1
|
Guo L, Du Y, Li H, He T, Yao L, Yang G, Yang X. Metabolites-mediated posttranslational modifications in cardiac metabolic remodeling: Implications for disease pathology and therapeutic potential. Metabolism 2025; 165:156144. [PMID: 39864796 DOI: 10.1016/j.metabol.2025.156144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Revised: 01/20/2025] [Accepted: 01/22/2025] [Indexed: 01/28/2025]
Abstract
The nonenergy - producing functions of metabolism are attracting increasing attention, as metabolic changes are involved in discrete pathways modulating enzyme activity and gene expression. Substantial evidence suggests that myocardial metabolic remodeling occurring during diabetic cardiomyopathy, heart failure, and cardiac pathological stress (e.g., myocardial ischemia, pressure overload) contributes to the progression of pathology. Within the rewired metabolic network, metabolic intermediates and end-products can directly alter protein function and/or regulate epigenetic modifications by providing acyl groups for posttranslational modifications, thereby affecting the overall cardiac stress response and providing a direct link between cellular metabolism and cardiac pathology. This review provides a comprehensive overview of the functional diversity and mechanistic roles of several types of metabolite-mediated histone and nonhistone acylation, namely O-GlcNAcylation, lactylation, crotonylation, β-hydroxybutyrylation, and succinylation, as well as fatty acid-mediated modifications, in regulating physiological processes and contributing to the progression of heart disease. Furthermore, it explores the potential of these modifications as therapeutic targets for disease intervention.
Collapse
Affiliation(s)
- Lifei Guo
- Department of Burns and Cutaneous Surgery, Xijing Hospital, Fourth Military Medical University, Chang-Le Xi Street #127, Xi' an 710032, China; The State Laboratory of Cancer Biology, Department of Biochemistry and Molecular Biology, Fourth Military Medical University, Chang-Le Xi Street #127, Xi' an 710032, China; Cadet Team 6 of School of Basic Medicine, Fourth Military Medical University, Chang-Le Xi Street #127, Xi' an 710032, China
| | - Yuting Du
- Department of Burns and Cutaneous Surgery, Xijing Hospital, Fourth Military Medical University, Chang-Le Xi Street #127, Xi' an 710032, China; The State Laboratory of Cancer Biology, Department of Biochemistry and Molecular Biology, Fourth Military Medical University, Chang-Le Xi Street #127, Xi' an 710032, China
| | - Heng Li
- Department of Burns and Cutaneous Surgery, Xijing Hospital, Fourth Military Medical University, Chang-Le Xi Street #127, Xi' an 710032, China
| | - Ting He
- Department of Burns and Cutaneous Surgery, Xijing Hospital, Fourth Military Medical University, Chang-Le Xi Street #127, Xi' an 710032, China
| | - Li Yao
- Department of Pathology, Xi' an No. 3 Hospital, The Affiliated Hospital of Northwest University, Xi' an 710018, China
| | - Guodong Yang
- The State Laboratory of Cancer Biology, Department of Biochemistry and Molecular Biology, Fourth Military Medical University, Chang-Le Xi Street #127, Xi' an 710032, China.
| | - Xuekang Yang
- Department of Burns and Cutaneous Surgery, Xijing Hospital, Fourth Military Medical University, Chang-Le Xi Street #127, Xi' an 710032, China.
| |
Collapse
|
2
|
Chatham JC, Wende AR. The role of protein O-GlcNAcylation in diabetic cardiomyopathy. Biochem Soc Trans 2024; 52:2343-2358. [PMID: 39601777 DOI: 10.1042/bst20240262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Revised: 10/23/2024] [Accepted: 10/29/2024] [Indexed: 11/29/2024]
Abstract
It is well established that diabetes markedly increases the risk of multiple types of heart disease including heart failure. However, despite substantial improvements in the treatment of heart failure in recent decades the relative increased risk associated with diabetes remains unchanged. There is increasing appreciation of the importance of the post translational modification by O-linked-N-acetylglucosamine (O-GlcNAc) of serine and threonine residues on proteins in regulating cardiomyocyte function and mediating stress responses. In response to diabetes there is a sustained increase in cardiac O-GlcNAc levels, which has been attributed to many of the adverse effects of diabetes on the heart. Here we provide an overview of potential mechanisms by which increased cardiac O-GlcNAcylation contributes to the adverse effects on the heart and highlight some of the key gaps in our knowledge.
Collapse
Affiliation(s)
- John C Chatham
- Division of Molecular and Cellular Pathology, Department of Pathology, University of Alabama at Birmingham, Birmingham, AL, U.S.A
| | - Adam R Wende
- Division of Molecular and Cellular Pathology, Department of Pathology, University of Alabama at Birmingham, Birmingham, AL, U.S.A
| |
Collapse
|
3
|
Zeidan Q, Tian JL, Ma J, Eslami F, Hart GW. O-GlcNAcylation of ribosome-associated proteins is concomitant with translational reprogramming during proteotoxic stress. J Biol Chem 2024; 300:107877. [PMID: 39395807 PMCID: PMC11567021 DOI: 10.1016/j.jbc.2024.107877] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 09/23/2024] [Accepted: 10/04/2024] [Indexed: 10/14/2024] Open
Abstract
Protein O-GlcNAc modification, similar to phosphorylation, supports cell survival by regulating key processes like transcription, cell division, trafficking, signaling, and stress tolerance. However, its role in protein homeostasis, particularly in protein synthesis, folding, and degradation, remains poorly understood. Our previous research shows that O-GlcNAc cycling enzymes associate with the translation machinery during protein synthesis and modify ribosomal proteins. Protein translation is closely linked to 26S proteasome activity, which recycles amino acids and clears misfolded proteins during stress, preventing aggregation and cell death. In this study, we demonstrate that pharmacological perturbation of the proteasome-like that used in cancer treatment- leads to the increased abundance of OGT and OGA in a ribosome-rich fraction, concurrent with O-GlcNAc modification of core translational and ribosome-associated proteins. This interaction is synchronous with eIF2α-dependent translational reprogramming. We also found that protein ubiquitination depends partly on O-GlcNAc metabolism in MEFs, as Ogt-depleted cells show decreased ubiquitination under stress. Using an O-GlcNAc-peptide enrichment strategy followed by LC-MS/MS, we identified 84 unique O-GlcNAc sites across 55 proteins, including ribosomal proteins, nucleolar factors, and the 70-kDa heat shock protein family. Hsp70 and OGT colocalize with the translational machinery in an RNA-independent manner, aiding in partial protein translation recovery during sustained stress. O-GlcNAc cycling on ribosome-associated proteins collaborates with Hsp70 to restore protein synthesis during proteotoxicity, suggesting a role in tumor resistance to proteasome inhibitors.
Collapse
Affiliation(s)
- Quira Zeidan
- Department of Biological Chemistry, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Jie L Tian
- Complex Carbohydrate Research Center, University of Georgia, Athens, Georgia, USA
| | - Junfeng Ma
- Department of Biological Chemistry, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Farzad Eslami
- Complex Carbohydrate Research Center, University of Georgia, Athens, Georgia, USA
| | - Gerald W Hart
- Complex Carbohydrate Research Center, University of Georgia, Athens, Georgia, USA.
| |
Collapse
|
4
|
Zhou H, Ji Y, Li J, Sun L. The study on the role of O-GlcNAcylation of SIRT3 in regulating mitochondrial oxidative stress during simulate myocardial ischemia-reperfusion. Sci Rep 2024; 14:21201. [PMID: 39261577 PMCID: PMC11390985 DOI: 10.1038/s41598-024-72324-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Accepted: 09/05/2024] [Indexed: 09/13/2024] Open
Abstract
Myocardial ischemia-reperfusion injury (MIRI) is a significant complication following reperfusion therapy after myocardial infarction. Mitochondrial oxidative stress is a critical factor in MIRI, and Sirtuin 3 (SIRT3), as a major mitochondrial deacetylase, plays a key protective role, with its activity potentially regulated by O-GlcNAcylation. This study used the H9C2 cell line to establish a simulated ischemia/reperfusion (SI/R) model, we utilized co-immunoprecipitated to validate the relationship between O-GlcNAc transferase (OGT) and SIRT3, demonstrated SIRT3 O-GlcNAcylation sites through LC-MS/MS, and performed site mutations using CRISPR/Cas9 technology. The results were validated using immunoblotting. SIRT3 and superoxide dismutase 2 (SOD2) activities were detected using a fluorometric assay, while mitochondrial reactive oxygen species (MROS) levels and cellular apoptosis were assessed using immunofluorescence. We have identified an interaction between SIRT3 and OGT, where SIRT3 undergoes dynamic O-GlcNAcylation at the S190 site, facilitating SIRT3 deacetylase activity. During SI/R, elevated levels of O-GlcNAcylation activate SOD2 by promoting SIRT3 enzyme activity, thereby inhibiting excessive MROS production. This significantly mitigates the occurrence of malignant autophagy in myocardial cells during reperfusion, promoting their survival. Conversely, blocking SIRT3 O-GlcNAcylation at the S190 site exacerbates SI/R injury. We demonstrate that O-GlcNAcylation is a crucial post-translational modification (PTM) of SIRT3 during SI/R, shedding light on a promising mechanism for future therapeutic approaches.
Collapse
Affiliation(s)
- Han Zhou
- Department of Cardiology, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Yingjie Ji
- Department of Cardiology, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Jingjie Li
- Department of Cardiology, The First Affiliated Hospital of Harbin Medical University, Harbin, China.
| | - Lin Sun
- Department of Cardiology, The First Affiliated Hospital of Harbin Medical University, Harbin, China.
| |
Collapse
|
5
|
Zhao Y, Li R, Wang W, Zhang H, Zhang Q, Jiang J, Wang Y, Li Y, Guan F, Nie Y. O-GlcNAc signaling: Implications for stress-induced adaptive response pathway in the tumor microenvironment. Cancer Lett 2024; 598:217101. [PMID: 38969156 DOI: 10.1016/j.canlet.2024.217101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 06/19/2024] [Accepted: 07/01/2024] [Indexed: 07/07/2024]
Abstract
The tumor microenvironment (TME) consists of tumor cells, non-tumor cells, extracellular matrix, and signaling molecules, which can contribute to tumor initiation, progression, and therapy resistance. In response to starvation, hypoxia, and drug treatments, tumor cells undergo a variety of deleterious endogenous stresses, such as hypoxia, DNA damage, and oxidative stress. In this context, to survive the difficult situation, tumor cells evolve multiple conserved adaptive responses, including metabolic reprogramming, DNA damage checkpoints, homologous recombination, up-regulated antioxidant pathways, and activated unfolded protein responses. In the last decades, the protein O-GlcNAcylation has emerged as a crucial causative link between glucose metabolism and tumor progression. Here, we discuss the relevant pathways that regulate the above responses. These pathways are adaptive adjustments induced by endogenous stresses in cells. In addition, we systematically discuss the role of O-GlcNAcylation-regulated stress-induced adaptive response pathways (SARPs) in TME remodeling, tumor progression, and treatment resistance. We also emphasize targeting O-GlcNAcylation through compounds that modulate OGT or OGA activity to inhibit tumor progression. It seems that targeting O-GlcNAcylated proteins to intervene in TME may be a novel approach to improve tumor prognosis.
