1
|
Li S, Chen F, Liu M, Zhang Y, Xu J, Li X, Shang Z, Huang S, Song S, Tu C. Knockdown of hepatic mitochondrial calcium uniporter mitigates MASH and fibrosis in mice. Cell Biosci 2024; 14:135. [PMID: 39523398 PMCID: PMC11550531 DOI: 10.1186/s13578-024-01315-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Accepted: 10/21/2024] [Indexed: 11/16/2024] Open
Abstract
BACKGROUND Mitochondrial calcium uniporter (MCU) plays pleiotropic roles in cellular physiology and pathology that contributes to a variety of diseases, but the role and potential mechanism of MCU in the pathogenesis of metabolic dysfunction-associated steatohepatitis (MASH) remain poorly understood. METHODS AND RESULTS Here, hepatic knockdown of MCU in C57BL/6J mice was achieved by tail vein injection of AAV8-mediated the CRISPR/Cas9. Mice were fed a Choline-deficient, L-amino acid-defined high-fat diet (CDAHFD) for 8 weeks to induce MASH and fibrosis. We find that expression of MCU enhanced in MASH livers of humans and mice. MCU knockdown robustly limits lipid droplet accumulation, steatosis, inflammation, and hepatocyte apoptotic death during MASH development both in vivo in mice and in vitro in cellular models. MCU-deficient mice strikingly mitigate MASH-related fibrosis. Moreover, the protective effects of MCU knockdown against MASH progression are accompanied by a reduced level of mitochondrial calcium, limiting hepatic oxidative stress, and attenuating mitochondrial dysfunction. Mechanically, RNA sequencing analysis and protein immunoblotting indicate that knockdown MCU inhibited the Hippo/YAP pathway activation and restored the AMP-activated protein kinase (AMPK) activity during MASH development both in vitro and in vivo. CONCLUSIONS MCU is up-regulated in MASH livers in humans and mice; and hepatic MCU knockdown protects against diet-induced MASH and fibrosis in mice. Thus, targeting MCU may represent a novel therapeutic strategy for MASH and fibrosis.
Collapse
Affiliation(s)
- Shuyu Li
- Department of Gastroenterology and Hepatology, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Fangyuan Chen
- Department of Gastroenterology and Hepatology, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Min Liu
- Department of Gastroenterology, Shanghai Public Health Clinical Center, Fudan University, Shanghai, 201508, China
| | - Yajun Zhang
- Department of Gastroenterology, Shanghai Public Health Clinical Center, Fudan University, Shanghai, 201508, China
| | - Jingjing Xu
- Department of Pathology, Shanghai Public Health Clinical Center, Fudan University, Shanghai, 201508, China
| | - Xi Li
- Department of Geriatrics, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Zhiyin Shang
- Department of Gastroenterology, Shanghai Public Health Clinical Center, Fudan University, Shanghai, 201508, China
| | - Shaoping Huang
- Department of Gastroenterology, Shanghai Public Health Clinical Center, Fudan University, Shanghai, 201508, China
| | - Shu Song
- Department of Pathology, Shanghai Public Health Clinical Center, Fudan University, Shanghai, 201508, China.
| | - Chuantao Tu
- Department of Gastroenterology, Shanghai Public Health Clinical Center, Fudan University, Shanghai, 201508, China.
| |
Collapse
|
2
|
Reid MV, Fredickson G, Mashek DG. Mechanisms coupling lipid droplets to MASLD pathophysiology. Hepatology 2024:01515467-990000000-01067. [PMID: 39475114 DOI: 10.1097/hep.0000000000001141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Accepted: 10/17/2024] [Indexed: 01/03/2025]
Abstract
Hepatic steatosis, the buildup of neutral lipids in lipid droplets (LDs), is commonly referred to as metabolic dysfunction-associated steatotic liver disease when alcohol or viral infections are not involved. Metabolic dysfunction-associated steatotic liver disease encompasses simple steatosis and the more severe metabolic dysfunction-associated steatohepatitis, characterized by inflammation, hepatocyte injury, and fibrosis. Previously viewed as inert markers of disease, LDs are now understood to play active roles in disease etiology and have significant nonpathological and pathological functions in cell signaling and function. These dynamic properties of LDs are tightly regulated by hundreds of proteins that coat the LD surface, controlling lipid metabolism, trafficking, and signaling. The following review highlights various facets of LD biology with the primary goal of discussing key mechanisms through which LDs promote the development of advanced liver diseases, including metabolic dysfunction-associated steatohepatitis.
Collapse
Affiliation(s)
- Mari V Reid
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, Minneapolis, Minnesota, USA
| | - Gavin Fredickson
- Department of Integrated Biology and Physiology, University of Minnesota, Minneapolis, Minnesota, USA
| | - Douglas G Mashek
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, Minneapolis, Minnesota, USA
- Department of Medicine, Division of Diabetes, Endocrinology and Metabolism, University of Minnesota, Minneapolis, Minnesota, USA
- Institute on the Biology of Aging and Metabolism, University of Minnesota, Minneapolis, Minnesota, USA
| |
Collapse
|
3
|
Chen S, Li Q, Shi H, Li F, Duan Y, Guo Q. New insights into the role of mitochondrial dynamics in oxidative stress-induced diseases. Biomed Pharmacother 2024; 178:117084. [PMID: 39088967 DOI: 10.1016/j.biopha.2024.117084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 06/29/2024] [Accepted: 07/01/2024] [Indexed: 08/03/2024] Open
Abstract
The accumulation of excess reactive oxygen species (ROS) can lead to oxidative stress (OS), which can induce gene mutations, protein denaturation, and lipid peroxidation directly or indirectly. The expression is reduced ATP level in cells, increased cytoplasmic Ca2+, inflammation, and so on. Consequently, ROS are recognized as significant risk factors for human aging and various diseases, including diabetes, cardiovascular diseases, and neurodegenerative diseases. Mitochondria are involved in the production of ROS through the respiratory chain. Abnormal mitochondrial characteristics, including mitochondrial OS, mitochondrial fission, mitochondrial fusion, and mitophagy, play an important role in various tissues. However, previous excellent reviews focused on OS-induced diseases. In this review, we focus on the latest progress of OS-induced mitochondrial dynamics, discuss OS-induced mitochondrial damage-related diseases, and summarize the OS-induced mitochondrial dynamics-related signaling pathways. Additionally, it elaborates on potential therapeutic methods aimed at preventing oxidative stress from further exacerbating mitochondrial disorders.
Collapse
Affiliation(s)
- Sisi Chen
- Hunan Provincial Key Laboratory of Animal Nutritional Physiology and Metabolic Process, Key Laboratory of Agro⁃Ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha 410125, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Qilong Li
- Hunan Provincial Key Laboratory of Animal Nutritional Physiology and Metabolic Process, Key Laboratory of Agro⁃Ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha 410125, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Hanjing Shi
- Hunan Provincial Key Laboratory of Animal Nutritional Physiology and Metabolic Process, Key Laboratory of Agro⁃Ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha 410125, China; Hunan Provincial Key Laboratory of Animal Intestinal Function and Regulation, College of Life Sciences, Hunan Normal University, Changsha 410081, China
| | - Fengna Li
- Hunan Provincial Key Laboratory of Animal Nutritional Physiology and Metabolic Process, Key Laboratory of Agro⁃Ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha 410125, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yehui Duan
- Hunan Provincial Key Laboratory of Animal Nutritional Physiology and Metabolic Process, Key Laboratory of Agro⁃Ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha 410125, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Qiuping Guo
- Hunan Provincial Key Laboratory of Animal Nutritional Physiology and Metabolic Process, Key Laboratory of Agro⁃Ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha 410125, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
4
|
Chen C, Han P, Qing Y. Metabolic heterogeneity in tumor microenvironment - A novel landmark for immunotherapy. Autoimmun Rev 2024; 23:103579. [PMID: 39004158 DOI: 10.1016/j.autrev.2024.103579] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 04/10/2024] [Accepted: 07/09/2024] [Indexed: 07/16/2024]
Abstract
The surrounding non-cancer cells and tumor cells that make up the tumor microenvironment (TME) have various metabolic rhythms. TME metabolic heterogeneity is influenced by the intricate network of metabolic control within and between cells. DNA, protein, transport, and microbial levels are important regulators of TME metabolic homeostasis. The effectiveness of immunotherapy is also closely correlated with alterations in TME metabolism. The response of a tumor patient to immunotherapy is influenced by a variety of variables, including intracellular metabolic reprogramming, metabolic interaction between cells, ecological changes within and between tumors, and general dietary preferences. Although immunotherapy and targeted therapy have made great strides, their use in the accurate identification and treatment of tumors still has several limitations. The function of TME metabolic heterogeneity in tumor immunotherapy is summarized in this article. It focuses on how metabolic heterogeneity develops and is regulated as a tumor progresses, the precise molecular mechanisms and potential clinical significance of imbalances in intracellular metabolic homeostasis and intercellular metabolic coupling and interaction, as well as the benefits and drawbacks of targeted metabolism used in conjunction with immunotherapy. This offers insightful knowledge and important implications for individualized tumor patient diagnosis and treatment plans in the future.
Collapse
Affiliation(s)
- Chen Chen
- The First Affiliated Hospital of Ningbo University, Ningbo 315211, Zhejiang, China
| | - Peng Han
- Harbin Medical University Cancer Hospital, Harbin 150081, Heilongjiang, China.
| | - Yanping Qing
- The First Affiliated Hospital of Ningbo University, Ningbo 315211, Zhejiang, China.
| |
Collapse
|
5
|
Nandwani A, Rathore S, Datta M. LncRNA H19 inhibition impairs endoplasmic reticulum-mitochondria contact in hepatic cells and augments gluconeogenesis by increasing VDAC1 levels. Redox Biol 2024; 69:102989. [PMID: 38100882 PMCID: PMC10761920 DOI: 10.1016/j.redox.2023.102989] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 11/17/2023] [Accepted: 12/06/2023] [Indexed: 12/17/2023] Open
Abstract
Inspite of exerting independent cellular functions, the endoplasmic-reticulum (ER) and the mitochondria also physically connect at specific sites termed mitochondria-associated ER membranes (MAMs) and these sites consist of several tethering proteins that play varied roles in diverse cellular processes. However, the regulation of these tethering proteins within the cell is relatively less studied. Here, we show that several MAM proteins are significantly altered in the liver during diabetes and among these, the lncRNA, H19 regulates the levels of VDAC1. Inhibition of H19 expression using H19 specific siRNA altered VDAC1, mitochondrial Ca2+ and oxygen consumption rate, ATP and ROS levels and enhanced ER and mitochondria coupling in Hepa 1-6 cells. While H19 inhibition did not impact lipid accumulation, levels of gluconeogenic genes were significantly increased. JNK-phosphorylation and IRS1-Ser307-phosphorylation were increased by H19 inhibition and this was associated with abrogation of insulin-stimulated AKT (Ser-473) phosphorylation and glucose uptake in Hepa 1-6 cells. While inhibition of VDAC1 expression using siRNAs and with metformin significantly rescued the effects of H19 inhibition, VDAC1 overexpression alone exerted effects similar to H19 inhibition, suggesting that VDAC1 increase mediates the adverse effects of H19. In-vivo H19 inhibition using specific siRNAs increased hepatic VDAC1, pJNK and pIRS1 (Ser307) levels and decreased AKT (Ser-473) phosphorylation in mice. These suggest an important role of the H19-VDAC1 axis in ER-mitochondria coupling and regulation of gluconeogenesis in the liver during diabetes.
