1
|
Gottumukkala SB, Palanisamy A. Non-small cell lung cancer map and analysis: exploring interconnected oncogenic signal integrators. Mamm Genome 2025:10.1007/s00335-025-10110-6. [PMID: 39939487 DOI: 10.1007/s00335-025-10110-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2024] [Accepted: 01/29/2025] [Indexed: 02/14/2025]
Abstract
Non-Small Cell lung cancer (NSCLC) is known for its fast progression, metastatic potency, and a leading cause of mortality globally. At diagnosis, approximately 30-40% of NSCLC patients already present with metastasis. Epithelial to mesenchymal transition (EMT) is a developmental program implicated in cancer progression and metastasis. Transforming Growth Factor-β (TGFβ) and its signalling plays a prominent role in orchestrating the process of EMT and cancer metastasis. In present study, a comprehensive molecular interaction map of TGFβ induced EMT in NSCLC was developed through an extensive literature survey. The map encompasses 394 species interconnected through 554 reactions, representing the relationship and complex interplay between TGFβ induced SMAD dependent and independent signalling pathways (PI3K/Akt, Wnt, EGFR, JAK/STAT, p38 MAPK, NOTCH, Hypoxia). The map, built using Cell Designer and compliant with SBGN and SBML standards, was subsequently translated into a logical modelling framework using CaSQ and dynamically analysed with Cell Collective. These analyses illustrated the complex regulatory dynamics, capturing the known experimental outcomes of TGFβ induced EMT in NSCLC including the co-existence of hybrid EM phenotype during transition. Hybrid EM phenotype is known to contribute for the phenotypic plasticity during metastasis. Network-based analysis identified the crucial network level properties and hub regulators, while the transcriptome-based analysis cross validated the prognostic significance and clinical relevance of key regulators. Overall, the map developed and the subsequent analyses offer deeper understanding of the complex regulatory network governing the process of EMT in NSCLC.
Collapse
Affiliation(s)
- Sai Bhavani Gottumukkala
- Department of Biotechnology, National Institute of Technology Warangal, Warangal, Telangana, India
| | - Anbumathi Palanisamy
- Department of Biotechnology, National Institute of Technology Warangal, Warangal, Telangana, India.
| |
Collapse
|
2
|
Wu M, Liu J, Zhang S, Jian Y, Guo L, Zhang H, Mi J, Qu G, Liu Y, Gao C, Cai Q, Wen D, Liu D, Sun J, Jiang J, Huang H. Shh Signaling from the Injured Lung Microenvironment Drives BMSCs Differentiation into Alveolar Type II Cells for Acute Lung Injury Treatment in Mice. Stem Cells Int 2024; 2024:1823163. [PMID: 39372681 PMCID: PMC11455595 DOI: 10.1155/2024/1823163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 06/22/2024] [Accepted: 08/01/2024] [Indexed: 10/08/2024] Open
Abstract
Alveolar type II (AT2) cells are key effector cells for repairing damaged lungs. Direct differentiation into AT2 cells from bone marrow mesenchymal stem cells (BMSCs) is a promising approach to treating acute lung injury (ALI). The mechanisms of BMSC differentiation into AT2 cells have not been determined. The Sonic Hedgehog (Shh) pathway is involved in regulating multiple differentiation of MSCs. However, the role of the Shh pathway in mediating the differentiation of BMSCs into AT2 cells remains to be explored. The results showed that BMSCs significantly ameliorated lung injury and improved pulmonary function in mice with ALI. These improvements were accompanied by a relatively high proportion of BMSCs differentiate into AT2 cells and an increase in the total number of AT2 cells in the lungs. Lung tissue extracts from mice with ALI (ALITEs) were used to mimic the injured lung microenvironment. The addition of ALITEs significantly improved the differentiation efficiency of BMSCs into AT2 cells along with activation of the Shh pathway. The inhibition of the Shh pathway not only reduced the differentiation rate of BMSCs but also failed to mitigate lung injury and regenerate AT2 cells. The results confirmed that promoting AT2 cell regeneration through the differentiation of BMSCs into AT2 cells is one of the important therapeutic mechanisms for the treatment of ALI with BMSCs. This differentiation process is highly dependent on Shh pathway activation in BMSCs in the injured lung microenvironment.
Collapse
Affiliation(s)
- Mengyu Wu
- Department of Trauma Medical CenterDaping HospitalState Key Laboratory of Trauma and Chemical PoisoningArmy Medical University, Chongqing 400042, China
- College of BioengineeringChongqing University, Chongqing 400044, China
| | - Jing Liu
- Department of Trauma Medical CenterDaping HospitalState Key Laboratory of Trauma and Chemical PoisoningArmy Medical University, Chongqing 400042, China
| | - Shu Zhang
- Department of Trauma Medical CenterDaping HospitalState Key Laboratory of Trauma and Chemical PoisoningArmy Medical University, Chongqing 400042, China
| | - Yi Jian
- Department of Trauma Medical CenterDaping HospitalState Key Laboratory of Trauma and Chemical PoisoningArmy Medical University, Chongqing 400042, China
- College of BioengineeringChongqing University, Chongqing 400044, China
| | - Ling Guo
- Department of Trauma Medical CenterDaping HospitalState Key Laboratory of Trauma and Chemical PoisoningArmy Medical University, Chongqing 400042, China
| | - Huacai Zhang
- Department of Trauma Medical CenterDaping HospitalState Key Laboratory of Trauma and Chemical PoisoningArmy Medical University, Chongqing 400042, China
| | - Junwei Mi
- Department of Trauma Medical CenterDaping HospitalState Key Laboratory of Trauma and Chemical PoisoningArmy Medical University, Chongqing 400042, China
| | - Guoxin Qu
- Department of Orthopedic SurgeryThe First Affiliated Hospital of Hainan Medical University, Haikou 570100, Hainan Province, China
| | - Yaojun Liu
- Department of Trauma Medical CenterDaping HospitalState Key Laboratory of Trauma and Chemical PoisoningArmy Medical University, Chongqing 400042, China
| | - Chu Gao
- Department of Trauma Medical CenterDaping HospitalState Key Laboratory of Trauma and Chemical PoisoningArmy Medical University, Chongqing 400042, China
| | - Qingli Cai
- Department of Trauma Medical CenterDaping HospitalState Key Laboratory of Trauma and Chemical PoisoningArmy Medical University, Chongqing 400042, China
| | - Dalin Wen
- Department of Trauma Medical CenterDaping HospitalState Key Laboratory of Trauma and Chemical PoisoningArmy Medical University, Chongqing 400042, China
| | - Di Liu
- Department of Trauma Medical CenterDaping HospitalState Key Laboratory of Trauma and Chemical PoisoningArmy Medical University, Chongqing 400042, China
| | - Jianhui Sun
- Department of Trauma Medical CenterDaping HospitalState Key Laboratory of Trauma and Chemical PoisoningArmy Medical University, Chongqing 400042, China
| | - Jianxin Jiang
- Department of Trauma Medical CenterDaping HospitalState Key Laboratory of Trauma and Chemical PoisoningArmy Medical University, Chongqing 400042, China
| | - Hong Huang
- Department of Trauma Medical CenterDaping HospitalState Key Laboratory of Trauma and Chemical PoisoningArmy Medical University, Chongqing 400042, China
| |
Collapse
|
3
|
Tümen D, Heumann P, Huber J, Hahn N, Macek C, Ernst M, Kandulski A, Kunst C, Gülow K. Unraveling Cancer's Wnt Signaling: Dynamic Control through Protein Kinase Regulation. Cancers (Basel) 2024; 16:2686. [PMID: 39123414 PMCID: PMC11312265 DOI: 10.3390/cancers16152686] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 07/25/2024] [Accepted: 07/25/2024] [Indexed: 08/12/2024] Open
Abstract
Since the initial identification of oncogenic Wnt in mice and Drosophila, the Wnt signaling pathway has been subjected to thorough and extensive investigation. Persistent activation of Wnt signaling exerts diverse cancer characteristics, encompassing tumor initiation, tumor growth, cell senescence, cell death, differentiation, and metastasis. Here we review the principal signaling mechanisms and the regulatory influence of pathway-intrinsic and extrinsic kinases on cancer progression. Additionally, we underscore the divergences and intricate interplays of the canonical and non-canonical Wnt signaling pathways and their critical influence in cancer pathophysiology, exhibiting both growth-promoting and growth-suppressing roles across diverse cancer types.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Karsten Gülow
- Department of Internal Medicine I Gastroenterology, Hepatology, Endocrinology, Rheumatology, Immunology, and Infectious Diseases, University Hospital Regensburg, 93053 Regensburg, Germany; (D.T.); (N.H.)
| |
Collapse
|
4
|
Mehrani R, Mondal J, Ghazanfari D, Goetz DJ, McCall KD, Bergmeier SC, Sharma S. Capturing the Effects of Single Atom Substitutions on the Inhibition Efficiency of Glycogen Synthase Kinase-3β Inhibitors via Markov State Modeling and Experiments. J Chem Theory Comput 2024; 20:6278-6286. [PMID: 38975986 PMCID: PMC11776921 DOI: 10.1021/acs.jctc.4c00311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/09/2024]
Abstract
Small modifications in the chemical structure of ligands are known to dramatically change their ability to inhibit the activity of a protein. Unraveling the mechanisms that govern these dramatic changes requires scrutinizing the dynamics of protein-ligand binding and unbinding at the atomic level. As an exemplary case, we have studied Glycogen Synthase Kinase-3β (GSK-3β), a multifunctional kinase that has been implicated in a host of pathological processes. As such, there is a keen interest in identifying ligands that inhibit GSK-3β activity. One family of compounds that are highly selective and potent inhibitors of GSK-3β is exemplified by a molecule termed COB-187. COB-187 consists of a five-member heterocyclic ring with a thione at C2, a pyridine substituted methyl at N3, and a hydroxyl and phenyl at C4. We have studied the inhibition of GSK-3β by COB-187-related ligands that differ in a single heavy atom from each other (either in the location of nitrogen in their pyridine ring, or with the pyridine ring replaced by a phenyl ring), or in the length of the alkyl group joining the pyridine and the N3. The inhibition experiments show a large range of half-maximal inhibitory concentration (IC50) values from 10 nM to 10 μM, implying that these ligands exhibit vastly different propensities to inhibit GSK-3β. To explain these differences, we perform Markov State Modeling (MSM) using fully atomistic simulations. Our MSM results are in excellent agreement with the experiments in that they accurately capture differences in the binding propensities of the ligands. The simulations show that the binding propensities are related to the ligands' ability to attain a compact conformation where their two aromatic rings are spatially close. We rationalize this result by sampling numerous binding and unbinding events via funnel metadynamics simulations, which show that indeed while approaching the bound state, the ligands prefer to be in their compact conformation. We find that the presence of nitrogen in the aromatic ring increases the probability of attaining the compact conformation. Protein-ligand binding is understood to be dictated by the energetics of interactions and entropic factors, like the release of bound water from the binding pockets. This work shows that changes in the conformational distribution of ligands due to atom-level modifications in the structure play an important role in protein-ligand binding.
Collapse
Affiliation(s)
- Ramin Mehrani
- Department of Mechanical Engineering, Ohio University, Athens, Ohio 45701, United States
| | - Jagannath Mondal
- Center for Interdisciplinary Sciences, Tata Institute of Fundamental Research, Hyderabad 500046, India
| | - Davoud Ghazanfari
- Department of Chemical and Biomolecular Engineering, Ohio University, Athens, Ohio 45701, United States
| | - Douglas J Goetz
- Department of Chemical and Biomolecular Engineering, Ohio University, Athens, Ohio 45701, United States
- Biomedical Engineering Program, Ohio University, Athens, Ohio 45701, United States
| | - Kelly D McCall
- Biomedical Engineering Program, Ohio University, Athens, Ohio 45701, United States
- Department of Specialty Medicine, Ohio University, Athens, Ohio 45701, United States
- The Diabetes Institute, Ohio University, Athens, Ohio 45701, United States
- Molecular and Cellular Biology Program, Ohio University, Athens, Ohio 45701, United States
- Translational Biomedical Sciences Program, Ohio University, Athens, Ohio 45701, United States
| | - Stephen C Bergmeier
- Biomedical Engineering Program, Ohio University, Athens, Ohio 45701, United States
- Department of Chemistry and Biochemistry, Ohio University, Athens, Ohio 45701, United States
| | - Sumit Sharma
- Department of Chemical and Biomolecular Engineering, Ohio University, Athens, Ohio 45701, United States
| |
Collapse
|
5
|
Jin X, Dong W, Chang K, Yan Y. Research on the signaling pathways related to the intervention of traditional Chinese medicine in Parkinson's disease:A literature review. JOURNAL OF ETHNOPHARMACOLOGY 2024; 326:117850. [PMID: 38331124 DOI: 10.1016/j.jep.2024.117850] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Revised: 01/23/2024] [Accepted: 01/30/2024] [Indexed: 02/10/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Parkinson's disease (PD) is the most common progressive neurodegenerative disorder affecting more than 10 million people worldwide and is characterized by the progressive loss of Daergic (DA) neurons in the substantia nigra pars compacta. It has been reported that signaling pathways play a crucial role in the pathogenesis of PD, while the active ingredients of traditional Chinese medicine (TCM) have been found to possess a protective effect against PD. TCM has demonstrated significant potential in mitigating oxidative stress (OS), neuroinflammation, and apoptosis of DA neurons via the regulation of signaling pathways associated with PD. AIM OF THE REVIEW This study discussed and analyzed the signaling pathways involved in the occurrence and development of PD and the mechanism of active ingredients of TCM regulating PD via signaling pathways, with the aim of providing a basis for the development and clinical application of therapeutic strategies for TCM in PD. MATERIALS AND METHODS With "Parkinson's disease", "Idiopathic Parkinson's Disease", "Lewy Body Parkinson's Disease", "Parkinson's Disease, Idiopathic", "Parkinson Disease, Idiopathic", "Parkinson's disorders", "Parkinsonism syndrome", "Traditional Chinese medicine", "Chinese herbal medicine", "active ingredients", "medicinal plants" as the main keywords, PubMed, Web of Science and other online search engines were used for literature retrieval. RESULTS PD exhibits a close association with various signaling pathways, including but not limited to MAPKs, NF-κB, PI3K/Akt, Nrf2/ARE, Wnt/β-catenin, TLR/TRIF, NLRP3, Notch. The therapeutic potential of TCM lies in its ability to regulate these signaling pathways. In addition, the active ingredients of TCM have shown significant effects in improving OS, neuroinflammation, and DA neuron apoptosis in PD. CONCLUSION The active ingredients of TCM have unique advantages in regulating PD-related signaling pathways. It is suggested to combine network pharmacology and bioinformatics to study the specific targets of TCM. This not only provides a new way for the prevention and treatment of PD with the active ingredients of TCM, but also provides a scientific basis for the selection and development of TCM preparations.
Collapse
Affiliation(s)
- Xiaxia Jin
- National Key Laboratory of Quality Assurance and Sustainable Utilization of Authentic Medicinal Materials, Chinese Medicine Resource Center, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Wendi Dong
- Foshan Clinical Medical College, Guangzhou University of Traditional Chinese Medicine, Foshan 528000, China
| | - Kaile Chang
- Shaanxi University of Traditional Chinese Medicine, Xianyang, 712046, China
| | - Yongmei Yan
- National Key Laboratory of Quality Assurance and Sustainable Utilization of Authentic Medicinal Materials, Chinese Medicine Resource Center, China Academy of Chinese Medical Sciences, Beijing, 100700, China; Department of Encephalopathy, Affiliated Hospital of Shaanxi University of Traditional Chinese Medicine, Xianyang 712000, China.
| |
Collapse
|
6
|
Zhang J, Tang T, Zhang R, Wen L, Deng X, Xu X, Yang W, Jin F, Cao Y, Lu Y, Yu XQ. Maintaining Toll signaling in Drosophila brain is required to sustain autophagy for dopamine neuron survival. iScience 2024; 27:108795. [PMID: 38292423 PMCID: PMC10825691 DOI: 10.1016/j.isci.2024.108795] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2023] [Revised: 10/19/2023] [Accepted: 01/02/2024] [Indexed: 02/01/2024] Open
Abstract
Macroautophagy/autophagy is a conserved process in eukaryotic cells to degrade and recycle damaged intracellular components. Higher level of autophagy in the brain has been observed, and autophagy dysfunction has an impact on neuronal health, but the molecular mechanism is unclear. In this study, we showed that overexpression of Toll-1 and Toll-7 receptors, as well as active Spätzle proteins in Drosophila S2 cells enhanced autophagy, and Toll-1/Toll-7 activated autophagy was dependent on Tube-Pelle-PP2A. Interestingly, Toll-1 but not Toll-7 mediated autophagy was dMyd88 dependent. Importantly, we observed that loss of functions in Toll-1 and Toll-7 receptors and PP2A activity in flies decreased autophagy level, resulting in the loss of dopamine (DA) neurons and reduced fly motion. Our results indicated that proper activation of Toll-1 and Toll-7 pathways and PP2A activity in the brain are necessary to sustain autophagy level for DA neuron survival.