Collapse
Affiliation(s)
- Yu Zhao
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, College of Life Sciences, Northwest University, Xi'an, 710069, China
| | - Renlong Li
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers and National Clinical Research Center for Digestive Diseases, Xijing Hospital of Digestive Diseases, Fourth Military Medical University, Xi'an, 710032, China
| | - Weizhen Wang
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers and National Clinical Research Center for Digestive Diseases, Xijing Hospital of Digestive Diseases, Fourth Military Medical University, Xi'an, 710032, China
| | - Haohao Zhang
- Department of Digestive Surgery, Honghui Hospital, Xi'an Jiaotong University, 710054, Xi'an, Shaanxi, China
| | - Qiujin Zhang
- Second Clinical Medicine College, Shaanxi University of Chinese Medicine, Xianyang, 712046, China
| | - Jialu Jiang
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers and National Clinical Research Center for Digestive Diseases, Xijing Hospital of Digestive Diseases, Fourth Military Medical University, Xi'an, 710032, China
| | - Ying Wang
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, College of Life Sciences, Northwest University, Xi'an, 710069, China
| | - Yan Li
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers and National Clinical Research Center for Digestive Diseases, Xijing Hospital of Digestive Diseases, Fourth Military Medical University, Xi'an, 710032, China
| | - Feng Guan
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, College of Life Sciences, Northwest University, Xi'an, 710069, China.
| | - Yongzhan Nie
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, College of Life Sciences, Northwest University, Xi'an, 710069, China; State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers and National Clinical Research Center for Digestive Diseases, Xijing Hospital of Digestive Diseases, Fourth Military Medical University, Xi'an, 710032, China.
| |
Collapse
|
6
|
Kim DY, Kim SM, Han IO. Chronic rapid eye movement sleep deprivation aggravates the pathogenesis of Alzheimer's disease by decreasing brain O-GlcNAc cycling in mice. J Neuroinflammation 2024; 21:180. [PMID: 39044290 PMCID: PMC11264383 DOI: 10.1186/s12974-024-03179-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2024] [Accepted: 07/17/2024] [Indexed: 07/25/2024] Open
Abstract
This study investigated the role of O-GlcNAc cycling in Alzheimer's disease-related changes in brain pathophysiology induced by chronic REM sleep deprivation (CSD) in mice. CSD increased amyloid beta (Aβ) and p-Tau accumulation and impaired learning and memory (L/M) function. CSD decreased dendritic length and spine density. CSD also increased the intensity of postsynaptic density protein-95 (PSD-95) staining. All of these Alzheimer's disease (AD) pathogenic changes were effectively reversed through glucosamine (GlcN) treatment by enhancing O-GlcNAcylation. Interestingly, the lelvel of O-GlcNAcylated-Tau (O-Tau) exhibited an opposite trend compared to p-Tau, as it was elevated by CSD and suppressed by GlcN treatment. CSD increased neuroinflammation, as indicated by elevated levels of glial fibrillary acidic protein and IBA-1-positive glial cells in the brain, which were suppressed by GlcN treatment. CSD promoted the phosphorylation of GSK3β and led to an upregulation in the expression of endoplasmic reticulum (ER) stress regulatory proteins and genes. These alterations were effectively suppressed by GlcN treatment. Minocycline not only suppressed neuroinflammation induced by CSD, but it also rescued the decrease in O-GlcNAc levels caused by CSD. Minocycline also reduced AD neuropathy without affecting CSD-induced ER stress. Notably, overexpressing O-GlcNAc transferase in the dentate gyrus region of the mouse brain rescued CSD-induced cognitive dysfunction, neuropathy, neuroinflammation, and ER stress responses. Collectively, our findings reveal that dysregulation of O-GlcNAc cycling underlies CSD-induced AD pathology and demonstrate that restoration of OGlcNAcylation protects against CSD-induced neurodegeneration.
Collapse
Affiliation(s)
- Dong Yeol Kim
- Department of Biomedical Science, Program in Biomedical Science and Engineering, Department of Physiology and Biophysics, College of Medicine, Inha University, Incheon, Korea
| | - Sang-Min Kim
- Department of Biomedical Science, Program in Biomedical Science and Engineering, Department of Physiology and Biophysics, College of Medicine, Inha University, Incheon, Korea
| | - Inn-Oc Han
- Department of Biomedical Science, Program in Biomedical Science and Engineering, Department of Physiology and Biophysics, College of Medicine, Inha University, Incheon, Korea.
| |
Collapse
|
7
|
Mao Z, Mu J, Gao Z, Huang S, Chen L. Biological Functions and Potential Therapeutic Significance of O-GlcNAcylation in Hepatic Cellular Stress and Liver Diseases. Cells 2024; 13:805. [PMID: 38786029 PMCID: PMC11119800 DOI: 10.3390/cells13100805] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 05/07/2024] [Accepted: 05/07/2024] [Indexed: 05/25/2024] Open
Abstract
O-linked-β-D-N-acetylglucosamine (O-GlcNAc) glycosylation (O-GlcNAcylation), which is dynamically regulated by O-GlcNAc transferase (OGT) and O-GlcNAcase (OGA), is a post-translational modification involved in multiple cellular processes. O-GlcNAcylation of proteins can regulate their biological functions via crosstalk with other post-translational modifications, such as phosphorylation, ubiquitination, acetylation, and methylation. Liver diseases are a major cause of death worldwide; yet, key pathological features of the disease, such as inflammation, fibrosis, steatosis, and tumorigenesis, are not fully understood. The dysregulation of O-GlcNAcylation has been shown to be involved in some severe hepatic cellular stress, viral hepatitis, liver fibrosis, nonalcoholic fatty acid liver disease (NAFLD), malignant progression, and drug resistance of hepatocellular carcinoma (HCC) through multiple molecular signaling pathways. Here, we summarize the emerging link between O-GlcNAcylation and hepatic pathological processes and provide information about the development of therapeutic strategies for liver diseases.
Collapse
Affiliation(s)
- Zun Mao
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing 210023, China; (Z.M.); (Z.G.)
| | - Junpeng Mu
- Department of Clinical Medicine, Xuzhou Medical University, Xuzhou 221004, China;
| | - Zhixiang Gao
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing 210023, China; (Z.M.); (Z.G.)
| | - Shile Huang
- Department of Biochemistry and Molecular Biology, Louisiana State University Health Sciences Center, 1501 Kings Highway, Shreveport, LA 71130-3932, USA
- Department of Hematology and Oncology, Louisiana State University Health Sciences Center, 1501 Kings Highway, Shreveport, LA 71130-3932, USA
- Feist-Weiller Cancer Center, Louisiana State University Health Sciences Center, Shreveport, LA 71130-3932, USA
| | - Long Chen
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing 210023, China; (Z.M.); (Z.G.)
| |
Collapse
|
8
|
Shi RR, He TQ, Lin MS, Xu J, Gu JH, Xu H. O-GlcNAcylation in ischemic diseases. Front Pharmacol 2024; 15:1377235. [PMID: 38783961 PMCID: PMC11113977 DOI: 10.3389/fphar.2024.1377235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2024] [Accepted: 04/15/2024] [Indexed: 05/25/2024] Open
Abstract
Protein glycosylation is an extensively studied field, with the most studied forms being oxygen or nitrogen-linked N-acetylglucosamine (O-GlcNAc or N-GlcNAc) glycosylation. Particular residues on proteins are targeted by O-GlcNAcylation, which is among the most intricate post-translational modifications. Significantly contributing to an organism's proteome, it influences numerous factors affecting protein stability, function, and subcellular localization. It also modifies the cellular function of target proteins that have crucial responsibilities in controlling pathways related to the central nervous system, cardiovascular homeostasis, and other organ functions. Under conditions of acute stress, changes in the levels of O-GlcNAcylation of these proteins may have a defensive function. Nevertheless, deviant O-GlcNAcylation nullifies this safeguard and stimulates the advancement of several ailments, the prognosis of which relies on the cellular milieu. Hence, this review provides a concise overview of the function and comprehension of O-GlcNAcylation in ischemia diseases, aiming to facilitate the discovery of new therapeutic targets for efficient treatment, particularly in patients with diabetes.
Collapse
Affiliation(s)
- Rui-Rui Shi
- Nantong Institute of Genetics and Reproductive Medicine, Affiliated Maternity and Child Healthcare Hospital of Nantong University, Nantong, China
| | - Tian-Qi He
- Nantong Institute of Genetics and Reproductive Medicine, Affiliated Maternity and Child Healthcare Hospital of Nantong University, Nantong, China
- Department of Pharmacy, Affiliated Maternity and Child Healthcare Hospital of Nantong University, Nantong, China
| | - Meng-Si Lin
- Prenatal Screening and Diagnosis Center, Affiliated Maternity and Child Healthcare Hospital of Nantong University, Nantong, China
| | - Jian Xu
- Nantong Institute of Genetics and Reproductive Medicine, Affiliated Maternity and Child Healthcare Hospital of Nantong University, Nantong, China
- Department of Pharmacy, Affiliated Maternity and Child Healthcare Hospital of Nantong University, Nantong, China
| | - Jin-Hua Gu
- Nantong Institute of Genetics and Reproductive Medicine, Affiliated Maternity and Child Healthcare Hospital of Nantong University, Nantong, China
- Department of Pharmacy, Affiliated Maternity and Child Healthcare Hospital of Nantong University, Nantong, China
| | - Hui Xu
- Nantong Institute of Genetics and Reproductive Medicine, Affiliated Maternity and Child Healthcare Hospital of Nantong University, Nantong, China
| |
Collapse
|
9
|
Xue Q, Ji S, Xu H, Yu S. O-GlcNAcylation: a pro-survival response to acute stress in the cardiovascular and central nervous systems. Eur J Med Res 2024; 29:174. [PMID: 38491477 PMCID: PMC10943874 DOI: 10.1186/s40001-024-01773-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2023] [Accepted: 03/06/2024] [Indexed: 03/18/2024] Open
Abstract
O-GlcNAcylation is a unique monosaccharide modification that is ubiquitously present in numerous nucleoplasmic and mitochondrial proteins. The hexosamine biosynthesis pathway (HBP), which is a key branch of glycolysis, provides the unique sugar donor UDP-GlcNAc for the O-GlcNAc modification. Thus, HBP/O-GlcNAcylation can act as a nutrient sensor to perceive changes in nutrient levels and trigger O-GlcNAc modifications of functional proteins in cellular (patho-)physiology, thereby regulating diverse metabolic processes. An imbalance in O-GlcNAcylation has been shown to be a pathogenic contributor to dysfunction in metabolic diseases, including type 2 diabetes, cancer, and neurodegeneration. However, under acute stress conditions, protein O-GlcNAc modification exhibits rapid and transient upregulation, which is strongly correlated with stress tolerance and cell survival. In this context, we discuss the metabolic, pharmacological and genetic modulation of HBP/O-GlcNAc modification in the biological system, the beneficial role of O-GlcNAcylation in regulating stress tolerance for cardioprotection, and neuroprotection, which is a novel and rapidly growing field. Current evidence suggests that transient activation of the O-GlcNAc modification represents a potent pro-survival signalling pathway and may provide a promising strategy for stress-related disorder therapy.
Collapse
Affiliation(s)
- Qiu Xue
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-Innovation Center of Neuroregeneration, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Nantong University, 19 Qixiu Road, Nantong, 226001, China
- Department of General Surgery, Nantong Tumor Hospital, Nantong Fifth People's Hospital, Affiliated Tumor Hospital of Nantong University, 30 Tongyang North Road, Nantong, 226361, China
| | - Shengtao Ji
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-Innovation Center of Neuroregeneration, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Nantong University, 19 Qixiu Road, Nantong, 226001, China
- Department of Neurology, Affiliated Hospital of Nantong University, Medical School of Nantong University, 20 Xisi Road, Nantong, 226001, China
| | - Hui Xu
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-Innovation Center of Neuroregeneration, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Nantong University, 19 Qixiu Road, Nantong, 226001, China
- Nantong Institute of Genetics and Reproductive Medicine, Affiliated Maternity & Child Healthcare Hospital of Nantong University, 399 Century Avenue, Nantong, 226001, China
| | - Shu Yu
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-Innovation Center of Neuroregeneration, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Nantong University, 19 Qixiu Road, Nantong, 226001, China.
| |
Collapse
|
10
|
Mitchell CW, Galan Bartual S, Ferenbach AT, Scavenius C, van Aalten DMF. Exploiting O-GlcNAc transferase promiscuity to dissect site-specific O-GlcNAcylation. Glycobiology 2023; 33:1172-1181. [PMID: 37856504 DOI: 10.1093/glycob/cwad086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 10/04/2023] [Accepted: 10/18/2023] [Indexed: 10/21/2023] Open
Abstract
Protein O-GlcNAcylation is an evolutionary conserved post-translational modification catalysed by the nucleocytoplasmic O-GlcNAc transferase (OGT) and reversed by O-GlcNAcase (OGA). How site-specific O-GlcNAcylation modulates a diverse range of cellular processes is largely unknown. A limiting factor in studying this is the lack of accessible techniques capable of producing homogeneously O-GlcNAcylated proteins, in high yield, for in vitro studies. Here, we exploit the tolerance of OGT for cysteine instead of serine, combined with a co-expressed OGA to achieve site-specific, highly homogeneous mono-glycosylation. Applying this to DDX3X, TAB1, and CK2α, we demonstrate that near-homogeneous mono-S-GlcNAcylation of these proteins promotes DDX3X and CK2α solubility and enables production of mono-S-GlcNAcylated TAB1 crystals, albeit with limited diffraction. Taken together, this work provides a new approach for functional dissection of protein O-GlcNAcylation.