Collapse
Affiliation(s)
- Arun Nandwani
- CSIR-Institute of Genomics and Integrative Biology, Mall Road, Delhi, 110007, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Shalu Rathore
- CSIR-Institute of Genomics and Integrative Biology, Mall Road, Delhi, 110007, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Malabika Datta
- CSIR-Institute of Genomics and Integrative Biology, Mall Road, Delhi, 110007, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India.
| |
Collapse
|
6
|
Feng W, Kao TC, Jiang J, Zeng X, Chen S, Zeng J, Chen Y, Ma X. The dynamic equilibrium between the protective and toxic effects of matrine in the development of liver injury: a systematic review and meta-analysis. Front Pharmacol 2024; 15:1315584. [PMID: 38348397 PMCID: PMC10859759 DOI: 10.3389/fphar.2024.1315584] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Accepted: 01/08/2024] [Indexed: 02/15/2024] Open
Abstract
Background: Matrine, an alkaloid derived from the dried roots of Sophora flavescens Aiton, has been utilized for the treatment of liver diseases, but its potential hepatotoxicity raises concerns. However, the precise condition and mechanism of action of matrine on the liver remain inconclusive. Therefore, the objective of this systematic review and meta-analysis is to comprehensively evaluate both the hepatoprotective and hepatotoxic effects of matrine and provide therapeutic guidance based on the findings. Methods: The meta-analysis systematically searched relevant preclinical literature up to May 2023 from eight databases, including PubMed, Web of Science, Cochrane Library, Embase, China National Knowledge Infrastructure, WanFang Med Online, China Science and Technology Journal Database, and China Biomedical Literature Service System. The CAMARADES system assessed the quality and bias of the evidence. Statistical analysis was conducted using STATA, which included the use of 3D maps and radar charts to display the effects of matrine dosage and frequency on hepatoprotection and hepatotoxicity. Results: After a thorough screening, 24 studies involving 657 rodents were selected for inclusion. The results demonstrate that matrine has bidirectional effects on ALT and AST levels, and it also regulates SOD, MDA, serum TG, serum TC, IL-6, TNF-α, and CAT levels. Based on our comprehensive three-dimensional analysis, the optimal bidirectional effective dosage of matrine ranges from 10 to 69.1 mg/kg. However, at a dose of 20-30 mg/kg/d for 0.02-0.86 weeks, it demonstrated high liver protection and low toxicity. The molecular docking analysis revealed the interaction between MT and SERCA as well as SREBP-SCAP complexes. Matrine could alter Ca2+ homeostasis in liver injury via multiple pathways, including the SREBP1c/SCAP, Notch/RBP-J/HES1, IκK/NF-κB, and Cul3/Rbx1/Keap1/Nrf2. Conclusion: Matrine has bidirectional effects on the liver at doses ranging from 10 to 69.1 mg/kg by influencing Ca2+ homeostasis in the cytoplasm, endoplasmic reticulum, Golgi apparatus, and mitochondria. Systematic review registration: https://inplasy.com/, identifier INPLASY202340114.
Collapse
Affiliation(s)
- Weiyi Feng
- TCM Regulating Metabolic Diseases Key Laboratory of Sichuan Province, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- School of Clinical Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Te-chan Kao
- TCM Regulating Metabolic Diseases Key Laboratory of Sichuan Province, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- School of Clinical Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Jiajie Jiang
- TCM Regulating Metabolic Diseases Key Laboratory of Sichuan Province, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- School of Clinical Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Xinyu Zeng
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Shuang Chen
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Jinhao Zeng
- TCM Regulating Metabolic Diseases Key Laboratory of Sichuan Province, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
- School of Clinical Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yu Chen
- TCM Regulating Metabolic Diseases Key Laboratory of Sichuan Province, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
- School of Clinical Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Xiao Ma
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| |
Collapse
|
7
|
Chang H, Yang F, Bai H, Lu Z, Xing C, Dai X, Wan W, Liao S, Cao H. Molybdenum and/or cadmium induce NLRP3 inflammasome production by causing mitochondria-associated endoplasmic reticulum membrane dysfunction in sheep hepatocytes. Chem Biol Interact 2023; 382:110617. [PMID: 37385403 DOI: 10.1016/j.cbi.2023.110617] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 06/21/2023] [Accepted: 06/27/2023] [Indexed: 07/01/2023]
Abstract
Accumulation of the heavy metals molybdenum (Mo) and cadmium (Cd) in the liver can induce organelle damage and inflammation, resulting in hepatotoxicity. The effect of Mo and/or Cd on sheep hepatocytes was investigated by determining the relationship between the mitochondria-associated endoplasmic reticulum membrane (MAM) and NLRP3 inflammasome. Sheep hepatocytes were divided into four groups: the control group, Mo group (600 μM Mo), Cd group (4 μM Cd) and Mo + Cd group (600 μM Mo+4 μM Cd). The results showed that Mo and/or Cd exposure increased the levels of lactate dehydrogenase (LDH) and nitric oxide (NO) in the cell culture supernatant, elevated the levels of intracellular Ca2+ and mitochondrial Ca2+, downregulated the expression of MAM-related factors (IP3R, GRP75, VDAC1, PERK, ERO1-α, Mfn1, Mfn2, ERP44), shortened the length of the MAM and reduced the formation of the MAM structure, eventually causing MAM dysfunction. Moreover, the expression levels of NLRP3 inflammasome-related factors (NLRP3, Caspase1, IL-1β, IL-6, TNF-α) were also dramatically increased after Mo and Cd exposure, triggering NLRP3 inflammasome production. However, an IP3R inhibitor, 2-APB treatment significantly alleviated these changes. Overall, the data indicate that Mo and Cd coexposure leads to structural disruption and dysfunction of MAM, disrupts cellular Ca2+ homeostasis, and increases NLRP3 inflammasome production in sheep hepatocytes. However, the inhibition of IP3R alleviates NLRP3 inflammasome production induced by Mo and Cd.
Collapse
Affiliation(s)
- Huifeng Chang
- Jiangxi Provincial Key Laboratory for Animal Health, Institute of Animal Population Health, College of Animal Science and Technology, Jiangxi Agricultural University, No. 1101 Zhimin Avenue, Economic and Technological Development District, Nanchang, 330045, Jiangxi, PR China
| | - Fan Yang
- Jiangxi Provincial Key Laboratory for Animal Health, Institute of Animal Population Health, College of Animal Science and Technology, Jiangxi Agricultural University, No. 1101 Zhimin Avenue, Economic and Technological Development District, Nanchang, 330045, Jiangxi, PR China
| | - He Bai
- Medical Research Center, Mudanjiang Medical University, No. 3 Tongxiang street, Aimin District, Mudanjiang, 157011, Heilongjiang, PR China
| | - Zengting Lu
- Jiangxi Provincial Key Laboratory for Animal Health, Institute of Animal Population Health, College of Animal Science and Technology, Jiangxi Agricultural University, No. 1101 Zhimin Avenue, Economic and Technological Development District, Nanchang, 330045, Jiangxi, PR China
| | - Chenghong Xing
- Jiangxi Provincial Key Laboratory for Animal Health, Institute of Animal Population Health, College of Animal Science and Technology, Jiangxi Agricultural University, No. 1101 Zhimin Avenue, Economic and Technological Development District, Nanchang, 330045, Jiangxi, PR China
| | - Xueyan Dai
- Jiangxi Provincial Key Laboratory for Animal Health, Institute of Animal Population Health, College of Animal Science and Technology, Jiangxi Agricultural University, No. 1101 Zhimin Avenue, Economic and Technological Development District, Nanchang, 330045, Jiangxi, PR China
| | - Wengen Wan
- Jiangxi Agricultural Technology Extension Center, Nanchang, 330096, Jiangxi, PR China
| | - Shuxian Liao
- Fengxin County Modern Agricultural Technology Service Center, Fengxin, PR China
| | - Huabin Cao
- Jiangxi Provincial Key Laboratory for Animal Health, Institute of Animal Population Health, College of Animal Science and Technology, Jiangxi Agricultural University, No. 1101 Zhimin Avenue, Economic and Technological Development District, Nanchang, 330045, Jiangxi, PR China.
| |
Collapse
|
8
|
Tang Z, Ding Y, Zhang R, Zhang M, Guan Q, Zhang L, Wang H, Chen Y, Jiang R, Zhang W, Wang J. Genetic polymorphisms of Ca 2+ transport proteins and molecular chaperones in mitochondria-associated endoplasmic reticulum membrane and non-alcoholic fatty liver disease. Front Endocrinol (Lausanne) 2023; 13:1056283. [PMID: 36686460 PMCID: PMC9846251 DOI: 10.3389/fendo.2022.1056283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Accepted: 12/13/2022] [Indexed: 01/05/2023] Open
Abstract
Background Non-alcoholic fatty liver disease (NAFLD) is recognized to be closely associated with endoplasmic reticulum stress and mitochondrial dysfunction, while previous studies have emphasized the important role of calcium homeostasis from the mitochondria-associated endoplasmic reticulum membrane (MAM) in the endoplasmic reticulum and mitochondria. This article will assess the association between genetic polymorphisms of Ca2+ transport proteins and molecular chaperones in MAM and NAFLD risk. Methods A case-control study was conducted in a community of Nanjing, China during April to December 2020. 2701 subjects were enrolled and genotyped for 6 genetic variants in HSPA5 and ITPR2 genes. Logistic regression analysis was used to assess impact of these variants on NAFLD risk. Results After adjusting for age, gender, total cholesterol and glucose, we identified that HSPA5 rs12009 variant genotypes (recessive model: OR= 0.801, 95% CI= 0.652-0.986, P= 0.036), rs430397 variant genotypes (recessive model: OR= 0.546, 95% CI= 0.314-0.950, P= 0.032), and ITPR2 rs11048570 variant genotypes (recessive model: OR= 0.673, 95% CI= 0.453-0.999, P= 0.049) were associated with a reduced risk of NAFLD. Multivariate stepwise regression analysis indicated that gender, glucose, body mass index, triglycerides and favorable alleles were independent influencers of NAFLD (all P< 0.05). The area under the receiver operating characteristic curve was 0.764 (95% CI= 0.745-0.783, P< 0.001). Conclusion The variant genotypes of Ca2+ transport-associated genes HSPA5 (rs12009 and rs430397) and ITPR2 (rs11048570) might contribute to the reduction of the NAFLD risk in Chinese Han population, which can provide new insight into NAFLD pathogenesis.
Collapse
Affiliation(s)
- Zongzhe Tang
- Department of Fundamental and Community Nursing, School of Nursing, Nanjing Medical University, Nanjing, China
| | - Yajie Ding
- Department of Fundamental and Community Nursing, School of Nursing, Nanjing Medical University, Nanjing, China
| | - Ru Zhang
- Department of Fundamental and Community Nursing, School of Nursing, Nanjing Medical University, Nanjing, China
| | - Mengting Zhang
- Department of Fundamental and Community Nursing, School of Nursing, Nanjing Medical University, Nanjing, China
| | - Qing Guan
- Department of Fundamental and Community Nursing, School of Nursing, Nanjing Medical University, Nanjing, China
| | - Liuxin Zhang
- Department of Neurosurgery, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, China
| | - Hongliang Wang
- Department of General Practice, Ninghai Road Community Health Service Center, Nanjing, China
| | - Yue Chen
- Department of Fundamental and Community Nursing, School of Nursing, Nanjing Medical University, Nanjing, China
| | - Rong Jiang
- Department of Fundamental and Community Nursing, School of Nursing, Nanjing Medical University, Nanjing, China
| | - Wei Zhang
- Department of Epidemiology, Shanghai Cancer Institute, Shanghai, China
| | - Jie Wang
- Department of Fundamental and Community Nursing, School of Nursing, Nanjing Medical University, Nanjing, China
| |
Collapse
|
9
|
Alves A, Lamarche F, Lefebvre R, Drevet Mulard E, Bassot A, Chanon S, Loizon E, Pinteur C, Bloise AMNDLG, Godet M, Rautureau GJP, Panthu B, Morio B. Glycine Supplementation in Obesity Worsens Glucose Intolerance through Enhanced Liver Gluconeogenesis. Nutrients 2022; 15:nu15010096. [PMID: 36615754 PMCID: PMC9823780 DOI: 10.3390/nu15010096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 12/19/2022] [Accepted: 12/20/2022] [Indexed: 12/28/2022] Open
Abstract
Interactions between mitochondria and the endoplasmic reticulum, known as MAMs, are altered in the liver in obesity, which contributes to disruption of the insulin signaling pathway. In addition, the plasma level of glycine is decreased in obesity, and the decrease is strongly correlated with the severity of insulin resistance. Certain nutrients have been shown to regulate MAMs; therefore, we tested whether glycine supplementation could reduce insulin resistance in the liver by promoting MAM integrity. Glycine (5 mM) supported MAM integrity and insulin response in primary rat hepatocytes cultured under control and lipotoxic (palmitate 500 µM) conditions for 18 h. In contrast, in C57 BL/6 JOlaHsd mice (male, 6 weeks old) fed a high-fat, high-sucrose diet (HFHS) for 16 weeks, glycine supplementation (300 mg/kg) in drinking water during the last 6 weeks (HFHS-Gly) did not reverse the deleterious impact of HFHS-feeding on liver MAM integrity. In addition, glycine supplementation worsened fasting glycemia and glycemic response to intraperitoneal pyruvate injection compared to HFHS. The adverse impact of glycine supplementation on hepatic gluconeogenesis was further supported by the higher oxaloacetate/acetyl-CoA ratio in the liver in HFHS-Gly compared to HFHS. Although glycine improves MAM integrity and insulin signaling in the hepatocyte in vitro, no beneficial effect was found on the overall metabolic profile of HFHS-Gly-fed mice.
