model to Posttranscriptional Regulation by Noncoding RNAs. BIOMED RESEARCH INTERNATIONAL 2017; 2017:7354260. [PMID: 28573140 PMCID: PMC5442347 DOI: 10.1155/2017/7354260] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/05/2016] [Accepted: 02/16/2017] [Indexed: 12/11/2022]
Abstract
Colorectal cancer is the third most common form of cancer in developed countries and, despite the improvements achieved in its treatment options, remains as one of the main causes of cancer-related death. In this review, we first focus on colorectal carcinogenesis and on the genetic and epigenetic alterations involved. In addition, noncoding RNAs have been shown to be important regulators of gene expression. We present a general overview of what is known about these molecules and their role and dysregulation in cancer, with a special focus on the biogenesis, characteristics, and function of microRNAs. These molecules are important regulators of carcinogenesis, progression, invasion, angiogenesis, and metastases in cancer, including colorectal cancer. For this reason, miRNAs can be used as potential biomarkers for diagnosis, prognosis, and efficacy of chemotherapeutic treatments, or even as therapeutic agents, or as targets by themselves. Thus, this review highlights the importance of miRNAs in the development, progression, diagnosis, and therapy of colorectal cancer and summarizes current therapeutic approaches for the treatment of colorectal cancer.
Collapse
|
12
|
Zhang X, Huang S, Guo J, Zhou L, You L, Zhang T, Zhao Y. Insights into the distinct roles of MMP-11 in tumor biology and future therapeutics (Review). Int J Oncol 2016; 48:1783-93. [PMID: 26892540 DOI: 10.3892/ijo.2016.3400] [Citation(s) in RCA: 81] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2015] [Accepted: 01/21/2016] [Indexed: 11/06/2022] Open
Abstract
The biological processes of cancer cells such as tumorigenesis, proliferation, angiogenesis, apoptosis and invasion are greatly influenced by the surrounding microenvironment. The ability of solid malignant tumors to alter the microenvironment represents an important characteristic through which tumor cells are able to acquire specific functions necessary for their malignant biological behaviors. Matrix metalloproteinases (MMPs) are a family of zinc-dependent endopeptidases with the capacity of remodeling extracellular matrix (ECM) by degrading almost all ECM proteins, which plays essential roles during the invasion and metastasis process of solid malignant tumors, including allowing tumor cells to modify the ECM components and release cytokines, ultimately facilitating protease-dependent tumor progression. MMP-11, also named stromelysin-3, is a member of the stromelysin subgroup belonging to MMPs superfamily, which has been detected in cancer cells, stromal cells and adjacent microenvironment. Differently, MMP-11 exerts a dual effect on tumors. On the one hand MMP-11 promotes cancer development by inhibiting apoptosis as well as enhancing migration and invasion of cancer cells, on the other hand MMP-11 plays a negative role against cancer development via suppressing metastasis in animal models. Overexpression of MMP-11 was discovered in sera of cancer patients compared with normal control group as well as in multiple tumor tissue specimens, such as gastric cancer, breast cancer, and pancreatic cancer. At present, some evidence supports that MMP-11 may work as a significant tumor biomarker for early detection of cancer, tumor staging, prognostic analysis, monitoring recurrence during follow-up and also a potential target for immunotherapy against cancer. In view of the importance of MMP-11 in modifying tumor microenvironment and potent antitumoral effects on solid tumors, there is an urgent need for a deeper understanding of how MMP-11 modulates tumor progression, and exploring its potential clinical application.