Collapse
Affiliation(s)
- Conor W Mitchell
- Department of Molecular Biology and Genetics, Aarhus University, Universitetsbyen 81, 8000 Aarhus, Denmark
- Division of Molecular, Cell, and Developmental Biology, School of Life Sciences, University of Dundee, Dow St., Dundee, DD1 5EH, United Kingdom
| | - Sergio Galan Bartual
- Department of Molecular Biology and Genetics, Aarhus University, Universitetsbyen 81, 8000 Aarhus, Denmark
| | - Andrew T Ferenbach
- Department of Molecular Biology and Genetics, Aarhus University, Universitetsbyen 81, 8000 Aarhus, Denmark
| | - Carsten Scavenius
- Department of Molecular Biology and Genetics, Aarhus University, Universitetsbyen 81, 8000 Aarhus, Denmark
| | - Daan M F van Aalten
- Department of Molecular Biology and Genetics, Aarhus University, Universitetsbyen 81, 8000 Aarhus, Denmark
- Division of Molecular, Cell, and Developmental Biology, School of Life Sciences, University of Dundee, Dow St., Dundee, DD1 5EH, United Kingdom
| |
Collapse
|
11
|
Costa TJ, Wilson EW, Fontes MT, Pernomian L, Tostes RC, Wenceslau CF, McCarthy CG. The O-GlcNAc dichotomy: when does adaptation become pathological? Clin Sci (Lond) 2023; 137:1683-1697. [PMID: 37986614 PMCID: PMC12083504 DOI: 10.1042/cs20220309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 10/31/2023] [Accepted: 11/02/2023] [Indexed: 11/22/2023]
Abstract
O-Linked attachment of β-N-acetylglucosamine (O-GlcNAc) on serine and threonine residues of nuclear, cytoplasmic, and mitochondrial proteins is a highly dynamic and ubiquitous post-translational modification that impacts the function, activity, subcellular localization, and stability of target proteins. Physiologically, acute O-GlcNAcylation serves primarily to modulate cellular signaling and transcription regulatory pathways in response to nutrients and stress. To date, thousands of proteins have been revealed to be O-GlcNAcylated and this number continues to grow as the technology for the detection of O-GlcNAc improves. The attachment of a single O-GlcNAc is catalyzed by the enzyme O-GlcNAc transferase (OGT), and their removal is catalyzed by O-GlcNAcase (OGA). O-GlcNAcylation is regulated by the metabolism of glucose via the hexosamine biosynthesis pathway, and the metabolic abnormalities associated with pathophysiological conditions are all associated with increased flux through this pathway and elevate O-GlcNAc levels. While chronic O-GlcNAcylation is well associated with cardiovascular dysfunction, only until recently, and with genetically modified animals, has O-GlcNAcylation as a contributing mechanism of cardiovascular disease emerged. This review will address and critically evaluate the current literature on the role of O-GlcNAcylation in vascular physiology, with a view that this pathway can offer novel targets for the treatment and prevention of cardiovascular diseases.
Collapse
Affiliation(s)
- Tiago J. Costa
- Cardiovascular Translational Research Center, University of
South Carolina School of Medicine-Columbia, SC, U.S.A
- Department of Cell Biology and Anatomy, University of South
Carolina School of Medicine-Columbia, SC, U.S.A
- Biomedical Engineering Program, College of Engineering and
Computing, University of South Carolina, Columbia, SC, U.S.A
| | - Emily W. Wilson
- Cardiovascular Translational Research Center, University of
South Carolina School of Medicine-Columbia, SC, U.S.A
- Department of Cell Biology and Anatomy, University of South
Carolina School of Medicine-Columbia, SC, U.S.A
| | - Milene T. Fontes
- Cardiovascular Translational Research Center, University of
South Carolina School of Medicine-Columbia, SC, U.S.A
- Department of Cell Biology and Anatomy, University of South
Carolina School of Medicine-Columbia, SC, U.S.A
- Biomedical Engineering Program, College of Engineering and
Computing, University of South Carolina, Columbia, SC, U.S.A
| | - Laena Pernomian
- Cardiovascular Translational Research Center, University of
South Carolina School of Medicine-Columbia, SC, U.S.A
- Department of Cell Biology and Anatomy, University of South
Carolina School of Medicine-Columbia, SC, U.S.A
- Biomedical Engineering Program, College of Engineering and
Computing, University of South Carolina, Columbia, SC, U.S.A
| | - Rita C. Tostes
- Department of Pharmacology, Ribeirao Preto Medical School,
University of Sao Paulo, Ribeirao Preto, SP, Brazil
| | - Camilla F. Wenceslau
- Cardiovascular Translational Research Center, University of
South Carolina School of Medicine-Columbia, SC, U.S.A
- Department of Cell Biology and Anatomy, University of South
Carolina School of Medicine-Columbia, SC, U.S.A
- Biomedical Engineering Program, College of Engineering and
Computing, University of South Carolina, Columbia, SC, U.S.A
| | - Cameron G. McCarthy
- Cardiovascular Translational Research Center, University of
South Carolina School of Medicine-Columbia, SC, U.S.A
- Department of Cell Biology and Anatomy, University of South
Carolina School of Medicine-Columbia, SC, U.S.A
- Biomedical Engineering Program, College of Engineering and
Computing, University of South Carolina, Columbia, SC, U.S.A
| |
Collapse
|
12
|
Zhou P, Chang WY, Gong DA, Xia J, Chen W, Huang LY, Liu R, Liu Y, Chen C, Wang K, Tang N, Huang AL. High dietary fructose promotes hepatocellular carcinoma progression by enhancing O-GlcNAcylation via microbiota-derived acetate. Cell Metab 2023; 35:1961-1975.e6. [PMID: 37797623 DOI: 10.1016/j.cmet.2023.09.009] [Citation(s) in RCA: 38] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 07/30/2023] [Accepted: 09/12/2023] [Indexed: 10/07/2023]
Abstract
Emerging studies have addressed the tumor-promoting role of fructose in different cancers. The effects and pathological mechanisms of high dietary fructose on hepatocellular carcinoma (HCC) remain unclear. Here, we examined the effects of fructose supplementation on HCC progression in wild-type C57BL/6 mice using a spontaneous and chemically induced HCC mouse model. We show that elevated uridine diphospho-N-acetylglucosamine (UDP-GlcNAc) and O-GlcNAcylation levels induced by high dietary fructose contribute to HCC progression. Non-targeted metabolomics and stable isotope tracing revealed that under fructose treatment, microbiota-derived acetate upregulates glutamine and UDP-GlcNAc levels and enhances protein O-GlcNAcylation in HCC. Global profiling of O-GlcNAcylation revealed that hyper-O-GlcNAcylation of eukaryotic elongation factor 1A1 promotes cell proliferation and tumor growth. Targeting glutamate-ammonia ligase or O-linked N-acetylglucosamine transferase (OGT) remarkably impeded HCC progression in mice with high fructose intake. We propose that high dietary fructose promotes HCC progression through microbial acetate-induced hyper-O-GlcNAcylation.
Collapse
Affiliation(s)
- Peng Zhou
- Key Laboratory of Molecular Biology for Diseases (Ministry of Education), Institute for Viral Hepatitis, Department of Infectious Diseases, The Second Affiliated Hospital, Chongqing Medical University, Chongqing 400016, China
| | - Wen-Yi Chang
- Key Laboratory of Molecular Biology for Diseases (Ministry of Education), Institute for Viral Hepatitis, Department of Infectious Diseases, The Second Affiliated Hospital, Chongqing Medical University, Chongqing 400016, China
| | - De-Ao Gong
- Key Laboratory of Molecular Biology for Diseases (Ministry of Education), Institute for Viral Hepatitis, Department of Infectious Diseases, The Second Affiliated Hospital, Chongqing Medical University, Chongqing 400016, China
| | - Jie Xia
- Key Laboratory of Molecular Biology for Diseases (Ministry of Education), Institute for Viral Hepatitis, Department of Infectious Diseases, The Second Affiliated Hospital, Chongqing Medical University, Chongqing 400016, China
| | - Wei Chen
- Shanghai Applied Protein Technology Co., Ltd., Shanghai 201109, China
| | - Lu-Yi Huang
- Key Laboratory of Molecular Biology for Diseases (Ministry of Education), Institute for Viral Hepatitis, Department of Infectious Diseases, The Second Affiliated Hospital, Chongqing Medical University, Chongqing 400016, China
| | - Rui Liu
- Key Laboratory of Molecular Biology for Diseases (Ministry of Education), Institute for Viral Hepatitis, Department of Infectious Diseases, The Second Affiliated Hospital, Chongqing Medical University, Chongqing 400016, China
| | - Yi Liu
- Key Laboratory of Molecular Biology for Diseases (Ministry of Education), Institute for Viral Hepatitis, Department of Infectious Diseases, The Second Affiliated Hospital, Chongqing Medical University, Chongqing 400016, China
| | - Chang Chen
- Institute of Life Sciences, Chongqing Medical University, Chongqing 400016, China
| | - Kai Wang
- Key Laboratory of Molecular Biology for Diseases (Ministry of Education), Institute for Viral Hepatitis, Department of Infectious Diseases, The Second Affiliated Hospital, Chongqing Medical University, Chongqing 400016, China.
| | - Ni Tang
- Key Laboratory of Molecular Biology for Diseases (Ministry of Education), Institute for Viral Hepatitis, Department of Infectious Diseases, The Second Affiliated Hospital, Chongqing Medical University, Chongqing 400016, China.
| | - Ai-Long Huang
- Key Laboratory of Molecular Biology for Diseases (Ministry of Education), Institute for Viral Hepatitis, Department of Infectious Diseases, The Second Affiliated Hospital, Chongqing Medical University, Chongqing 400016, China.
| |
Collapse
|
13
|
Zhang W, Sun Y, Yang Y, Chen Y. Impaired intracellular calcium homeostasis enhances protein O-GlcNAcylation and promotes vascular calcification and stiffness in diabetes. Redox Biol 2023; 63:102720. [PMID: 37230005 PMCID: PMC10225928 DOI: 10.1016/j.redox.2023.102720] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2023] [Revised: 04/13/2023] [Accepted: 04/25/2023] [Indexed: 05/27/2023] Open
Abstract
Vascular calcification is accelerated in patients with diabetes mellitus and increases risk of cardiovascular events and mortality. Vascular smooth muscle cells (VSMC) play a key role in regulating vascular tone and contribute significantly to the development of diabetic vasculopathy. In this study, the function of stromal interaction molecule 1 (STIM1), an important regulator for intracellular calcium homeostasis, in diabetic vascular calcification was investigated, and the underlying molecular mechanisms were uncovered. A SMC-specific STIM1 deletion mouse model (STIM1Δ/Δ) was generated by breeding the STIM1 floxed mice (STIM1f/f) with SM22α-Cre transgenic mice. Using aortic arteries from the STIM1Δ/Δ mice and their STIM1f/f littermates, we found that SMC-specific STIM1 deletion induced calcification of aortic arteries cultured in osteogenic media ex vivo. Furthermore, STIM1 deficiency promoted osteogenic differentiation and calcification of VSMC from the STIM1Δ/Δ mice. In the low-dose streptozotocin (STZ)-induced mouse model of diabetes, SMC-specific STIM1 deletion markedly enhanced STZ-induced vascular calcification and stiffness in the STIM1Δ/Δ mice. The diabetic mice with SMC-specific STIM1 ablation also exhibited increased aortic expression of the key osteogenic transcription factor, Runx2, and protein O-GlcNAcylation, an important post-translational modulation that we have reported to promote vascular calcification and stiffness in diabetes. Consistently, elevation of O-GlcNAcylation was demonstrated in aortic arteries and VSMC from the STIM1Δ/Δ mice. Inhibition of O-GlcNAcylation with a pharmacological inhibitor abolished STIM1 deficiency-induced VSMC calcification, supporting a critical role of O-GlcNAcylation in mediating STIM1 deficiency-induced VSMC calcification. Mechanistically, we identified that STIM1 deficiency resulted in impaired calcium homeostasis, which activated calcium signaling and increased endoplasmic reticulum (ER) stress in VSMC, while inhibition of ER stress attenuated STIM1-induced elevation of protein O-GlcNAcylation. In conclusion, the study has demonstrated a causative role of SMC-expressed STIM1 in regulating vascular calcification and stiffness in diabetes. We have further identified a novel mechanisms underlying STIM1 deficiency-induced impairment of calcium homeostasis and ER stress in upregulation of protein O-GlcNAcylation in VSMC, which promotes VSMC osteogenic differentiation and calcification in diabetes.