Collapse
Affiliation(s)
- Anaïs Alves
- CarMeN laboratory, UMR INSERM U1060/INRAE U1397, Université Claude Bernard Lyon 1, Université de Lyon, 69310 Pierre-Bénite, France
| | - Frédéric Lamarche
- Laboratory of Fundamental and Applied Bioenergetics, INSERM U1055, Université Grenoble Alpes, 38400 Saint Martin d’Hères, France
| | - Rémy Lefebvre
- CarMeN laboratory, UMR INSERM U1060/INRAE U1397, Université Claude Bernard Lyon 1, Université de Lyon, 69310 Pierre-Bénite, France
| | - Eva Drevet Mulard
- ICBMS CNRS U5246, Université Claude Bernard Lyon 1, Université de Lyon, 69622 Villeurbanne, France
| | - Arthur Bassot
- Erika Cosset Team, Cancer Research Centre of Lyon, UMR INSERM U1052/CNRS 5286, 69008 Lyon, France
| | - Stéphanie Chanon
- CarMeN laboratory, UMR INSERM U1060/INRAE U1397, Université Claude Bernard Lyon 1, Université de Lyon, 69310 Pierre-Bénite, France
| | - Emmanuelle Loizon
- CarMeN laboratory, UMR INSERM U1060/INRAE U1397, Université Claude Bernard Lyon 1, Université de Lyon, 69310 Pierre-Bénite, France
| | - Claudie Pinteur
- CarMeN laboratory, UMR INSERM U1060/INRAE U1397, Université Claude Bernard Lyon 1, Université de Lyon, 69310 Pierre-Bénite, France
| | - Aline Maria Nunes de Lira Gomes Bloise
- Department of Physical Education and Sport Sciences, Laboratory of Nutrition, Physical Activity and Phenotypic Plasticity, Universidade Federal de Pernambuco, UFPE, 55604-000 Vitória de Santo Antão, PE, Brazil
| | - Murielle Godet
- CarMeN laboratory, UMR INSERM U1060/INRAE U1397, Université Claude Bernard Lyon 1, Université de Lyon, 69310 Pierre-Bénite, France
| | - Gilles J. P. Rautureau
- ICBMS CNRS U5246, Université Claude Bernard Lyon 1, Université de Lyon, 69622 Villeurbanne, France
- Centre de Résonance Magnétique Nucléaire à Très Hauts Champs, UMR CNRS U5082/ENS Lyon, Université Claude Bernard Lyon 1, Université de Lyon, 69100 Villeurbanne, France
| | - Baptiste Panthu
- CarMeN laboratory, UMR INSERM U1060/INRAE U1397, Université Claude Bernard Lyon 1, Université de Lyon, 69310 Pierre-Bénite, France
| | - Béatrice Morio
- CarMeN laboratory, UMR INSERM U1060/INRAE U1397, Université Claude Bernard Lyon 1, Université de Lyon, 69310 Pierre-Bénite, France
- Correspondence:
| |
Collapse
|
10
|
Xu H, Zhou W, Zhan L, Bi T, Lu X. Liver mitochondria-associated endoplasmic reticulum membrane proteomics for studying the effects of ZiBuPiYin recipe on Zucker diabetic fatty rats after chronic psychological stress. Front Cell Dev Biol 2022; 10:995732. [PMID: 36407109 PMCID: PMC9669571 DOI: 10.3389/fcell.2022.995732] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2022] [Accepted: 10/18/2022] [Indexed: 11/06/2022] Open
Abstract
Type 2 diabetes mellitus (T2DM) is a complex metabolic disease with multiple etiologies, involving both genetic and environmental factors. With changes associated with modern life, increasing attention has been paid to chronic psychological stressors such as work stress. Chronic psychological stress can induce or aggravate diabetes mellitus, and conversely, with the deterioration of T2DM, patients often experience different degrees of depression, anxiety, and other negative emotions. In order to clarify the role of ZiBuPiYin recipe (ZBPYR) in regulating the liver mitochondria-associated endoplasmic reticulum membrane proteome to improve T2DM with chronic psychological stress, differentially expressed proteins (DEPs) were identified among Zucker lean littermates (control group), chronic psychological stress T2DM rats (model group), and ZBPYR administration rats (ZBPYR group) through iTRAQ with LC-MS/MS. Using Mfuzz soft clustering analysis, DEPs were divided into six different clusters. Clusters 1–6 contained 5, 68, 44, 57, 28, and 32 DEPs, respectively. Given that ZBPYR can alleviate T2DM symptoms and affect exploratory behavior during T2DM with chronic psychological stress, we focused on the clusters with opposite expression trends between model:control and ZBPYR:model groups. We screened out the DEPs in clusters 1, 3, and 4, which may be good candidates for the prevention and treatment of T2DM with chronic psychological stress, and further conducted bioinformatics analyses. DEPs were mainly involved in the insulin signaling pathway, oxidative phosphorylation, tricarboxylic acid cycle, amino acid metabolism, lysosome-related processes, and lipid metabolism. This may indicate the pathogenic basis of T2DM with chronic psychological stress and the potential therapeutic mechanism of ZBPYR. In addition, two key proteins, lysosome-associated protein (Lamp2) and tricarboxylic acid cycle-related protein (Suclg1), may represent novel biomarkers for T2DM with chronic psychological stress and drug targets of ZBPYR. Western blot analyses also showed similar expression patterns of these two proteins in liver MAMs of the model and ZBPYR groups.
Collapse
Affiliation(s)
- Huiying Xu
- Modern Research Laboratory of Spleen Visceral Manifestations Theory, School of Traditional Chinese Medicine, School of Integrated Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Wen Zhou
- Modern Research Laboratory of Spleen Visceral Manifestations Theory, School of Traditional Chinese Medicine, School of Integrated Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Libin Zhan
- Center for Innovative Engineering Technology in Traditional Chinese Medicine, Liaoning University of Traditional Chinese Medicine, Shenyang, China
- Key Laboratory of Ministry of Education for TCM Viscera-State Theory and Applications, Liaoning University of Traditional Chinese Medicine, Shenyang, China
- *Correspondence: Libin Zhan, ; Xiaoguang Lu,
| | - Tingting Bi
- Modern Research Laboratory of Spleen Visceral Manifestations Theory, School of Traditional Chinese Medicine, School of Integrated Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Xiaoguang Lu
- Department of Emergency Medicine, Zhongshan Hospital, Dalian University, Dalian, China
- *Correspondence: Libin Zhan, ; Xiaoguang Lu,
| |
Collapse
|
11
|
Kang Z, Chen F, Wu W, Liu R, Chen T, Xu F. UPRmt and coordinated UPRER in type 2 diabetes. Front Cell Dev Biol 2022; 10:974083. [PMID: 36187475 PMCID: PMC9523447 DOI: 10.3389/fcell.2022.974083] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Accepted: 08/29/2022] [Indexed: 11/13/2022] Open
Abstract
The mitochondrial unfolded protein response (UPRmt) is a molecular mechanism that maintains mitochondrial proteostasis under stress and is closely related to various metabolic diseases, such as type 2 diabetes (T2D). Similarly, the unfolded protein response of the endoplasmic reticulum (UPRER) is responsible for maintaining proteomic stability in the endoplasmic reticulum (ER). Since the mitochondria and endoplasmic reticulum are the primary centers of energy metabolism and protein synthesis in cells, respectively, a synergistic mechanism must exist between UPRmt and UPRER to cooperatively resist stresses such as hyperglycemia in T2D. Increasing evidence suggests that the protein kinase RNA (PKR)-like endoplasmic reticulum kinase (PERK) signaling pathway is likely an important node for coordinating UPRmt and UPRER. The PERK pathway is activated in both UPRmt and UPRER, and its downstream molecules perform important functions. In this review, we discuss the mechanisms of UPRmt, UPRER and their crosstalk in T2D.
Collapse
Affiliation(s)
- Zhanfang Kang
- Department of Basic Medical Research, Qingyuan People’s Hospital, The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan, China
| | - Feng Chen
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Protein Modification and Degradation, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, China
| | - Wanhui Wu
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Protein Modification and Degradation, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, China
| | - Rui Liu
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Protein Modification and Degradation, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, China
| | - Tianda Chen
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Protein Modification and Degradation, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, China
| | - Fang Xu
- Department of Basic Medical Research, Qingyuan People’s Hospital, The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan, China
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Protein Modification and Degradation, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, China
- *Correspondence: Fang Xu,
| |
Collapse
|
12
|
Pedroza-Diaz J, Arroyave-Ospina JC, Serna Salas S, Moshage H. Modulation of Oxidative Stress-Induced Senescence during Non-Alcoholic Fatty Liver Disease. Antioxidants (Basel) 2022; 11:antiox11050975. [PMID: 35624839 PMCID: PMC9137746 DOI: 10.3390/antiox11050975] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Revised: 04/18/2022] [Accepted: 05/05/2022] [Indexed: 01/10/2023] Open
Abstract
Non-alcoholic fatty liver disease is characterized by disturbed lipid metabolism and increased oxidative stress. These conditions lead to the activation of different cellular response mechanisms, including senescence. Cellular senescence constitutes an important response to injury in the liver. Recent findings show that chronic oxidative stress can induce senescence, and this might be a driving mechanism for NAFLD progression, aggravating the disturbance of lipid metabolism, organelle dysfunction, pro-inflammatory response and hepatocellular damage. In this context, the modulation of cellular senescence can be beneficial to ameliorate oxidative stress-related damage during NAFLD progression. This review focuses on the role of oxidative stress and senescence in the mechanisms leading to NAFLD and discusses the possibilities to modulate senescence as a therapeutic strategy in the treatment of NAFLD.
Collapse
Affiliation(s)
- Johanna Pedroza-Diaz
- University Medical Center Groningen, Department of Gastroenterology and Hepatology, University of Groningen, 9712 CP Groningen, The Netherlands; (J.P.-D.); (S.S.S.); (H.M.)
- Grupo de Investigación e Innovación Biomédica GI2B, Facultad de Ciencias Exactas y Aplicadas, Instituto Tecnológico Metropolitano, Medellín 050536, Colombia
| | - Johanna C. Arroyave-Ospina
- University Medical Center Groningen, Department of Gastroenterology and Hepatology, University of Groningen, 9712 CP Groningen, The Netherlands; (J.P.-D.); (S.S.S.); (H.M.)
- Correspondence:
| | - Sandra Serna Salas
- University Medical Center Groningen, Department of Gastroenterology and Hepatology, University of Groningen, 9712 CP Groningen, The Netherlands; (J.P.-D.); (S.S.S.); (H.M.)
| | - Han Moshage
- University Medical Center Groningen, Department of Gastroenterology and Hepatology, University of Groningen, 9712 CP Groningen, The Netherlands; (J.P.-D.); (S.S.S.); (H.M.)
| |
Collapse
|
13
|
Cabrera-Reyes F, Parra-Ruiz C, Yuseff MI, Zanlungo S. Alterations in Lysosome Homeostasis in Lipid-Related Disorders: Impact on Metabolic Tissues and Immune Cells. Front Cell Dev Biol 2021; 9:790568. [PMID: 34957117 PMCID: PMC8703004 DOI: 10.3389/fcell.2021.790568] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Accepted: 11/22/2021] [Indexed: 12/16/2022] Open
Abstract
Lipid-related disorders, which primarily affect metabolic tissues, including adipose tissue and the liver are associated with alterations in lysosome homeostasis. Obesity is one of the more prevalent diseases, which results in energy imbalance within metabolic tissues and lysosome dysfunction. Less frequent diseases include Niemann-Pick type C (NPC) and Gaucher diseases, both of which are known as Lysosomal Storage Diseases (LSDs), where lysosomal dysfunction within metabolic tissues remains to be fully characterized. Adipocytes and hepatocytes share common pathways involved in the lysosome-autophagic axis, which are regulated by the function of cathepsins and CD36, an immuno-metabolic receptor and display alterations in lipid diseases, and thereby impacting metabolic functions. In addition to intrinsic defects observed in metabolic tissues, cells of the immune system, such as B cells can infiltrate adipose and liver tissues, during metabolic imbalance favoring inflammation. Moreover, B cells rely on lysosomes to promote the processing and presentation of extracellular antigens and thus could also present lysosome dysfunction, consequently affecting such functions. On the other hand, growing evidence suggests that cells accumulating lipids display defective inter-organelle membrane contact sites (MCSs) established by lysosomes and other compartments, which contribute to metabolic dysfunctions at the cellular level. Overall, in this review we will discuss recent findings addressing common mechanisms that are involved in lysosome dysregulation in adipocytes and hepatocytes during obesity, NPC, and Gaucher diseases. We will discuss whether these mechanisms may modulate the function of B cells and how inter-organelle contacts, emerging as relevant cellular mechanisms in the control of lipid homeostasis, have an impact on these diseases.