Collapse
Affiliation(s)
- Xu Zhang
- Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences/Peking Union Medical College, Beijing 100730, P.R. China
| | - Shuai Huang
- Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences/Peking Union Medical College, Beijing 100730, P.R. China
| | - Junchao Guo
- Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences/Peking Union Medical College, Beijing 100730, P.R. China
| | - Li Zhou
- Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences/Peking Union Medical College, Beijing 100730, P.R. China
| | - Lei You
- Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences/Peking Union Medical College, Beijing 100730, P.R. China
| | - Taiping Zhang
- Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences/Peking Union Medical College, Beijing 100730, P.R. China
| | - Yupei Zhao
- Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences/Peking Union Medical College, Beijing 100730, P.R. China
| |
Collapse
|
13
|
Chen HP, Zhao YT, Zhao TC. Histone deacetylases and mechanisms of regulation of gene expression. Crit Rev Oncog 2015; 20:35-47. [PMID: 25746103 DOI: 10.1615/critrevoncog.2015012997] [Citation(s) in RCA: 201] [Impact Index Per Article: 20.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
In recent years it has become widely recognized that histone modification plays a pivotal role in controlling gene expression and is involved in a wide spectrum of disease regulation. Histone acetylation is a major modification that affects gene transcription and is controlled by histone acetyltransferases (HATs) and histone deacetylases (HDACs). HATs acetylate lysines of histone proteins, resulting in the relaxation of chromatin structure, and they also facilitate gene activation. Conversely, HDACs remove acetyl groups from hyperacetylated histones and suppress general gene transcription. In addition to histones, numerous nonhistone proteins can be acetylated and deacetylated, and they also are involved in the regulation of a wide range of diseases. To date there are 18 HDACs in mammals classified into 4 classes based on homology to yeast HDACs. Accumulating evidence has revealed that HDACs play crucial roles in a variety of biological processes including inflammation, cell proliferation, apoptosis, and carcinogenesis. In this review we summarize the current state of knowledge of HDACs in carcinogenesis and describe the involvement of HDACs in cancer-associated molecular processes. It is hoped than an understanding of the role of HDACs in cancer will lead to the design of more potent and specific drugs targeting selective HDAC proteins for the treatment of the disease.
Collapse
Affiliation(s)
- Hong Ping Chen
- Department of Surgery, Boston University Medical School, Boston University, Roger Williams Medical Center, Providence, RI; Department of Histology and Embryology, Medical College, Nanchang University, Nanchang, China
| | - Yu Tina Zhao
- Department of Surgery, Boston University Medical School, Boston University, Roger Williams Medical Center, Providence, RI
| | - Ting C Zhao
- Department of Surgery, Boston University Medical School, Boston University, Roger Williams Medical Center, Providence, RI
| |
Collapse
|
14
|
Chueh AC, Tse JWT, Tögel L, Mariadason JM. Mechanisms of Histone Deacetylase Inhibitor-Regulated Gene Expression in Cancer Cells. Antioxid Redox Signal 2015; 23:66-84. [PMID: 24512308 PMCID: PMC4492771 DOI: 10.1089/ars.2014.5863] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
SIGNIFICANCE Class I and II histone deacetylase inhibitors (HDACis) are approved for the treatment of cutaneous T-cell lymphoma and are undergoing clinical trials as single agents, and in combination, for other hematological and solid tumors. Understanding their mechanisms of action is essential for their more effective clinical use, and broadening their clinical potential. RECENT ADVANCES HDACi induce extensive transcriptional changes in tumor cells by activating and repressing similar numbers of genes. These transcriptional changes mediate, at least in part, HDACi-mediated growth inhibition, apoptosis, and differentiation. Here, we highlight two fundamental mechanisms by which HDACi regulate gene expression—histone and transcription factor acetylation. We also review the transcriptional responses invoked by HDACi, and compare these effects within and across tumor types. CRITICAL ISSUES The mechanistic basis for how HDACi activate, and in particular repress gene expression, is not well understood. In addition, whether subsets of genes are reproducibly regulated by these agents both within and across tumor types has not been systematically addressed. A detailed understanding of the transcriptional changes elicited by HDACi in various tumor types, and the mechanistic basis for these effects, may provide insights into the specificity of these drugs for transformed cells and specific tumor types. FUTURE DIRECTIONS Understanding the mechanisms by which HDACi regulate gene expression and an appreciation of their transcriptional targets could facilitate the ongoing clinical development of these emerging therapeutics. In particular, this knowledge could inform the design of rational drug combinations involving HDACi, and facilitate the identification of mechanism-based biomarkers of response.