Collapse
Affiliation(s)
- Weiping Zhang
- Department of Pathology, University of Alabama at Birmingham, Birmingham, AL, USA; Department of Cardiology, First Affiliated Hospital of Xi'An JiaoTong University, Xi'An, PR China
| | - Yong Sun
- Department of Pathology, University of Alabama at Birmingham, Birmingham, AL, USA; Research Department, Birmingham Veterans Affairs Medical Center, Birmingham, AL, USA
| | - Youfeng Yang
- Department of Pathology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Yabing Chen
- Department of Pathology, University of Alabama at Birmingham, Birmingham, AL, USA; Research Department, Birmingham Veterans Affairs Medical Center, Birmingham, AL, USA.
| |
Collapse
|
14
|
Hung YW, Ouyang C, Ping X, Qi Y, Wang YC, Kung HJ, Ann DK. Extracellular arginine availability modulates eIF2α O-GlcNAcylation and heme oxygenase 1 translation for cellular homeostasis. J Biomed Sci 2023; 30:32. [PMID: 37217939 PMCID: PMC10201738 DOI: 10.1186/s12929-023-00924-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Accepted: 05/04/2023] [Indexed: 05/24/2023] Open
Abstract
BACKGROUND Nutrient limitations often lead to metabolic stress during cancer initiation and progression. To combat this stress, the enzyme heme oxygenase 1 (HMOX1, commonly known as HO-1) is thought to play a key role as an antioxidant. However, there is a discrepancy between the level of HO-1 mRNA and its protein, particularly in cells under stress. O-linked β-N-acetylglucosamine (O-GlcNAc) modification of proteins (O-GlcNAcylation) is a recently discovered cellular signaling mechanism that rivals phosphorylation in many proteins, including eukaryote translation initiation factors (eIFs). The mechanism by which eIF2α O-GlcNAcylation regulates translation of HO-1 during extracellular arginine shortage (ArgS) remains unclear. METHODS We used mass spectrometry to study the relationship between O-GlcNAcylation and Arg availability in breast cancer BT-549 cells. We validated eIF2α O-GlcNAcylation through site-specific mutagenesis and azido sugar N-azidoacetylglucosamine-tetraacylated labeling. We then evaluated the effect of eIF2α O-GlcNAcylation on cell recovery, migration, accumulation of reactive oxygen species (ROS), and metabolic labeling during protein synthesis under different Arg conditions. RESULTS Our research identified eIF2α, eIF2β, and eIF2γ, as key O-GlcNAcylation targets in the absence of Arg. We found that O-GlcNAcylation of eIF2α plays a crucial role in regulating antioxidant defense by suppressing the translation of the enzyme HO-1 during Arg limitation. Our study showed that O-GlcNAcylation of eIF2α at specific sites suppresses HO-1 translation despite high levels of HMOX1 transcription. We also found that eliminating eIF2α O-GlcNAcylation through site-specific mutagenesis improves cell recovery, migration, and reduces ROS accumulation by restoring HO-1 translation. However, the level of the metabolic stress effector ATF4 is not affected by eIF2α O-GlcNAcylation under these conditions. CONCLUSIONS Overall, this study provides new insights into how ArgS fine-tunes the control of translation initiation and antioxidant defense through eIF2α O-GlcNAcylation, which has potential biological and clinical implications.
Collapse
Affiliation(s)
- Yu-Wen Hung
- Department of Diabetes Complications and Metabolism, Arthur Riggs Diabetes & Metabolism Research Institute, Beckman Research Institute of City of Hope, City of Hope Comprehensive Cancer Center, Duarte, CA, 91010-3000, USA
- Irell & Manella Graduate School of Biological Sciences, Beckman Research Institute of City of Hope, Duarte, CA, 91010, USA
| | - Ching Ouyang
- Department of Computational and Quantitative Medicine, Beckman Research Institute of City of Hope, Duarte, CA, 91010, USA
| | - Xiaoli Ping
- Department of Diabetes Complications and Metabolism, Arthur Riggs Diabetes & Metabolism Research Institute, Beckman Research Institute of City of Hope, City of Hope Comprehensive Cancer Center, Duarte, CA, 91010-3000, USA
| | - Yue Qi
- Department of Diabetes Complications and Metabolism, Arthur Riggs Diabetes & Metabolism Research Institute, Beckman Research Institute of City of Hope, City of Hope Comprehensive Cancer Center, Duarte, CA, 91010-3000, USA
| | - Yi-Chang Wang
- Department of Diabetes Complications and Metabolism, Arthur Riggs Diabetes & Metabolism Research Institute, Beckman Research Institute of City of Hope, City of Hope Comprehensive Cancer Center, Duarte, CA, 91010-3000, USA
| | - Hsing-Jien Kung
- Cancer Center, School of Medicine, University of California, Davis, CA, 95817, USA
| | - David K Ann
- Department of Diabetes Complications and Metabolism, Arthur Riggs Diabetes & Metabolism Research Institute, Beckman Research Institute of City of Hope, City of Hope Comprehensive Cancer Center, Duarte, CA, 91010-3000, USA.
- Irell & Manella Graduate School of Biological Sciences, Beckman Research Institute of City of Hope, Duarte, CA, 91010, USA.
| |
Collapse
|
15
|
Astragalus Polysaccharide Promotes Doxorubicin-Induced Apoptosis by Reducing O-GlcNAcylation in Hepatocellular Carcinoma. Cells 2023; 12:cells12060866. [PMID: 36980207 PMCID: PMC10047337 DOI: 10.3390/cells12060866] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 02/26/2023] [Accepted: 03/06/2023] [Indexed: 03/16/2023] Open
Abstract
The toxicity and side effects of chemotherapeutic drugs remain a crucial obstacle to the clinical treatment of hepatocellular carcinoma (HCC). Identifying combination therapy from Chinese herbs to enhance the sensitivity of tumors to chemotherapeutic drugs is of particular interest. Astragalus polysaccharide (APS), one of the natural active components in Astragalus membranaceus, has been reported to exhibit anti-tumor properties in diverse cancer cell lines. The aim of this study was to determine the effect of APS on Doxorubicin (Dox)-induced apoptosis in HCC and the underlying mechanism. The results showed that APS dose-dependently promoted Dox-induced apoptosis and enhanced endoplasmic reticulum (ER) stress. Additionally, APS decreased the mRNA level and protein stability of O-GlcNAc transferase (OGT), and increased the O-GlcNAcase (OGA) expression. Furthermore, OGT lentiviral transfection or PugNAc (OGA inhibitor) treatment reversed the ER stress and apoptosis induced by the combination of Dox and APS. A xenograft tumor mouse model confirmed that the combination of APS and Dox showed an advantage in inhibiting tumor growth in vivo. These findings suggested that APS promoted Dox-induced apoptosis in HCC cells through reducing the O-GlcNAcylation, which led to the exacerbation of ER stress and activation of apoptotic pathways.
Collapse
|
16
|
Fahie KMM, Papanicolaou KN, Zachara NE. Integration of O-GlcNAc into Stress Response Pathways. Cells 2022; 11:3509. [PMID: 36359905 PMCID: PMC9654274 DOI: 10.3390/cells11213509] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 10/31/2022] [Accepted: 11/02/2022] [Indexed: 11/09/2022] Open
Abstract
The modification of nuclear, mitochondrial, and cytosolic proteins by O-linked βN-acetylglucosamine (O-GlcNAc) has emerged as a dynamic and essential post-translational modification of mammalian proteins. O-GlcNAc is cycled on and off over 5000 proteins in response to diverse stimuli impacting protein function and, in turn, epigenetics and transcription, translation and proteostasis, metabolism, cell structure, and signal transduction. Environmental and physiological injury lead to complex changes in O-GlcNAcylation that impact cell and tissue survival in models of heat shock, osmotic stress, oxidative stress, and hypoxia/reoxygenation injury, as well as ischemic reperfusion injury. Numerous mechanisms that appear to underpin O-GlcNAc-mediated survival include changes in chaperone levels, impacts on the unfolded protein response and integrated stress response, improvements in mitochondrial function, and reduced protein aggregation. Here, we discuss the points at which O-GlcNAc is integrated into the cellular stress response, focusing on the roles it plays in the cardiovascular system and in neurodegeneration.
Collapse
Affiliation(s)
- Kamau M. M. Fahie
- Department of Biological Chemistry, The Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Kyriakos N. Papanicolaou
- Department of Medicine, Division of Cardiology, The Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Natasha E. Zachara
- Department of Biological Chemistry, The Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
- Department of Oncology, The Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| |
Collapse
|
17
|
Very N, El Yazidi-Belkoura I. Targeting O-GlcNAcylation to overcome resistance to anti-cancer therapies. Front Oncol 2022; 12:960312. [PMID: 36059648 PMCID: PMC9428582 DOI: 10.3389/fonc.2022.960312] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Accepted: 07/19/2022] [Indexed: 12/14/2022] Open
Abstract
In cancer cells, metabolic reprogramming is associated with an alteration of the O-GlcNAcylation homeostasis. This post-translational modification (PTM) that attaches O-GlcNAc moiety to intracellular proteins is dynamically and finely regulated by the O-GlcNAc Transferase (OGT) and the O-GlcNAcase (OGA). It is now established that O-GlcNAcylation participates in many features of cancer cells including a high rate of cell growth, invasion, and metastasis but little is known about its impact on the response to therapies. The purpose of this review is to highlight the role of O-GlcNAc protein modification in cancer resistance to therapies. We summarize the current knowledge about the crosstalk between O-GlcNAcylation and molecular mechanisms underlying tumor sensitivity/resistance to targeted therapies, chemotherapies, immunotherapy, and radiotherapy. We also discuss potential benefits and strategies of targeting O-GlcNAcylation to overcome cancer resistance.
Collapse
Affiliation(s)
- Ninon Very
- Université de Lille, Inserm, CHU Lille, Institut Pasteur de Lille, U1011-EGID, Lille, France
| | - Ikram El Yazidi-Belkoura
- Université de Lille, CNRS, UMR 8576-UGSF-Unité de Glycobiologie Structurale et Fonctionnelle, Lille, France
- *Correspondence: Ikram El Yazidi-Belkoura,
| |
Collapse
|
18
|
Dierschke SK, Dennis MD. Retinal Protein O-GlcNAcylation and the Ocular Renin-angiotensin System: Signaling Cross-roads in Diabetic Retinopathy. Curr Diabetes Rev 2022; 18:e011121190177. [PMID: 33430751 PMCID: PMC8272735 DOI: 10.2174/1573399817999210111205933] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Revised: 11/14/2020] [Accepted: 11/16/2020] [Indexed: 01/23/2023]
Abstract
It is well established that diabetes and its associated hyperglycemia negatively impact retinal function, yet we know little about the role played by augmented flux through the Hexosamine Biosynthetic Pathway (HBP). This offshoot of the glycolytic pathway produces UDP-Nacetyl- glucosamine, which serves as the substrate for post-translational O-linked modification of proteins in a process referred to as O-GlcNAcylation. HBP flux and subsequent protein O-GlcNAcylation serve as nutrient sensors, enabling cells to integrate metabolic information to appropriately modulate fundamental cellular processes including gene expression. Here we summarize the impact of diabetes on retinal physiology, highlighting recent studies that explore the role of O-GlcNAcylation- induced variation in mRNA translation in retinal dysfunction and the pathogenesis of Diabetic Retinopathy (DR). Augmented O-GlcNAcylation results in wide variation in the selection of mRNAs for translation, in part, due to O-GlcNAcylation of the translational repressor 4E-BP1. Recent studies demonstrate that 4E-BP1 plays a critical role in regulating O-GlcNAcylation-induced changes in the translation of the mRNAs encoding Vascular Endothelial Growth Factor (VEGF), a number of important mitochondrial proteins, and CD40, a key costimulatory molecule involved in diabetes-induced retinal inflammation. Remarkably, 4E-BP1/2 ablation delays the onset of diabetes- induced visual dysfunction in mice. Thus, pharmacological interventions to prevent the impact of O-GlcNAcylation on 4E-BP1 may represent promising therapeutics to address the development and progression of DR. In this regard, we discuss the potential interplay between retinal O-GlcNAcylation and the ocular renin-angiotensin system as a potential therapeutic target of future interventions.