Collapse
Affiliation(s)
- Fernanda Cabrera-Reyes
- Department of Cellular and Molecular Biology, Faculty of Sciences, Pontificia Universidad Católica de Chile, Santiago, Chile
- Department of Gastroenterology, Faculty of Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Claudia Parra-Ruiz
- Department of Cellular and Molecular Biology, Faculty of Sciences, Pontificia Universidad Católica de Chile, Santiago, Chile
- Department of Gastroenterology, Faculty of Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - María Isabel Yuseff
- Department of Cellular and Molecular Biology, Faculty of Sciences, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Silvana Zanlungo
- Department of Gastroenterology, Faculty of Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile
| |
Collapse
|
14
|
Schnegelberger RD, Lang AL, Arteel GE, Beier JI. Environmental toxicant-induced maladaptive mitochondrial changes: A potential unifying mechanism in fatty liver disease? Acta Pharm Sin B 2021; 11:3756-3767. [PMID: 35024304 PMCID: PMC8727895 DOI: 10.1016/j.apsb.2021.09.002] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Revised: 06/29/2021] [Accepted: 08/19/2021] [Indexed: 12/14/2022] Open
Abstract
Occupational and environmental exposures to industrial chemicals are well known to cause hepatotoxicity and liver injury. However, despite extensive evidence showing that exposure can lead to disease, current research approaches and regulatory policies fail to address the possibility that subtle changes caused by low level exposure to chemicals may also enhance preexisting conditions. In recent years, the conceptual understanding of the contribution of environmental chemicals to liver disease has progressed significantly. Mitochondria are often target of toxicity of environmental toxicants resulting in multisystem disorders involving different cells, tissues, and organs. Here, we review persistent maladaptive changes to mitochondria in response to environmental toxicant exposure as a mechanism of hepatotoxicity. With better understanding of the mechanism(s) and risk factors that mediate the initiation and progression of toxicant-induced liver disease, rational targeted therapy can be developed to better predict risk, as well as to treat or prevent this disease.
Collapse
Affiliation(s)
- Regina D. Schnegelberger
- Department of Pharmacology & Chemical Biology, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Anna L. Lang
- Department of Neurology, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Gavin E. Arteel
- Department of Medicine, Division of Gastroenterology, Hepatology & Nutrition, University of Pittsburgh, Pittsburgh, PA 15213, USA
- Pittsburgh Liver Research Center, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Juliane I. Beier
- Department of Medicine, Division of Gastroenterology, Hepatology & Nutrition, University of Pittsburgh, Pittsburgh, PA 15213, USA
- Pittsburgh Liver Research Center, University of Pittsburgh, Pittsburgh, PA 15213, USA
- Department of Environmental & Occupational Health, University of Pittsburgh, Pittsburgh, PA 15213, USA
| |
Collapse
|
15
|
Zhang L, Yan F, Li L, Fu H, Song D, Wu D, Wang X. New focuses on roles of communications between endoplasmic reticulum and mitochondria in identification of biomarkers and targets. Clin Transl Med 2021; 11:e626. [PMID: 34841708 PMCID: PMC8562589 DOI: 10.1002/ctm2.626] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Revised: 10/01/2021] [Accepted: 10/08/2021] [Indexed: 12/17/2022] Open
Abstract
The communication between endoplasmic reticulum (ER) and mitochondria (Mt) plays important roles in maintenance of intra- and extra-cellular microenvironment, metabolisms, signaling activities and cell-cell communication. The present review aims to overview the advanced understanding about roles of ER-Mt structural contacts, molecular interactions and chemical exchanges, signal transmissions and inter-organelle regulations in ER-Mt communication. We address how the ER-Mt communication contributes to the regulation of lipid, amino acid and glucose metabolisms by enzymes, transporters and regulators in the process of biosynthesis. We specially emphasize the importance of deep understanding about molecular mechanisms of ER-Mt communication for identification and development of biology-specific, disease-specific and metabolism-specific biomarkers and therapeutic targets for human diseases. The inhibitors and modulators of the ER-Mt communication are categorized according to therapeutic targets. Rapid development of biotechnologies will provide new insights for spatiotemporally understanding the molecular mechanisms of ER-Mt communication.
Collapse
Affiliation(s)
- Linlin Zhang
- Zhongshan HospitalDepartment of Pulmonary and Critical Care MedicineJinshan Hospital Centre for Tumor Diagnosis and TherapyFudan University Shanghai Medical CollegeShanghai Institute of Clinical BioinformaticsShanghai Engineering Research for AI Technology for Cardiopulmonary DiseasesShanghaiChina
| | - Furong Yan
- Zhongshan HospitalDepartment of Pulmonary and Critical Care MedicineJinshan Hospital Centre for Tumor Diagnosis and TherapyFudan University Shanghai Medical CollegeShanghai Institute of Clinical BioinformaticsShanghai Engineering Research for AI Technology for Cardiopulmonary DiseasesShanghaiChina
| | - Liyang Li
- Zhongshan HospitalDepartment of Pulmonary and Critical Care MedicineJinshan Hospital Centre for Tumor Diagnosis and TherapyFudan University Shanghai Medical CollegeShanghai Institute of Clinical BioinformaticsShanghai Engineering Research for AI Technology for Cardiopulmonary DiseasesShanghaiChina
| | - Huirong Fu
- Zhongshan HospitalDepartment of Pulmonary and Critical Care MedicineJinshan Hospital Centre for Tumor Diagnosis and TherapyFudan University Shanghai Medical CollegeShanghai Institute of Clinical BioinformaticsShanghai Engineering Research for AI Technology for Cardiopulmonary DiseasesShanghaiChina
| | - Dongli Song
- Zhongshan HospitalDepartment of Pulmonary and Critical Care MedicineJinshan Hospital Centre for Tumor Diagnosis and TherapyFudan University Shanghai Medical CollegeShanghai Institute of Clinical BioinformaticsShanghai Engineering Research for AI Technology for Cardiopulmonary DiseasesShanghaiChina
| | - Duojiao Wu
- Zhongshan HospitalDepartment of Pulmonary and Critical Care MedicineJinshan Hospital Centre for Tumor Diagnosis and TherapyFudan University Shanghai Medical CollegeShanghai Institute of Clinical BioinformaticsShanghai Engineering Research for AI Technology for Cardiopulmonary DiseasesShanghaiChina
| | - Xiangdong Wang
- Zhongshan HospitalDepartment of Pulmonary and Critical Care MedicineJinshan Hospital Centre for Tumor Diagnosis and TherapyFudan University Shanghai Medical CollegeShanghai Institute of Clinical BioinformaticsShanghai Engineering Research for AI Technology for Cardiopulmonary DiseasesShanghaiChina
| |
Collapse
|
16
|
Carteri RB, Kopczynski A, Rodolphi MS, Strogulski NR, Wannmacher CMD, Franceschi ID, Hammerschmitt ME, Driemeier D, Portela LV. Anabolic-androgenic steroids impair mitochondrial function and redox status in the heart and liver of mice. Steroids 2021; 172:108861. [PMID: 33984388 DOI: 10.1016/j.steroids.2021.108861] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Revised: 03/27/2021] [Accepted: 04/24/2021] [Indexed: 02/07/2023]
Abstract
Supraphysiological doses of anabolic-androgenic steroids (AAS) may cause long-term functional abnormalities, particularly in the heart and liver, which may only represent the later-stage of the cumulative damage caused by dysfunctional organelles. We investigated whether mid-term supraphysiological doses of Testosterone and Nandrolone impair mitochondrial Ca2+ and membrane potential (ΔΨm) dynamics, and redox machinery in the heart and liver of mice. CF1 albino mice were treated daily with 15 mg/kg of Nandrolone (ND) or Testosterone (T), or oil (vehicle) for 19 days. Preparations enriched in mitochondria from the heart or liver were used to perform assays of Ca2+ influx/efflux, ΔΨm, and H2O2 production. ND significantly impaired mitochondrial Ca2+ influx in the heart, and ΔΨm in both organs. ND and T increased H2O2 levels in the heart and liver relative to controls. Also, ND increased oxidative damage to lipids and proteins (TBARS and carbonyls) in the heart, and both AAS decreased glutathione peroxidase activity in the heart and liver. In summary, supraphysiological doses of ND, and in a lesser extend T, impaired mitochondrial Ca2+ influx and ΔΨm, and redox homeostasis being early mechanistic substrates for inducing heart and liver tissue damage.
Collapse
Affiliation(s)
- Randhall B Carteri
- Laboratory of Neurotrauma and Biomarkers, PPG-Ciências Biológicas Bioquímica, Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul - UFRGS, Porto Alegre, RS, Brazil; Centro Universitário Metodista - Instituto Porto Alegre (IPA), Porto Alegre, Brazil
| | - Afonso Kopczynski
- Laboratory of Neurotrauma and Biomarkers, PPG-Ciências Biológicas Bioquímica, Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul - UFRGS, Porto Alegre, RS, Brazil
| | - Marcelo S Rodolphi
- Laboratory of Neurotrauma and Biomarkers, PPG-Ciências Biológicas Bioquímica, Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul - UFRGS, Porto Alegre, RS, Brazil
| | - Nathan R Strogulski
- Laboratory of Neurotrauma and Biomarkers, PPG-Ciências Biológicas Bioquímica, Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul - UFRGS, Porto Alegre, RS, Brazil
| | - Clovis M D Wannmacher
- Laboratory of Neurotrauma and Biomarkers, PPG-Ciências Biológicas Bioquímica, Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul - UFRGS, Porto Alegre, RS, Brazil
| | - Itiane D Franceschi
- Laboratory of Neurotrauma and Biomarkers, PPG-Ciências Biológicas Bioquímica, Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul - UFRGS, Porto Alegre, RS, Brazil
| | - Marcia E Hammerschmitt
- Setor de Patologia Veterinária, Faculdade de Veterinária da Universidade Federal do Rio Grande do Sul - UFRGS, Porto Alegre, RS, Brazil
| | - David Driemeier
- Setor de Patologia Veterinária, Faculdade de Veterinária da Universidade Federal do Rio Grande do Sul - UFRGS, Porto Alegre, RS, Brazil
| | - Luis V Portela
- Laboratory of Neurotrauma and Biomarkers, PPG-Ciências Biológicas Bioquímica, Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul - UFRGS, Porto Alegre, RS, Brazil.
| |
Collapse
|
17
|
Saldías MP, Maureira D, Orellana-Serradell O, Silva I, Lavanderos B, Cruz P, Torres C, Cáceres M, Cerda O. TRP Channels Interactome as a Novel Therapeutic Target in Breast Cancer. Front Oncol 2021; 11:621614. [PMID: 34178620 PMCID: PMC8222984 DOI: 10.3389/fonc.2021.621614] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Accepted: 03/31/2021] [Indexed: 12/14/2022] Open
Abstract
Breast cancer is one of the most frequent cancer types worldwide and the first cause of cancer-related deaths in women. Although significant therapeutic advances have been achieved with drugs such as tamoxifen and trastuzumab, breast cancer still caused 627,000 deaths in 2018. Since cancer is a multifactorial disease, it has become necessary to develop new molecular therapies that can target several relevant cellular processes at once. Ion channels are versatile regulators of several physiological- and pathophysiological-related mechanisms, including cancer-relevant processes such as tumor progression, apoptosis inhibition, proliferation, migration, invasion, and chemoresistance. Ion channels are the main regulators of cellular functions, conducting ions selectively through a pore-forming structure located in the plasma membrane, protein–protein interactions one of their main regulatory mechanisms. Among the different ion channel families, the Transient Receptor Potential (TRP) family stands out in the context of breast cancer since several members have been proposed as prognostic markers in this pathology. However, only a few approaches exist to block their specific activity during tumoral progress. In this article, we describe several TRP channels that have been involved in breast cancer progress with a particular focus on their binding partners that have also been described as drivers of breast cancer progression. Here, we propose disrupting these interactions as attractive and potential new therapeutic targets for treating this neoplastic disease.