Collapse
Affiliation(s)
- Anderly C Chueh
- Ludwig Institute for Cancer Research , Olivia Newton John Cancer and Wellness Centre, Austin Health, Melbourne, Australia
| | - Janson W T Tse
- Ludwig Institute for Cancer Research , Olivia Newton John Cancer and Wellness Centre, Austin Health, Melbourne, Australia
| | - Lars Tögel
- Ludwig Institute for Cancer Research , Olivia Newton John Cancer and Wellness Centre, Austin Health, Melbourne, Australia
| | - John M Mariadason
- Ludwig Institute for Cancer Research , Olivia Newton John Cancer and Wellness Centre, Austin Health, Melbourne, Australia
| |
Collapse
|
15
|
Xu P, Bailey-Bucktrout S, Xi Y, Xu D, Du D, Zhang Q, Xiang W, Liu J, Melton A, Sheppard D, Chapman HA, Bluestone JA, Derynck R. Innate antiviral host defense attenuates TGF-β function through IRF3-mediated suppression of Smad signaling. Mol Cell 2014; 56:723-37. [PMID: 25526531 PMCID: PMC4273650 DOI: 10.1016/j.molcel.2014.11.027] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2014] [Revised: 10/02/2014] [Accepted: 11/21/2014] [Indexed: 02/06/2023]
Abstract
TGF-β signaling is essential in many processes, including immune surveillance, and its dysregulation controls various diseases, including cancer, fibrosis, and inflammation. Studying the innate host defense, which functions in most cell types, we found that RLR signaling represses TGF-β responses. This regulation is mediated by activated IRF3, using a dual mechanism of IRF3-directed suppression. Activated IRF3 interacts with Smad3, thus inhibiting TGF-β-induced Smad3 activation and, in the nucleus, disrupts functional Smad3 transcription complexes by competing with coregulators. Consequently, IRF3 activation by innate antiviral signaling represses TGF-β-induced growth inhibition, gene regulation and epithelial-mesenchymal transition, and the generation of Treg effector lymphocytes from naive CD4(+) lymphocytes. Conversely, silencing IRF3 expression enhances epithelial-mesenchymal transition, TGF-β-induced Treg cell differentiation upon virus infection, and Treg cell generation in vivo. We present a mechanism of regulation of TGF-β signaling by the antiviral defense, with evidence for its role in immune tolerance and cancer cell behavior.
Collapse
Affiliation(s)
- Pinglong Xu
- Life Sciences Institute and Innovation Center for Cell Biology, Zhejiang University, Hangzhou, Zhejiang 310058, China; Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, Department of Cell and Tissue Biology, University of California at San Francisco, CA 94143, USA.
| | - Samantha Bailey-Bucktrout
- Diabetes Center and the Department of Medicine, University of California at San Francisco, CA 94143, USA
| | - Ying Xi
- Department of Medicine and Cardiovascular Research Institute, University of California at San Francisco, CA 94143, USA
| | - Daqi Xu
- Diabetes Center and the Department of Medicine, University of California at San Francisco, CA 94143, USA
| | - Dan Du
- Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, Department of Cell and Tissue Biology, University of California at San Francisco, CA 94143, USA
| | - Qian Zhang
- Life Sciences Institute and Innovation Center for Cell Biology, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Weiwen Xiang
- Life Sciences Institute and Innovation Center for Cell Biology, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Jianming Liu
- Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, Department of Cell and Tissue Biology, University of California at San Francisco, CA 94143, USA
| | - Andrew Melton
- Lung Biology Center and the Department of Medicine, University of California at San Francisco, CA 94143, USA
| | - Dean Sheppard
- Lung Biology Center and the Department of Medicine, University of California at San Francisco, CA 94143, USA
| | - Harold A Chapman
- Department of Medicine and Cardiovascular Research Institute, University of California at San Francisco, CA 94143, USA
| | - Jeffrey A Bluestone
- Diabetes Center and the Department of Medicine, University of California at San Francisco, CA 94143, USA
| | - Rik Derynck
- Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, Department of Cell and Tissue Biology, University of California at San Francisco, CA 94143, USA.