Collapse
Affiliation(s)
- Jie Zhang
- Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, Guangzhou Key Laboratory of Insect Development Regulation and Application Research, Institute of Insect Science and Technology, School of Life Sciences, South China Normal University, Guangzhou 510631, China
- Key Laboratory of Bio-Pesticide Innovation and Application of Guangdong Province, College of Plant Protection, South China Agricultural University, Guangzhou 510642, Guangdong, China
| | - Ting Tang
- Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, Guangzhou Key Laboratory of Insect Development Regulation and Application Research, Institute of Insect Science and Technology, School of Life Sciences, South China Normal University, Guangzhou 510631, China
| | - Ruonan Zhang
- Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, Guangzhou Key Laboratory of Insect Development Regulation and Application Research, Institute of Insect Science and Technology, School of Life Sciences, South China Normal University, Guangzhou 510631, China
- Key Laboratory of Bio-Pesticide Innovation and Application of Guangdong Province, College of Plant Protection, South China Agricultural University, Guangzhou 510642, Guangdong, China
| | - Liang Wen
- Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, Guangzhou Key Laboratory of Insect Development Regulation and Application Research, Institute of Insect Science and Technology, School of Life Sciences, South China Normal University, Guangzhou 510631, China
| | - Xiaojuan Deng
- Guangdong Laboratory for Lingnan Modern Agriculture, Laboratory of Insect Molecular Biology and Biotechnology, Guangdong Provincial Key Laboratory of Agro-animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou 510642, China
| | - Xiaoxia Xu
- Key Laboratory of Bio-Pesticide Innovation and Application of Guangdong Province, College of Plant Protection, South China Agricultural University, Guangzhou 510642, Guangdong, China
| | - Wanying Yang
- Guangdong Laboratory for Lingnan Modern Agriculture, Laboratory of Insect Molecular Biology and Biotechnology, Guangdong Provincial Key Laboratory of Agro-animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou 510642, China
| | - Fengliang Jin
- Key Laboratory of Bio-Pesticide Innovation and Application of Guangdong Province, College of Plant Protection, South China Agricultural University, Guangzhou 510642, Guangdong, China
| | - Yang Cao
- Guangdong Laboratory for Lingnan Modern Agriculture, Laboratory of Insect Molecular Biology and Biotechnology, Guangdong Provincial Key Laboratory of Agro-animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou 510642, China
| | - Yuzhen Lu
- Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, Guangzhou Key Laboratory of Insect Development Regulation and Application Research, Institute of Insect Science and Technology, School of Life Sciences, South China Normal University, Guangzhou 510631, China
| | - Xiao-Qiang Yu
- Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, Guangzhou Key Laboratory of Insect Development Regulation and Application Research, Institute of Insect Science and Technology, School of Life Sciences, South China Normal University, Guangzhou 510631, China
| |
Collapse
|
7
|
Martinez-Heredia V, Blackwell D, Sebastian S, Pearson T, Mok GF, Mincarelli L, Utting C, Folkes L, Poeschl E, Macaulay I, Mayer U, Münsterberg A. Absence of the primary cilia formation gene Talpid3 impairs muscle stem cell function. Commun Biol 2023; 6:1121. [PMID: 37925530 PMCID: PMC10625638 DOI: 10.1038/s42003-023-05503-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Accepted: 10/25/2023] [Indexed: 11/06/2023] Open
Abstract
Skeletal muscle stem cells (MuSC) are crucial for tissue homoeostasis and repair after injury. Following activation, they proliferate to generate differentiating myoblasts. A proportion of cells self-renew, re-enter the MuSC niche under the basal lamina outside the myofiber and become quiescent. Quiescent MuSC have a primary cilium, which is disassembled upon cell cycle entry. Ex vivo experiments suggest cilia are important for MuSC self-renewal, however, their requirement for muscle regeneration in vivo remains poorly understood. Talpid3 (TA3) is essential for primary cilia formation and Hedgehog (Hh) signalling. Here we use tamoxifen-inducible conditional deletion of TA3 in MuSC (iSC-KO) and show that regeneration is impaired in response to cytotoxic injury. Depletion of MuSC after regeneration suggests impaired self-renewal, also consistent with an exacerbated phenotype in TA3iSC-KO mice after repeat injury. Single cell transcriptomics of MuSC progeny isolated from myofibers identifies components of several signalling pathways, which are deregulated in absence of TA3, including Hh and Wnt. Pharmacological activation of Wnt restores muscle regeneration, while purmorphamine, an activator of the Smoothened (Smo) co-receptor in the Hh pathway, has no effect. Together, our data show that TA3 and primary cilia are important for MuSC self-renewal and pharmacological treatment can efficiently restore muscle regeneration.
Collapse
Affiliation(s)
- Victor Martinez-Heredia
- School of Biological Sciences, University of East Anglia, Norwich Research Park, Norwich, UK
- Barcelona Institute for Science & Technology, Center for Genome Regulation CRG, Dr Aiguader 88, 08003, Barcelona, Spain
| | - Danielle Blackwell
- School of Biological Sciences, University of East Anglia, Norwich Research Park, Norwich, UK
- Alberta Children's Hospital Research Institute (ACHRI), University of Calgary, Calgary, AB, Canada
| | - Sujith Sebastian
- School of Biological Sciences, University of East Anglia, Norwich Research Park, Norwich, UK
- Clinical Biotechnology Center, NHSBS, Bath, UK
| | - Timothy Pearson
- School of Biological Sciences, University of East Anglia, Norwich Research Park, Norwich, UK
| | - Gi Fay Mok
- School of Biological Sciences, University of East Anglia, Norwich Research Park, Norwich, UK
| | - Laura Mincarelli
- The Earlham Institute, Norwich Research Park, Norwich, UK
- Wellcome Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Saffron Walden, CB10 1RQ, UK
| | | | - Leighton Folkes
- School of Biological Sciences, University of East Anglia, Norwich Research Park, Norwich, UK
| | - Ernst Poeschl
- School of Biological Sciences, University of East Anglia, Norwich Research Park, Norwich, UK
| | - Iain Macaulay
- The Earlham Institute, Norwich Research Park, Norwich, UK
| | - Ulrike Mayer
- School of Biological Sciences, University of East Anglia, Norwich Research Park, Norwich, UK.
| | - Andrea Münsterberg
- School of Biological Sciences, University of East Anglia, Norwich Research Park, Norwich, UK.
| |
Collapse
|
8
|
Proença C, Freitas M, Ribeiro D, Rufino AT, Fernandes E, Ferreira de Oliveira JMP. The role of flavonoids in the regulation of epithelial-mesenchymal transition in cancer: A review on targeting signaling pathways and metastasis. Med Res Rev 2023; 43:1878-1945. [PMID: 37147865 DOI: 10.1002/med.21966] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Revised: 03/20/2023] [Accepted: 04/12/2023] [Indexed: 05/07/2023]
Abstract
One of the hallmarks of cancer is metastasis, a process that entails the spread of cancer cells to distant regions in the body, culminating in tumor formation in secondary organs. Importantly, the proinflammatory environment surrounding cancer cells further contributes to cancer cell transformation and extracellular matrix destruction. During metastasis, front-rear polarity and emergence of migratory and invasive features are manifestations of epithelial-mesenchymal transition (EMT). A variety of transcription factors (TFs) are implicated in the execution of EMT, the most prominent belonging to the Snail Family Transcriptional Repressor (SNAI) and Zinc Finger E-Box Binding Homeobox (ZEB) families of TFs. These TFs are regulated by interaction with specific microRNAs (miRNAs), as miR34 and miR200. Among the several secondary metabolites produced in plants, flavonoids constitute a major group of bioactive molecules, with several described effects including antioxidant, antiinflammatory, antidiabetic, antiobesogenic, and anticancer effects. This review scrutinizes the modulatory role of flavonoids on the activity of SNAI/ZEB TFs and on their regulatory miRNAs, miR-34, and miR-200. The modulatory role of flavonoids can attenuate mesenchymal features and stimulate epithelial features, thereby inhibiting and reversing EMT. Moreover, this modulation is concomitant with the attenuation of signaling pathways involved in diverse processes as cell proliferation, cell growth, cell cycle progression, apoptosis inhibition, morphogenesis, cell fate, cell migration, cell polarity, and wound healing. The antimetastatic potential of these versatile compounds is emerging and represents an opportunity for the synthesis of more specific and potent agents.
Collapse
Affiliation(s)
- Carina Proença
- LAQV, REQUIMTE, Laboratory of Applied Chemistry, Department of Chemical Sciences, Faculty of Pharmacy, University of Porto, Porto, Portugal
| | - Marisa Freitas
- LAQV, REQUIMTE, Laboratory of Applied Chemistry, Department of Chemical Sciences, Faculty of Pharmacy, University of Porto, Porto, Portugal
| | - Daniela Ribeiro
- LAQV, REQUIMTE, Laboratory of Applied Chemistry, Department of Chemical Sciences, Faculty of Pharmacy, University of Porto, Porto, Portugal
| | - Ana T Rufino
- LAQV, REQUIMTE, Laboratory of Applied Chemistry, Department of Chemical Sciences, Faculty of Pharmacy, University of Porto, Porto, Portugal
| | - Eduarda Fernandes
- LAQV, REQUIMTE, Laboratory of Applied Chemistry, Department of Chemical Sciences, Faculty of Pharmacy, University of Porto, Porto, Portugal
| | - José Miguel P Ferreira de Oliveira
- LAQV, REQUIMTE, Laboratory of Applied Chemistry, Department of Chemical Sciences, Faculty of Pharmacy, University of Porto, Porto, Portugal
| |
Collapse
|
9
|
Al-Wahaibi LH, Hisham M, Abou-Zied HA, Hassan HA, Youssif BGM, Bräse S, Hayallah AM, Abdel-Aziz M. Quinazolin-4-one/3-cyanopyridin-2-one Hybrids as Dual Inhibitors of EGFR and BRAF V600E: Design, Synthesis, and Antiproliferative Activity. Pharmaceuticals (Basel) 2023; 16:1522. [PMID: 38004388 PMCID: PMC10674657 DOI: 10.3390/ph16111522] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 10/19/2023] [Accepted: 10/24/2023] [Indexed: 11/26/2023] Open
Abstract
A novel series of hybrid compounds comprising quinazolin-4-one and 3-cyanopyridin-2-one structures has been developed, with dual inhibitory actions on both EGFR and BRAFV600E. These hybrid compounds were tested in vitro against four different cancer cell lines. Compounds 8, 9, 18, and 19 inhibited cell proliferation significantly in the four cancer cells, with GI50 values ranging from 1.20 to 1.80 µM when compared to Doxorubicin (GI50 = 1.10 µM). Within this group of hybrids, compounds 18 and 19 exhibited substantial inhibition of EGFR and BRAFV600E. Molecular docking investigations provided confirmation that compounds 18 and 19 possess the capability to inhibit EGFR and BRAFV600E. Moreover, computational ADMET prediction indicated that most of the newly synthesized hybrids have low toxicity and minimal side effects.
Collapse
Affiliation(s)
- Lamya H. Al-Wahaibi
- Department of Chemistry, College of Sciences, Princess Nourah Bint Abdulrahman University, Riyadh 11564, Saudi Arabia;
| | - Mohamed Hisham
- Pharmaceutical Chemistry Department, Faculty of Pharmacy, Deraya University, Universities Zone, New Minia City 61111, Egypt; (M.H.); (H.A.A.-Z.)
| | - Hesham A. Abou-Zied
- Pharmaceutical Chemistry Department, Faculty of Pharmacy, Deraya University, Universities Zone, New Minia City 61111, Egypt; (M.H.); (H.A.A.-Z.)
| | - Heba A. Hassan
- Medicinal Chemistry Department, Faculty of Pharmacy, Minia University, Minia 61519, Egypt; (H.A.H.); (M.A.-A.)
| | - Bahaa G. M. Youssif
- Pharmaceutical Organic Chemistry Department, Faculty of Pharmacy, Assiut University, Assiut 71526, Egypt
| | - Stefan Bräse
- Institute of Biological and Chemical Systems, IBCS-FMS, Karlsruhe Institute of Technology, 76131 Karlsruhe, Germany
| | - Alaa M. Hayallah
- Pharmaceutical Organic Chemistry Department, Faculty of Pharmacy, Assiut University, Assiut 71526, Egypt
- Pharmaceutical Organic Chemistry Department, Faculty of Pharmacy, Sphinx University, Assiut 71515, Egypt
| | - Mohamed Abdel-Aziz
- Medicinal Chemistry Department, Faculty of Pharmacy, Minia University, Minia 61519, Egypt; (H.A.H.); (M.A.-A.)
| |
Collapse
|
10
|
Qiu FS, Wang JF, Guo MY, Li XJ, Shi CY, Wu F, Zhang HH, Ying HZ, Yu CH. Rgl-exomiR-7972, a novel plant exosomal microRNA derived from fresh Rehmanniae Radix, ameliorated lipopolysaccharide-induced acute lung injury and gut dysbiosis. Biomed Pharmacother 2023; 165:115007. [PMID: 37327587 DOI: 10.1016/j.biopha.2023.115007] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 06/01/2023] [Accepted: 06/11/2023] [Indexed: 06/18/2023] Open
Abstract
Plant-derived exosome-like nanoparticles (ELNs) have been proposed as a novel therapeutic tool for preventing human diseases. However, the number of well-verified plant ELNs remains limited. In this study, the microRNAs in ELNs derived from fresh Rehmanniae Radix, a well-known traditional Chinese herb for treating inflammatory and metabolic diseases, were determined by using microRNA sequencing to investigate the active components in the ELNs and the protection against lipopolysaccharide (LPS)-induced acute lung inflammation in vivo and in vitro. The results showed that rgl-miR-7972 (miR-7972) was the main ingredient in ELNs. It exerted stronger protective activities against LPS-induced acute lung inflammation than catalpol and acteoside, which are two well-known chemical markers in this herb. Moreover, miR-7972 decreased the production of pro-inflammatory cytokines (IL-1β, IL-6, and TNF-α), reactive oxygen species (ROS) and nitric oxide (NO) in LPS-exposed RAW264.7 cells, thereby facilitating M2 macrophage polarization. Mechanically, miR-7972 downregulated the expression of G protein-coupled receptor 161 (GPR161), activating the Hedgehog pathway, and inhibited the biofilm form of Escherichia coli via targeting virulence gene sxt2. Therefore, miR-7972 derived from fresh R. Radix alleviated LPS-induced lung inflammation by targeting the GPR161-mediated Hedgehog pathway, recovering gut microbiota dysbiosis. It also provided a new direction for gaining novel bioactivity nucleic acid drugs and broadening the knowledge on cross-kingdom physiological regulation through miRNAs.