Collapse
Affiliation(s)
- María Paz Saldías
- Program of Cellular and Molecular Biology, Institute of Biomedical Sciences (ICBM), Faculty of Medicine, Universidad de Chile, Santiago, Chile.,Millennium Nucleus of Ion Channels-Associated Diseases (MiNICAD), Santiago, Chile
| | - Diego Maureira
- Program of Cellular and Molecular Biology, Institute of Biomedical Sciences (ICBM), Faculty of Medicine, Universidad de Chile, Santiago, Chile.,Millennium Nucleus of Ion Channels-Associated Diseases (MiNICAD), Santiago, Chile
| | - Octavio Orellana-Serradell
- Program of Cellular and Molecular Biology, Institute of Biomedical Sciences (ICBM), Faculty of Medicine, Universidad de Chile, Santiago, Chile.,Millennium Nucleus of Ion Channels-Associated Diseases (MiNICAD), Santiago, Chile
| | - Ian Silva
- Program of Cellular and Molecular Biology, Institute of Biomedical Sciences (ICBM), Faculty of Medicine, Universidad de Chile, Santiago, Chile.,Millennium Nucleus of Ion Channels-Associated Diseases (MiNICAD), Santiago, Chile
| | - Boris Lavanderos
- Program of Cellular and Molecular Biology, Institute of Biomedical Sciences (ICBM), Faculty of Medicine, Universidad de Chile, Santiago, Chile.,Millennium Nucleus of Ion Channels-Associated Diseases (MiNICAD), Santiago, Chile
| | - Pablo Cruz
- Program of Cellular and Molecular Biology, Institute of Biomedical Sciences (ICBM), Faculty of Medicine, Universidad de Chile, Santiago, Chile.,Millennium Nucleus of Ion Channels-Associated Diseases (MiNICAD), Santiago, Chile
| | - Camila Torres
- Program of Cellular and Molecular Biology, Institute of Biomedical Sciences (ICBM), Faculty of Medicine, Universidad de Chile, Santiago, Chile.,Millennium Nucleus of Ion Channels-Associated Diseases (MiNICAD), Santiago, Chile
| | - Mónica Cáceres
- Program of Cellular and Molecular Biology, Institute of Biomedical Sciences (ICBM), Faculty of Medicine, Universidad de Chile, Santiago, Chile.,Millennium Nucleus of Ion Channels-Associated Diseases (MiNICAD), Santiago, Chile.,The Wound Repair, Treatment, and Health (WoRTH) Initiative, Santiago, Chile
| | - Oscar Cerda
- Program of Cellular and Molecular Biology, Institute of Biomedical Sciences (ICBM), Faculty of Medicine, Universidad de Chile, Santiago, Chile.,Millennium Nucleus of Ion Channels-Associated Diseases (MiNICAD), Santiago, Chile.,The Wound Repair, Treatment, and Health (WoRTH) Initiative, Santiago, Chile
| |
Collapse
|
18
|
Zhou H, Ma C, Wang C, Gong L, Zhang Y, Li Y. Research progress in use of traditional Chinese medicine monomer for treatment of non-alcoholic fatty liver disease. Eur J Pharmacol 2021; 898:173976. [PMID: 33639194 DOI: 10.1016/j.ejphar.2021.173976] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Revised: 02/09/2021] [Accepted: 02/19/2021] [Indexed: 02/06/2023]
Abstract
With the improvement of people's living standards and the change of eating habits, non-alcoholic fatty liver disease (NAFLD) has gradually become one of the most common chronic liver diseases in the world. However, there are no effective drugs for the treatment of NAFLD. Therefore, it is urgent to find safe, efficient, and economical anti-NAFLD drugs. Compared with western medicines that possess fast lipid-lowering effect, traditional Chinese medicines (TCM) have attracted increasing attention for the treatment of NAFLD due to their unique advantages such as multi-targets and multi-channel mechanisms of action. TCM monomers have been proved to treat NAFLD through regulating various pathways, including inflammation, lipid production, insulin sensitivity, mitochondrial dysfunction, autophagy, and intestinal microbiota. In particular, peroxisome proliferator-activated receptor α (PPAR-α), sterol regulatory element-binding protein 1c (SREBP-1c), nuclear transcription factor kappa (NF-κB), phosphoinositide 3-kinase (PI3K), sirtuin1 (SIRT1), AMP-activated protein kinase (AMPK), p53 and nuclear factor erythroid 2-related factor 2 (Nrf2) are considered as important molecular targets for ameliorating NAFLD by TCM monomers. Therefore, by searching PubMed, Web of Science and SciFinder databases, this paper updates and summarizes the experimental and clinical evidence of TCM monomers for the treatment of NAFLD in the past six years (2015-2020), thus providing thoughts and prospects for further exploring the pathogenesis of NAFLD and TCM monomer therapies.
Collapse
Affiliation(s)
- Honglin Zhou
- State Key Laboratory of Southwestern Chinese Medicine Resources, Key Laboratory of Standardization for Chinese Herbal Medicine, Ministry of Education, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Cheng Ma
- State Key Laboratory of Southwestern Chinese Medicine Resources, Key Laboratory of Standardization for Chinese Herbal Medicine, Ministry of Education, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Cheng Wang
- State Key Laboratory of Southwestern Chinese Medicine Resources, Key Laboratory of Standardization for Chinese Herbal Medicine, Ministry of Education, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Lihong Gong
- State Key Laboratory of Southwestern Chinese Medicine Resources, Key Laboratory of Standardization for Chinese Herbal Medicine, Ministry of Education, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Yafang Zhang
- State Key Laboratory of Southwestern Chinese Medicine Resources, Key Laboratory of Standardization for Chinese Herbal Medicine, Ministry of Education, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Yunxia Li
- State Key Laboratory of Southwestern Chinese Medicine Resources, Key Laboratory of Standardization for Chinese Herbal Medicine, Ministry of Education, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China.
| |
Collapse
|
19
|
Mitochondrial metabolism and calcium homeostasis in the development of NAFLD leading to hepatocellular carcinoma. Mitochondrion 2021; 58:24-37. [PMID: 33581332 DOI: 10.1016/j.mito.2021.01.007] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2020] [Revised: 01/21/2021] [Accepted: 01/25/2021] [Indexed: 02/06/2023]
Abstract
Non-alcoholic fatty liver disease (NAFLD) is a metabolic syndrome characterized by excessive accumulation of hepatic lipid droplets. The disease progresses with steatosis as the premise for hepatocytic damage and tissue scarring, often culminating in hepatocellular carcinoma (HCC). Perturbations in mitochondrial metabolism and energetics were found to be associated with, and often instrumental in various stages of this progression. Functional impairment of the mitochondria affects all aspects of cellular functioning and a particularly important one is calcium signalling. Changes in mitochondrial calcium specifically in hepatocytes of a fatty liver, is reflected by alterations in calcium signalling as well as calcium transporter activities. This deranged Ca2+ homeostasis aids in even more uptake of lipids into the mitochondria and a shift in equilibrium, both metabolically as well as in terms of energy production, leading to completely altered cellular states. These alterations have been reviewed as a perspective to understand the disease progression through NAFLD leading to HCC.
Collapse
|
20
|
Yang M, Chen Z, Xiang S, Xia F, Tang W, Yao X, Zhou B. Hugan Qingzhi medication ameliorates free fatty acid-induced L02 hepatocyte endoplasmic reticulum stress by regulating the activation of PKC-δ. BMC Complement Med Ther 2020; 20:377. [PMID: 33308192 PMCID: PMC7730760 DOI: 10.1186/s12906-020-03164-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2020] [Accepted: 11/23/2020] [Indexed: 12/16/2022] Open
Abstract
Background Previous studies have found that Hugan Qingzhi tablet (HQT) has significant lipid-lowering and antioxidant effects on non-alcoholic fatty liver disease (NAFLD). Moreover, the results of proteomic analysis confirmed that various proteins in endoplasmic reticulum stress (ERS) pathway were activated and recovered by HQT. However, its mechanism remains confused. The purpose of this study was to explore the effects of HQT-medicated serum on hepatic ERS and its relevant mechanisms. Methods L02 cells were induced by Free Fatty Acid (FFA) for 24 h to establish a model of hepatic ERS and pretreated with the drug-medicated rat serum for 24 h. Accumulation of intracellular lipid was evaluated using Oil Red O staining and Triglyceride detection kit. The morphological changes of ER were observed by TEM. PKC-δ was silenced by specific siRNA. Western blot and RT-qPCR were applied to detect the expression of markers related to ERS, calcium disorder, steatosis and insulin resistance. The fluorescence of Ca2+ influx was recorded using fluorescence spectrophotometer. Results HQT-medicated serum significantly decreased the intracellular TG content. Furthermore, it caused significant reduction in the expression of ERS markers and an improvement in ER structure of L02 cells. PKC-δ was activated into phosphorylated PKC-δ in FFA-induced L02 hepatocytes while these changes can be reversed by HQT-medicated serum. Silencing PKC-δ in L02 cells can restore the expression and activity of SERCA2 in ER and down-regulate the expression of IP3R protein to maintain intracellular calcium homeostasis, so as to relieve FFA-induced ERS and its lipid accumulation and insulin resistance. Conclusions The results concluded that HQT-medicated serum exerts protective effects against hepatic ERS, steatosis and insulin resistance in FFA-induced L02 hepatocyte. And its potential mechanism might be down-regulating the activation of PKC-δ and stabilization of intracellular calcium. Supplementary Information The online version contains supplementary material available at 10.1186/s12906-020-03164-3.
Collapse
Affiliation(s)
- Miaoting Yang
- Department of Pharmacy, People's Hospital of Longhua, Shenzhen, 518109, Guangdong, China
| | - Zhijuan Chen
- Department of Pharmacy, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, 518107, Guangdong, China
| | - Shijian Xiang
- Department of Pharmacy, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, 518107, Guangdong, China
| | - Fan Xia
- Department of Pharmacy, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, 518107, Guangdong, China
| | - Waijiao Tang
- Department of Pharmacy, Zhujiang Hospital, Southern Medical University, Guangzhou, 510282, Guangdong, China
| | - Xiaorui Yao
- Department of Pharmacy, Shantou Central Hospital, Affiliated Shantou Hospital of Sun Yat-sen University, Shantou, 515041, Guangdong, China
| | - Benjie Zhou
- Department of Pharmacy, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, 518107, Guangdong, China.
| |
Collapse
|
21
|
Tamitani M, Yamamoto T, Yamamoto N, Fujisawa K, Tanaka S, Nakamura Y, Uchinoumi H, Oda T, Okuda S, Takami T, Kobayashi S, Sakaida I, Yano M. Dantrolene prevents hepatic steatosis by reducing cytoplasmic Ca2+ level and ER stress. Biochem Biophys Rep 2020; 23:100787. [PMID: 32715106 PMCID: PMC7374254 DOI: 10.1016/j.bbrep.2020.100787] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2020] [Revised: 06/23/2020] [Accepted: 06/23/2020] [Indexed: 11/24/2022] Open
Abstract
Introduction Our previous studies demonstrated that dantrolene, a ryanodine receptor stabilizer, prevents endoplasmic reticulum (ER) stress in the heart. ER stress is a strong mediator of impaired lipid metabolism in the liver, thereby contributing to fatty liver disease. In this study, we investigated the effects of dantrolene on fatty liver disease in mice and ER stress in hepatocytes. Methods and results Eight weeks old C57BL/6 mice were fed high-fat diet (HFD) for 8 weeks with or without the oral administration of dantrolene (100 mg/kg/day). The livers of mice without dantrolene (HFD group) showed severe fatty liver, whereas the livers of the mice treated with dantrolene (HFD + DAN group) only showed slightly fatty liver. To address the preventive effects of dantrolene, primary hepatocytes were cultured with palmitate in the presence or absence of dantrolene. Dantrolene reduced lipid load and prevents palmitate-induced increase in cytoplasmic Ca2+ and ER stress. Based on these findings, we propose that dantrolene is a potential new therapeutic agent against fatty liver disease. Oral dantrolene prevents fatty liver disease in mice. Dantrolene reduced the cytoplasmic Ca2+ level in hepatocytes. Dantrolene reduced the GRP78 protein level in hepatocytes.
Collapse
|
22
|
Vallée D, Blanc M, Lebeaupin C, Bailly-Maitre B. [Endoplasmic reticulum stress response and pathogenesis of non-alcoholic steatohepatitis]. Med Sci (Paris) 2020; 36:119-129. [PMID: 32129747 DOI: 10.1051/medsci/2020008] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The incidence of chronic liver disease is constantly increasing, owing to the obesity epidemic. Non-alcoholic fatty liver disease (NAFLD) is currently affecting 20-30% of the general population and 75-100% of obese individuals. NAFLD ranges from simple steatosis to damaging non-alcoholic steatohepatitis (NASH), potentially developing into hepatocellular carcinoma. No efficient pharmacological treatment is yet available. During obesity, the hepatic ER stress response can arise from extracellular stress (lipids, glucose, cytokines) and from intracellular stress including lipid buildup in the hepatocyte (steatosis), a hallmark of NAFLD. The chronic activation of the hepatic ER stress response may be a crucial event in the steatosis-NASH transition, triggering cell death, inflammation and accelerating metabolic disorders. We discuss these aspects and we propose that targeting the ER stress response could be effective in treating NAFLD.