| |
Collapse
|
16
|
Jin H, Kanthasamy A, Harischandra DS, Kondru N, Ghosh A, Panicker N, Anantharam V, Rana A, Kanthasamy AG. Histone hyperacetylation up-regulates protein kinase Cδ in dopaminergic neurons to induce cell death: relevance to epigenetic mechanisms of neurodegeneration in Parkinson disease. J Biol Chem 2014; 289:34743-67. [PMID: 25342743 DOI: 10.1074/jbc.m114.576702] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
The oxidative stress-sensitive protein kinase Cδ (PKCδ) has been implicated in dopaminergic neuronal cell death. However, little is known about the epigenetic mechanisms regulating PKCδ expression in neurons. Here, we report a novel mechanism by which the PKCδ gene can be regulated by histone acetylation. Treatment with histone deacetylase (HDAC) inhibitor sodium butyrate (NaBu) induced PKCδ expression in cultured neurons, brain slices, and animal models. Several other HDAC inhibitors also mimicked NaBu. The chromatin immunoprecipitation analysis revealed that hyperacetylation of histone H4 by NaBu is associated with the PKCδ promoter. Deletion analysis of the PKCδ promoter mapped the NaBu-responsive element to an 81-bp minimal promoter region. Detailed mutagenesis studies within this region revealed that four GC boxes conferred hyperacetylation-induced PKCδ promoter activation. Cotransfection experiments and Sp inhibitor studies demonstrated that Sp1, Sp3, and Sp4 regulated NaBu-induced PKCδ up-regulation. However, NaBu did not alter the DNA binding activities of Sp proteins or their expression. Interestingly, a one-hybrid analysis revealed that NaBu enhanced transcriptional activity of Sp1/Sp3. Overexpression of the p300/cAMP-response element-binding protein-binding protein (CBP) potentiated the NaBu-mediated transactivation potential of Sp1/Sp3, but expressing several HDACs attenuated this effect, suggesting that p300/CBP and HDACs act as coactivators or corepressors in histone acetylation-induced PKCδ up-regulation. Finally, using genetic and pharmacological approaches, we showed that NaBu up-regulation of PKCδ sensitizes neurons to cell death in a human dopaminergic cell model and brain slice cultures. Together, these results indicate that histone acetylation regulates PKCδ expression to augment nigrostriatal dopaminergic cell death, which could contribute to the progressive neuropathogenesis of Parkinson disease.