Collapse
Affiliation(s)
- Fen-Sheng Qiu
- Key Laboratory of Experimental Animal and Safety Evaluation, Zhejiang Academy of Medical Sciences (Hangzhou Medical College), Hangzhou Medical College, Hangzhou 310013, China
| | - Jia-Feng Wang
- Department of Pharmacy, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Mei-Ying Guo
- Key Laboratory of Experimental Animal and Safety Evaluation, Zhejiang Academy of Medical Sciences (Hangzhou Medical College), Hangzhou Medical College, Hangzhou 310013, China
| | - Xue-Jian Li
- Key Laboratory of Experimental Animal and Safety Evaluation, Zhejiang Academy of Medical Sciences (Hangzhou Medical College), Hangzhou Medical College, Hangzhou 310013, China
| | - Chang-Yi Shi
- Key Laboratory of Experimental Animal and Safety Evaluation, Zhejiang Academy of Medical Sciences (Hangzhou Medical College), Hangzhou Medical College, Hangzhou 310013, China; Westlake University, Hangzhou 310024, China
| | - Fang Wu
- Key Laboratory of Experimental Animal and Safety Evaluation, Zhejiang Academy of Medical Sciences (Hangzhou Medical College), Hangzhou Medical College, Hangzhou 310013, China
| | - Huan-Huan Zhang
- Key Laboratory of Experimental Animal and Safety Evaluation, Zhejiang Academy of Medical Sciences (Hangzhou Medical College), Hangzhou Medical College, Hangzhou 310013, China
| | - Hua-Zhong Ying
- Key Laboratory of Experimental Animal and Safety Evaluation, Zhejiang Academy of Medical Sciences (Hangzhou Medical College), Hangzhou Medical College, Hangzhou 310013, China.
| | - Chen-Huan Yu
- Key Laboratory of Experimental Animal and Safety Evaluation, Zhejiang Academy of Medical Sciences (Hangzhou Medical College), Hangzhou Medical College, Hangzhou 310013, China; Cancer Hospital of the University of Chinese Academy of Sciences, Zhejiang Cancer Hospital, Hangzhou 310022, China; Institute of Basic Medicine and Cancer, Chinese Academy of Sciences, Hangzhou 310018, China.
| |
Collapse
|
11
|
Chowdhury I, Dashi G, Keskitalo S. CMGC Kinases in Health and Cancer. Cancers (Basel) 2023; 15:3838. [PMID: 37568654 PMCID: PMC10417348 DOI: 10.3390/cancers15153838] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 07/18/2023] [Accepted: 07/26/2023] [Indexed: 08/13/2023] Open
Abstract
CMGC kinases, encompassing cyclin-dependent kinases (CDKs), mitogen-activated protein kinases (MAPKs), glycogen synthase kinases (GSKs), and CDC-like kinases (CLKs), play pivotal roles in cellular signaling pathways, including cell cycle regulation, proliferation, differentiation, apoptosis, and gene expression regulation. The dysregulation and aberrant activation of these kinases have been implicated in cancer development and progression, making them attractive therapeutic targets. In recent years, kinase inhibitors targeting CMGC kinases, such as CDK4/6 inhibitors and BRAF/MEK inhibitors, have demonstrated clinical success in treating specific cancer types. However, challenges remain, including resistance to kinase inhibitors, off-target effects, and the need for better patient stratification. This review provides a comprehensive overview of the importance of CMGC kinases in cancer biology, their involvement in cellular signaling pathways, protein-protein interactions, and the current state of kinase inhibitors targeting these kinases. Furthermore, we discuss the challenges and future perspectives in targeting CMGC kinases for cancer therapy, including potential strategies to overcome resistance, the development of more selective inhibitors, and novel therapeutic approaches, such as targeting protein-protein interactions, exploiting synthetic lethality, and the evolution of omics in the study of the human kinome. As our understanding of the molecular mechanisms and protein-protein interactions involving CMGC kinases expands, so too will the opportunities for the development of more selective and effective therapeutic strategies for cancer treatment.
Collapse
Affiliation(s)
- Iftekhar Chowdhury
- Institute of Biotechnology, University of Helsinki, 00014 Helsinki, Finland; (I.C.)
- Helsinki Institute of Life Science, University of Helsinki, 00014 Helsinki, Finland
| | - Giovanna Dashi
- Institute of Biotechnology, University of Helsinki, 00014 Helsinki, Finland; (I.C.)
- Helsinki Institute of Life Science, University of Helsinki, 00014 Helsinki, Finland
| | - Salla Keskitalo
- Institute of Biotechnology, University of Helsinki, 00014 Helsinki, Finland; (I.C.)
- Helsinki Institute of Life Science, University of Helsinki, 00014 Helsinki, Finland
| |
Collapse
|
12
|
Mayor E. Neurotrophic effects of intermittent fasting, calorie restriction and exercise: a review and annotated bibliography. FRONTIERS IN AGING 2023; 4:1161814. [PMID: 37334045 PMCID: PMC10273285 DOI: 10.3389/fragi.2023.1161814] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Accepted: 05/09/2023] [Indexed: 06/20/2023]
Abstract
In the last decades, important progress has been achieved in the understanding of the neurotrophic effects of intermittent fasting (IF), calorie restriction (CR) and exercise. Improved neuroprotection, synaptic plasticity and adult neurogenesis (NSPAN) are essential examples of these neurotrophic effects. The importance in this respect of the metabolic switch from glucose to ketone bodies as cellular fuel has been highlighted. More recently, calorie restriction mimetics (CRMs; resveratrol and other polyphenols in particular) have been investigated thoroughly in relation to NSPAN. In the narrative review sections of this manuscript, recent findings on these essential functions are synthesized and the most important molecules involved are presented. The most researched signaling pathways (PI3K, Akt, mTOR, AMPK, GSK3β, ULK, MAPK, PGC-1α, NF-κB, sirtuins, Notch, Sonic hedgehog and Wnt) and processes (e.g., anti-inflammation, autophagy, apoptosis) that support or thwart neuroprotection, synaptic plasticity and neurogenesis are then briefly presented. This provides an accessible entry point to the literature. In the annotated bibliography section of this contribution, brief summaries are provided of about 30 literature reviews relating to the neurotrophic effects of interest in relation to IF, CR, CRMs and exercise. Most of the selected reviews address these essential functions from the perspective of healthier aging (sometimes discussing epigenetic factors) and the reduction of the risk for neurodegenerative diseases (Alzheimer's disease, Huntington's disease, Parkinson's disease) and depression or the improvement of cognitive function.
Collapse
|
13
|
Martins-Neves SR, Sampaio-Ribeiro G, Gomes CMF. Self-Renewal and Pluripotency in Osteosarcoma Stem Cells' Chemoresistance: Notch, Hedgehog, and Wnt/β-Catenin Interplay with Embryonic Markers. Int J Mol Sci 2023; 24:8401. [PMID: 37176108 PMCID: PMC10179672 DOI: 10.3390/ijms24098401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 04/28/2023] [Accepted: 05/04/2023] [Indexed: 05/15/2023] Open
Abstract
Osteosarcoma is a highly malignant bone tumor derived from mesenchymal cells that contains self-renewing cancer stem cells (CSCs), which are responsible for tumor progression and chemotherapy resistance. Understanding the signaling pathways that regulate CSC self-renewal and survival is crucial for developing effective therapies. The Notch, Hedgehog, and Wnt/β-Catenin developmental pathways, which are essential for self-renewal and differentiation of normal stem cells, have been identified as important regulators of osteosarcoma CSCs and also in the resistance to anticancer therapies. Targeting these pathways and their interactions with embryonic markers and the tumor microenvironment may be a promising therapeutic strategy to overcome chemoresistance and improve the prognosis for osteosarcoma patients. This review focuses on the role of Notch, Hedgehog, and Wnt/β-Catenin signaling in regulating CSC self-renewal, pluripotency, and chemoresistance, and their potential as targets for anti-cancer therapies. We also discuss the relevance of embryonic markers, including SOX-2, Oct-4, NANOG, and KLF4, in osteosarcoma CSCs and their association with the aforementioned signaling pathways in overcoming drug resistance.
Collapse
Affiliation(s)
- Sara R. Martins-Neves
- iCBR—Coimbra Institute for Clinical and Biomedical Research, Faculty of Medicine, University of Coimbra, 3000-548 Coimbra, Portugal; (S.R.M.-N.)
- Institute of Pharmacology and Experimental Therapeutics, Faculty of Medicine, University of Coimbra, 3000-548 Coimbra, Portugal
| | - Gabriela Sampaio-Ribeiro
- iCBR—Coimbra Institute for Clinical and Biomedical Research, Faculty of Medicine, University of Coimbra, 3000-548 Coimbra, Portugal; (S.R.M.-N.)
- Institute of Pharmacology and Experimental Therapeutics, Faculty of Medicine, University of Coimbra, 3000-548 Coimbra, Portugal
- CIBB—Center for Innovative Biomedicine and Biotechnology, University of Coimbra, 3000-548 Coimbra, Portugal
- CACC—Clinical Academic Center of Coimbra, 3000-075 Coimbra, Portugal
| | - Célia M. F. Gomes
- iCBR—Coimbra Institute for Clinical and Biomedical Research, Faculty of Medicine, University of Coimbra, 3000-548 Coimbra, Portugal; (S.R.M.-N.)
- Institute of Pharmacology and Experimental Therapeutics, Faculty of Medicine, University of Coimbra, 3000-548 Coimbra, Portugal
- CIBB—Center for Innovative Biomedicine and Biotechnology, University of Coimbra, 3000-548 Coimbra, Portugal
- CACC—Clinical Academic Center of Coimbra, 3000-075 Coimbra, Portugal
| |
Collapse
|
14
|
Boi D, Rubini E, Breccia S, Guarguaglini G, Paiardini A. When Just One Phosphate Is One Too Many: The Multifaceted Interplay between Myc and Kinases. Int J Mol Sci 2023; 24:4746. [PMID: 36902175 PMCID: PMC10003727 DOI: 10.3390/ijms24054746] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Revised: 02/19/2023] [Accepted: 02/21/2023] [Indexed: 03/06/2023] Open
Abstract
Myc transcription factors are key regulators of many cellular processes, with Myc target genes crucially implicated in the management of cell proliferation and stem pluripotency, energy metabolism, protein synthesis, angiogenesis, DNA damage response, and apoptosis. Given the wide involvement of Myc in cellular dynamics, it is not surprising that its overexpression is frequently associated with cancer. Noteworthy, in cancer cells where high Myc levels are maintained, the overexpression of Myc-associated kinases is often observed and required to foster tumour cells' proliferation. A mutual interplay exists between Myc and kinases: the latter, which are Myc transcriptional targets, phosphorylate Myc, allowing its transcriptional activity, highlighting a clear regulatory loop. At the protein level, Myc activity and turnover is also tightly regulated by kinases, with a finely tuned balance between translation and rapid protein degradation. In this perspective, we focus on the cross-regulation of Myc and its associated protein kinases underlying similar and redundant mechanisms of regulation at different levels, from transcriptional to post-translational events. Furthermore, a review of the indirect effects of known kinase inhibitors on Myc provides an opportunity to identify alternative and combined therapeutic approaches for cancer treatment.
Collapse
Affiliation(s)
- Dalila Boi
- Department of Biochemical Sciences, Sapienza University of Rome, 00185 Rome, Italy
| | - Elisabetta Rubini
- Department of Biochemical Sciences, Sapienza University of Rome, 00185 Rome, Italy
| | - Sara Breccia
- Department of Biochemical Sciences, Sapienza University of Rome, 00185 Rome, Italy
| | - Giulia Guarguaglini
- Institute of Molecular Biology and Pathology, National Research Council of Italy, Sapienza University of Rome, 00185 Rome, Italy
| | - Alessandro Paiardini
- Department of Biochemical Sciences, Sapienza University of Rome, 00185 Rome, Italy
| |
Collapse
|
15
|
Zhao Q, Zhang L, He Q, Chang H, Wang Z, Cao H, Zhou Y, Pan R, Chen Y. Targeting TRMT5 suppresses hepatocellular carcinoma progression via inhibiting the HIF-1α pathways. J Zhejiang Univ Sci B 2023; 24:50-63. [PMID: 36632750 PMCID: PMC9837375 DOI: 10.1631/jzus.b2200224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Accepted: 08/19/2022] [Indexed: 01/13/2023]
Abstract
Accumulating evidence has confirmed the links between transfer RNA (tRNA) modifications and tumor progression. The present study is the first to explore the role of tRNA methyltransferase 5 (TRMT5), which catalyzes the m1G37 modification of mitochondrial tRNAs in hepatocellular carcinoma (HCC) progression. Here, based on bioinformatics and clinical analyses, we identified that TRMT5 expression was upregulated in HCC, which correlated with poor prognosis. Silencing TRMT5 attenuated HCC proliferation and metastasis both in vivo and in vitro, which may be partially explained by declined extracellular acidification rate (ECAR) and oxygen consumption rate (OCR). Mechanistically, we discovered that knockdown of TRMT5 inactivated the hypoxia-inducible factor-1 (HIF-1) signaling pathway by preventing HIF-1α stability through the enhancement of cellular oxygen content. Moreover, our data indicated that inhibition of TRMT5 sensitized HCC to doxorubicin by adjusting HIF-1α. In conclusion, our study revealed that targeting TRMT5 could inhibit HCC progression and increase the susceptibility of tumor cells to chemotherapy drugs. Thus, TRMT5 might be a carcinogenesis candidate gene that could serve as a potential target for HCC therapy.
Collapse
Affiliation(s)
- Qiong Zhao
- Department of Genetics, and Department of Genetic and Metabolic Disease, The Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou 310052, China
- Zhejiang Provincial Key Laboratory of Genetic and Developmental Disorders, Institute of Genetics, Zhejiang University, Hangzhou 310058, China
| | - Luwen Zhang
- Department of Genetics, and Department of Genetic and Metabolic Disease, The Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou 310052, China
- Zhejiang Provincial Key Laboratory of Genetic and Developmental Disorders, Institute of Genetics, Zhejiang University, Hangzhou 310058, China
| | - Qiufen He
- Department of Genetics, and Department of Genetic and Metabolic Disease, The Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou 310052, China
- Zhejiang Provincial Key Laboratory of Genetic and Developmental Disorders, Institute of Genetics, Zhejiang University, Hangzhou 310058, China
| | - Hui Chang
- Department of Genetics, and Department of Genetic and Metabolic Disease, The Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou 310052, China
- Zhejiang Provincial Key Laboratory of Genetic and Developmental Disorders, Institute of Genetics, Zhejiang University, Hangzhou 310058, China
| | - Zhiqiang Wang
- Department of Genetics, and Department of Genetic and Metabolic Disease, The Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou 310052, China
- Zhejiang Provincial Key Laboratory of Genetic and Developmental Disorders, Institute of Genetics, Zhejiang University, Hangzhou 310058, China
| | - Hongcui Cao
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China
| | - Ying Zhou
- Xiangshan Hospital of TCM Medical and Health Group, Ningbo 315700, China
| | - Ruolang Pan
- Zhejiang Provincial Key Laboratory of Cell-Based Drug and Applied Technology Development, Hangzhou 311121, China. ,
| | - Ye Chen
- Department of Genetics, and Department of Genetic and Metabolic Disease, The Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou 310052, China.
- Zhejiang Provincial Key Laboratory of Genetic and Developmental Disorders, Institute of Genetics, Zhejiang University, Hangzhou 310058, China.
| |
Collapse
|
16
|
Gupta V, Mahata T, Roy R, Gharai PK, Jana A, Garg S, Ghosh S. Discovery of imidazole-based GSK-3 β inhibitors for transdifferentiation of human mesenchymal stem cells to neurons: A potential single-molecule neurotherapeutic foresight. Front Mol Neurosci 2022; 15:1002419. [PMID: 36590911 PMCID: PMC9797524 DOI: 10.3389/fnmol.2022.1002419] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Accepted: 11/11/2022] [Indexed: 12/16/2022] Open
Abstract
The transdifferentiation of human mesenchymal stem cells (hMSC) to functional neurons is crucial for the development of future neuro-regenerative therapeutics. Currently, transdifferentiation of hMSCs to neurons requires a "chemical cocktail" along with neural growth factors. The role of the individual molecules present in a "chemical cocktail" is poorly understood and may cause unwanted toxicity or adverse effects. Toward, this goal, we have showcased the discovery of an imidazole-based "single-molecule" transdifferentiation initiator SG-145C. This discovery was achieved via screening of a small molecule library through extensive in silico studies to shortlist the best-fitting molecules. This discovery evolved through a careful selection to target Glycogen synthase kinase-3β (GSK-3β), which is one of the important proteins responsible for neurogenesis. Rigorous computational experiments, as well as extensive biological assays, confirmed that SG-145C has significant potential to transdifferentiate hMSCs to neurons. Interestingly, our results suggest that SG-145C can inhibit the proteasomal degradation of phosphorylated β-catenin, in turn promoting transdifferentiation of hMSCs into neurons via the Wnt pathway.