Collapse
Affiliation(s)
- Déborah Vallée
- Centre méditerranéen de médecine moléculaire (C3M), Inserm U1065, 151, Route de St Antoine de Ginestière, 06204 Nice, France
| | - Marina Blanc
- Centre méditerranéen de médecine moléculaire (C3M), Inserm U1065, 151, Route de St Antoine de Ginestière, 06204 Nice, France
| | - Cynthia Lebeaupin
- Centre méditerranéen de médecine moléculaire (C3M), Inserm U1065, 151, Route de St Antoine de Ginestière, 06204 Nice, France
| | - Béatrice Bailly-Maitre
- Centre méditerranéen de médecine moléculaire (C3M), Inserm U1065, 151, Route de St Antoine de Ginestière, 06204 Nice, France
| |
Collapse
|
23
|
Alogaili F, Chinnarasu S, Jaeschke A, Kranias EG, Hui DY. Hepatic HAX-1 inactivation prevents metabolic diseases by enhancing mitochondrial activity and bile salt export. J Biol Chem 2020; 295:4631-4646. [PMID: 32079675 DOI: 10.1074/jbc.ra119.012361] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Revised: 02/04/2020] [Indexed: 12/26/2022] Open
Abstract
Increasing hepatic mitochondrial activity through pyruvate dehydrogenase and elevating enterohepatic bile acid recirculation are promising new approaches for metabolic disease therapy, but neither approach alone can completely ameliorate disease phenotype in high-fat diet-fed mice. This study showed that diet-induced hepatosteatosis, hyperlipidemia, and insulin resistance can be completely prevented in mice with liver-specific HCLS1-associated protein X-1 (HAX-1) inactivation. Mechanistically, we showed that HAX-1 interacts with inositol 1,4,5-trisphosphate receptor-1 (InsP3R1) in the liver, and its absence reduces InsP3R1 levels, thereby improving endoplasmic reticulum-mitochondria calcium homeostasis to prevent excess calcium overload and mitochondrial dysfunction. As a result, HAX-1 ablation activates pyruvate dehydrogenase and increases mitochondria utilization of glucose and fatty acids to prevent hepatosteatosis, hyperlipidemia, and insulin resistance. In contrast to the reduction of InsP3R1 levels, hepatic HAX-1 deficiency increases bile salt exporter protein levels, thereby promoting enterohepatic bile acid recirculation, leading to activation of bile acid-responsive genes in the intestinal ileum to augment insulin sensitivity and of cholesterol transport genes in the liver to suppress hyperlipidemia. The dual mechanisms of increased mitochondrial respiration and enterohepatic bile acid recirculation due to improvement of endoplasmic reticulum-mitochondria calcium homeostasis with hepatic HAX-1 inactivation suggest that this may be a potential therapeutic target for metabolic disease intervention.
Collapse
Affiliation(s)
- Fawzi Alogaili
- Department of Pathology and Laboratory Medicine, Metabolic Diseases Research Center, University of Cincinnati College of Medicine, Cincinnati, Ohio 45237.,Department of Pharmacology and Systems Physiology, University of Cincinnati College of Medicine, Cincinnati, Ohio 45267
| | - Sivaprakasam Chinnarasu
- Department of Pathology and Laboratory Medicine, Metabolic Diseases Research Center, University of Cincinnati College of Medicine, Cincinnati, Ohio 45237
| | - Anja Jaeschke
- Department of Pathology and Laboratory Medicine, Metabolic Diseases Research Center, University of Cincinnati College of Medicine, Cincinnati, Ohio 45237
| | - Evangelia G Kranias
- Department of Pharmacology and Systems Physiology, University of Cincinnati College of Medicine, Cincinnati, Ohio 45267
| | - David Y Hui
- Department of Pathology and Laboratory Medicine, Metabolic Diseases Research Center, University of Cincinnati College of Medicine, Cincinnati, Ohio 45237
| |
Collapse
|
24
|
Dumas K, Ayachi C, Gilleron J, Lacas‐Gervais S, Pastor F, Favier FB, Peraldi P, Vaillant N, Yvan‐Charvet L, Bonnafous S, Patouraux S, Anty R, Tran A, Gual P, Cormont M, Tanti J, Giorgetti‐Peraldi S. REDD1 deficiency protects against nonalcoholic hepatic steatosis induced by high‐fat diet. FASEB J 2020; 34:5046-5060. [DOI: 10.1096/fj.201901799rr] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2019] [Revised: 01/24/2020] [Accepted: 01/24/2020] [Indexed: 12/11/2022]
Affiliation(s)
- Karine Dumas
- Université Côte d’Azur, Inserm, C3M, Team “Cellular and Molecular Physiopathology of Obesity” France
| | - Chaima Ayachi
- Université Côte d’Azur, Inserm, C3M, Team “Cellular and Molecular Physiopathology of Obesity” France
| | - Jerome Gilleron
- Université Côte d’Azur, Inserm, C3M, Team “Cellular and Molecular Physiopathology of Obesity” France
| | | | - Faustine Pastor
- Université Côte d’Azur, Inserm, C3M, Team “Cellular and Molecular Physiopathology of Obesity” France
| | | | - Pascal Peraldi
- Université Côte d’Azur, Inserm, CNRS, iBV, Team “Stem Cells and Differentiation” France
| | - Nathalie Vaillant
- Université Côte d’Azur, Inserm, C3M, Team “Haematometabolism in Diseases” France
| | - Laurent Yvan‐Charvet
- Université Côte d’Azur, Inserm, C3M, Team “Haematometabolism in Diseases” France
| | - Stéphanie Bonnafous
- Université Côte d’Azur, Inserm, C3M, Team “Chronic Liver Diseases Associated with Steatosis and Alcohol” France
- Université Côte d’Azur, CHU, Inserm, C3M,Team “Chronic Liver Diseases Associated with Steatosis and Alcohol” France
| | - Stéphanie Patouraux
- Université Côte d’Azur, Inserm, C3M, Team “Chronic Liver Diseases Associated with Steatosis and Alcohol” France
- Université Côte d’Azur, CHU, Inserm, C3M,Team “Chronic Liver Diseases Associated with Steatosis and Alcohol” France
| | - Rodolphe Anty
- Université Côte d’Azur, Inserm, C3M, Team “Chronic Liver Diseases Associated with Steatosis and Alcohol” France
- Université Côte d’Azur, CHU, Inserm, C3M,Team “Chronic Liver Diseases Associated with Steatosis and Alcohol” France
| | - Albert Tran
- Université Côte d’Azur, Inserm, C3M, Team “Chronic Liver Diseases Associated with Steatosis and Alcohol” France
- Université Côte d’Azur, CHU, Inserm, C3M,Team “Chronic Liver Diseases Associated with Steatosis and Alcohol” France
| | - Philippe Gual
- Université Côte d’Azur, Inserm, C3M, Team “Chronic Liver Diseases Associated with Steatosis and Alcohol” France
| | - Mireille Cormont
- Université Côte d’Azur, Inserm, C3M, Team “Cellular and Molecular Physiopathology of Obesity” France
| | - Jean‐François Tanti
- Université Côte d’Azur, Inserm, C3M, Team “Cellular and Molecular Physiopathology of Obesity” France
| | - Sophie Giorgetti‐Peraldi
- Université Côte d’Azur, Inserm, C3M, Team “Cellular and Molecular Physiopathology of Obesity” France
| |
Collapse
|
25
|
Schepmann D, Neue C, Westphälinger S, Müller C, Bracher F, Lange C, Bednarski P, Almansa C, Friedland K, Räbiger V, Düfer M, Wünsch B. Pharmacological characterization of high-affinity σ 1 receptor ligands with spirocyclic thienopyran and thienofuran scaffold. J Pharm Pharmacol 2020; 72:236-248. [PMID: 31743446 DOI: 10.1111/jphp.13196] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2019] [Accepted: 10/21/2019] [Indexed: 12/24/2022]
Abstract
OBJECTIVES In this study, the pharmacological properties of six spirocyclic piperidines 1-6 showing very high σ1 receptor affinity (Ki = 0.2-16 nm) were investigated. METHODS In vitro receptor binding studies, retinal ganglion assay and in vivo capsaicin assay were used to determine the affinity, selectivity and activity. Influence on human tumour cell growth (cell lines A427, LCLC-103H, 5637 and DAN-G) was determined in different assays. The effect on the ergosterol and cholesterol biosynthesis was determined by GLC/MS analysis. KEY FINDINGS Receptor binding studies demonstrated high selectivity for the σ1 receptor. The increased Ca2+ influx mediated by 2 and the analgesic activity of 1, 4, 5 and 6 confirm σ1 receptor antagonistic activity. Inhibition of human tumour cell growth further supports the σ1 antagonistic effects. Treatment of A427 tumour cells with 2 led to cell detachment and cell degradation. Whereas the ergosterol biosynthesis was not affected, the sterol C14-reductase, a key enzyme in the cholesterol biosynthesis, was weakly inhibited. CONCLUSIONS Due to the high selectivity, off-target effects are not expected. The antiallodynic activity underlines the clinical potential of the spirocyclic piperidines for the treatment of neuropathic pain. Due to the antiproliferative activity, the spirocyclic σ1 antagonists represent promising antitumour agents.
Collapse
Affiliation(s)
- Dirk Schepmann
- Institut für Pharmazeutische und Medizinische Chemie der Westfälischen Wilhelms-Universität Münster, Münster, Germany
| | - Christina Neue
- Institut für Pharmazeutische und Medizinische Chemie der Westfälischen Wilhelms-Universität Münster, Münster, Germany
| | - Stefanie Westphälinger
- Institut für Pharmazeutische und Medizinische Chemie der Westfälischen Wilhelms-Universität Münster, Münster, Germany
| | - Christoph Müller
- Department of Pharmacy - Center for Drug Research, Ludwig-Maximilians University of Munich, Munich, Germany
| | - Franz Bracher
- Department of Pharmacy - Center for Drug Research, Ludwig-Maximilians University of Munich, Munich, Germany
| | - Carsten Lange
- Department of Pharmaceutical and Medicinal Chemistry, Institute of Pharmacy, University of Greifswald, Greifswald, Germany
| | - Patrick Bednarski
- Department of Pharmaceutical and Medicinal Chemistry, Institute of Pharmacy, University of Greifswald, Greifswald, Germany
| | | | - Kristina Friedland
- Pharmacology and Toxicology, Pharmacy and Biochemistry, Johannes Gutenberg University, Mainz, Germany
| | - Vivien Räbiger
- Institut für Pharmazeutische und Medizinische Chemie der Westfälischen Wilhelms-Universität Münster, Münster, Germany
| | - Martina Düfer
- Institut für Pharmazeutische und Medizinische Chemie der Westfälischen Wilhelms-Universität Münster, Münster, Germany
| | - Bernhard Wünsch
- Institut für Pharmazeutische und Medizinische Chemie der Westfälischen Wilhelms-Universität Münster, Münster, Germany
- Cells-in-Motion Cluster of Excellence (EXC 1003 - CiM), Westfälische Wilhelms-Universität Münster, Münster, Germany
| |
Collapse
|
26
|
Ye ZG, Hou HP, Zhang GP, Li H, Chen TF, Gao YH, Song L, Zhang ZX. Mitochondria are main targets of time/dose-dependent oxidative damage-based hepatotoxicity caused by rhizoma dioscoreae bulbiferae in mice. WORLD JOURNAL OF TRADITIONAL CHINESE MEDICINE 2020. [DOI: 10.4103/wjtcm.wjtcm_72_20] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
|
27
|
Cheng H, Gang X, He G, Liu Y, Wang Y, Zhao X, Wang G. The Molecular Mechanisms Underlying Mitochondria-Associated Endoplasmic Reticulum Membrane-Induced Insulin Resistance. Front Endocrinol (Lausanne) 2020; 11:592129. [PMID: 33329397 PMCID: PMC7719781 DOI: 10.3389/fendo.2020.592129] [Citation(s) in RCA: 54] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Accepted: 10/26/2020] [Indexed: 12/13/2022] Open
Abstract
Mitochondria and the endoplasmic reticulum (ER) are connected at multiple sites via what are known as mitochondria-associated ER membranes (MAMs). These associations are known to play an important role in maintaining cellular homeostasis. Impaired MAM signaling has wide-ranging effects in many diseases, such as obesity, diabetes, and neurodegenerative disorders. Accumulating evidence has suggested that MAMs influence insulin signaling through different pathways, including those associated with Ca2+ signaling, lipid metabolism, mitochondrial function, ER stress responses, and inflammation. Altered MAM signaling is a common feature of insulin resistance in different tissues, including the liver, muscle, and even the brain. In the liver, MAMs are key glucose-sensing regulators and have been proposed to be a hub for insulin signaling. Impaired MAM integrity has been reported to disrupt hepatic responses to changes in glucose availability during nutritional transition and to induce hepatic insulin resistance. Meanwhile, these effects can be rescued by the reinforcement of MAM interactions. In contrast, several studies have proposed that enhanced ER-mitochondria connections are detrimental to hepatic insulin signaling and can lead to mitochondrial dysfunction. Thus, given these contradictory results, the role played by the MAM in the regulation of hepatic insulin signaling remains elusive. Similarly, in skeletal muscle, enhanced MAM formation may be beneficial in the early stage of diabetes, whereas continuous MAM enhancement aggravates insulin resistance. Furthermore, recent studies have suggested that ER stress may be the primary pathway through which MAMs induce brain insulin resistance, especially in the hypothalamus. This review will discuss the possible mechanisms underlying MAM-associated insulin resistance as well as the therapeutic potential of targeting the MAM in the treatment of type 2 diabetes.