Collapse
Affiliation(s)
- Huajun Jin
- From the Department of Biomedical Sciences, Iowa Center for Advanced Neurotoxicology, Iowa State University, Ames, Iowa 50011
| | - Arthi Kanthasamy
- From the Department of Biomedical Sciences, Iowa Center for Advanced Neurotoxicology, Iowa State University, Ames, Iowa 50011
| | - Dilshan S Harischandra
- From the Department of Biomedical Sciences, Iowa Center for Advanced Neurotoxicology, Iowa State University, Ames, Iowa 50011
| | - Naveen Kondru
- From the Department of Biomedical Sciences, Iowa Center for Advanced Neurotoxicology, Iowa State University, Ames, Iowa 50011
| | - Anamitra Ghosh
- From the Department of Biomedical Sciences, Iowa Center for Advanced Neurotoxicology, Iowa State University, Ames, Iowa 50011
| | - Nikhil Panicker
- From the Department of Biomedical Sciences, Iowa Center for Advanced Neurotoxicology, Iowa State University, Ames, Iowa 50011
| | - Vellareddy Anantharam
- From the Department of Biomedical Sciences, Iowa Center for Advanced Neurotoxicology, Iowa State University, Ames, Iowa 50011
| | - Ajay Rana
- the Department of Molecular Pharmacology and Therapeutics, Stritch School of Medicine, Loyola University Chicago, Maywood, Illinois 60153, and the Hines Veterans Affairs Medical Center, Hines, Illinois 60141
| | - Anumantha G Kanthasamy
- From the Department of Biomedical Sciences, Iowa Center for Advanced Neurotoxicology, Iowa State University, Ames, Iowa 50011,
| |
Collapse
|
17
|
Uchida C, Haas TL. Endothelial cell TIMP-1 is upregulated by shear stress via Sp-1 and the TGFβ1 signaling pathways. Biochem Cell Biol 2013; 92:77-83. [PMID: 24471921 DOI: 10.1139/bcb-2013-0086] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Laminar shear stress promotes vascular integrity by inhibiting proteolysis of the extracellular matrix (ECM) surrounding the microvasculature. We hypothesized that the matrix metalloproteinase inhibitor TIMP-1 would be upregulated in endothelial cells exposed to shear stress. Microvascular endothelial cells isolated from rat or mouse skeletal muscles were exposed to laminar shear stress for 2, 4, or 24 h. A biphasic increase in TIMP-1 protein was observed at 2 and 24 h of shear stress exposure. Sp-1 siRNA prevented the increase in TIMP-1 after 2, but not 24, hours of shear exposure. TGFβ production and Smad2/3 phosphorylation are increased by shear stress. Inhibition of TGFβ signaling, either by use of the TGFβ receptor 1 inhibitor SB-431542 or with Smad 2/3 siRNA, abrogated the shear stress-induced increase in TIMP-1 mRNA after 24 h of shear stress exposure. These results suggest that both acute and chronic elevated laminar shear stress act to maintain vessel integrity through increasing TIMP-1 production, but that the TGFβ signaling pathway is essential to maintain TIMP-1 expression during chronic shear stress.
Collapse
Affiliation(s)
- Cassandra Uchida
- Angiogenesis Research Group, Faculty of Health, York University, 4700 Keele St., Toronto, ON M3J 1P3, Canada
| | | |
Collapse
|
18
|
Wang X, Nelson A, Weiler ZM, Patil A, Sato T, Kanaji N, Nakanishi M, Michalski J, Farid M, Basma H, Levan TD, Miller-Larsson A, Wieslander E, Muller KC, Holz O, Magnussen H, Rabe KF, Liu X, Rennard SI. Anti-inflammatory effects of budesonide in human lung fibroblast are independent of histone deacetylase 2. J Inflamm Res 2013; 6:109-19. [PMID: 24062615 PMCID: PMC3780291 DOI: 10.2147/jir.s43736] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Objective and design Reduced expression of histone deacetylase 2 (HDAC2) in alveolar macrophages and epithelial cells may account for reduced response of chronic obstructive pulmonary disease (COPD) patients to glucocorticoids. HDAC2 expression and its role in mediating glucocorticoid effects on fibroblast functions, however, has not been fully studied. This study was designed to investigate whether HDAC2 mediates glucocorticoid effects on release of inflammatory cytokines and matrix metalloproteinases (MMPs) from human lung fibroblasts. Methods Human lung fibroblasts (HFL-1 cells) were stimulated with interleukin (IL)-1 β plus tumor necrosis factor (TNF)-α in the presence or absence of the glucocorticoid budesonide. Cytokines (IL-6 