Collapse
Affiliation(s)
- Sadie K. Dierschke
- Department of Cellular and Molecular Physiology, Penn State College of Medicine
| | - Michael D. Dennis
- Department of Cellular and Molecular Physiology, Penn State College of Medicine
- Department of Ophthalmology, Penn State College of Medicine
- Address correspondence to this author at the Department of Cellular and Molecular Physiology, H166, Penn State College of Medicine, 500 University Drive Hershey, PA 17033; Tel: (717)531-0003 Ext-282596; Fax: (717)531-7667;
| |
Collapse
|
19
|
Zou L, Collins HE, Young ME, Zhang J, Wende AR, Darley-Usmar VM, Chatham JC. The Identification of a Novel Calcium-Dependent Link Between NAD + and Glucose Deprivation-Induced Increases in Protein O-GlcNAcylation and ER Stress. Front Mol Biosci 2021; 8:780865. [PMID: 34950703 PMCID: PMC8691773 DOI: 10.3389/fmolb.2021.780865] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Accepted: 11/22/2021] [Indexed: 01/19/2023] Open
Abstract
The modification of proteins by O-linked β-N-acetylglucosamine (O-GlcNAc) is associated with the regulation of numerous cellular processes. Despite the importance of O-GlcNAc in mediating cellular function our understanding of the mechanisms that regulate O-GlcNAc levels is limited. One factor known to regulate protein O-GlcNAc levels is nutrient availability; however, the fact that nutrient deficient states such as ischemia increase O-GlcNAc levels suggests that other factors also contribute to regulating O-GlcNAc levels. We have previously reported that in unstressed cardiomyocytes exogenous NAD+ resulted in a time and dose dependent decrease in O-GlcNAc levels. Therefore, we postulated that NAD+ and cellular O-GlcNAc levels may be coordinately regulated. Using glucose deprivation as a model system in an immortalized human ventricular cell line, we examined the influence of extracellular NAD+ on cellular O-GlcNAc levels and ER stress in the presence and absence of glucose. We found that NAD+ completely blocked the increase in O-GlcNAc induced by glucose deprivation and suppressed the activation of ER stress. The NAD+ metabolite cyclic ADP-ribose (cADPR) had similar effects on O-GlcNAc and ER stress suggesting a common underlying mechanism. cADPR is a ryanodine receptor (RyR) agonist and like caffeine, which also activates the RyR, both mimicked the effects of NAD+. SERCA inhibition, which also reduces ER/SR Ca2+ levels had similar effects to both NAD+ and cADPR on O-GlcNAc and ER stress responses to glucose deprivation. The observation that NAD+, cADPR, and caffeine all attenuated the increase in O-GlcNAc and ER stress in response to glucose deprivation, suggests a potential common mechanism, linked to ER/SR Ca2+ levels, underlying their activation. Moreover, we showed that TRPM2, a plasma membrane cation channel was necessary for the cellular responses to glucose deprivation. Collectively, these findings support a novel Ca2+-dependent mechanism underlying glucose deprivation induced increase in O-GlcNAc and ER stress.
Collapse
Affiliation(s)
- Luyun Zou
- Division of Molecular and Cellular Pathology, Department of Pathology, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Helen E. Collins
- Division of Molecular and Cellular Pathology, Department of Pathology, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Martin E. Young
- Division of Cardiovascular Diseases, Department of Medicine, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Jianhua Zhang
- Division of Molecular and Cellular Pathology, Department of Pathology, University of Alabama at Birmingham, Birmingham, AL, United States,Birmingham VA Medical Center, Birmingham, AL, United States
| | - Adam R. Wende
- Division of Molecular and Cellular Pathology, Department of Pathology, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Victor M. Darley-Usmar
- Division of Molecular and Cellular Pathology, Department of Pathology, University of Alabama at Birmingham, Birmingham, AL, United States
| | - John C. Chatham
- Division of Molecular and Cellular Pathology, Department of Pathology, University of Alabama at Birmingham, Birmingham, AL, United States,*Correspondence: John C. Chatham,
| |
Collapse
|
20
|
Akan I, Halim A, Vakhrushev SY, Clausen H, Hanover JA. Drosophila O-GlcNAcase Mutants Reveal an Expanded Glycoproteome and Novel Growth and Longevity Phenotypes. Cells 2021; 10:cells10051026. [PMID: 33925313 PMCID: PMC8145559 DOI: 10.3390/cells10051026] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Revised: 04/19/2021] [Accepted: 04/25/2021] [Indexed: 12/17/2022] Open
Abstract
The reversible posttranslational O-GlcNAc modification of serine or threonine residues of intracellular proteins is involved in many cellular events from signaling cascades to epigenetic and transcriptional regulation. O-GlcNAcylation is a conserved nutrient-dependent process involving two enzymes, with O-GlcNAc transferase (OGT) adding O-GlcNAc and with O-GlcNAcase (OGA) removing it in a manner that’s protein- and context-dependent. O-GlcNAcylation is essential for epigenetic regulation of gene expression through its action on Polycomb and Trithorax and COMPASS complexes. However, the important role of O-GlcNAc in adult life and health span has been largely unexplored, mainly due the lack of available model systems. Cataloging the O-GlcNAc proteome has proven useful in understanding the biology of this modification in vivo. In this study, we leveraged a recently developed oga knockout fly mutant to identify the O-GlcNAcylated proteins in adult Drosophilamelanogaster. The adult O-GlcNAc proteome revealed many proteins related to cell and organismal growth, development, differentiation, and epigenetics. We identified many O-GlcNAcylated proteins that play a role in increased growth and decreased longevity, including HCF, SIN3A, LOLA, KISMET, ATX2, SHOT, and FOXO. Interestingly, oga mutant flies are larger and have a shorter life span compared to wild type flies, suggesting increased O-GlcNAc results in increased growth. Our results suggest that O-GlcNAc alters the function of many proteins related to transcription, epigenetic modification and signaling pathways that regulate growth rate and longevity. Therefore, our findings highlight the importance of O-GlcNAc in growth and life span in adult Drosophila.
Collapse
Affiliation(s)
- Ilhan Akan
- Laboratory of Cell and Molecular Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892, USA;
| | - Adnan Halim
- Copenhagen Center for Glycomics, Departments of Cellular and Molecular Medicine and Odontology, Faculty of Health Sciences, University of Copenhagen, DK-2200 Copenhagen, Denmark; (A.H.); (S.Y.V.); (H.C.)
| | - Sergey Y. Vakhrushev
- Copenhagen Center for Glycomics, Departments of Cellular and Molecular Medicine and Odontology, Faculty of Health Sciences, University of Copenhagen, DK-2200 Copenhagen, Denmark; (A.H.); (S.Y.V.); (H.C.)
| | - Henrik Clausen
- Copenhagen Center for Glycomics, Departments of Cellular and Molecular Medicine and Odontology, Faculty of Health Sciences, University of Copenhagen, DK-2200 Copenhagen, Denmark; (A.H.); (S.Y.V.); (H.C.)
| | - John A. Hanover
- Laboratory of Cell and Molecular Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892, USA;
- Correspondence:
| |
Collapse
|
21
|
Nutrient regulation of the flow of genetic information by O-GlcNAcylation. Biochem Soc Trans 2021; 49:867-880. [PMID: 33769449 DOI: 10.1042/bst20200769] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Revised: 03/01/2021] [Accepted: 03/03/2021] [Indexed: 01/10/2023]
Abstract
O-linked-β-N-acetylglucosamine (O-GlcNAc) is a post-translational modification (PTM) that is actively added to and removed from thousands of intracellular proteins. As a PTM, O-GlcNAcylation tunes the functions of a protein in various ways, such as enzymatic activity, transcriptional activity, subcellular localization, intermolecular interactions, and degradation. Its regulatory roles often interplay with the phosphorylation of the same protein. Governed by 'the Central Dogma', the flow of genetic information is central to all cellular activities. Many proteins regulating this flow are O-GlcNAc modified, and their functions are tuned by the cycling sugar. Herein, we review the regulatory roles of O-GlcNAcylation on the epigenome, in DNA replication and repair, in transcription and in RNA processing, in protein translation and in protein turnover.
Collapse
|
22
|
Liu Y, Yao RZ, Lian S, Liu P, Hu YJ, Shi HZ, Lv HM, Yang YY, Xu B, Li SZ. O-GlcNAcylation: the "stress and nutrition receptor" in cell stress response. Cell Stress Chaperones 2021; 26:297-309. [PMID: 33159661 PMCID: PMC7925768 DOI: 10.1007/s12192-020-01177-y] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Revised: 10/27/2020] [Accepted: 10/29/2020] [Indexed: 02/06/2023] Open
Abstract
O-GlcNAcylation is an atypical, reversible, and dynamic glycosylation that plays a critical role in maintaining the normal physiological functions of cells by regulating various biological processes such as signal transduction, proteasome activity, apoptosis, autophagy, transcription, and translation. It can also respond to environmental changes and physiological signals to play the role of "stress receptor" and "nutrition sensor" in a variety of stress responses and biological processes. Even, a homeostatic disorder of O-GlcNAcylation may cause many diseases. Therefore, O-GlcNAcylation and its regulatory role in stress response are reviewed in this paper.
Collapse
Affiliation(s)
- Yang Liu
- National Experimental Teaching Demonstration Center of Animal Medicine Foundation, College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing, 163319, People's Republic of China
| | - Rui-Zhi Yao
- College of Animal Science and Technology, Inner Mongolia University for Nationalities, Tongliao, 028000, People's Republic of China
| | - Shuai Lian
- National Experimental Teaching Demonstration Center of Animal Medicine Foundation, College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing, 163319, People's Republic of China
| | - Peng Liu
- National Experimental Teaching Demonstration Center of Animal Medicine Foundation, College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing, 163319, People's Republic of China
| | - Ya-Jie Hu
- National Experimental Teaching Demonstration Center of Animal Medicine Foundation, College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing, 163319, People's Republic of China
| | - Hong-Zhao Shi
- National Experimental Teaching Demonstration Center of Animal Medicine Foundation, College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing, 163319, People's Republic of China
| | - Hong-Ming Lv
- National Experimental Teaching Demonstration Center of Animal Medicine Foundation, College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing, 163319, People's Republic of China
| | - Yu-Ying Yang
- National Experimental Teaching Demonstration Center of Animal Medicine Foundation, College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing, 163319, People's Republic of China
| | - Bin Xu
- National Experimental Teaching Demonstration Center of Animal Medicine Foundation, College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing, 163319, People's Republic of China.
| | - Shi-Ze Li
- National Experimental Teaching Demonstration Center of Animal Medicine Foundation, College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing, 163319, People's Republic of China.
| |
Collapse
|
23
|
Liu Y, Xu B, Hu Y, Liu P, Lian S, Lv H, Yang Y, Ji H, Yang H, Liu J, Yao R, Li S. O-GlcNAc / Akt pathway regulates glucose metabolism and reduces apoptosis in liver of piglets with acute cold stress. Cryobiology 2021; 100:125-132. [PMID: 33651993 DOI: 10.1016/j.cryobiol.2021.02.008] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2020] [Revised: 12/30/2020] [Accepted: 02/23/2021] [Indexed: 02/08/2023]
Abstract
Cold stress is one of the serious factors restricting the development of animal husbandry in cold areas. Cold exposure can easily lead to cold stress, slow growth and even death of newborn animals. O-GlcNAcylation modification can act as type of "stress receptor" and"nutrition sensor" in a variety of stress responses, however, it is not clear how O-GlcNAcylation can regulate glucose metabolism in the liver of piglets under cold stress. In this study, piglets 21 days of age were exposed to 4 °C for 4 h or 8 h in a phytotron. Serum cortisol and other stress hormones were used to assess body status to establish a cold stress piglet model. The changes of glycogen in liver were detected by PAS. FDP and PA were also measured to study the glycolysis level of liver. To characterize potential mechanisms of O-GlcNAcylation on the livers of cold stress piglets, AKT, GSK3β, GS, PFKFB2, AS160 and their corresponding phosphorylation were determined by Western blotting. Results show O-GlcNAcylation increased and apoptosis levels increased in the liver following cold exposure during excessive CORT or metabolic dysfunction. It is suggested that the acute cold exposure of piglets induced a sequential change in the level of O-GlcNAcylation, which may be one of the factors mediating liver cell apoptosis and glucose metabolism regulation by the O-GlcNAc/AKT pathway. These findings provide new insight into the mechanisms of the cold stress response, which can facilitate the development of new strategies to combat the effects of hypothermia.