Collapse
Affiliation(s)
| | | | | | | | | | - Xue Zhao
- *Correspondence: Guixia Wang, ; Xue Zhao,
| | | |
Collapse
|
28
|
Physical exercise and liver "fitness": Role of mitochondrial function and epigenetics-related mechanisms in non-alcoholic fatty liver disease. Mol Metab 2019; 32:1-14. [PMID: 32029220 PMCID: PMC6931125 DOI: 10.1016/j.molmet.2019.11.015] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Revised: 11/19/2019] [Accepted: 11/22/2019] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Modern lifestyles, especially high-caloric intake and physical inactivity, contribute to the increased prevalence of non-alcoholic fatty liver disease (NAFLD), which becomes a significant health problem worldwide. Lifestyle changes, however, affect not only parental generation, but also their offspring, reinforcing the need for efficient preventive approaches to deal with this disease. This transgenerational influence of phenotypes dependent on parents (particularly maternal) behaviours may open additional research avenues. Despite persistent attempts to design an effective pharmacological therapy against NAFLD, physical activity, as a non-pharmacological approach, emerges as an exciting strategy. SCOPE OF REVIEW Here we briefly review the effect of physical exercise on liver mitochondria adaptations in NAFLD, highlighting the importance of mitochondrial metabolism and transgenerational and epigenetic mechanisms in liver diseases. MAJOR CONCLUSIONS A deeper look into cellular mechanisms sheds a light on possible effects of physical activity in the prevention and treatment of NAFLD through modulation of function and structure of particular organelles, namely mitochondria. Additionally, despite of increasing evidence regarding the contribution of epigenetic mechanisms in the pathogenesis of different diseases, the role of microRNAs, DNA methylation, and histone modification in NAFLD pathogenesis still needs to be elucidated.
Collapse
|
29
|
Hahn I, Voelzmann A, Liew YT, Costa-Gomes B, Prokop A. The model of local axon homeostasis - explaining the role and regulation of microtubule bundles in axon maintenance and pathology. Neural Dev 2019; 14:11. [PMID: 31706327 PMCID: PMC6842214 DOI: 10.1186/s13064-019-0134-0] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2019] [Accepted: 10/02/2019] [Indexed: 12/20/2022] Open
Abstract
Axons are the slender, cable-like, up to meter-long projections of neurons that electrically wire our brains and bodies. In spite of their challenging morphology, they usually need to be maintained for an organism's lifetime. This makes them key lesion sites in pathological processes of ageing, injury and neurodegeneration. The morphology and physiology of axons crucially depends on the parallel bundles of microtubules (MTs), running all along to serve as their structural backbones and highways for life-sustaining cargo transport and organelle dynamics. Understanding how these bundles are formed and then maintained will provide important explanations for axon biology and pathology. Currently, much is known about MTs and the proteins that bind and regulate them, but very little about how these factors functionally integrate to regulate axon biology. As an attempt to bridge between molecular mechanisms and their cellular relevance, we explain here the model of local axon homeostasis, based on our own experiments in Drosophila and published data primarily from vertebrates/mammals as well as C. elegans. The model proposes that (1) the physical forces imposed by motor protein-driven transport and dynamics in the confined axonal space, are a life-sustaining necessity, but pose a strong bias for MT bundles to become disorganised. (2) To counterbalance this risk, MT-binding and -regulating proteins of different classes work together to maintain and protect MT bundles as necessary transport highways. Loss of balance between these two fundamental processes can explain the development of axonopathies, in particular those linking to MT-regulating proteins, motors and transport defects. With this perspective in mind, we hope that more researchers incorporate MTs into their work, thus enhancing our chances of deciphering the complex regulatory networks that underpin axon biology and pathology.
Collapse
Affiliation(s)
- Ines Hahn
- Manchester Academic Health Science Centre, Faculty of Biology, Medicine and Health, The University of Manchester, School of Biology, Manchester, UK
| | - André Voelzmann
- Manchester Academic Health Science Centre, Faculty of Biology, Medicine and Health, The University of Manchester, School of Biology, Manchester, UK
| | - Yu-Ting Liew
- Manchester Academic Health Science Centre, Faculty of Biology, Medicine and Health, The University of Manchester, School of Biology, Manchester, UK
| | - Beatriz Costa-Gomes
- Manchester Academic Health Science Centre, Faculty of Biology, Medicine and Health, The University of Manchester, School of Biology, Manchester, UK
| | - Andreas Prokop
- Manchester Academic Health Science Centre, Faculty of Biology, Medicine and Health, The University of Manchester, School of Biology, Manchester, UK.
| |
Collapse
|
30
|
Regulation of Mitochondria-Associated Membranes (MAMs) by NO/sGC/PKG Participates in the Control of Hepatic Insulin Response. Cells 2019; 8:cells8111319. [PMID: 31731523 PMCID: PMC6912364 DOI: 10.3390/cells8111319] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2019] [Revised: 10/07/2019] [Accepted: 10/22/2019] [Indexed: 12/13/2022] Open
Abstract
Under physiological conditions, nitric oxide (NO) produced by the endothelial NO synthase (eNOS) upregulates hepatic insulin sensitivity. Recently, contact sites between the endoplasmic reticulum and mitochondria named mitochondria-associated membranes (MAMs) emerged as a crucial hub for insulin signaling in the liver. As mitochondria are targets of NO, we explored whether NO regulates hepatic insulin sensitivity by targeting MAMs. In Huh7 cells, primary rat hepatocytes and mouse livers, enhancing NO concentration increased MAMs, whereas inhibiting eNOS decreased them. In vitro, those effects were prevented by inhibiting protein kinase G (PKG) and mimicked by activating soluble guanylate cyclase (sGC) and PKG. In agreement with the regulation of MAMs, increasing NO concentration improved insulin signaling, both in vitro and in vivo, while eNOS inhibition disrupted this response. Finally, inhibition of insulin signaling by wortmannin did not affect the impact of NO on MAMs, while experimental MAM disruption, using either targeted silencing of cyclophilin D or the overexpression of the organelle spacer fetal and adult testis-expressed 1 (FATE-1), significantly blunted the effects of NO on both MAMs and insulin response. Therefore, under physiological conditions, NO participates to the regulation of MAM integrity through the sGC/PKG pathway and concomitantly improves hepatic insulin sensitivity. Altogether, our data suggest that the induction of MAMs participate in the impact of NO on hepatocyte insulin response.
Collapse
|
31
|
Simões-Alves AC, Costa-Silva JH, Barros-Junior IB, da Silva Filho RC, Vasconcelos DAA, Vidal H, Morio B, Fernandes MP. Saturated Fatty Acid-Enriched Diet-Impaired Mitochondrial Bioenergetics in Liver From Undernourished Rats During Critical Periods of Development. Cells 2019; 8:E335. [PMID: 30974751 PMCID: PMC6523252 DOI: 10.3390/cells8040335] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2019] [Revised: 03/24/2019] [Accepted: 03/30/2019] [Indexed: 12/13/2022] Open
Abstract
The nutritional transition that the western population has undergone is increasingly associated with chronic metabolic diseases. In this work, we evaluated a diet rich in saturated fatty acids (hyperlipidic, HL) after weaning of the offspring rats submitted to maternal protein restriction on the hepatic mitochondrial bioenergetics. Wistar rats were mated and during gestation and lactation, mothers received control diets (NP, normal protein content 17%) or low protein (LP, 8% protein). After weaning, rats received either NL (normolipidic) or HL (+59% SFA) diets up to 90 days of life. It was verified that all respiratory states of hepatic mitochondria showed a reduction in the LP group submitted to the post-weaning HL diet. This group also presented greater mitochondrial swelling compared to controls, potentiated after Ca2+ addition and prevented in the presence of EGTA (calcium chelator) and cyclosporin A (mitochondrial permeability transition pore inhibitor). There was also an increase in liver protein oxidation and lipid peroxidation and reduction in catalase and glutathione peroxidase activities in the LP group fed HL diet after weaning. Our data suggest that adult rats subjected to maternal protein restriction were more susceptible to hepatic mitochondrial damage caused by a diet rich in saturated fatty acids post-weaning.
Collapse
Affiliation(s)
- Aiany C Simões-Alves
- Laboratory of Nutrition, Physical Activity and Phenotypic Plasticity, Federal University of Pernambuco-UFPE, Vitória de Santo Antão, PE 55608-680, Brazil.
- Laboratoire de Recherche en Cardiovasculaire, Métabolisme, Diabétologie et Nutrition (CarMeN), INSERM U1060, INRA U1397, Université Claude Bernard Lyon1, 69921 Oullins, France.
- Laboratory of General Biochemistry, Molecular Biology and Exercise, Federal University of Pernambuco-UFPE, Vitória de Santo Antão, PE 55608-680, Brazil.
| | - Joao H Costa-Silva
- Laboratory of Nutrition, Physical Activity and Phenotypic Plasticity, Federal University of Pernambuco-UFPE, Vitória de Santo Antão, PE 55608-680, Brazil.
- Laboratoire de Recherche en Cardiovasculaire, Métabolisme, Diabétologie et Nutrition (CarMeN), INSERM U1060, INRA U1397, Université Claude Bernard Lyon1, 69921 Oullins, France.
| | - Idelfonso B Barros-Junior
- Laboratory of General Biochemistry, Molecular Biology and Exercise, Federal University of Pernambuco-UFPE, Vitória de Santo Antão, PE 55608-680, Brazil.
| | - Reginaldo C da Silva Filho
- Laboratory of General Biochemistry, Molecular Biology and Exercise, Federal University of Pernambuco-UFPE, Vitória de Santo Antão, PE 55608-680, Brazil.
| | - Diogo A A Vasconcelos
- Laboratory of Nutrition, Physical Activity and Phenotypic Plasticity, Federal University of Pernambuco-UFPE, Vitória de Santo Antão, PE 55608-680, Brazil.
| | - Hubert Vidal
- Laboratoire de Recherche en Cardiovasculaire, Métabolisme, Diabétologie et Nutrition (CarMeN), INSERM U1060, INRA U1397, Université Claude Bernard Lyon1, 69921 Oullins, France.
| | - Béatrice Morio
- Laboratoire de Recherche en Cardiovasculaire, Métabolisme, Diabétologie et Nutrition (CarMeN), INSERM U1060, INRA U1397, Université Claude Bernard Lyon1, 69921 Oullins, France.
| | - Mariana P Fernandes
- Laboratory of General Biochemistry, Molecular Biology and Exercise, Federal University of Pernambuco-UFPE, Vitória de Santo Antão, PE 55608-680, Brazil.
| |
Collapse
|
32
|
Ali ES, Petrovsky N. Calcium Signaling As a Therapeutic Target for Liver Steatosis. Trends Endocrinol Metab 2019; 30:270-281. [PMID: 30850262 DOI: 10.1016/j.tem.2019.02.005] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/25/2018] [Revised: 02/06/2019] [Accepted: 02/07/2019] [Indexed: 12/13/2022]
Abstract
Hepatic steatosis, the first step in nonalcoholic fatty liver disease (NAFLD), can arise from various pathophysiological conditions. While lipid metabolism in the liver is normally balanced such that there is no excessive lipid accumulation, when this homeostasis is disrupted lipid droplets (LDs) accumulate in hepatocytes resulting in cellular toxicity. The mechanisms underlying this accumulation and the subsequent hepatocellular damage are multifactorial and poorly understood, with the result that there are no currently approved treatments for NAFLD. Impaired calcium signaling has recently been identified as a cause of increased endoplasmic reticulum (ER) stress contributing to hepatic lipid accumulation. This review highlights new findings on the role of impaired Ca2+ signaling in the development of steatosis and discusses potential new approaches to NAFLD treatment based on these new insights.