Collapse
Affiliation(s)
- Varsha Gupta
- Organic and Medicinal Chemistry and Structural Biology and Bioinformatics Division, CSIR-Indian Institute of Chemical Biology, Kolkata, West Bengal, India
| | - Tanushree Mahata
- Organic and Medicinal Chemistry and Structural Biology and Bioinformatics Division, CSIR-Indian Institute of Chemical Biology, Kolkata, West Bengal, India
| | - Rajsekhar Roy
- Department of Bioscience and Bioengineering, Indian Institute of Technology Jodhpur, Karwar, Rajasthan, India
| | - Prabir Kumar Gharai
- Organic and Medicinal Chemistry and Structural Biology and Bioinformatics Division, CSIR-Indian Institute of Chemical Biology, Kolkata, West Bengal, India
| | - Aniket Jana
- Smart Healthcare, Interdisciplinary Research Platform, Indian Institute of Technology Jodhpur, Karwar, Rajasthan, India
| | - Shubham Garg
- Department of Bioscience and Bioengineering, Indian Institute of Technology Jodhpur, Karwar, Rajasthan, India
| | - Surajit Ghosh
- Organic and Medicinal Chemistry and Structural Biology and Bioinformatics Division, CSIR-Indian Institute of Chemical Biology, Kolkata, West Bengal, India,Department of Bioscience and Bioengineering, Indian Institute of Technology Jodhpur, Karwar, Rajasthan, India,Smart Healthcare, Interdisciplinary Research Platform, Indian Institute of Technology Jodhpur, Karwar, Rajasthan, India,*Correspondence: Surajit Ghosh,
| |
Collapse
|
17
|
Iwata K, Ferdousi F, Arai Y, Isoda H. Interactions between Major Bioactive Polyphenols of Sugarcane Top: Effects on Human Neural Stem Cell Differentiation and Astrocytic Maturation. Int J Mol Sci 2022; 23:ijms232315120. [PMID: 36499441 PMCID: PMC9738893 DOI: 10.3390/ijms232315120] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 11/23/2022] [Accepted: 11/28/2022] [Indexed: 12/05/2022] Open
Abstract
Sugarcane (Saccharum officinarum L.) is a tropical plant grown for sugar production. We recently showed that sugarcane top (ST) ameliorates cognitive decline in a mouse model of accelerated aging via promoting neuronal differentiation and neuronal energy metabolism and extending the length of the astrocytic process in vitro. Since the crude extract consists of multicomponent mixtures, it is crucial to identify bioactive compounds of interest and the affected molecular targets. In the present study, we investigated the bioactivities of major polyphenols of ST, namely 3-O-caffeoylquinic acid (3CQA), 5-O-caffeoylquinic acid (5CQA), 3-O-feruloylquinic acid (3FQA), and Isoorientin (ISO), in human fetal neural stem cells (hNSCs)- an in vitro model system for studying neural development. We found that multiple polyphenols of ST contributed synergistically to stimulate neuronal differentiation of hNSCs and induce mitochondrial activity in immature astrocytes. Mono-CQAs (3CQA and 5CQA) regulated the expression of cyclins related to G1 cell cycle arrest, whereas ISO regulated basic helix-loop-helix transcription factors related to cell fate determination. Additionally, mono-CQAs activated p38 and ISO inactivated GSK3β. In hNSC-derived immature astrocytes, the compounds upregulated mRNA expression of PGC-1α, a master regulator of astrocytic mitochondrial biogenesis. Altogether, our findings suggest that synergistic interactions between major polyphenols of ST contribute to its potential for neuronal differentiation and astrocytic maturation.
Collapse
Affiliation(s)
- Kengo Iwata
- School of Integrative and Global Majors, University of Tsukuba, Tsukuba 305-8572, Japan
- Nipoo Co., Ltd., Osaka 574-0062, Japan
| | - Farhana Ferdousi
- Alliance for Research on the Mediterranean and North Africa (ARENA), University of Tsukuba, Tsukuba 305-8572, Japan
- AIST—University of Tsukuba Open Innovation Laboratory for Food and Medicinal Resource Engineering (FoodMed-OIL), Tsukuba 305-8572, Japan
| | | | - Hiroko Isoda
- School of Integrative and Global Majors, University of Tsukuba, Tsukuba 305-8572, Japan
- Alliance for Research on the Mediterranean and North Africa (ARENA), University of Tsukuba, Tsukuba 305-8572, Japan
- AIST—University of Tsukuba Open Innovation Laboratory for Food and Medicinal Resource Engineering (FoodMed-OIL), Tsukuba 305-8572, Japan
- Faculty of Life and Environmental Sciences, University of Tsukuba, Tsukuba 305-8572, Japan
- Correspondence: ; Tel.: +81-29-853-5775
| |
Collapse
|
18
|
Tian S, Zhao H, Song H. Shared signaling pathways and targeted therapy by natural bioactive compounds for obesity and type 2 diabetes. Crit Rev Food Sci Nutr 2022; 64:5039-5056. [PMID: 36397728 DOI: 10.1080/10408398.2022.2148090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Epidemiological evidence showed that patients suffering from obesity and T2DM are significantly at higher risk for chronic low-grade inflammation, oxidative stress, nonalcoholic fatty liver (NAFLD) and intestinal flora imbalance. Increasing evidence of pathological characteristics illustrates that some common signaling pathways participate in the occurrence, progression, treatment, and prevention of obesity and T2DM. These signaling pathways contain the pivotal players in glucose and lipid metabolism, e.g., AMPK, PI3K/AKT, FGF21, Hedgehog, Notch, and WNT; the inflammation response, for instance, Nrf2, MAPK, NF- kB, and JAK/STAT. Bioactive compounds from plants have emerged as key food components related to healthy status and disease prevention. They can act as signaling molecules to initiate or mediate signaling transduction that regulates cell function and homeostasis to repair and re-functionalize the damaged tissues and organs. Therefore, it is crucial to continuously investigate bioactive compounds as sources of new pharmaceuticals for obesity and T2DM. This review provides comprehensive information of the commonly shared signaling pathways between obesity and T2DM, and we also summarize the therapeutic bioactive compounds that may serve as anti-obesity and/or anti-diabetes therapeutics by regulating these associated pathways, which contribute to improving glucose and lipid metabolism, attenuating inflammation.
Collapse
Affiliation(s)
- Shuhua Tian
- College of Food Science and Engineering, Nanjing University of Finance and Economics/Collaborative Innovation Center for Modern Grain Circulation and Safety, Nanjing, China
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - Haizhen Zhao
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - Haizhao Song
- College of Food Science and Engineering, Nanjing University of Finance and Economics/Collaborative Innovation Center for Modern Grain Circulation and Safety, Nanjing, China
| |
Collapse
|
19
|
Chen LJ, Wu L, Wang W, Zhai LL, Xiang F, Li WB, Tang ZG. Long non‑coding RNA 01614 hyperactivates WNT/β‑catenin signaling to promote pancreatic cancer progression by suppressing GSK‑3β. Int J Oncol 2022; 61:116. [PMID: 35929518 PMCID: PMC9387559 DOI: 10.3892/ijo.2022.5406] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Accepted: 06/24/2022] [Indexed: 11/06/2022] Open
Abstract
Pancreatic cancer (PC) is a lethal type of cancer for which effective therapies are limited. Long non-coding RNAs (lncRNAs) represent a critical type of regulator category, mediating the tumorigenesis and development of various tumor types, including PC. However, the expression patterns and functions of numerous lncRNAs in PC remain poorly understood. In the present study, linc01614 was identified as a PC-related lncRNA. linc01614 was notably upregulated in PC tissues and cell lines and was associated with the poor disease-free survival of patients with PC according to the analysis of The Cancer Genome Atlas-derived datasets. Functionally, linc01614 knockdown suppressed PC cell proliferation, migration and invasion in vitro, and inhibited tumor proliferation in vitro and in vivo. Mechanistically, linc01614 overexpression stabilized the level of β-catenin protein to hyperactivate the WNT/β-catenin signaling pathway in PC cells. Further analyses revealed that linc01614 bound to GSK-3β and perturbed the interaction between GSK-3β and AXIN1, thereby preventing the formation of the β-catenin degradation complex and reducing the degradation of β-catenin. In summary, the present findings reveal that linc01614 may function as an oncogene and promote the progression of PC and may thus be considered as a potential therapeutic target in the future.
Collapse
Affiliation(s)
- Long-Jiang Chen
- Department of Pancreatic Surgery, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China
| | - Lun Wu
- Department of Breast and Τhyroid Surgery, Experiment Center of Medicine, Sinopharm Dongfeng General Hospital, Hubei University of Medicine, Shiyan, Hubei 442008, P.R. China
| | - Wei Wang
- Department of Pancreatic Surgery, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China
| | - Lu-Lu Zhai
- Department of Pancreatic Surgery, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China
| | - Feng Xiang
- Department of Pancreatic Surgery, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China
| | - Wei-Bo Li
- Department of Pancreatic Surgery, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China
| | - Zhi-Gang Tang
- Department of Pancreatic Surgery, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China
| |
Collapse
|
20
|
Fan Y, Zhang X, Tong Y, Chen S, Liang J. Curcumin against gastrointestinal cancer: A review of the pharmacological mechanisms underlying its antitumor activity. Front Pharmacol 2022; 13:990475. [PMID: 36120367 PMCID: PMC9478803 DOI: 10.3389/fphar.2022.990475] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2022] [Accepted: 08/09/2022] [Indexed: 11/17/2022] Open
Abstract
Gastrointestinal cancer (GIC) poses a serious threat to human health globally. Curcumin (CUR), a hydrophobic polyphenol extracted from the rhizome of Curcuma longa, has shown reliable anticancer function and low toxicity, thereby offering broad research prospects. Numerous studies have demonstrated the pharmacological mechanisms underlying the effectiveness of CUR against GIC, including the induction of apoptosis and autophagy, arrest of the cell cycle, inhibition of the epithelial–mesenchymal transition (EMT) processes, inhibition of cell invasion and migration, regulation of multiple signaling pathways, sensitization to chemotherapy and reversal of resistance to such treatments, and regulation of the tumor survival environment. It has been confirmed that CUR exerts its antitumor effects on GIC through these mechanisms in vitro and in vivo. Moreover, treatment with CUR is safe and tolerable. Newly discovered types of regulated cell death (RCD), such as pyroptosis, necroptosis, and ferroptosis, may provide a new direction for research on the efficacy of CUR against GIC. In this review, we discuss the recently found pharmacological mechanisms underlying the effects of CUR against GIC (gastric and colorectal cancers). The objective is to provide a reference for further research on treatments against GIC.
Collapse
Affiliation(s)
- Yuanyuan Fan
- Department of Traditional Chinese Medicine, Shengjing Hospital of China Medical University, Shenyang, China
| | - Xiqin Zhang
- Department of Traditional Chinese Medicine, Shengjing Hospital of China Medical University, Shenyang, China
| | - Yuxin Tong
- Liaoning Key Laboratory of Research and Application of Animal Models for Environmental and Metabolic Diseases, Medical Research Center, Shengjing Hospital of China Medical University, Shenyang, China
| | - Suning Chen
- Department of Traditional Chinese Medicine, Shengjing Hospital of China Medical University, Shenyang, China
| | - Jingjing Liang
- Department of Traditional Chinese Medicine, Shengjing Hospital of China Medical University, Shenyang, China
- *Correspondence: Jingjing Liang,
| |
Collapse
|
21
|
Placental growth factor stabilizes VEGF receptor-2 protein in retinal pigment epithelial cells by downregulating glycogen synthase kinase 3 activity. J Biol Chem 2022; 298:102378. [PMID: 35970387 PMCID: PMC9478399 DOI: 10.1016/j.jbc.2022.102378] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Revised: 08/04/2022] [Accepted: 08/06/2022] [Indexed: 11/24/2022] Open
Abstract
Placental growth factor (PlGF) belongs to the vascular endothelial growth factor (VEGF) family of proteins that participate in angiogenesis and vasculogenesis. Anti-VEGF therapy has become the standard treatment for ocular angiogenic disorders in ophthalmological practice. However, there is emerging evidence that anti-VEGF treatment may increase the risk of atrophy of the retinal pigment epithelium (RPE), which is important for the homeostasis of retinal tissue. Whereas the cytoprotective role of VEGF family molecules, particularly that of VEGF A (VEGFA) through its receptor VEGF receptor-2 (VEGFR-2), has been recognized, the physiological role of PlGF in the retina is still unknown. In this study, we explored the role of PlGF in the RPE using PlGF-knockdown RPE cells generated by retrovirus-based PlGF-shRNA transduction. We show that VEGFA reduced apoptosis induced by serum starvation in RPE cells, whereas the antiapoptotic effect of VEGFA was abrogated by VEGFR-2 knockdown. Furthermore, PlGF knockdown increased serum starvation–induced cell apoptosis and unexpectedly reduced the protein level of VEGFR-2 in the RPE. The antiapoptotic effect of VEGFA was also diminished in PlGF-knockdown RPE cells. In addition, we found that glycogen synthase kinase 3 activity was involved in proteasomal degradation of VEGFR-2 in RPE cells and inactivated by PlGF via AKT phosphorylation. Overall, the present data demonstrate that PlGF is crucial for RPE cell viability and that PlGF supports VEGFA/VEGFR-2 signaling by stabilizing the VEGFR-2 protein levels through glycogen synthase kinase 3 inactivation.
Collapse
|
22
|
Stem cell like memory T cells: A new paradigm in cancer immunotherapy. Clin Immunol 2022; 241:109078. [PMID: 35840054 DOI: 10.1016/j.clim.2022.109078] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Revised: 07/04/2022] [Accepted: 07/09/2022] [Indexed: 11/03/2022]
Abstract
Stem cell like memory T (TSCM) cells have emerged as the apex of memory T cell differentiation for their properties of self-renewal and replenishing progenies. With potent long-term persistence, proliferative capacity and antitumor activity, TSCM cells were thought to be the ideal candidate for cancer immunotherapies. Several strategies have been proposed, such as manipulations of cytokines, metabolic factors, signal pathways, and T cell receptor signal intensity, to induce more TSCM cells in vitro, in the hope that they could reach a clinical order of magnitude to provide more long-lasting and effective anti-tumor effects in vivo. In this review, we summarized the differentiation characteristics of TSCM cells and strategies to generate more TSCM cells. We focused on their roles and application in the cancer immunotherapy especially in adoptive cell transfer therapy and cancer therapeutic vaccines, and hopefully provided clues for future understanding and researches.
Collapse
|
23
|
Pathobiology and Therapeutic Relevance of GSK-3 in Chronic Hematological Malignancies. Cells 2022; 11:cells11111812. [PMID: 35681507 PMCID: PMC9180032 DOI: 10.3390/cells11111812] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Revised: 05/28/2022] [Accepted: 05/29/2022] [Indexed: 12/10/2022] Open
Abstract
Glycogen synthase kinase-3 (GSK-3) is an evolutionarily conserved, ubiquitously expressed, multifunctional serine/threonine protein kinase involved in the regulation of a variety of physiological processes. GSK-3 comprises two isoforms (α and β) which were originally discovered in 1980 as enzymes involved in glucose metabolism via inhibitory phosphorylation of glycogen synthase. Differently from other proteins kinases, GSK-3 isoforms are constitutively active in resting cells, and their modulation mainly involves inhibition through upstream regulatory networks. In the early 1990s, GSK-3 isoforms were implicated as key players in cancer cell pathobiology. Active GSK-3 facilitates the destruction of multiple oncogenic proteins which include β-catenin and Master regulator of cell cycle entry and proliferative metabolism (c-Myc). Therefore, GSK-3 was initially considered to be a tumor suppressor. Consistently, GSK-3 is often inactivated in cancer cells through dysregulated upstream signaling pathways. However, over the past 10–15 years, a growing number of studies highlighted that in some cancer settings GSK-3 isoforms inhibit tumor suppressing pathways and therefore act as tumor promoters. In this article, we will discuss the multiple and often enigmatic roles played by GSK-3 isoforms in some chronic hematological malignancies (chronic myelogenous leukemia, chronic lymphocytic leukemia, multiple myeloma, and B-cell non-Hodgkin’s lymphomas) which are among the most common blood cancer cell types. We will also summarize possible novel strategies targeting GSK-3 for innovative therapies of these disorders.