and IL-8) were quantified by enzyme linked immunosorbent assay (ELISA) and MMPs (MMP-1 and MMP-3) by immunoblotting in culture medium. The role of HDAC2 was investigated using a pharmacologic inhibitor as well as a small interfering ribonucleic acid (siRNA) targeting HDAC2. Results We have demonstrated that budesonide concentration-dependently (10−10–10−7 M) inhibited IL-6, IL-8, MMP-1, and MMP-3 release by HFL-1 cells in response to IL-1β plus TNF-α. While an HDAC inhibitor significantly blocked the inhibitory effect of budesonide on human bronchial epithelial cells (HBECs) and monocytes (THP-1 cells), it did not block the inhibitory effect of budesonide on release of cytokines and MMPs from HFL-1 cells. Similarly, an HDAC2-siRNA blocked budesonide inhibition of cytokine release in HBECs, but it did not block the inhibitory effect of budesonide on HFL-1 cytokine and MMP release. Furthermore, budesonide significantly blocked release of cytokines and MMPs to a similar degree in normal and COPD lung fibroblasts as well as in HFL-1 cells exposed or not exposed to cigarette smoke extract. Conclusion These findings suggest that, in contrast to airway epithelial cells and monocytes/macrophages, HDAC2 is not required for budesonide to inhibit MMP and cytokine release by lung fibroblasts and this inhibitory pathway appears to be intact in cultured fibroblasts from COPD patients. These results also suggest that budesonide has the potential to modulate fibroblast-mediated tissue remodeling following airway inflammation in COPD, which is mediated via an HDAC2 independent pathway.
Collapse
Affiliation(s)
- Xingqi Wang
- Pulmonary, Critical Care, Sleep and Allergy Division, Department of Internal Medicine, University of Nebraska Medical Center, Omaha, NE, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Santiago-Gómez A, Barrasa JI, Olmo N, Lecona E, Burghardt H, Palacín M, Lizarbe MA, Turnay J. 4F2hc-silencing impairs tumorigenicity of HeLa cells via modulation of galectin-3 and β-catenin signaling, and MMP-2 expression. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2013; 1833:2045-56. [PMID: 23651923 DOI: 10.1016/j.bbamcr.2013.04.017] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2012] [Revised: 04/29/2013] [Accepted: 04/30/2013] [Indexed: 01/17/2023]
Abstract
4F2hc is a type-II glycoprotein whose covalent-bound association with one of several described light chains yields a heterodimer mainly involved in large neutral amino acid transport. Likewise, it is well known that the heavy chain interacts with β-integrins mediating integrin-dependent events such as survival, proliferation, migration and even transformation. 4F2hc is a ubiquitous protein whose overexpression has been related to tumor development and progression. Stable silencing of 4F2hc in HeLa cells using an artificial miRNA impairs in vivo tumorigenicity and leads to an ineffective proliferation response to mitogens. 4F2hc colocalizes with β1-integrins and CD147, but this interaction does not occur in lipid rafts in HeLa cells. Moreover, silenced cells present defects in integrin- (FAK, Akt and ERK1/2) and hypoxia-dependent signaling, and reduced expression/activity of MMP-2. These alterations seem to be dependent on the inappropriate formation of CD147/4F2hc/β1-integrin heterocomplexes on the cell surface, arising when CD147 cannot interact with 4F2hc. Although extracellular galectin-3 accumulates due to the decrease in MMP-2 activity, galectin-3 signaling events are blocked due to an impaired interaction with 4F2hc, inducing an increased degradation of β-catenin. Furthermore, cell motility is compromised after protein silencing, suggesting that 4F2hc is related to tumor invasion by facilitating cell motility. Therefore, here we propose a molecular mechanism by which 4F2hc participates in tumor progression, favoring first steps of epithelial-mesenchymal transition by inhibition of β-catenin proteasomal degradation through Akt/GSK-3β signaling and enabling cell motility.
Collapse
Affiliation(s)
- Angélica Santiago-Gómez
- Departamento de Bioquímica y Biología Molecular I, Facultad de Ciencias Químicas, Universidad Complutense, 28040-Madrid, Spain
| | | | | | | | | | | | | | | |
Collapse
|