Collapse
Affiliation(s)
- Yang Liu
- National Experimental Teaching Demonstration Center of Animal Medicine Foundation, College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing, 163319, PR China
| | - Bin Xu
- National Experimental Teaching Demonstration Center of Animal Medicine Foundation, College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing, 163319, PR China
| | - Yajie Hu
- National Experimental Teaching Demonstration Center of Animal Medicine Foundation, College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing, 163319, PR China
| | - Peng Liu
- National Experimental Teaching Demonstration Center of Animal Medicine Foundation, College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing, 163319, PR China
| | - Shuai Lian
- National Experimental Teaching Demonstration Center of Animal Medicine Foundation, College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing, 163319, PR China
| | - Hongming Lv
- National Experimental Teaching Demonstration Center of Animal Medicine Foundation, College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing, 163319, PR China
| | - Yuying Yang
- National Experimental Teaching Demonstration Center of Animal Medicine Foundation, College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing, 163319, PR China
| | - Hong Ji
- National Experimental Teaching Demonstration Center of Animal Medicine Foundation, College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing, 163319, PR China
| | - Huanmin Yang
- National Experimental Teaching Demonstration Center of Animal Medicine Foundation, College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing, 163319, PR China
| | - Juxiong Liu
- College of Veterinary Medicine, Jilin University, Changchun, 130062, PR China
| | - Ruizhi Yao
- College of Animal Science and Technology, Inner Mongolia University for Nationalities, Tongliao, 028000, PR China.
| | - Shize Li
- National Experimental Teaching Demonstration Center of Animal Medicine Foundation, College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing, 163319, PR China.
| |
Collapse
|
24
|
Urso SJ, Comly M, Hanover JA, Lamitina T. The O-GlcNAc transferase OGT is a conserved and essential regulator of the cellular and organismal response to hypertonic stress. PLoS Genet 2020; 16:e1008821. [PMID: 33006972 PMCID: PMC7556452 DOI: 10.1371/journal.pgen.1008821] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Revised: 10/14/2020] [Accepted: 08/25/2020] [Indexed: 12/12/2022] Open
Abstract
The conserved O-GlcNAc transferase OGT O-GlcNAcylates serine and threonine residues of intracellular proteins to regulate their function. OGT is required for viability in mammalian cells, but its specific roles in cellular physiology are poorly understood. Here we describe a conserved requirement for OGT in an essential aspect of cell physiology: the hypertonic stress response. Through a forward genetic screen in Caenorhabditis elegans, we discovered OGT is acutely required for osmoprotective protein expression and adaptation to hypertonic stress. Gene expression analysis shows that ogt-1 functions through a post-transcriptional mechanism. Human OGT partially rescues the C. elegans phenotypes, suggesting that the osmoregulatory functions of OGT are ancient. Intriguingly, expression of O-GlcNAcylation-deficient forms of human or worm OGT rescue the hypertonic stress response phenotype. However, expression of an OGT protein lacking the tetracopeptide repeat (TPR) domain does not rescue. Our findings are among the first to demonstrate a specific physiological role for OGT at the organismal level and demonstrate that OGT engages in important molecular functions outside of its well described roles in post-translational O-GlcNAcylation of intracellular proteins.
Collapse
Affiliation(s)
- Sarel J. Urso
- Graduate Program in Cell Biology and Molecular Physiology, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States of America
- Department of Cell Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States of America
| | - Marcella Comly
- Laboratory of Cellular and Molecular Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institute of Health, Bethesda, MD, United States of America
| | - John A. Hanover
- Laboratory of Cellular and Molecular Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institute of Health, Bethesda, MD, United States of America
| | - Todd Lamitina
- Graduate Program in Cell Biology and Molecular Physiology, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States of America
- Department of Cell Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States of America
- Division of Child Neurology, Department of Pediatrics, Children’s Hospital of Pittsburgh, Pittsburgh, PA, United States of America
| |
Collapse
|
25
|
Wang X, Lin Y, Liu S, Zhu Y, Lu K, Broering R, Lu M. O-GlcNAcylation modulates HBV replication through regulating cellular autophagy at multiple levels. FASEB J 2020; 34:14473-14489. [PMID: 32892442 DOI: 10.1096/fj.202001168rr] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Revised: 08/10/2020] [Accepted: 08/14/2020] [Indexed: 02/05/2023]
Abstract
O-GlcNAcylation is a form of posttranslational modification, and serves various functions, including modulation of location, stability, and activity for the modified proteins. O-linked-N-acetylglucosamine (O-GlcNAc) transferase (OGT) is an essential cellular enzyme that posttranslationally modifies the cellular proteins with O-GlcNAc moiety. Early studies reported that the decreased O-GlcNAcylation regulates cellular autophagy, a process relevant for hepatitis B virus replication (HBV) and assembly. Therefore, we addressed the question how O-GlcNAcylation regulates cellular autophagy and HBV replication. Inhibition of OGT activity with a small molecule inhibitor OSMI-1 or silencing OGT significantly enhanced HBV replication and HBsAg production in hepatoma cells and primary human hepatocytes (PHHs). Western blotting analysis showed that inhibition of O-GlcNAcylation-induced endoplasmic reticulum (ER) stress and cellular autophagy, two processes subsequently leading to enhanced HBV replication. Importantly, the numbers of autophagosomes and the levels of autophagic markers LC3-II and SQSTM1/p62 in hepatoma cells were elevated after inhibition of O-GlcNAcylation. Further analysis revealed that inhibition of O-GlcNAcylation blocked autophagosome-lysosome fusion and thereby prevented autophagic degradation of HBV virions and proteins. Moreover, OSMI-1 further promoted HBV replication by inducing autophagosome formation via inhibiting the O-GlcNAcylation of Akt and mTOR. In conclusion, decreased O-GlcNAcylation enhanced HBV replication through increasing autophagosome formation at multiple levels, including triggering ER-stress, Akt/mTOR inhibition, and blockade of autophagosome-lysosome fusion.
Collapse
Affiliation(s)
- Xueyu Wang
- Institute of Virology, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Yong Lin
- Institute of Virology, University Hospital Essen, University of Duisburg-Essen, Essen, Germany.,Key Laboratory of Molecular Biology of Infectious Diseases (Chinese Ministry of Education), Chongqing Medical University, Chongqing, China
| | - Shi Liu
- Institute of Virology, University Hospital Essen, University of Duisburg-Essen, Essen, Germany.,State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, China
| | - Ying Zhu
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, China
| | - Kefeng Lu
- Department of Neurosurgery, State Key Laboratory of Biotherapy, Collaborative Innovation Center for Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Ruth Broering
- Department of Gastroenterology and Hepatology, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Mengji Lu
- Institute of Virology, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| |
Collapse
|
26
|
Metcalf MG, Higuchi-Sanabria R, Garcia G, Tsui CK, Dillin A. Beyond the cell factory: Homeostatic regulation of and by the UPR ER. SCIENCE ADVANCES 2020; 6:eabb9614. [PMID: 32832649 PMCID: PMC7439504 DOI: 10.1126/sciadv.abb9614] [Citation(s) in RCA: 90] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/29/2020] [Accepted: 06/02/2020] [Indexed: 05/02/2023]
Abstract
The endoplasmic reticulum (ER) is commonly referred to as the factory of the cell, as it is responsible for a large amount of protein and lipid synthesis. As a membrane-bound organelle, the ER has a distinct environment that is ideal for its functions in synthesizing these primary cellular components. Many different quality control machineries exist to maintain ER stability under the stresses associated with synthesizing, folding, and modifying complex proteins and lipids. The best understood of these mechanisms is the unfolded protein response of the ER (UPRER), in which transmembrane proteins serve as sensors, which trigger a coordinated transcriptional response of genes dedicated for mitigating the stress. As the name suggests, the UPRER is most well described as a functional response to protein misfolding stress. Here, we focus on recent findings and emerging themes in additional roles of the UPRER outside of protein homeostasis, including lipid homeostasis, autophagy, apoptosis, and immunity.
Collapse
|
27
|
Esch N, Jo S, Moore M, Alejandro EU. Nutrient Sensor mTOR and OGT: Orchestrators of Organelle Homeostasis in Pancreatic β-Cells. J Diabetes Res 2020; 2020:8872639. [PMID: 33457426 PMCID: PMC7787834 DOI: 10.1155/2020/8872639] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Revised: 11/06/2020] [Accepted: 11/24/2020] [Indexed: 02/08/2023] Open
Abstract
The purpose of this review is to integrate the role of nutrient-sensing pathways into β-cell organelle dysfunction prompted by nutrient excess during type 2 diabetes (T2D). T2D encompasses chronic hyperglycemia, hyperlipidemia, and inflammation, which each contribute to β-cell failure. These factors can disrupt the function of critical β-cell organelles, namely, the ER, mitochondria, lysosomes, and autophagosomes. Dysfunctional organelles cause defects in insulin synthesis and secretion and activate apoptotic pathways if homeostasis is not restored. In this review, we will focus on mTORC1 and OGT, two major anabolic nutrient sensors with important roles in β-cell physiology. Though acute stimulation of these sensors frequently improves β-cell function and promotes adaptation to cell stress, chronic and sustained activity disturbs organelle homeostasis. mTORC1 and OGT regulate organelle function by influencing the expression and activities of key proteins, enzymes, and transcription factors, as well as by modulating autophagy to influence clearance of defective organelles. In addition, mTORC1 and OGT activity influence islet inflammation during T2D, which can further disrupt organelle and β-cell function. Therapies for T2D that fine-tune the activity of these nutrient sensors have yet to be developed, but the important role of mTORC1 and OGT in organelle homeostasis makes them promising targets to improve β-cell function and survival.
Collapse
Affiliation(s)
- Nicholas Esch
- Department of Integrative Biology & Physiology, University of Minnesota Medical School, University of Minnesota, Minneapolis, Minnesota, USA
| | - Seokwon Jo
- Department of Integrative Biology & Physiology, University of Minnesota Medical School, University of Minnesota, Minneapolis, Minnesota, USA
| | - Mackenzie Moore
- Department of Integrative Biology & Physiology, University of Minnesota Medical School, University of Minnesota, Minneapolis, Minnesota, USA
- Department of Surgery, University of Minnesota Medical School, University of Minnesota, Minneapolis, Minnesota, USA
| | - Emilyn U. Alejandro
- Department of Integrative Biology & Physiology, University of Minnesota Medical School, University of Minnesota, Minneapolis, Minnesota, USA
| |
Collapse
|
28
|
Sermikli BP, Aydogdu G, Taghidizaj AA, Yilmaz E. Role of O-GlcNAcylation and endoplasmic reticulum stress on obesity and insulin resistance. ACTA ACUST UNITED AC 2019. [DOI: 10.1515/tjb-2018-0303] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Abstract
Background
Obesity is a global public health problem. Obesity closely associated with various metabolic diseases such as; insulin resistance, hypertension, dyslipidemia and cardiovascular diseases. Endoplasmic reticulum (ER) stress is a critical factor for insulin resistance. O-linked N-acetyl-glucosamine (O-GlcNAc); is the post-translational modification which is has a vital role in biological processes; including cell signaling, in response to nutrients, stress and other extracellular stimuli.
Materials and methods
In this study, we aimed to investigate the role of O-GlcNAc modification in the context of obesity and obesity-associated insulin resistance in adipose tissue. For this purpose, first, the visceral and epididymal adipose tissues of obese and insulin resistant C57BL/6 Lepob/Lepob and wild-type mice were used to determine the O-GlcNAc modification pattern by western blot. Secondly, the external stimulation of O-GlcNAc modification in wild-type mice achieved by intraperitoneal 5 mg/kg/day glucosamine injection every 24 h for 5 days. The effect of increased O-GlcNAc modification on insulin resistance and ER stress investigated in adipose tissues of glucosamine challenged wild-type mice through regulation of the insulin signaling pathway and unfolded protein response (UPR) elements by western blot. In addition to that, the O-GlcNAc status of the insulin receptor substrate-1 (IRS1) investigated in epididymal and visceral adipose tissues of ob/ob, wild-type and glucosamine challenged mice by immunoprecipitation.
Results
We found that reduced O-GlcNAc levels in visceral and epididymal adipose tissues of obese and insulin-resistant ob/ob mice, although interestingly we observed that increased O-GlcNAc modification in glucosamine challenged wild-type mice resulted in insulin resistance and ER stress. Furthermore, we demonstrated that the IRS1 was modified with O-GlcNAc in visceral and epididymal adipose tissues in both ob/ob mice and glucosamine-injected mice, and was compatible with the serine phosphorylation of this modification.
Conclusion
Our results suggest that O-GlcNAcylation of proteins is a crucial factor for intracellular trafficking regulates insulin receptor signaling and UPR depending on the cellular state of insulin resistance.
Collapse
Affiliation(s)
- Benan Pelin Sermikli
- Ankara University Biotechnology Institute , Ankara , Turkey
- Department of Biology, Faculty of Science , Ankara University , Ankara , Turkey
| | - Gulizar Aydogdu
- Ankara University Biotechnology Institute , Ankara , Turkey
- Department of Biology, Faculty of Science , Ankara University , Ankara , Turkey
- Molecular Biology and Genetics Department, Faculty of Science and Letters , Ordu University , Ordu , Turkey
| | | | - Erkan Yilmaz
- Ankara University Biotechnology Institute , Ankara , Turkey
| |
Collapse
|
29
|
Jensen RV, Andreadou I, Hausenloy DJ, Bøtker HE. The Role of O-GlcNAcylation for Protection against Ischemia-Reperfusion Injury. Int J Mol Sci 2019; 20:ijms20020404. [PMID: 30669312 PMCID: PMC6359045 DOI: 10.3390/ijms20020404] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Revised: 01/12/2019] [Accepted: 01/15/2019] [Indexed: 01/13/2023] Open
Abstract
Ischemia reperfusion injury (IR injury) associated with ischemic heart disease contributes significantly to morbidity and mortality. O-linked β-N-acetylglucosamine (O-GlcNAc) is a dynamic posttranslational modification that plays an important role in numerous biological processes, both in normal cell functions and disease. O-GlcNAc increases in response to stress. This increase mediates stress tolerance and cell survival, and is protective. Increasing O-GlcNAc is protective against IR injury. Experimental cellular and animal models, and also human studies, have demonstrated that protection against IR injury by ischemic preconditioning, and the more clinically applicable remote ischemic preconditioning, is associated with increases in O-GlcNAc levels. In this review we discuss how the principal mechanisms underlying tissue protection against IR injury and the associated immediate elevation of O-GlcNAc may involve attenuation of calcium overload, attenuation of mitochondrial permeability transition pore opening, reduction of endoplasmic reticulum stress, modification of inflammatory and heat shock responses, and interference with established cardioprotective pathways. O-GlcNAcylation seems to be an inherent adaptive cytoprotective response to IR injury that is activated by mechanical conditioning strategies.