Collapse
Affiliation(s)
- Eunüs S Ali
- College of Medicine and Public Health, Flinders University, Adelaide, SA, Australia
| | - Nikolai Petrovsky
- College of Medicine and Public Health, Flinders University, Adelaide, SA, Australia; Vaxine Pty Ltd, 11 Walkley Avenue, Warradale, Adelaide, SA, Australia.
| |
Collapse
|
33
|
Matrine attenuates endoplasmic reticulum stress and mitochondrion dysfunction in nonalcoholic fatty liver disease by regulating SERCA pathway. J Transl Med 2018; 16:319. [PMID: 30458883 PMCID: PMC6245862 DOI: 10.1186/s12967-018-1685-2] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2018] [Accepted: 11/09/2018] [Indexed: 01/07/2023] Open
Abstract
Background Endoplasmic reticulum (ER) stress, which can promote lipid metabolism disorders and steatohepatitis, contributes significantly to the pathogenesis of nonalcoholic fatty liver disease (NAFLD). Calcium (Ca2+) homeostasis is considered to play a key role in ER stress. Matrine (Mat) has been applied for the treatment of hepatitis B, but its effect on NAFLD is still unknown, and there is no unified view of Mat on the regulation of ER stress in the previous literature. Methods The pharmacological effects were studied in high-fat-diet or methionine–choline-deficient diet induced C57BL/6J mice models and in palmitic acid (PA) induced L02 human liver cell model. Calcium fluorescence experiments, computational virtual docking analysis and biochemical assays were used in identifying the locus of Mat. Results The results showed that Mat-treated mice were more resistant to steatosis in the liver than vehicle-treated mice and that Mat significantly reduced hepatic inflammation, lipid peroxides. The beneficial effect of Mat was associated with suppressing ER stress and restoring mitochondrial dysfunction. Additionally, Mat decreased the PA-induced lipid accumulation, ER stress and cytosolic calcium level ([Ca2+]c) in hepatocyte cell lines in low and middle dose. However, the high dose Mat did not show satisfactory results in cell model. Calcium fluorescence experiments showed that Mat was able to regulate [Ca2+]c. By computational virtual docking analysis and biochemical assays, Mat was shown to influence [Ca2+]c via direct inhibition of SERCA. Conclusions The results showed that the bi-directional regulation of Mat to endoplasmic reticulum at different doses was based on the inhibition of SERCA. In addition, the results also provide a theoretical basis for Mat as a potential therapeutic strategy in NAFLD/NASH. Electronic supplementary material The online version of this article (10.1186/s12967-018-1685-2) contains supplementary material, which is available to authorized users.
Collapse
|
34
|
Lebeaupin C, Vallée D, Hazari Y, Hetz C, Chevet E, Bailly-Maitre B. Endoplasmic reticulum stress signalling and the pathogenesis of non-alcoholic fatty liver disease. J Hepatol 2018; 69:927-947. [PMID: 29940269 DOI: 10.1016/j.jhep.2018.06.008] [Citation(s) in RCA: 628] [Impact Index Per Article: 89.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/12/2018] [Revised: 05/22/2018] [Accepted: 06/14/2018] [Indexed: 12/13/2022]
Abstract
The global epidemic of obesity has been accompanied by a rising burden of non-alcoholic fatty liver disease (NAFLD), with manifestations ranging from simple steatosis to non-alcoholic steatohepatitis, potentially developing into hepatocellular carcinoma. Although much attention has focused on NAFLD, its pathogenesis remains largely obscure. The hallmark of NAFLD is the hepatic accumulation of lipids, which subsequently leads to cellular stress and hepatic injury, eventually resulting in chronic liver disease. Abnormal lipid accumulation often coincides with insulin resistance in steatotic livers and is associated with perturbed endoplasmic reticulum (ER) proteostasis in hepatocytes. In response to chronic ER stress, an adaptive signalling pathway known as the unfolded protein response is triggered to restore ER proteostasis. However, the unfolded protein response can cause inflammation, inflammasome activation and, in the case of non-resolvable ER stress, the death of hepatocytes. Experimental data suggest that the unfolded protein response influences hepatic tumour development, aggressiveness and response to treatment, offering novel therapeutic avenues. Herein, we provide an overview of the evidence linking ER stress to NAFLD and discuss possible points of intervention.
Collapse
Affiliation(s)
| | - Deborah Vallée
- Université Côte d'Azur, INSERM, U1065, C3M, 06200 Nice, France
| | - Younis Hazari
- Biomedical Neuroscience Institute (BNI), Faculty of Medicine, University of Chile, Santiago, Chile; Center for Geroscience, Brain Health and Metabolism (GERO), Santiago, Chile; Program of Cellular and Molecular Biology, Institute of Biomedical Sciences, University of Chile, Santiago, Chile
| | - Claudio Hetz
- Biomedical Neuroscience Institute (BNI), Faculty of Medicine, University of Chile, Santiago, Chile; Center for Geroscience, Brain Health and Metabolism (GERO), Santiago, Chile; Program of Cellular and Molecular Biology, Institute of Biomedical Sciences, University of Chile, Santiago, Chile; Buck Institute for Research on Aging, Novato, CA 94945, USA; Department of Immunology and Infectious Diseases, Harvard School of Public Health, 02115 Boston, MA, USA
| | - Eric Chevet
- "Chemistry, Oncogenesis, Stress, Signaling", Inserm U1242, Université de Rennes, Rennes, France; Centre de Lutte Contre le Cancer Eugène Marquis, Rennes, France
| | | |
Collapse
|
35
|
Diao L, Auger C, Konoeda H, Sadri AR, Amini-Nik S, Jeschke MG. Hepatic steatosis associated with decreased β-oxidation and mitochondrial function contributes to cell damage in obese mice after thermal injury. Cell Death Dis 2018; 9:530. [PMID: 29748608 PMCID: PMC5945855 DOI: 10.1038/s41419-018-0531-z] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2017] [Revised: 02/14/2018] [Accepted: 03/05/2018] [Indexed: 02/07/2023]
Abstract
Severely burned patients who are morbidly obese have poor clinical outcomes with aggravated metabolic consequences, a higher incidence of multiple organ dysfunction/failure, and significantly increased morbidity and mortality. The underlying mechanisms of these adverse outcomes are essentially unknown. Since the liver is one of the central metabolic organs, we hypothesized that thermal injury in obese patients leads to substantially increased lipolysis, hepatic fat infiltration, resulting in profound hepatic cellular and organellar alterations, consequently causing liver damage and severely augmented metabolic dysfunction. We tested this hypothesis using an obese mouse model subjected to a 20% total body surface area burn injury. C57BL/6 mice were randomly divided into low-fat diet (LFD) and high-fat diet (HFD) sham and burn groups (n = 6 per group) and fed for 16 weeks. 7 days after the thermal injury portal and cardiac blood were taken separately and liver tissue was collected for western blotting and immunohistochemical analysis. Gross examination of the liver showed apparent lipid infiltration in HFD fed and burned mice. We confirmed that augmented ER stress and inhibition of Akt-mTOR signaling dysregulated calcium homeostasis, contributed to the decrease of ER-mitochondria contact, and reduced mitochondrial β-oxidation in HFD fed and burned mice, leading to profound hepatic fat infiltration and substantial liver damage, hence increased morbidity and mortality. We conclude that obesity contributes to hepatic fat infiltration by suppressing β-oxidation, inducing cell damage and subsequent organ dysfunction after injury.
Collapse
Affiliation(s)
- Li Diao
- Sunnybrook Research Institute, Toronto, ON, Canada
| | | | | | | | - Saeid Amini-Nik
- Sunnybrook Research Institute, Toronto, ON, Canada
- Department of Surgery, Division of Plastic Surgery, Division of General Surgery, Department of Immunology, University of Toronto, Toronto, ON, Canada
| | - Marc G Jeschke
- Sunnybrook Research Institute, Toronto, ON, Canada.
- Department of Surgery, Division of Plastic Surgery, Division of General Surgery, Department of Immunology, University of Toronto, Toronto, ON, Canada.
- Ross Tilley Burn Centre, Sunnybrook Health Sciences Centre, Toronto, ON, Canada.
| |
Collapse
|
36
|
Rieusset J. The role of endoplasmic reticulum-mitochondria contact sites in the control of glucose homeostasis: an update. Cell Death Dis 2018. [PMID: 29523782 PMCID: PMC5844895 DOI: 10.1038/s41419-018-0416-1] [Citation(s) in RCA: 164] [Impact Index Per Article: 23.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The contact sites that the endoplasmic reticulum (ER) forms with mitochondria, called mitochondria-associated membranes (MAMs), are a hot topic in biological research, and both their molecular determinants and their numerous roles in several signaling pathways are is continuously evolving. MAMs allow the exchange between both organelles of lipids, calcium (Ca2+), and likely reactive oxygen species, allowing adaptations of both cellular bioenergetics and cell fate depending of cellular needs or stresses. Therefore, it is not surprising that MAMs affect cellular metabolism. Nevertheless, recent arguments suggest that MAMs could also act as key hub of hormonal and/or nutrient signaling in several insulin-sensitive tissues, pointing a specific role of MAMs in the control of glucose homeostasis. Here, I provide a brief review and update on current key signaling roles of the MAMs in the control of glucose homeostasis in both health and metabolic diseases. Particularly, the relevance of ER-mitochondria miscommunication in the disruption of glucose homeostasis is analyzed in details in the liver, skeletal muscle, adipose tissue, and beta cells of the pancreas.
Collapse
Affiliation(s)
- Jennifer Rieusset
- Laboratoire CarMeN, Unité Mixte de Recherche INSERM U-1060 et INRA U-1397, Université Lyon 1, Oullins, 69600, France.
| |
Collapse
|
37
|
Wang CH, Wei YH. Role of mitochondrial dysfunction and dysregulation of Ca 2+ homeostasis in the pathophysiology of insulin resistance and type 2 diabetes. J Biomed Sci 2017; 24:70. [PMID: 28882140 PMCID: PMC5588717 DOI: 10.1186/s12929-017-0375-3] [Citation(s) in RCA: 76] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2017] [Accepted: 08/29/2017] [Indexed: 12/29/2022] Open
Abstract
Metabolic diseases such as obesity, type 2 diabetes (T2D) and insulin resistance have attracted great attention from biomedical researchers and clinicians because of the astonishing increase in its prevalence. Decrease in the capacity of oxidative metabolism and mitochondrial dysfunction are a major contributor to the development of these metabolic disorders. Recent studies indicate that alteration of intracellular Ca2+ levels and downstream Ca2+-dependent signaling pathways appear to modulate gene transcription and the activities of many enzymes involved in cellular metabolism. Ca2+ uptake into mitochondria modulates a number of Ca2+-dependent proteins and enzymes participating in fatty acids metabolism, tricarboxylic acid cycle, oxidative phosphorylation and apoptosis in response to physiological and pathophysiological conditions. Mitochondrial calcium uniporter (MCU) complex has been identified as a major channel located on the inner membrane to regulate Ca2+ transport into mitochondria. Recent studies of MCU complex have increased our understanding of the modulation of mitochondrial function and retrograde signaling to the nucleus via regulation of the mitochondrial Ca2+ level. Mitochondria couple cellular metabolic state by regulating not only their own Ca2+ levels, but also influence the entire network of cellular Ca2+ signaling. The mitochondria-associated ER membranes (MAMs), which are specialized structures between ER and mitochondria, are responsible for efficient communication between these organelles. Defects in the function or structure of MAMs have been observed in affected tissue cells in metabolic disease or neurodegenerative disorders. We demonstrated that dysregulation of intracellular Ca2+ homeostasis due to mitochondrial dysfunction or defects in the function of MAMs are involved in the pathogenesis of insulin insensitivity and T2D. These observations suggest that mitochondrial dysfunction and disturbance of Ca2+ homeostasis warrant further studies to assist the development of therapeutics for prevention and medication of insulin resistance and T2D.
Collapse
Affiliation(s)
- Chih-Hao Wang
- Center for Mitochondrial Medicine and Free Radical Research, Changhua Christian Hospital, No. 176, 6th Floor, Zhonghua Rd, Changhua City, 500, Taiwan.,Institute of Biochemistry and Molecular Biology, National Yang-Ming University, Shih-Pai, Taipei, 112, Taiwan
| | - Yau-Huei Wei
- Center for Mitochondrial Medicine and Free Radical Research, Changhua Christian Hospital, No. 176, 6th Floor, Zhonghua Rd, Changhua City, 500, Taiwan. .,Institute of Biochemistry and Molecular Biology, National Yang-Ming University, Shih-Pai, Taipei, 112, Taiwan. .,Institute of Biomedical Sciences, Mackay Medical College, Sanzhi, New Taipei City, 252, Taiwan.
| |
Collapse
|
38
|
Metabolic Disorders and Cancer: Hepatocyte Store-Operated Ca2+ Channels in Nonalcoholic Fatty Liver Disease. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2017; 993:595-621. [DOI: 10.1007/978-3-319-57732-6_30] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|