Collapse
|
24
|
Echinacoside Induces Mitochondria-Mediated Pyroptosis through Raf/MEK/ERK Signaling in Non-Small Cell Lung Cancer Cells. J Immunol Res 2022; 2022:3351268. [PMID: 35571569 PMCID: PMC9106467 DOI: 10.1155/2022/3351268] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Revised: 04/11/2022] [Accepted: 04/15/2022] [Indexed: 12/24/2022] Open
Abstract
Background Various natural compounds are effective in cancer prevention and treatment with fewer side effects than conventional radiotherapy and chemotherapy. Considering the uncertainty of the antitumor mechanism of Echinacoside (Ech) and the fact that no study on Ech against non-small cell lung cancer (NSCLC) has been explored previously, this study inquired into the anti-NSCLC effect of Ech and explored its potential mechanisms. Methods The IC50 to Ech of the NSCLC cells was calculated based on a series of cell viability assays. Different concentrations of Ech were used to treat the cells; the proliferation activity of the cells was evaluated using EdU staining. Mitochondrial membrane potential was detected by JC-1 staining. Levels of cytokines IL-1β and IL-18 were measured by ELISA. GSH and MDA levels were measured by microplate reader. Expression of cytochrome c, NLRP3, caspase-1, IL-1β, c-Myc, c-Fos, and Raf/MEK/ERK pathway proteins was evaluated by western blot. Meanwhile, we used xenograft, immunohistochemical staining, and H&E staining to evaluate the pharmacological effects of Ech in mice in vivo. Results ECH inhibited the proliferation of NSCLC cells. Ech increased the expression of pyroptosis-related proteins. Besides, Ech perturbed the mitochondrial membrane potential with the release of mitochondrial cytochrome c, accompanied by increased oxidative stress. Ech inhibited the phosphorylation levels of Raf/MEK/ERK signaling pathway and subsequently reduced c-myc and c-fos protein expression. In addition, Ech effectively restrained the growth of tumors in vivo. Conclusions Ech inhibited the Raf/MEK/ERK signaling. Impaired mitochondria activated inflammasome, which in turn led to the pyroptosis of NSCLC cells. These findings can provide some ideas on how to use pyroptosis to treat NSCLC.
Collapse
|
25
|
Sanaei MJ, Razi S, Pourbagheri-Sigaroodi A, Bashash D. The PI3K/Akt/mTOR pathway in lung cancer; oncogenic alterations, therapeutic opportunities, challenges, and a glance at the application of nanoparticles. Transl Oncol 2022; 18:101364. [PMID: 35168143 PMCID: PMC8850794 DOI: 10.1016/j.tranon.2022.101364] [Citation(s) in RCA: 95] [Impact Index Per Article: 31.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Revised: 01/15/2022] [Accepted: 02/05/2022] [Indexed: 12/20/2022] Open
Abstract
Lung cancer is the most common and deadliest human malignancies. The alterations of PI3K/Akt/mTOR pathway are related to lung cancer progression. PI3K axis regulates proliferation, apoptosis, metastasis, and EMT of lung cancer. Agents inhibiting components of PI3K axis diminish lung tumor growth and invasion. Low efficacy and off-target toxicity could be improved by nanoparticle application.
Lung cancer is the leading cause of cancer-related mortality worldwide. Although the PI3K/Akt/mTOR signaling pathway has recently been considered as one of the most altered molecular pathways in this malignancy, few articles reviewed the task. In this review, we aim to summarize the original data obtained from international research laboratories on the oncogenic alterations in each component of the PI3K/Akt/mTOR pathway in lung cancer. This review also responds to questions on how aberrant activation in this axis contributes to uncontrolled growth, drug resistance, sustained angiogenesis, as well as tissue invasion and metastatic spread. Besides, we provide a special focus on pharmacologic inhibitors of the PI3K/Akt/mTOR axis, either as monotherapy or in a combined-modal strategy, in the context of lung cancer. Despite promising outcomes achieved by using these agents, however, the presence of drug resistance as well as treatment-related adverse events is the other side of the coin. The last section allocates a general overview of the challenges associated with the inhibitors of the PI3K pathway in lung cancer patients. Finally, we comment on the future research aspects, especially in which nano-based drug delivery strategies might increase the efficacy of the therapy in this malignancy.
Collapse
|
26
|
Siraj MA, Jacobs AT, Tan GT. Altersolanol B, a fungal tetrahydroanthraquinone, inhibits the proliferation of estrogen receptor-expressing (ER+) human breast adenocarcinoma by modulating PI3K/AKT, p38/ERK MAPK and associated signaling pathways. Chem Biol Interact 2022; 359:109916. [DOI: 10.1016/j.cbi.2022.109916] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Revised: 03/10/2022] [Accepted: 03/23/2022] [Indexed: 12/15/2022]
|
27
|
Wang L, Cao H, Zhong Y, Ji P, Chen F. The Role of m6A Regulator-Mediated Methylation Modification and Tumor Microenvironment Infiltration in Glioblastoma Multiforme. Front Cell Dev Biol 2022; 10:842835. [PMID: 35265626 PMCID: PMC8898963 DOI: 10.3389/fcell.2022.842835] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2021] [Accepted: 02/01/2022] [Indexed: 01/12/2023] Open
Abstract
N6-methyladenosine (m6A) RNA methylation is an emerging epigenetic modification in recent years and epigenetic regulation of the immune response has been demonstrated, but the potential role of m6A modification in GBM tumor microenvironment (TME) cell infiltration and stemness remain unknown. The m6A modification patterns of 310 GBM samples were comprehensively evaluated based on 21 m6A regulators, and we systematically correlated these modification patterns with TME cell infiltration characteristics and stemness characteristics. Construction of m6Ascore to quantify the m6A modification patterns of individual GBM samples using a principal component analysis algorithm. We identified two distinct patterns of m6A modification. The infiltration characteristics of TME cells in these two patterns were highly consistent with the immunophenotype of the GBM, including the immune activation differentiation pattern and the immune desert dedifferentiation pattern. We also identified two modes of regulation of immunity and stemness by m6A methylation. Stromal activation and lack of effective immune infiltration were observed in the high m6Ascore subtype. Pan-cancer analysis results illustrate a significant correlation between m6AScore and tumor clinical outcome, immune infiltration, and stemness. Our work reveals that m6A modifications play an important role in the development of TME and stemness diversity and complexity. Patients with a low m6AScore showed significant therapeutic advantages and clinical benefits. Assessing the m6A modification pattern of individual tumors will help enhance our knowledge of TME infiltration and stemness characteristics, contribute to the development of immunotherapeutic strategies.
Collapse
Affiliation(s)
- Liang Wang
- Department of Neurosurgery, Tangdu Hospital of Fourth Military Medical University, Xi’an, China
| | - Haiyan Cao
- Department of Neurosurgery, Tangdu Hospital of Fourth Military Medical University, Xi’an, China
| | - Ying Zhong
- Department of Biochemistry, University of Greifswald, Greifswald, Germany
| | - Peigang Ji
- Department of Neurosurgery, Tangdu Hospital of Fourth Military Medical University, Xi’an, China
| | - Fan Chen
- Department of Neurosurgery, Tangdu Hospital of Fourth Military Medical University, Xi’an, China
| |
Collapse
|
28
|
Guo R, Xing QS. Roles of Wnt Signaling Pathway and ROR2 Receptor in Embryonic Development: An Update Review Article. Epigenet Insights 2022; 15:25168657211064232. [PMID: 35128307 PMCID: PMC8808015 DOI: 10.1177/25168657211064232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Accepted: 11/15/2021] [Indexed: 11/15/2022] Open
Abstract
The Wnt family is a large class of highly conserved cysteine-rich secretory glycoproteins that play a vital role in various cellular and physiological courses through different signaling pathways during embryogenesis and tissue homeostasis 3. Wnt5a is a secreted glycoprotein that belongs to the noncanonical Wnt family and is involved in a wide range of developmental and tissue homeostasis. A growing body of evidence suggests that Wnt5a affects embryonic development, signaling through various receptors, starting with the activation of β-catenin by Wnt5a. In addition to affecting planar cell polarity and Ca2+ pathways, β-catenin also includes multiple signaling cascades that regulate various cell functions. Secondly, Wnt5a can bind to Ror receptors to mediate noncanonical Wnt signaling and a significant ligand for Ror2 in vertebrates. Consistent with the multiple functions of Wnt5A/Ror2 signaling, Wnt5A knockout mice exhibited various phenotypic defects, including an inability to extend the anterior and posterior axes of the embryo. Numerous essential roles of Wnt5a/Ror2 in development have been demonstrated. Therefore, Ror signaling pathway become a necessary target for diagnosing and treating human diseases. The Wnt5a- Ror2 signaling pathway as a critical factor has attracted extensive attention.
Collapse
Affiliation(s)
- Rui Guo
- Qingdao University, Qingdao, China
| | - Quan Sheng Xing
- Qingdao University-Affiliated Hospital of Women and Children, Qingdao, China
- Quan Sheng Xing, Qingdao University-Affiliated Hospital of Women and Children, tongfu road 6, shibei district, Qingdao 266000, China.
| |
Collapse
|
29
|
Vainio L, Taponen S, Kinnunen SM, Halmetoja E, Szabo Z, Alakoski T, Ulvila J, Junttila J, Lakkisto P, Magga J, Kerkelä R. GSK3β Serine 389 Phosphorylation Modulates Cardiomyocyte Hypertrophy and Ischemic Injury. Int J Mol Sci 2021; 22:13586. [PMID: 34948382 PMCID: PMC8707850 DOI: 10.3390/ijms222413586] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 12/03/2021] [Accepted: 12/15/2021] [Indexed: 11/17/2022] Open
Abstract
Prior studies show that glycogen synthase kinase 3β (GSK3β) contributes to cardiac ischemic injury and cardiac hypertrophy. GSK3β is constitutionally active and phosphorylation of GSK3β at serine 9 (S9) inactivates the kinase and promotes cellular growth. GSK3β is also phosphorylated at serine 389 (S389), but the significance of this phosphorylation in the heart is not known. We analyzed GSK3β S389 phosphorylation in diseased hearts and utilized overexpression of GSK3β carrying ser→ala mutations at S9 (S9A) and S389 (S389A) to study the biological function of constitutively active GSK3β in primary cardiomyocytes. We found that phosphorylation of GSK3β at S389 was increased in left ventricular samples from patients with dilated cardiomyopathy and ischemic cardiomyopathy, and in hearts of mice subjected to thoracic aortic constriction. Overexpression of either GSK3β S9A or S389A reduced the viability of cardiomyocytes subjected to hypoxia-reoxygenation. Overexpression of double GSK3β mutant (S9A/S389A) further reduced cardiomyocyte viability. Determination of protein synthesis showed that overexpression of GSK3β S389A or GSK3β S9A/S389A increased both basal and agonist-induced cardiomyocyte growth. Mechanistically, GSK3β S389A mutation was associated with activation of mTOR complex 1 signaling. In conclusion, our data suggest that phosphorylation of GSK3β at S389 enhances cardiomyocyte survival and protects from cardiomyocyte hypertrophy.
Collapse
Affiliation(s)
- Laura Vainio
- Research Unit of Biomedicine, Department of Pharmacology and Toxicology, University of Oulu, Oulu 90220, Finland; (L.V.); (S.T.); (S.M.K.); (E.H.); (Z.S.); (T.A.); (J.U.); (J.M.)
- Biocenter Oulu, University of Oulu, Oulu 90220, Finland;
| | - Saija Taponen
- Research Unit of Biomedicine, Department of Pharmacology and Toxicology, University of Oulu, Oulu 90220, Finland; (L.V.); (S.T.); (S.M.K.); (E.H.); (Z.S.); (T.A.); (J.U.); (J.M.)
- Biocenter Oulu, University of Oulu, Oulu 90220, Finland;
| | - Sini M. Kinnunen
- Research Unit of Biomedicine, Department of Pharmacology and Toxicology, University of Oulu, Oulu 90220, Finland; (L.V.); (S.T.); (S.M.K.); (E.H.); (Z.S.); (T.A.); (J.U.); (J.M.)
- Drug Research Program, Division of Pharmacology and Pharmacotherapy, Faculty of Pharmacy, University of Helsinki, Helsinki 00014, Finland
| | - Eveliina Halmetoja
- Research Unit of Biomedicine, Department of Pharmacology and Toxicology, University of Oulu, Oulu 90220, Finland; (L.V.); (S.T.); (S.M.K.); (E.H.); (Z.S.); (T.A.); (J.U.); (J.M.)
- Medical Research Center Oulu, Oulu University Hospital and University of Oulu, Oulu 90220, Finland
| | - Zoltan Szabo
- Research Unit of Biomedicine, Department of Pharmacology and Toxicology, University of Oulu, Oulu 90220, Finland; (L.V.); (S.T.); (S.M.K.); (E.H.); (Z.S.); (T.A.); (J.U.); (J.M.)
| | - Tarja Alakoski
- Research Unit of Biomedicine, Department of Pharmacology and Toxicology, University of Oulu, Oulu 90220, Finland; (L.V.); (S.T.); (S.M.K.); (E.H.); (Z.S.); (T.A.); (J.U.); (J.M.)
- Biocenter Oulu, University of Oulu, Oulu 90220, Finland;
| | - Johanna Ulvila
- Research Unit of Biomedicine, Department of Pharmacology and Toxicology, University of Oulu, Oulu 90220, Finland; (L.V.); (S.T.); (S.M.K.); (E.H.); (Z.S.); (T.A.); (J.U.); (J.M.)
| | - Juhani Junttila
- Biocenter Oulu, University of Oulu, Oulu 90220, Finland;
- Medical Research Center Oulu, Oulu University Hospital and University of Oulu, Oulu 90220, Finland
- Research Unit of Internal Medicine, Division of Cardiology, Oulu University Hospital and University of Oulu, Oulu 90220, Finland
| | - Päivi Lakkisto
- Unit of Cardiovascular Research, Minerva Institute for Medical Research, Helsinki 00014, Finland;
- Department of Clinical Chemistry and Hematology, University of Helsinki and Helsinki University Hospital, Helsinki 00014, Finland
| | - Johanna Magga
- Research Unit of Biomedicine, Department of Pharmacology and Toxicology, University of Oulu, Oulu 90220, Finland; (L.V.); (S.T.); (S.M.K.); (E.H.); (Z.S.); (T.A.); (J.U.); (J.M.)
- Biocenter Oulu, University of Oulu, Oulu 90220, Finland;
| | - Risto Kerkelä
- Research Unit of Biomedicine, Department of Pharmacology and Toxicology, University of Oulu, Oulu 90220, Finland; (L.V.); (S.T.); (S.M.K.); (E.H.); (Z.S.); (T.A.); (J.U.); (J.M.)
- Biocenter Oulu, University of Oulu, Oulu 90220, Finland;
- Medical Research Center Oulu, Oulu University Hospital and University of Oulu, Oulu 90220, Finland
| |
Collapse
|
30
|
Wang L, Li J, Di LJ. Glycogen synthesis and beyond, a comprehensive review of GSK3 as a key regulator of metabolic pathways and a therapeutic target for treating metabolic diseases. Med Res Rev 2021; 42:946-982. [PMID: 34729791 PMCID: PMC9298385 DOI: 10.1002/med.21867] [Citation(s) in RCA: 95] [Impact Index Per Article: 23.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Revised: 08/01/2021] [Accepted: 10/24/2021] [Indexed: 12/19/2022]
Abstract
Glycogen synthase kinase‐3 (GSK3) is a highly evolutionarily conserved serine/threonine protein kinase first identified as an enzyme that regulates glycogen synthase (GS) in response to insulin stimulation, which involves GSK3 regulation of glucose metabolism and energy homeostasis. Both isoforms of GSK3, GSK3α, and GSK3β, have been implicated in many biological and pathophysiological processes. The various functions of GSK3 are indicated by its widespread distribution in multiple cell types and tissues. The studies of GSK3 activity using animal models and the observed effects of GSK3‐specific inhibitors provide more insights into the roles of GSK3 in regulating energy metabolism and homeostasis. The cross‐talk between GSK3 and some important energy regulators and sensors and the regulation of GSK3 in mitochondrial activity and component function further highlight the molecular mechanisms in which GSK3 is involved to regulate the metabolic activity, beyond its classical regulatory effect on GS. In this review, we summarize the specific roles of GSK3 in energy metabolism regulation in tissues that are tightly associated with energy metabolism and the functions of GSK3 in the development of metabolic disorders. We also address the impacts of GSK3 on the regulation of mitochondrial function, activity and associated metabolic regulation. The application of GSK3 inhibitors in clinical tests will be highlighted too. Interactions between GSK3 and important energy regulators and GSK3‐mediated responses to different stresses that are related to metabolism are described to provide a brief overview of previously less‐appreciated biological functions of GSK3 in energy metabolism and associated diseases through its regulation of GS and other functions.