Collapse
Affiliation(s)
- Rebekka Vibjerg Jensen
- Department of Cardiology, Aarhus University Hospital, Skejby, Palle Juul-Jensens Blvd. 99, 8200 Aarhus N, Denmark.
| | - Ioanna Andreadou
- Laboratory of Pharmacology, Faculty of Pharmacy, National and Kapodistrian University of Athens Panepistimiopolis, 15771 Zografou, Greece.
| | - Derek J Hausenloy
- Cardiovascular & Metabolic Disorders Program, Duke-National University of Singapore Medical School, Singapore 169857, Singapore.
- National Heart Research Institute Singapore, National Heart Centre, Singapore 169609, Singapore.
- Yong Loo Lin School of Medicine, National University Singapore, Singapore 119228, Singapore.
- The Hatter Cardiovascular Institute, University College London, London WC1E 6HX, UK.
- The National Institute of Health Research University College London Hospitals Biomedical Research Centre, Research & Development, London W1T 7DN, UK.
- Tecnologico de Monterrey, Centro de Biotecnologia-FEMSA, Monterrey 64849, Mexico.
| | - Hans Erik Bøtker
- Department of Cardiology, Aarhus University Hospital, Skejby, Palle Juul-Jensens Blvd. 99, 8200 Aarhus N, Denmark.
| |
Collapse
|
30
|
Flores-Martín J, Reyna L, Cruz Del Puerto M, Rojas ML, Panzetta-Dutari GM, Genti-Raimondi S. Hexosamine pathway regulates StarD7 expression in JEG-3 cells. Mol Biol Rep 2018; 45:2593-2600. [PMID: 30315445 DOI: 10.1007/s11033-018-4428-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2018] [Accepted: 10/05/2018] [Indexed: 11/29/2022]
Abstract
StarD7 is a lipid binding protein involved in the delivery of phosphatidylcholine to the mitochondria whose promoter is activated by Wnt/β-catenin signaling. Although the majority of glucose enters glycolysis, ~ 2-5% of it can be metabolized via the hexosamine biosynthetic pathway (HBP). Considering that HBP has been implicated in the regulation of β-catenin we explored if changes in glucose levels modulate StarD7 expression by the HBP in trophoblast cells. We found an increase in StarD7 as well as in β-catenin expression following high-glucose (25 mM) treatment in JEG-3 cells; these effects were abolished in the presence of HBP inhibitors. Moreover, since HBP is able to promote unfolded protein response (UPR) the protein levels of GRP78, Ire1α, calnexin, p-eIF2α and total eIF2α as well as XBP1 mRNA was measured. Our results indicate that a diminution in glucose concentration leads to a decrease in StarD7 expression and an increase in the UPR markers: GRP78 and Ire1α. Conversely, an increase in glucose is associated to high StarD7 levels and low GRP78 expression, phospho-eIF2α and XBP1 splicing, although Ire1α remains high when cells are restored to high glucose. Taken together these findings indicate that glucose modulates StarD7 and β-catenin expression through the HBP associated to UPR, suggesting the existence of a link between UPR and HBP in trophoblast cells. This is the first study reporting the effects of glucose on StarD7 in trophoblast cells. These data highlight the importance to explore the role of StarD7 in placenta disorders related to nutrient availability.
Collapse
Affiliation(s)
- Jésica Flores-Martín
- Departamento de Bioquímica Clínica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Ciudad Universitaria, X5000HUA, Córdoba, Argentina.,Centro de Investigaciones en Bioquímica Clínica e Inmunología (CIBICI), Consejo Nacional de Investigaciones Científicas y Tecnológicas (CONICET), Ciudad Universitaria, X5000HUA, Córdoba, Argentina
| | - Luciana Reyna
- Departamento de Bioquímica Clínica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Ciudad Universitaria, X5000HUA, Córdoba, Argentina.,Centro de Investigaciones en Bioquímica Clínica e Inmunología (CIBICI), Consejo Nacional de Investigaciones Científicas y Tecnológicas (CONICET), Ciudad Universitaria, X5000HUA, Córdoba, Argentina
| | - Mariano Cruz Del Puerto
- Departamento de Bioquímica Clínica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Ciudad Universitaria, X5000HUA, Córdoba, Argentina.,Centro de Investigaciones en Bioquímica Clínica e Inmunología (CIBICI), Consejo Nacional de Investigaciones Científicas y Tecnológicas (CONICET), Ciudad Universitaria, X5000HUA, Córdoba, Argentina
| | - María L Rojas
- Departamento de Bioquímica Clínica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Ciudad Universitaria, X5000HUA, Córdoba, Argentina.,Centro de Investigaciones en Bioquímica Clínica e Inmunología (CIBICI), Consejo Nacional de Investigaciones Científicas y Tecnológicas (CONICET), Ciudad Universitaria, X5000HUA, Córdoba, Argentina
| | - Graciela M Panzetta-Dutari
- Departamento de Bioquímica Clínica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Ciudad Universitaria, X5000HUA, Córdoba, Argentina.,Centro de Investigaciones en Bioquímica Clínica e Inmunología (CIBICI), Consejo Nacional de Investigaciones Científicas y Tecnológicas (CONICET), Ciudad Universitaria, X5000HUA, Córdoba, Argentina
| | - Susana Genti-Raimondi
- Departamento de Bioquímica Clínica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Ciudad Universitaria, X5000HUA, Córdoba, Argentina. .,Centro de Investigaciones en Bioquímica Clínica e Inmunología (CIBICI), Consejo Nacional de Investigaciones Científicas y Tecnológicas (CONICET), Ciudad Universitaria, X5000HUA, Córdoba, Argentina. .,Departamento de Bioquímica Clínica, CIBICI-CONICET, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Haya de la Torre y Medina Allende, X5000HUA, Córdoba, Argentina.
| |
Collapse
|
31
|
Ducheix S, Magré J, Cariou B, Prieur X. Chronic O-GlcNAcylation and Diabetic Cardiomyopathy: The Bitterness of Glucose. Front Endocrinol (Lausanne) 2018; 9:642. [PMID: 30420836 PMCID: PMC6215811 DOI: 10.3389/fendo.2018.00642] [Citation(s) in RCA: 63] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/29/2018] [Accepted: 10/09/2018] [Indexed: 12/16/2022] Open
Abstract
Type 2 diabetes (T2D) is a major risk factor for heart failure. Diabetic cardiomyopathy (DC) is characterized by diastolic dysfunction and left ventricular hypertrophy. Epidemiological data suggest that hyperglycaemia contributes to the development of DC. Several cellular pathways have been implicated in the deleterious effects of high glucose concentrations in the heart: oxidative stress, accumulation of advanced glycation end products (AGE), and chronic hexosamine biosynthetic pathway (HBP) activation. In the present review, we focus on the effect of chronic activation of the HBP on diabetic heart function. The HBP supplies N-acetylglucosamine moiety (O-GlcNAc) that is O-linked by O-GlcNAc transferase (OGT) to proteins on serine or threonine residues. This post-translational protein modification modulates the activity of the targeted proteins. In the heart, acute activation of the HBP in response to ischaemia-reperfusion injury appears to be protective. Conversely, chronic activation of the HBP in the diabetic heart affects Ca2+ handling, contractile properties, and mitochondrial function and promotes stress signaling, such as left ventricular hypertrophy and endoplasmic reticulum stress. Many studies have shown that O-GlcNAc impairs the function of key protein targets involved in these pathways, such as phospholamban, calmodulin kinase II, troponin I, and FOXO1. The data show that excessive O-GlcNAcylation is a major trigger of the glucotoxic events that affect heart function under chronic hyperglycaemia. Supporting this finding, pharmacological or genetic inhibition of the HBP in the diabetic heart improves heart function. In addition, the SGLT2 inhibitor dapagliflozin, a glucose lowering agent, has recently been shown to lower cardiac HBP in a lipodystophic T2D mice model and to concomitantly improve the diastolic dysfunction of these mice. Therefore, targeting cardiac-excessive O-GlcNAcylation or specific target proteins represents a potential therapeutic option to treat glucotoxicity in the diabetic heart.
Collapse
Affiliation(s)
- Simon Ducheix
- l'institut du thorax, INSERM, CNRS, UNIV Nantes, Nantes, France
| | - Jocelyne Magré
- l'institut du thorax, INSERM, CNRS, UNIV Nantes, Nantes, France
| | - Bertrand Cariou
- l'institut du thorax, INSERM, CNRS, UNIV Nantes, CHU Nantes, Nantes, France
| | - Xavier Prieur
- l'institut du thorax, INSERM, CNRS, UNIV Nantes, Nantes, France
- *Correspondence: Xavier Prieur
| |
Collapse
|
32
|
Stress-induced O-GlcNAcylation: an adaptive process of injured cells. Biochem Soc Trans 2017; 45:237-249. [PMID: 28202678 DOI: 10.1042/bst20160153] [Citation(s) in RCA: 99] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2016] [Revised: 11/30/2016] [Accepted: 12/14/2016] [Indexed: 02/07/2023]
Abstract
In the 30 years, since the discovery of nucleocytoplasmic glycosylation, O-GlcNAc has been implicated in regulating cellular processes as diverse as protein folding, localization, degradation, activity, post-translational modifications, and interactions. The cell co-ordinates these molecular events, on thousands of cellular proteins, in concert with environmental and physiological cues to fine-tune epigenetics, transcription, translation, signal transduction, cell cycle, and metabolism. The cellular stress response is no exception: diverse forms of injury result in dynamic changes to the O-GlcNAc subproteome that promote survival. In this review, we discuss the biosynthesis of O-GlcNAc, the mechanisms by which O-GlcNAc promotes cytoprotection, and the clinical significance of these data.
Collapse
|
33
|
Lee A, Miller D, Henry R, Paruchuri VDP, O'Meally RN, Boronina T, Cole RN, Zachara NE. Combined Antibody/Lectin Enrichment Identifies Extensive Changes in the O-GlcNAc Sub-proteome upon Oxidative Stress. J Proteome Res 2016; 15:4318-4336. [PMID: 27669760 DOI: 10.1021/acs.jproteome.6b00369] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
O-Linked N-acetyl-β-d-glucosamine (O-GlcNAc) is a dynamic post-translational modification that modifies and regulates over 3000 nuclear, cytoplasmic, and mitochondrial proteins. Upon exposure to stress and injury, cells and tissues increase the O-GlcNAc modification, or O-GlcNAcylation, of numerous proteins promoting the cellular stress response and thus survival. The aim of this study was to identify proteins that are differentially O-GlcNAcylated upon acute oxidative stress (H2O2) to provide insight into the mechanisms by which O-GlcNAc promotes survival. We achieved this goal by employing Stable Isotope Labeling of Amino Acids in Cell Culture (SILAC) and a novel "G5-lectibody" immunoprecipitation strategy that combines four O-GlcNAc-specific antibodies (CTD110.6, RL2, HGAC39, and HGAC85) and the lectin WGA. Using the G5-lectibody column in combination with basic reversed phase chromatography and C18 RPLC-MS/MS, 990 proteins were identified and quantified. Hundreds of proteins that were identified demonstrated increased (>250) or decreased (>110) association with the G5-lectibody column upon oxidative stress, of which we validated the O-GlcNAcylation status of 24 proteins. Analysis of proteins with altered glycosylation suggests that stress-induced changes in O-GlcNAcylation cluster into pathways known to regulate the cell's response to injury and include protein folding, transcriptional regulation, epigenetics, and proteins involved in RNA biogenesis. Together, these data suggest that stress-induced O-GlcNAcylation regulates numerous and diverse cellular pathways to promote cell and tissue survival.