Collapse
Affiliation(s)
- Li Wang
- Proteomics, Metabolomics, and Drug Development Core, Faculty of Health Sciences, University of Macau, Macau, China.,Department of Biomedical Sciences, Faculty of Health Sciences, Macau, China.,Cancer Center of the Faculty of Health Sciences, University of Macau, Macau, China.,Institute of Translational Medicine, University of Macau, Macau, China.,Ministry of Education, Frontiers Science Center for Precision Oncology, University of Macau, Macau, China
| | - Jiajia Li
- Department of Biomedical Sciences, Faculty of Health Sciences, Macau, China.,Cancer Center of the Faculty of Health Sciences, University of Macau, Macau, China.,Institute of Translational Medicine, University of Macau, Macau, China.,Ministry of Education, Frontiers Science Center for Precision Oncology, University of Macau, Macau, China
| | - Li-Jun Di
- Department of Biomedical Sciences, Faculty of Health Sciences, Macau, China.,Cancer Center of the Faculty of Health Sciences, University of Macau, Macau, China.,Institute of Translational Medicine, University of Macau, Macau, China.,Ministry of Education, Frontiers Science Center for Precision Oncology, University of Macau, Macau, China
| |
Collapse
|
31
|
Guo S, Hu S, Zhao G, Hu W, Liao Y, Liu Z, Huo S, Huango X. MiR-1246 Involves in the Proliferation, Apoptosis and Inflammation of Rheumatoid Arthritis Fibroblast-Like Synoviocytes by Targeting Axis Inhibition Protein 2 and Glycogen Synthetase Kinase-3β via Wnt/β-Catenin Pathway in Rheumatoid Arthritis. J BIOMATER TISS ENG 2021. [DOI: 10.1166/jbt.2021.2806] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Background and Objective: Accumulating evidence supports that fibroblast-like synovial cells (FLS) plays a vital role in the pathogenesis of rheumatoid arthritis (RA). miR-1246 has been reported to be up-regulated in the sera of RA patients. The purpose of the present research
was to determine the potential role of miR-1246 in RA and the underlying mechanisms. Methods: miR-1246, GSK3β and AXIN2 levels were determined by RT-qPCR. By exploiting miR-1246 inhibitor, shRNA-GSK3β and shRNA-AXIN2, we detected the effects of miR-1246, GSK3β
and AXIN2 on cell proliferation, apoptosis and inflammation in RA-FLSs. Bioinformatics analysis predicted the binding sites of miR-1246 to AXIN2, miR-1246 to GSK3β. Moreover, luciferase reporter assay verified the binding relationship. Results: In comparison with normal
human FLSs, higher levels of miR-1246 existed in RA-FLSs. Downregulation of miR-1246 inhibited cell proliferation, inflammation and β-catenin expression, and promoted cell apoptosis. Furthermore, bioinformatic analysis and dual-luciferase reporter assay identified AXIN2 or GSK3β
as a target gene of miR-1246. Downregulation of miR-1246 enhanced AXIN2 and GSK3β expression in RA-FLSs. Besides, co-transfection with shRNA-GSK3β or shRNA-AXIN2 partly reversed the regulatory effects of miR-1246 inhibitor in RA-FLSs. Conclusions: Collectively,
our in vitro experiments proved that downregulation of miR-1246 might alleviate RA pathogenesis by targeting AXIN2 and GSK3β via Wnt/β-Catenin axis.
Collapse
Affiliation(s)
- Siyin Guo
- Department of Orthopedics, The Third Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou City, Guangdong Province, 510378, China
| | - Shichang Hu
- Department of Orthopedics, The Third Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou City, Guangdong Province, 510378, China
| | - Guoyuan Zhao
- Department of Orthopedics, The Third Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou City, Guangdong Province, 510378, China
| | - Weijian Hu
- Department of Orthopedics, The Third Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou City, Guangdong Province, 510378, China
| | - Yiling Liao
- Department of Ardiovascular Medicine, The First Affiliated Hospital of Guangzhou Pharmaceutical University, Guangzhou City, Guangdong Province, 510080, China
| | - Zhijun Liu
- Department of Orthopedics, The Third Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou City, Guangdong Province, 510378, China
| | - Shaochuan Huo
- Department of Orthopedics, Shenzhen Hospital (Futian) of Guangzhou University of Chinese Medicine, Shenzhen, 518034, China
| | - Xudong Huango
- Department of Orthopedics, The Third Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou City, Guangdong Province, 510378, China
| |
Collapse
|
32
|
Lai Q, Wang M, Hu C, Tang Y, Li Y, Hao S. Circular RNA regulates the onset and progression of cancer through the mitogen-activated protein kinase signaling pathway. Oncol Lett 2021; 22:817. [PMID: 34671431 PMCID: PMC8503804 DOI: 10.3892/ol.2021.13078] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Accepted: 08/27/2021] [Indexed: 01/04/2023] Open
Abstract
The rapid increase in cancer morbidity and mortality worldwide is a major challenge for public health providers. Therefore, there is an urgent need to explore the molecular mechanism of tumorigenesis and identify potential diagnostic biomarkers and therapeutic methods. Circular RNA (circRNA) is characterized by a stable structure and tissue-specific expression; these features are useful in medical research and clinical applications. In recent years, with the development of high-throughput sequencing technology, the potential use of circRNA in cancer prognosis and treatment has been extensively explored. Abnormal circRNA expression interferes with specific signaling pathways such as the MAPK pathway; this phenomenon may provide potential diagnostic biomarkers and new therapeutic targets. The present article discusses the research progress on the regulatory roles of MAPK/ERK pathway-related circRNA molecules in the development and progression of different types of tumors. This review may provide insight into the development of circRNA-based cancer management strategies.
Collapse
Affiliation(s)
- Qun Lai
- Department of Hematology and Oncology, The Second Hospital of Jilin University, Changchun, Jilin 130041, P.R. China
| | - Min Wang
- Department of General Surgery, The Second Hospital of Jilin University, Changchun, Jilin 130041, P.R. China
| | - Chunmei Hu
- Department of Hematology and Oncology, The Second Hospital of Jilin University, Changchun, Jilin 130041, P.R. China
| | - Yan Tang
- Department of Hematology and Oncology, The Second Hospital of Jilin University, Changchun, Jilin 130041, P.R. China
| | - Yarong Li
- Department of Hematology and Oncology, The Second Hospital of Jilin University, Changchun, Jilin 130041, P.R. China
| | - Shuhong Hao
- Department of Hematology and Oncology, The Second Hospital of Jilin University, Changchun, Jilin 130041, P.R. China
| |
Collapse
|
33
|
Darici S, Zavatti M, Braglia L, Accordi B, Serafin V, Horne GA, Manzoli L, Palumbo C, Huang X, Jørgensen HG, Marmiroli S. Synergistic cytotoxicity of dual PI3K/mTOR and FLT3 inhibition in FLT3-ITD AML cells. Adv Biol Regul 2021; 82:100830. [PMID: 34555701 DOI: 10.1016/j.jbior.2021.100830] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 09/09/2021] [Accepted: 09/13/2021] [Indexed: 01/17/2023]
Abstract
Acute myeloid leukemia (AML) is an aggressive hematopoietic malignancy, characterized by a heterogeneous genetic landscape and complex clonal evolution, with poor outcomes. Mutation at the internal tandem duplication of FLT3 (FLT3-ITD) is one of the most common somatic alterations in AML, associated with high relapse rates and poor survival due to the constitutive activation of the FLT3 receptor tyrosine kinase and its downstream effectors, such as PI3K signaling. Thus, aberrantly activated FLT3-kinase is regarded as an attractive target for therapy for this AML subtype, and a number of small molecule inhibitors of this kinase have been identified, some of which are approved for clinical practice. Nevertheless, acquired resistance to these molecules is often observed, leading to severe clinical outcomes. Therapeutic strategies to tackle resistance include combining FLT3 inhibitors with other antileukemic agents. Here, we report on the preclinical activity of the combination of the FLT3 inhibitor quizartinib with the dual PI3K/mTOR inhibitor PF-04691502 in FLT3-ITD cells. Briefly, we show that the association of these two molecules displays synergistic cytotoxicity in vitro in FLT3-ITD AML cells, triggering 90% cell death at nanomolar concentrations after 48 h.
Collapse
Affiliation(s)
- Salihanur Darici
- Cellular Signaling Unit, Section of Human Morphology, Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, Modena, 41125, Italy; Haemato-Oncology/Systems Medicine Group, Paul O'Gorman Leukaemia Research Centre, Institute of Cancer Sciences, University of Glasgow, Glasgow, G12 0ZD, UK
| | - Manuela Zavatti
- Cellular Signaling Unit, Section of Human Morphology, Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, Modena, 41125, Italy
| | - Luca Braglia
- Cellular Signaling Unit, Section of Human Morphology, Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, Modena, 41125, Italy; Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
| | - Benedetta Accordi
- Department of Woman and Child Health, Haemato-Oncology Laboratory, University of Padua, Via Giustiniani 3 and IRP Città Della Speranza, Corso Stati Uniti 4, 35128, Padua, Italy
| | - Valentina Serafin
- Department of Woman and Child Health, Haemato-Oncology Laboratory, University of Padua, Via Giustiniani 3 and IRP Città Della Speranza, Corso Stati Uniti 4, 35128, Padua, Italy
| | - Gillian A Horne
- Haemato-Oncology/Systems Medicine Group, Paul O'Gorman Leukaemia Research Centre, Institute of Cancer Sciences, University of Glasgow, Glasgow, G12 0ZD, UK
| | - Lucia Manzoli
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
| | - Carla Palumbo
- Cellular Signaling Unit, Section of Human Morphology, Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, Modena, 41125, Italy
| | - Xu Huang
- Haemato-Oncology/Systems Medicine Group, Paul O'Gorman Leukaemia Research Centre, Institute of Cancer Sciences, University of Glasgow, Glasgow, G12 0ZD, UK.
| | - Heather G Jørgensen
- Haemato-Oncology/Systems Medicine Group, Paul O'Gorman Leukaemia Research Centre, Institute of Cancer Sciences, University of Glasgow, Glasgow, G12 0ZD, UK
| | - Sandra Marmiroli
- Cellular Signaling Unit, Section of Human Morphology, Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, Modena, 41125, Italy.
| |
Collapse
|
34
|
Pecoraro C, Faggion B, Balboni B, Carbone D, Peters GJ, Diana P, Assaraf YG, Giovannetti E. GSK3β as a novel promising target to overcome chemoresistance in pancreatic cancer. Drug Resist Updat 2021; 58:100779. [PMID: 34461526 DOI: 10.1016/j.drup.2021.100779] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Revised: 08/02/2021] [Accepted: 08/09/2021] [Indexed: 02/07/2023]
Abstract
Pancreatic cancer is an aggressive malignancy with increasing incidence and poor prognosis due to its late diagnosis and intrinsic chemoresistance. Most pancreatic cancer patients present with locally advanced or metastatic disease characterized by inherent resistance to chemotherapy. These features pose a series of therapeutic challenges and new targets are urgently needed. Glycogen synthase kinase 3 beta (GSK3β) is a conserved serine/threonine kinase, which regulates key cellular processes including cell proliferation, DNA repair, cell cycle progression, signaling and metabolic pathways. GSK3β is implicated in non-malignant and malignant diseases including inflammation, neurodegenerative diseases, diabetes and cancer. GSK3β recently emerged among the key factors involved in the onset and progression of pancreatic cancer, as well as in the acquisition of chemoresistance. Intensive research has been conducted on key oncogenic functions of GSK3β and its potential as a druggable target; currently developed GSK3β inhibitors display promising results in preclinical models of distinct tumor types, including pancreatic cancer. Here, we review the latest findings about GSK-3β biology and its role in the development and progression of pancreatic cancer. Moreover, we discuss therapeutic agents targeting GSK3β that could be administered as monotherapy or in combination with other drugs to surmount chemoresistance. Several studies are also defining potential gene signatures to identify patients who might benefit from GSK3β-based therapeutic intervention. This detailed overview emphasizes the urgent need of additional molecular studies on the impact of GSK3β inhibition as well as structural analysis of novel compounds and omics studies of predictive biomarkers.
Collapse
Affiliation(s)
- Camilla Pecoraro
- Department of Medical Oncology, Amsterdam University Medical Center, VU University, 1081 HV Amsterdam, the Netherlands; Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, Palermo, Italy
| | - Beatrice Faggion
- Department of Medical Oncology, Amsterdam University Medical Center, VU University, 1081 HV Amsterdam, the Netherlands
| | - Beatrice Balboni
- Department of Medical Oncology, Amsterdam University Medical Center, VU University, 1081 HV Amsterdam, the Netherlands; Computational and Chemical Biology, Istituto Italiano di Tecnologia, Via Morego 30, 16163 Genoa, Italy, and Department of Pharmacy and Biotechnology, University of Bologna, Via Belmeloro 6, 40126 Bologna, Italy
| | - Daniela Carbone
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, Palermo, Italy
| | - Godefridus J Peters
- Department of Medical Oncology, Amsterdam University Medical Center, VU University, 1081 HV Amsterdam, the Netherlands; Department of Biochemistry, Medical University of Gdansk, Poland
| | - Patrizia Diana
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, Palermo, Italy
| | - Yehuda G Assaraf
- The Fred Wyszkowski Cancer Research Laboratory, Department of Biology, Technion-Israel Institute of Technology, Haifa, 3200003, Israel
| | - Elisa Giovannetti
- Department of Medical Oncology, Amsterdam University Medical Center, VU University, 1081 HV Amsterdam, the Netherlands; Cancer Pharmacology Lab, Fondazione Pisana per la Scienza, Via Ferruccio Giovannini 13, 56017 San Giuliano Terme (Pisa), Italy.
| |
Collapse
|
35
|
Martelli AM, Evangelisti C, Paganelli F, Chiarini F, McCubrey JA. GSK-3: a multifaceted player in acute leukemias. Leukemia 2021; 35:1829-1842. [PMID: 33811246 DOI: 10.1038/s41375-021-01243-z] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Revised: 03/22/2021] [Accepted: 03/23/2021] [Indexed: 02/06/2023]
Abstract
Glycogen synthase kinase 3 (GSK-3) consists of two isoforms (α and β) that were originally linked to glucose metabolism regulation. However, GSK-3 is also involved in several signaling pathways controlling many different key functions in healthy cells. GSK-3 is a unique kinase in that its isoforms are constitutively active, while they are inactivated mainly through phosphorylation at Ser residues by a variety of upstream kinases. In the early 1990s, GSK-3 emerged as a key player in cancer cell pathophysiology. Since active GSK-3 promotes destruction of multiple oncogenic proteins (e.g., β-catenin, c-Myc, Mcl-1) it was considered to be a tumor suppressor. Accordingly, GSK-3 is frequently inactivated in human cancer via aberrant regulation of upstream signaling pathways. More recently, however, it has emerged that GSK-3 isoforms display also oncogenic properties, as they up-regulate pathways critical for neoplastic cell proliferation, survival, and drug-resistance. The regulatory roles of GSK-3 isoforms in cell cycle, apoptosis, DNA repair, tumor metabolism, invasion, and metastasis reflect the therapeutic relevance of these kinases and provide the rationale for combining GSK-3 inhibitors with other targeted drugs. Here, we discuss the multiple and often conflicting roles of GSK-3 isoforms in acute leukemias. We also review the current status of GSK-3 inhibitor development for innovative leukemia therapy.
Collapse
Affiliation(s)
- Alberto M Martelli
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
| | - Camilla Evangelisti
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
| | - Francesca Paganelli
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy.,CNR Institute of Molecular Genetics "Luigi Luca Cavalli-Sforza" Unit of Bologna, Bologna, Italy.,IRCCS Istituto Ortopedico Rizzoli, Bologna, Italy
| | - Francesca Chiarini
- CNR Institute of Molecular Genetics "Luigi Luca Cavalli-Sforza" Unit of Bologna, Bologna, Italy.,IRCCS Istituto Ortopedico Rizzoli, Bologna, Italy
| | - James A McCubrey
- Department of Microbiology & Immunology, Brody School of Medicine, East Carolina University, Greenville, NC, USA.
| |
Collapse
|
36
|
Repurposing Niclosamide for Targeting Pancreatic Cancer by Inhibiting Hh/Gli Non-Canonical Axis of Gsk3β. Cancers (Basel) 2021; 13:cancers13133105. [PMID: 34206370 PMCID: PMC8269055 DOI: 10.3390/cancers13133105] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2021] [Revised: 06/15/2021] [Accepted: 06/17/2021] [Indexed: 12/14/2022] Open
Abstract
Simple Summary The current obstacles for discovering new drugs for cancer therapy have necessitated the development of the alternative strategy of drug repurposing, the identification of new uses for approved or investigational drugs for new therapeutic purposes. Niclosamide (Nic) is a Food and Drug Administration (FDA)-approved anti-helminthic drug, reported to have anti-cancer effects, and is being assessed in various clinical trials. In the current study, we assessed the therapeutic efficacy of Nic on pancreatic cancer (PC) in vitro. Our results revealed mitochondrial stress and mTORC1-dependent autophagy as the predominant players of Nic-induced PC cell death. This study provided a novel mechanistic insight for anti-cancer efficacy of Nic by increasing p-Gsk3β that modulates molecular signaling(s), including inhibition of hedgehog (Hh) signaling-mediated cellular proliferation and increased apoptosis through mTORC1-dependent autophagy may prove helpful for the development of novel PC therapies. Abstract Niclosamide (Nic), an FDA-approved anthelmintic drug, is reported to have anti-cancer efficacy and is being assessed in clinical trials for various solid tumors. Based on its ability to target multiple signaling pathways, in the present study, we evaluated the therapeutic efficacy of Nic on pancreatic cancer (PC) in vitro. We observed an anti-cancerous effect of this drug as shown by the G0/G1 phase cell cycle arrest, inhibition of PC cell viability, colony formation, and migration. Our results revealed the involvement of mitochondrial stress and mTORC1-dependent autophagy as the predominant players of Nic-induced PC cell death. Significant reduction of Nic-induced reactive oxygen species (ROS) and cell death in the presence of a selective autophagy inhibitor spautin-1 demonstrated autophagy as a major contributor to Nic-mediated cell death. Mechanistically, Nic inhibited the interaction between BCL2 and Beclin-1 that supported the crosstalk of autophagy and apoptosis. Further, Nic treatment resulted in Gsk3β inactivation by phosphorylating its Ser-9 residue leading to upregulation of Sufu and Gli3, thereby negatively impacting hedgehog signaling and cell survival. Nic induced autophagic cell death, and p-Gsk3b mediated Sufu/Gli3 cascade was further confirmed by Gsk3β activator, LY-294002, by rescuing inactivation of Hh signaling upon Nic treatment. These results suggested the involvement of a non-canonical mechanism of Hh signaling, where p-Gsk3β acts as a negative regulator of Hh/Gli1 cascade and a positive regulator of autophagy-mediated cell death. Overall, this study established the therapeutic efficacy of Nic for PC by targeting p-Gsk3β mediated non-canonical Hh signaling and promoting mTORC1-dependent autophagy and cell death.
Collapse
|
37
|
Zhao X, Sun Y, Sun X, Li J, Shi X, Liang Z, Ma Y, Zhang X. AEG-1 Knockdown Sensitizes Glioma Cells to Radiation Through Impairing Homologous Recombination Via Targeting RFC5. DNA Cell Biol 2021; 40:895-905. [PMID: 34042508 DOI: 10.1089/dna.2020.6287] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Radiotherapy is the most important adjuvant treatment for glioma; however, radioresistance is the major cause for inevitable recurrence and poor survival of glioma patients. Thus, this study aims to investigate the effect of astrocyte elevated gene-1 (AEG-1) on the radiosensitivity of glioma cells. Immunohistochemistry assay found that AEG-1 was generally overexpressed in glioma tissues and was correlated with poor clinicopathological features of glioma patients. AEG-1 knockdown inhibited proliferation of glioma cells. And γ-H2AX foci assay, colony formation assay, and flow cytometry analysis demonstrated that AEG-1 depletion enhanced radiosensitivity and promoted apoptosis as well as cell cycle arrest in G2 phase of glioma cells treated by ionizing radiation. Moreover, replication factor C5 (RFC5) was screened as the target of AEG-1 by using Affymetrix human gene expression array, and RFC5 expression was downregulated in AEG-1 knockdown glioma cells. Mechanistically, AEG-1 knockdown impaired homologous recombination repair activity induced by radiation through inhibiting RFC5 expression. Furthermore, the Kaplan-Meier analysis and multivariate Cox regression analysis indicated that high levels of AEG-1 and RFC5 were related to poor prognosis of glioma patients treated with radiotherapy. Taken together, our findings indicate that AEG-1 may serve as a reliable radiosensitizing target for glioma radiotherapy.
Collapse
Affiliation(s)
- Xu Zhao
- Department of Radiation Oncology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Yuchen Sun
- Department of Radiation Oncology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Xuanzi Sun
- Department of Radiation Oncology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Jing Li
- Department of Radiation Oncology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Xiaobo Shi
- Department of Radiation Oncology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Zhinan Liang
- Department of Radiation Oncology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Yuan Ma
- Department of Radiation Oncology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Xiaozhi Zhang
- Department of Radiation Oncology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China
| |
Collapse
|
38
|
Papadopoli D, Pollak M, Topisirovic I. The role of GSK3 in metabolic pathway perturbations in cancer. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2021; 1868:119059. [PMID: 33989699 DOI: 10.1016/j.bbamcr.2021.119059] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Revised: 04/16/2021] [Accepted: 04/17/2021] [Indexed: 01/11/2023]
Abstract
Malignant transformation and tumor progression are accompanied by significant perturbations in metabolic programs. As such, cancer cells support high ATP turnover to construct the building blocks needed to fuel neoplastic growth. The coordination of metabolic networks in malignant cells is dependent on the collaboration with cellular signaling pathways. Glycogen synthase kinase 3 (GSK3) lies at the convergence of several signaling axes, including the PI3K/AKT/mTOR, AMPK, and Wnt pathways, which influence cancer initiation, progression and therapeutic responses. Accordingly, GSK3 modulates metabolic processes, including protein and lipid synthesis, glucose and mitochondrial metabolism, as well as autophagy. In this review, we highlight current knowledge of the role of GSK3 in metabolic perturbations in cancer.
Collapse
Affiliation(s)
- David Papadopoli
- Lady Davis Institute for Medical Research, 3755 Chemin de la Côte-Sainte-Catherine, Montréal, QC H3T 1E2, Canada; Gerald Bronfman Department of Oncology, McGill University, 5100 Maisonneuve Blvd West, Montréal, QC H4A 3T2, Canada.
| | - Michael Pollak
- Lady Davis Institute for Medical Research, 3755 Chemin de la Côte-Sainte-Catherine, Montréal, QC H3T 1E2, Canada; Gerald Bronfman Department of Oncology, McGill University, 5100 Maisonneuve Blvd West, Montréal, QC H4A 3T2, Canada; Department of Medicine, Division of Experimental Medicine, McGill University, 1001 Décarie Blvd, Montréal, QC H4A 3J1, Canada
| | - Ivan Topisirovic
- Lady Davis Institute for Medical Research, 3755 Chemin de la Côte-Sainte-Catherine, Montréal, QC H3T 1E2, Canada; Gerald Bronfman Department of Oncology, McGill University, 5100 Maisonneuve Blvd West, Montréal, QC H4A 3T2, Canada; Department of Medicine, Division of Experimental Medicine, McGill University, 1001 Décarie Blvd, Montréal, QC H4A 3J1, Canada; Department of Biochemistry, McGill University, 3655 Promenade Sir William Osler, Montréal, QC H3G 1Y6, Canada
| |
Collapse
|
39
|
Zuccherato LW, Machado CMT, Magalhães WCS, Martins PR, Campos LS, Braga LC, Teixeira-Carvalho A, Martins-Filho OA, Franco TMRF, Paula SOC, da Silva IT, Drummond R, Gollob KJ, Salles PGO. Cervical Cancer Stem-Like Cell Transcriptome Profiles Predict Response to Chemoradiotherapy. Front Oncol 2021; 11:639339. [PMID: 34026616 PMCID: PMC8138064 DOI: 10.3389/fonc.2021.639339] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Accepted: 04/06/2021] [Indexed: 12/12/2022] Open
Abstract
Cervical cancer (CC) represents a major global health issue, particularly impacting women from resource constrained regions worldwide. Treatment refractoriness to standard chemoradiotheraphy has identified cancer stem cells as critical coordinators behind the biological mechanisms of resistance, contributing to CC recurrence. In this work, we evaluated differential gene expression in cervical cancer stem-like cells (CCSC) as biomarkers related to intrinsic chemoradioresistance in CC. A total of 31 patients with locally advanced CC and referred to Mário Penna Institute (Belo Horizonte, Brazil) from August 2017 to May 2018 were recruited for the study. Fluorescence-activated cell sorting was used to enrich CD34+/CD45- CCSC from tumor biopsies. Transcriptome was performed using ultra-low input RNA sequencing and differentially expressed genes (DEGs) using Log2 fold differences and adjusted p-value < 0.05 were determined. The analysis returned 1050 DEGs when comparing the Non-Responder (NR) (n=10) and Responder (R) (n=21) groups to chemoradiotherapy. These included a wide-ranging pattern of underexpressed coding genes in the NR vs. R patients and a panel of lncRNAs and miRNAs with implications for CC tumorigenesis. A panel of biomarkers was selected using the rank-based AUC (Area Under the ROC Curve) and pAUC (partial AUC) measurements for diagnostic sensitivity and specificity. Genes overlapping between the 21 highest AUC and pAUC loci revealed seven genes with a strong capacity for identifying NR vs. R patients (ILF2, RBM22P2, ACO16722.1, AL360175.1 and AC092354.1), of which four also returned significant survival Hazard Ratios. This study identifies DEG signatures that provide potential biomarkers in CC prognosis and treatment outcome, as well as identifies potential alternative targets for cancer therapy.
Collapse
Affiliation(s)
| | | | | | | | - Larissa S. Campos
- Núcleo de Ensino e Pesquisa - Instituto Mário Penna, Belo Horizonte, Brazil
| | - Letícia C. Braga
- Núcleo de Ensino e Pesquisa - Instituto Mário Penna, Belo Horizonte, Brazil
| | | | | | | | | | | | - Rodrigo Drummond
- International Research Center, A.C. Camargo Cancer Center, São Paulo, Brazil
| | - Kenneth J. Gollob
- Núcleo de Ensino e Pesquisa - Instituto Mário Penna, Belo Horizonte, Brazil
- Translational Immuno-Oncology Laboratory, International Research Center, A.C. Camargo Cancer Center, São Paulo, Brazil
| | | |
Collapse
|
40
|
GSK-3β Can Regulate the Sensitivity of MIA-PaCa-2 Pancreatic and MCF-7 Breast Cancer Cells to Chemotherapeutic Drugs, Targeted Therapeutics and Nutraceuticals. Cells 2021; 10:cells10040816. [PMID: 33917370 PMCID: PMC8067414 DOI: 10.3390/cells10040816] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2021] [Revised: 04/04/2021] [Accepted: 04/04/2021] [Indexed: 02/06/2023] Open
Abstract
Glycogen synthase kinase-3 (GSK-3) is a regulator of signaling pathways. KRas is frequently mutated in pancreatic cancers. The growth of certain pancreatic cancers is KRas-dependent and can be suppressed by GSK-3 inhibitors, documenting a link between KRas and GSK-3. To further elucidate the roles of GSK-3β in drug-resistance, we transfected KRas-dependent MIA-PaCa-2 pancreatic cells with wild-type (WT) and kinase-dead (KD) forms of GSK-3β. Transfection of MIA-PaCa-2 cells with WT-GSK-3β increased their resistance to various chemotherapeutic drugs and certain small molecule inhibitors. Transfection of cells with KD-GSK-3β often increased therapeutic sensitivity. An exception was observed with cells transfected with WT-GSK-3β and sensitivity to the BCL2/BCLXL ABT737 inhibitor. WT-GSK-3β reduced glycolytic capacity of the cells but did not affect the basal glycolysis and mitochondrial respiration. KD-GSK-3β decreased both basal glycolysis and glycolytic capacity and reduced mitochondrial respiration in MIA-PaCa-2 cells. As a comparison, the effects of GSK-3 on MCF-7 breast cancer cells, which have mutant PIK3CA, were examined. KD-GSK-3β increased the resistance of MCF-7 cells to chemotherapeutic drugs and certain signal transduction inhibitors. Thus, altering the levels of GSK-3β can have dramatic effects on sensitivity to drugs and signal transduction inhibitors which may be influenced by the background of the tumor.
Collapse
|
41
|
Hyaluronic acid (HA)-coated naproxen-nanoparticles selectively target breast cancer stem cells through COX-independent pathways. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2021; 124:112024. [PMID: 33947532 DOI: 10.1016/j.msec.2021.112024] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Revised: 02/23/2021] [Accepted: 03/05/2021] [Indexed: 02/07/2023]
Abstract
Cytotoxic chemotherapy continues to be the main therapeutic option for patients with metastatic breast cancer. Several studies have reported a significant association between chronic inflammation, carcinogenesis and the presence of cancer stem cells (CSC). We hypothesized that the use of non-steroidal anti-inflammatory drugs targeted to the CSC population could help reducing tumor progression and dissemination in otherwise hard to treat metastatic breast cancer. Within this study cationic naproxen (NAP)-bearing polymeric nanoparticles (NPs) were obtained by self-assembly and they were coated with hyaluronic acid (HA) via electrostatic interaction. HA-coated and uncoated NAP-bearing NPs with different sizes were produced by changing the ionic strength of the aqueous preparation solutions (i.e. 300 and 350 nm or 100 and 130 nm in diameter, respectively). HA-NPs were fully characterized in terms of physicochemical parameters and biological response in cancer cells, macrophages and endothelial cells. Our results revealed that HA-coating of NPs provided a better control in NAP release and improved their hemocompatibility, while ensuring a strong CSC-targeting in MCF-7 breast cancer cells. Furthermore, the best polymeric NPs formulation significantly (p < 0.001) reduced MCF-7 cells viability when compared to free drug (i.e. 45 ± 6% for S-HA-NPs and 87 ± 10% for free NAP) by p53-dependent induction of apoptosis; and the migration of these cell line was also significantly (p < 0.01) reduced by the nano-formulated NAP (i.e. 76.4% of open wound for S-HA-NPs and 61.6% of open wound for NAP). This increased anti-cancer activity of HA-NAP-NPs might be related to the induction of apoptosis through alterations of the GSK-3β-related COX-independent pathway. Overall, these findings suggest that the HA-NAP-NPs have the potential to improve the treatment of advanced breast cancer by increasing the anti-proliferative effect of NAP within the CSC subpopulation.
Collapse
|
42
|
Abstract
PURPOSE OF REVIEW Pediatric renal tumors account for 7% of new cancer diagnoses in children. Here, we will review results from recently completed clinical trials informing the current standard of care and discuss targeted and immune therapies being explored for the treatment of high risk or relapsed/refractory pediatric renal malignancies. RECENT FINDINGS Cooperative group trials have continued to make improvements in the care of children with pediatric tumors. In particular, trials that standardize treatment of rare cancers (e.g., bilateral Wilms tumor) have improved outcomes significantly. We have seen improvements in event free and overall survival in recently completed clinical trials for many pediatric renal tumors. Still, there are subsets of rarer cancers where outcomes remain poor and new therapeutic strategies are needed. Future trials aim to balance treatment toxicity with treatment efficacy for those with excellent outcomes while identifying novel therapeutics for those with poor outcomes.
Collapse
Affiliation(s)
- Juhi Jain
- Aflac Cancer and Blood Disorders Center, Children Healthcare of Atlanta, Atlanta, GA, USA.,Department of Pediatrics, School of Medicine, Emory University, Atlanta, GA, USA.,Emory Children's Center, 2015 Uppergate Drive NE , 400, Atlanta, GA, 30322, USA
| | - Kathryn S Sutton
- Aflac Cancer and Blood Disorders Center, Children Healthcare of Atlanta, Atlanta, GA, USA.,Department of Pediatrics, School of Medicine, Emory University, Atlanta, GA, USA.,Emory Children's Center, 2015 Uppergate Drive NE, 434B, Atlanta, GA, 30322, USA
| | - Andrew L Hong
- Aflac Cancer and Blood Disorders Center, Children Healthcare of Atlanta, Atlanta, GA, USA. .,Department of Pediatrics, School of Medicine, Emory University, Atlanta, GA, USA. .,Winship Cancer Institute, Atlanta, GA, USA. .,Health Sciences Research Building, 1760 Haygood Drive NE, E-370, Atlanta, GA, 30322, USA.
| |
Collapse
|
43
|
Glibo M, Serman A, Karin-Kujundzic V, Bekavac Vlatkovic I, Miskovic B, Vranic S, Serman L. The role of glycogen synthase kinase 3 (GSK3) in cancer with emphasis on ovarian cancer development and progression: A comprehensive review. Bosn J Basic Med Sci 2021; 21:5-18. [PMID: 32767962 PMCID: PMC7861620 DOI: 10.17305/bjbms.2020.5036] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Accepted: 08/04/2020] [Indexed: 12/27/2022] Open
Abstract
Glycogen synthase kinase 3 (GSK3) is a monomeric serine-threonine kinase discovered in 1980 in a rat skeletal muscle. It has been involved in various cellular processes including embryogenesis, immune response, inflammation, apoptosis, autophagy, wound healing, neurodegeneration, and carcinogenesis. GSK3 exists in two different isoforms, GSK3α and GSK3β, both containing seven antiparallel beta-plates, a short linking part and an alpha helix, but coded by different genes and variously expressed in human tissues. In the current review, we comprehensively appraise the current literature on the role of GSK3 in various cancers with emphasis on ovarian carcinoma. Our findings indicate that the role of GSK3 in ovarian cancer development cannot be decisively determined as the currently available data support both prooncogenic and tumor-suppressive effects. Likewise, the clinical impact of GSK3 expression on ovarian cancer patients and its potential therapeutic implications are also limited. Further studies are needed to fully elucidate the pathophysiological and clinical implications of GSK3 activity in ovarian cancer.