Collapse
Affiliation(s)
- Albert Lee
- Department of Biological Chemistry, The Johns Hopkins University School of Medicine , 725 North Wolfe Street, Baltimore, Maryland 21205-2185, United States
| | - Devin Miller
- Department of Biological Chemistry, The Johns Hopkins University School of Medicine , 725 North Wolfe Street, Baltimore, Maryland 21205-2185, United States
| | - Roger Henry
- Department of Biological Chemistry, The Johns Hopkins University School of Medicine , 725 North Wolfe Street, Baltimore, Maryland 21205-2185, United States
| | - Venkata D P Paruchuri
- Department of Biological Chemistry, The Johns Hopkins University School of Medicine , 725 North Wolfe Street, Baltimore, Maryland 21205-2185, United States
| | - Robert N O'Meally
- Mass Spectrometry and Proteomics Facility, The Johns Hopkins University School of Medicine , 733 North Broadway Street, Baltimore, Maryland 21205-2185, United States
| | - Tatiana Boronina
- Mass Spectrometry and Proteomics Facility, The Johns Hopkins University School of Medicine , 733 North Broadway Street, Baltimore, Maryland 21205-2185, United States
| | - Robert N Cole
- Department of Biological Chemistry, The Johns Hopkins University School of Medicine , 725 North Wolfe Street, Baltimore, Maryland 21205-2185, United States.,Mass Spectrometry and Proteomics Facility, The Johns Hopkins University School of Medicine , 733 North Broadway Street, Baltimore, Maryland 21205-2185, United States
| | - Natasha E Zachara
- Department of Biological Chemistry, The Johns Hopkins University School of Medicine , 725 North Wolfe Street, Baltimore, Maryland 21205-2185, United States
| |
Collapse
|
34
|
Zhang D, Xu Z, Tao T, Liu X, Sun X, Ji Y, Han L, Qiu H, Zhu G, Shen Y, Zhu L, Shen A. Modification of TAK1 by O-linked N-acetylglucosamine facilitates TAK1 activation and promotes M1 macrophage polarization. Cell Signal 2016; 28:1742-52. [PMID: 27542620 DOI: 10.1016/j.cellsig.2016.08.008] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2016] [Revised: 08/03/2016] [Accepted: 08/14/2016] [Indexed: 01/20/2023]
Abstract
Macrophages play many different roles in tissue inflammation and immunity, and the plasticity of macrophage polarization is closely associated with acute inflammatory responses. O-GlcNAcylation is an important type of post-translational modification, which subtly modulates inflammation responses. Transforming growth factor (TGF)-β-activated kinase 1 (TAK1) is a key serine/threonine protein kinase that mediates signals transduced by pro-inflammatory cytokines such as TGF-β, tumor necrosis factor (TNF), and interleukin-1 (IL-1). It is here reported that TGFβ-activated kinase (TAK1) is modified with N-acetylglucosamine (O-GlcNAc) on S427. Both IL-1 and osmotic stress, which are known as the TAK1-signaling inducers, significantly trigger the O-GlcNAcylation of TAK1 in macrophages. By overexpressing wild-type (WT) or S427A TAK1 mutant into macrophages, it was determined that O-GlcNAcylation of TAK1 on S427 is required for T187/S192 phosphorylation and full activation of TAK1 upon stimulation with IL-1α and NaCl. Aborting O-GlcNAcylation of TAK1 on S427 was found to inhibit the downstream JNK and nuclear factor-κB activation and reduce the final amount of cytokines produced in activated macrophages to a great extent. Results also showed that overexpression of the O-GlcNAcylation-deficient mutant of TAK1 promotes LPS-mediated apoptosis in macrophages. Importantly, TAK1 O-GlcNAcylation was found to promote M1 macrophage polarization in activated macrophages. Taken together, these data demonstrate that O-GlcNAcylation of TAK1 on S427 critically regulates the pro-inflammatory activation and M1 polarization of macrophages via modulation of the TAK1/JNK/NF-κB signaling pathway.
Collapse
Affiliation(s)
- Dongmei Zhang
- Department of Pathogen Biology, Medical College, Nantong University, Nantong 226001, Jiangsu Province, China; Jiangsu Province Key Laboratory for Inflammation and Molecular Drug Target, Nantong University, Nantong 226001, Jiangsu Province, China
| | - Zhiwei Xu
- Department of Immunology, Medical College, Nantong University, Nantong 226001, Jiangsu Province, China; Jiangsu Province Key Laboratory for Inflammation and Molecular Drug Target, Nantong University, Nantong 226001, Jiangsu Province, China
| | - Tao Tao
- Department of Immunology, Medical College, Nantong University, Nantong 226001, Jiangsu Province, China; Jiangsu Province Key Laboratory for Inflammation and Molecular Drug Target, Nantong University, Nantong 226001, Jiangsu Province, China
| | - Xiaojuan Liu
- Department of Pathogen Biology, Medical College, Nantong University, Nantong 226001, Jiangsu Province, China; Jiangsu Province Key Laboratory for Inflammation and Molecular Drug Target, Nantong University, Nantong 226001, Jiangsu Province, China
| | - Xiaolei Sun
- Department of Pathogen Biology, Medical College, Nantong University, Nantong 226001, Jiangsu Province, China; Jiangsu Province Key Laboratory for Inflammation and Molecular Drug Target, Nantong University, Nantong 226001, Jiangsu Province, China
| | - Yuhong Ji
- Department of Immunology, Medical College, Nantong University, Nantong 226001, Jiangsu Province, China
| | - Lijian Han
- Jiangsu Province Key Laboratory for Inflammation and Molecular Drug Target, Nantong University, Nantong 226001, Jiangsu Province, China
| | - Huiyuan Qiu
- Jiangsu Province Key Laboratory for Inflammation and Molecular Drug Target, Nantong University, Nantong 226001, Jiangsu Province, China
| | - Guizhou Zhu
- Department of Immunology, Medical College, Nantong University, Nantong 226001, Jiangsu Province, China
| | - Yifen Shen
- Department of Immunology, Medical College, Nantong University, Nantong 226001, Jiangsu Province, China
| | - Liang Zhu
- Jiangsu Province Key Laboratory for Inflammation and Molecular Drug Target, Nantong University, Nantong 226001, Jiangsu Province, China
| | - Aiguo Shen
- Jiangsu Province Key Laboratory for Inflammation and Molecular Drug Target, Nantong University, Nantong 226001, Jiangsu Province, China; Coinnovation Center of Neuroregeneration, Nantong University, Nantong 226001, Jiangsu Province, China.
| |
Collapse
|
35
|
Gong CX, Liu F, Iqbal K. O-GlcNAcylation: A regulator of tau pathology and neurodegeneration. Alzheimers Dement 2016; 12:1078-1089. [PMID: 27126545 DOI: 10.1016/j.jalz.2016.02.011] [Citation(s) in RCA: 80] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2015] [Revised: 12/16/2015] [Accepted: 02/03/2016] [Indexed: 01/21/2023]
Abstract
O-GlcNAcylation is the posttranslational modification of intracellular proteins by O-linked β-N-acetylglucosamine (O-GlcNAc). The discovery of O-GlcNAc modification of tau and its impact on tau phosphorylation has attracted recent research interest in O-GlcNAc studies in the Alzheimer's disease (AD) field. Modification of proteins by O-GlcNAc occurs extensively in the brain. The expressions and activities of the enzymes catalyzing O-GlcNAc cycling are several-fold higher in the brain than in the peripheral tissues. The O-GlcNAcylation levels of brain proteins including tau are decreased in AD brain, probably due to decreased brain glucose metabolism. The reduction of brain O-GlcNAcylation appears to mediate the molecular mechanism by which decreased brain glucose metabolism contributes to neurodegeneration. Studies on mouse models of tauopathies suggest a neuroprotective role of pharmacological elevation of brain O-GlcNAc, which could potentially be a promising approach for treating AD and other neurodegenerative diseases.
Collapse
Affiliation(s)
- Cheng-Xin Gong
- Department of Neurochemistry, Inge Grundke-Iqbal Research Floor, New York State Institute for Basic Research in Developmental Disabilities, Staten Island, NY, USA.
| | - Fei Liu
- Department of Neurochemistry, Inge Grundke-Iqbal Research Floor, New York State Institute for Basic Research in Developmental Disabilities, Staten Island, NY, USA
| | - Khalid Iqbal
- Department of Neurochemistry, Inge Grundke-Iqbal Research Floor, New York State Institute for Basic Research in Developmental Disabilities, Staten Island, NY, USA
| |
Collapse
|
36
|
Alejandro EU, Bozadjieva N, Kumusoglu D, Abdulhamid S, Levine H, Haataja L, Vadrevu S, Satin LS, Arvan P, Bernal-Mizrachi E. Disruption of O-linked N-Acetylglucosamine Signaling Induces ER Stress and β Cell Failure. Cell Rep 2015; 13:2527-2538. [PMID: 26673325 PMCID: PMC4839001 DOI: 10.1016/j.celrep.2015.11.020] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2015] [Revised: 09/22/2015] [Accepted: 11/03/2015] [Indexed: 11/30/2022] Open
Abstract
Nutrient levels dictate the activity of O-linked N-acetylglucosamine transferase (OGT) to regulate O-GlcNAcylation, a post-translational modification mechanism to "fine-tune" intracellular signaling and metabolic status. However, the requirement of O-GlcNAcylation for maintaining glucose homeostasis by regulating pancreatic β cell mass and function is unclear. Here, we reveal that mice lacking β cell OGT (βOGT-KO) develop diabetes and β cell failure. βOGT-KO mice demonstrated increased ER stress and distended ER architecture, and these changes ultimately caused the loss of β cell mass due to ER-stress-induced apoptosis and decreased proliferation. Akt1/2 signaling was also dampened in βOGT-KO islets. The mechanistic role of these processes was demonstrated by rescuing the phenotype of βOGT-KO mice with concomitant Chop gene deletion or genetic reconstitution of Akt2. These findings identify OGT as a regulator of β cell mass and function and provide a direct link between O-GlcNAcylation and β cell survival by regulation of ER stress responses and modulation of Akt1/2 signaling.
Collapse
Affiliation(s)
- Emilyn U Alejandro
- Department of Internal Medicine, Division of Metabolism, Endocrinology and Diabetes, University of Michigan, Ann Arbor, MI 48109-0678, USA
| | - Nadejda Bozadjieva
- Program in Cellular and Molecular Biology, University of Michigan, Ann Arbor, MI 48109-0678, USA
| | - Doga Kumusoglu
- Department of Internal Medicine, Division of Metabolism, Endocrinology and Diabetes, University of Michigan, Ann Arbor, MI 48109-0678, USA
| | - Sarah Abdulhamid
- Department of Internal Medicine, Division of Metabolism, Endocrinology and Diabetes, University of Michigan, Ann Arbor, MI 48109-0678, USA
| | - Hannah Levine
- Department of Internal Medicine, Division of Metabolism, Endocrinology and Diabetes, University of Michigan, Ann Arbor, MI 48109-0678, USA
| | - Leena Haataja
- Department of Internal Medicine, Division of Metabolism, Endocrinology and Diabetes, University of Michigan, Ann Arbor, MI 48109-0678, USA
| | - Suryakiran Vadrevu
- Department of Pharmacology, University of Michigan, Ann Arbor, MI 48109-0678, USA
| | - Leslie S Satin
- Program in Cellular and Molecular Biology, University of Michigan, Ann Arbor, MI 48109-0678, USA
| | - Peter Arvan
- Department of Internal Medicine, Division of Metabolism, Endocrinology and Diabetes, University of Michigan, Ann Arbor, MI 48109-0678, USA
| | - Ernesto Bernal-Mizrachi
- Department of Internal Medicine, Division of Metabolism, Endocrinology and Diabetes, University of Michigan, Ann Arbor, MI 48109-0678, USA; VA Ann Arbor Healthcare System, Ann Arbor, MI 48109-0678, USA.
| |
Collapse
|
37
|
Abstract
O-Linked N-acetylglucosamine, or O-GlcNAc, is a dynamic post-translational modification that cycles on and off serine and threonine residues of nucleocytoplasmic and mitochondrial proteins. In addition to cancer and inflammation diseases, O-GlcNAc modification appears to play a critical role during cell apoptosis and stress response, although the precise mechanisms are still not very clear. Here we found that nitric oxide synthase adaptor (NOS1AP), which plays an important part in glutamate-induced neuronal apoptosis, carries the modification of O-GlcNAc. Mass spectrometry analysis identified Ser47, Ser183, Ser204, Ser269, Ser271 as O-GlcNAc sites. Higher O-GlcNAc of NOS1AP was detected during glutamate-induced neuronal apoptosis. Furthermore, with O-GlcNAc sites of NOS1AP mutated, the interaction of NOS1AP and neuronal nitric oxide syntheses (nNOS) decreases. Finally, during glutamate-induced neuronal apoptosis, decreasing the O-GlcNAc modification of NOS1AP results in more severe neuronal apoptosis. All these results suggest that O-GlcNAc modification of NOS1AP exerts protective effects during glutamate-induced neuronal apoptosis.
Collapse
|