Collapse
Affiliation(s)
- Mislav Glibo
- Department of Biology, School of Medicine, University of Zagreb, Zagreb, Croatia
| | - Alan Serman
- Centre of Excellence in Reproductive and Regenerative Medicine, University of Zagreb School of Medicine, Zagreb, Croatia; Department of Obstetrics and Gynecology, School of Medicine, University of Zagreb, Zagreb, Croatia; Clinic of Obstetrics and Gynecology, Clinical Hospital "Sveti Duh", Zagreb, Croatia
| | - Valentina Karin-Kujundzic
- Department of Biology, School of Medicine, University of Zagreb, Zagreb, Croatia; Centre of Excellence in Reproductive and Regenerative Medicine, University of Zagreb School of Medicine, Zagreb, Croatia
| | - Ivanka Bekavac Vlatkovic
- Centre of Excellence in Reproductive and Regenerative Medicine, University of Zagreb School of Medicine, Zagreb, Croatia; Department of Obstetrics and Gynecology, School of Medicine, University of Zagreb, Zagreb, Croatia; Clinic of Obstetrics and Gynecology, Clinical Hospital "Sveti Duh", Zagreb, Croatia
| | - Berivoj Miskovic
- Centre of Excellence in Reproductive and Regenerative Medicine, University of Zagreb School of Medicine, Zagreb, Croatia; Department of Obstetrics and Gynecology, School of Medicine, University of Zagreb, Zagreb, Croatia; Clinic of Obstetrics and Gynecology, Clinical Hospital "Sveti Duh", Zagreb, Croatia
| | - Semir Vranic
- College of Medicine, QU Health, Qatar University, Doha, Qatar
| | - Ljiljana Serman
- Department of Biology, School of Medicine, University of Zagreb, Zagreb, Croatia; Centre of Excellence in Reproductive and Regenerative Medicine, University of Zagreb School of Medicine, Zagreb, Croatia
| |
Collapse
|
44
|
Hao J, Dai X, Gao J, Li Y, Hou Z, Chang Z, Wang Y. Curcumin suppresses colorectal tumorigenesis via the Wnt/β-catenin signaling pathway by downregulating Axin2. Oncol Lett 2021; 21:186. [PMID: 33574925 PMCID: PMC7816292 DOI: 10.3892/ol.2021.12447] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Accepted: 11/20/2020] [Indexed: 12/12/2022] Open
Abstract
Colorectal cancer (CRC) is the third most common cancer worldwide, with high incidence and mortality rates. Conventional therapies, including surgery, chemotherapy and radiation, are extensively used for the treatment of CRC. However, patients present with adverse effects, such as toxicity, hepatic injury and drug resistance. Thus, there is an urgent requirement to identify effective and safe therapy for CRC. Curcumin (CUR), a polyphenol substrate extracted from the rhizome of Curcuma longa, has been extensively studied for the treatment of CRC due to its high efficacy and fewer side effects. Previous studies have reported that several signaling pathways, such as NF-κB, Wnt/β-catenin, are involved in the antitumor effects of CUR in vitro. However, the effect and mechanisms in vivo are not yet fully understood. The present study aimed to determine the molecular mechanism of colorectal cancer in vivo. Reverse transcription-quantitative PCR, western blot and immunohistochemistry analyses were performed to determine the underlying molecular mechanism of curcumin's anti-cancer effect in azoxymethane-dextran sodium sulfate induced colorectal cancer. The results of the present study demonstrated that CUR suppressed tumorigenesis in AOM-DSS induced CRC in mice, and anticancer effects were exerted by suppressing the expression of pro-inflammatory cytokines, and downregulating Axin2 in the Wnt/β-catenin signaling pathway. Taken together, these results exhibit the potential in vivo mechanisms of the anticancer effects of CUR, and highlight Axin2 as a potential therapeutic target for CRC.
Collapse
Affiliation(s)
- Jiaxue Hao
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education/College of Life Science, Northwest University, Xi'an, Shaanxi 710069, P.R. China
| | - Xufen Dai
- Food and Drug Technology Research Center, Shaanxi Province Food and Drug Supervision and Inspection Research, Shaanxi Institute for Food and Drug Control, Xi'an, Shaanxi 710065, P.R. China
| | - Juan Gao
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education/College of Life Science, Northwest University, Xi'an, Shaanxi 710069, P.R. China
| | - Yuexuan Li
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education/College of Life Science, Northwest University, Xi'an, Shaanxi 710069, P.R. China
| | - Zhaoling Hou
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education/College of Life Science, Northwest University, Xi'an, Shaanxi 710069, P.R. China
| | - Zhongman Chang
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education/College of Life Science, Northwest University, Xi'an, Shaanxi 710069, P.R. China
| | - Yuxin Wang
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education/College of Life Science, Northwest University, Xi'an, Shaanxi 710069, P.R. China
| |
Collapse
|
45
|
Nekouian R, Sanjabi F, Akbari A, Mirzaei R, Fattahi A. Plasma miR-183-5p in colorectal cancer patients as potential predictive lymph node metastasis marker. J Cancer Res Ther 2021; 18:921-926. [DOI: 10.4103/jcrt.jcrt_174_20] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
|
46
|
The crosstalk of hedgehog, PI3K and Wnt pathways in diabetes. Arch Biochem Biophys 2020; 698:108743. [PMID: 33382998 DOI: 10.1016/j.abb.2020.108743] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Revised: 12/03/2020] [Accepted: 12/22/2020] [Indexed: 12/13/2022]
Abstract
Hyperglycaemia causes pancreatic β-cells to release insulin that then attaches to a specific expression of receptor isoform and reverses high glucose concentrations. It is well known that insulin is capable of initiating insulin-receptor substrate (IRS)/phosphatidylinositol 3-kinase (PI3K)/protein kinase B (PKB) signaling pathways in target cells; such as liver, adipose tissues, and muscles. However, recent discoveries indicate that many other pathways, such as the Hedgehog (Hh) and growth factor-stimulating Wingless-related integration (Wnt) signaling pathways; are activated in hyperglycaemia as well. Although these two pathways are traditionally thought to have a decisive role in cellular growth and differentiation only, recent reports show that they are involved in regulating cellular homeostasis and energy balance. While insulin-activated IRS/PI3K/PKB pathway cascades are primarily known to reduce glucose production, it was recently discovered to increase the Hh signaling pathway's stability, thereby activating the PI3K/PKB/mammalian target of rapamycin complex 2 (mTORC2) signaling pathway. The Hh signaling pathway not only plays a role in lipid metabolism, insulin sensitivity, inflammatory response, diabetes-related complications, but crosstalks with the Wnt signaling pathway resulting in improved insulin sensitivity and decrease inflammatory response in diabetes.
Collapse
|
47
|
Malla RR, Kiran P. Tumor microenvironment pathways: Cross regulation in breast cancer metastasis. Genes Dis 2020; 9:310-324. [PMID: 35224148 PMCID: PMC8843880 DOI: 10.1016/j.gendis.2020.11.015] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Revised: 10/16/2020] [Accepted: 11/24/2020] [Indexed: 12/19/2022] Open
Abstract
The tumor microenvironment (TME) is heterogeneous and contains a multiple cell population with surrounded immune cells, which plays a major role in regulating metastasis. The multifunctional pathways, Hedgehog (Hh), Wnt, Notch, and NF-kB, cross-regulates metastasis in breast cancer. This review presents substantial evidence for cross-regulation of TME components and signaling pathways, which makes breast TME more heterogeneous and complex, promoting breast cancer progression and metastasis as a highly aggressive form. We discoursed the importance of stromal and immune cells as well as their crosstalk in bridging the metastasis. We also discussed the role of Hh and Notch pathways in the intervention between breast cancer cells and macrophages to support TME; Notch signaling in the bidirectional communication between cancer cells and components of TME; Wnt signal pathway in controlling the factors responsible for EMT and NF-κB pathway in the regulation of genes controlling the inflammatory response. We also present the role of exosomes and their miRNAs in the cross-regulation of TME cells as well as pathways in the reprogramming of breast TME to support metastasis. Finally, we examined and discussed the targeted small molecule inhibitors and natural compounds targeting developmental pathways and proposed small molecule natural compounds as potential therapeutics of TME based on the multitargeting ability. In conclusion, the understanding of the molecular basis of the cross-regulation of TME pathways and their inhibitors helps identify molecular targets for rational drug discovery to treat breast cancers.
Collapse
|
48
|
Darici S, Alkhaldi H, Horne G, Jørgensen HG, Marmiroli S, Huang X. Targeting PI3K/Akt/mTOR in AML: Rationale and Clinical Evidence. J Clin Med 2020; 9:E2934. [PMID: 32932888 PMCID: PMC7563273 DOI: 10.3390/jcm9092934] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Revised: 09/07/2020] [Accepted: 09/10/2020] [Indexed: 12/12/2022] Open
Abstract
Acute myeloid leukemia (AML) is a highly heterogeneous hematopoietic malignancy characterized by excessive proliferation and accumulation of immature myeloid blasts in the bone marrow. AML has a very poor 5-year survival rate of just 16% in the UK; hence, more efficacious, tolerable, and targeted therapy is required. Persistent leukemia stem cell (LSC) populations underlie patient relapse and development of resistance to therapy. Identification of critical oncogenic signaling pathways in AML LSC may provide new avenues for novel therapeutic strategies. The phosphatidylinositol-3-kinase (PI3K)/Akt and the mammalian target of rapamycin (mTOR) signaling pathway, is often hyperactivated in AML, required to sustain the oncogenic potential of LSCs. Growing evidence suggests that targeting key components of this pathway may represent an effective treatment to kill AML LSCs. Despite this, accruing significant body of scientific knowledge, PI3K/Akt/mTOR inhibitors have not translated into clinical practice. In this article, we review the laboratory-based evidence of the critical role of PI3K/Akt/mTOR pathway in AML, and outcomes from current clinical studies using PI3K/Akt/mTOR inhibitors. Based on these results, we discuss the putative mechanisms of resistance to PI3K/Akt/mTOR inhibition, offering rationale for potential candidate combination therapies incorporating PI3K/Akt/mTOR inhibitors for precision medicine in AML.
Collapse
Affiliation(s)
- Salihanur Darici
- Haemato-Oncology/Systems Medicine Group, Paul O’Gorman Leukaemia Research Centre, University of Glasgow, Glasgow G12 0ZD, UK; (H.A.); (G.H.); (H.G.J.)
- Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, 41124 Modena, Italy;
| | - Hazem Alkhaldi
- Haemato-Oncology/Systems Medicine Group, Paul O’Gorman Leukaemia Research Centre, University of Glasgow, Glasgow G12 0ZD, UK; (H.A.); (G.H.); (H.G.J.)
| | - Gillian Horne
- Haemato-Oncology/Systems Medicine Group, Paul O’Gorman Leukaemia Research Centre, University of Glasgow, Glasgow G12 0ZD, UK; (H.A.); (G.H.); (H.G.J.)
| | - Heather G. Jørgensen
- Haemato-Oncology/Systems Medicine Group, Paul O’Gorman Leukaemia Research Centre, University of Glasgow, Glasgow G12 0ZD, UK; (H.A.); (G.H.); (H.G.J.)
| | - Sandra Marmiroli
- Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, 41124 Modena, Italy;
| | - Xu Huang
- Haemato-Oncology/Systems Medicine Group, Paul O’Gorman Leukaemia Research Centre, University of Glasgow, Glasgow G12 0ZD, UK; (H.A.); (G.H.); (H.G.J.)
| |
Collapse
|
49
|
R-Ras GTPases Signaling Role in Myelin Neurodegenerative Diseases. Int J Mol Sci 2020; 21:ijms21165911. [PMID: 32824627 PMCID: PMC7460555 DOI: 10.3390/ijms21165911] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Revised: 08/13/2020] [Accepted: 08/14/2020] [Indexed: 12/18/2022] Open
Abstract
Myelination is required for fast and efficient synaptic transmission in vertebrates. In the central nervous system, oligodendrocytes are responsible for creating myelin sheaths that isolate and protect axons, even throughout adulthood. However, when myelin is lost, the failure of remyelination mechanisms can cause neurodegenerative myelin-associated pathologies. From oligodendrocyte progenitor cells to mature myelinating oligodendrocytes, myelination is a highly complex process that involves many elements of cellular signaling, yet many of the mechanisms that coordinate it, remain unknown. In this review, we will focus on the three major pathways involved in myelination (PI3K/Akt/mTOR, ERK1/2-MAPK, and Wnt/β-catenin) and recent advances describing the crosstalk elements which help to regulate them. In addition, we will review the tight relation between Ras GTPases and myelination processes and discuss its potential as novel elements of crosstalk between the pathways. A better understanding of the crosstalk elements orchestrating myelination mechanisms is essential to identify new potential targets to mitigate neurodegeneration.
Collapse
|
50
|
Trostnikov MV, Veselkina ER, Krementsova AV, Boldyrev SV, Roshina NV, Pasyukova EG. Modulated Expression of the Protein Kinase GSK3 in Motor and Dopaminergic Neurons Increases Female Lifespan in Drosophila melanogaster. Front Genet 2020; 11:668. [PMID: 32695143 PMCID: PMC7339944 DOI: 10.3389/fgene.2020.00668] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Accepted: 06/01/2020] [Indexed: 12/13/2022] Open
Abstract
Most eukaryotic genes express multiple transcripts and proteins, and a sophisticated gene expression strategy plays a crucial role in ensuring the cell-specificity of genetic information and the correctness of phenotypes. The Drosophila melanogaster gene shaggy encodes several isoforms of the conserved glycogen synthase kinase 3 (GSK3), which is vitally important for multiple biological processes. To characterize the phenotypic effects of differential shaggy expression, we explored how the multidirectional modulation of the expression of the main GSK3 isoform, Shaggy-PB, in different tissues and cells affects lifespan. To this end, we used lines with transgenic constructs that encode mutant variants of the protein. The effect of shaggy misexpression on lifespan depended on the direction of the presumed change in GSK3 activity and the type of tissue/cell. The modulation of GSK3 activity in motor and dopaminergic neurons improved female lifespan but caused seemingly negative changes in the structural (mitochondrial depletion; neuronal loss) and functional (perturbed locomotion) properties of the nervous system, indicating the importance of analyzing the relationship between lifespan and healthspan in invertebrate models. Our findings provide new insights into the molecular and cellular bases of lifespan extension, demonstrating that the fine-tuning of transcript-specific shaggy expression in individual groups of neurons is sufficient to provide a sex-specific increase in survival and slow aging.
Collapse
Affiliation(s)
- Mikhail V Trostnikov
- Laboratory of Genome Variation, Institute of Molecular Genetics, Russian Academy of Sciences, Moscow, Russia
| | - Ekaterina R Veselkina
- Laboratory of Genome Variation, Institute of Molecular Genetics, Russian Academy of Sciences, Moscow, Russia
| | - Anna V Krementsova
- Laboratory of Genome Variation, Institute of Molecular Genetics, Russian Academy of Sciences, Moscow, Russia.,Laboratory of Kinetics and Mechanisms of Enzymatic and Catalytic Reactions, N. M. Emanuel Institute of Biochemical Physics, Russian Academy of Sciences, Moscow, Russia
| | - Stepan V Boldyrev
- Laboratory of Genome Variation, Institute of Molecular Genetics, Russian Academy of Sciences, Moscow, Russia.,Laboratory of Genetic Basis of Biodiversity, N. I. Vavilov Institute of General Genetics, Russian Academy of Sciences, Moscow, Russia
| | - Natalia V Roshina
- Laboratory of Genome Variation, Institute of Molecular Genetics, Russian Academy of Sciences, Moscow, Russia.,Laboratory of Genetic Basis of Biodiversity, N. I. Vavilov Institute of General Genetics, Russian Academy of Sciences, Moscow, Russia
| | - Elena G Pasyukova
- Laboratory of Genome Variation, Institute of Molecular Genetics, Russian Academy of Sciences, Moscow, Russia
| |
Collapse
|