1
|
Jang Y. Bioactive Compounds Targeting Dihydroceramide and Their Therapeutic Potential in Cancer Treatment. Cancers (Basel) 2025; 17:909. [PMID: 40075756 PMCID: PMC11898591 DOI: 10.3390/cancers17050909] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2025] [Revised: 02/23/2025] [Accepted: 02/28/2025] [Indexed: 03/14/2025] Open
Abstract
Dihydroceramide (dhCer) was previously considered an inactive precursor of ceramide, a well-known sphingoid base involved in regulating apoptosis and cell death. However, recent studies have shown that dhCer plays a crucial role in various important cellular responses. In this review, we summarize the latest findings on the biological functions of dhCer and the enzymes involved in its biosynthesis. We specifically focus on the emerging evidence implicating dhCer in cancer, as well as its role in regulating key processes such as cell cycle arrest, autophagy, apoptosis, ER stress, and oxidative stress. Furthermore, we discuss bioactive compounds that can modulate dhCer levels in cancer cells, highlighting their potential therapeutic applications in counteracting cancer progression. This review emphasizes the growing recognition of dhCer as a bioactive sphingolipid metabolite with significant potential for cancer therapy.
Collapse
Affiliation(s)
- Yumi Jang
- Department of Food Science and Nutrition, University of Ulsan, Ulsan 44610, Republic of Korea; ; Tel.: +82-52-259-2374
- Basic-Clinical Convergence Research Institute, University of Ulsan, Ulsan 44610, Republic of Korea
| |
Collapse
|
2
|
Felippe TVD, Toro DM, de Carvalho JCS, Nobre-Azevedo P, Rodrigues LFM, Oliveira BTM, da Silva-Neto PV, Vilela AFL, Almeida F, Faccioli LH, Sorgi CA. High-resolution targeted mass spectrometry for comprehensive quantification of sphingolipids: clinical applications and characterization of extracellular vesicles. Anal Biochem 2025; 698:115732. [PMID: 39622401 DOI: 10.1016/j.ab.2024.115732] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2024] [Revised: 11/25/2024] [Accepted: 11/29/2024] [Indexed: 12/07/2024]
Abstract
Sphingolipids (SL), a class of membrane lipids, play important roles in numerous biological processes. Their significant structural diversity poses challenges for accurate quantification. To address this, liquid chromatography coupled with tandem mass spectrometry (LC-MS/MS) has emerged as a powerful tool for sphingolipidomics, capable of profiling these lipids comprehensively. In this study, we utilized LC-MS/MS with high-resolution mass spectrometry (MRMHR) to develop a targeted method for the identification and quantification of various SL species. This method, based on validated parameters such as precursor/fragment ions (m/z) and retention time, demonstrated high sensitivity and accuracy, successfully identifying SL species across 12 distinct classes. Its open-panel design also facilitates the analysis of new SL-species targets. Notably, using this approach, we identified 40 SL species in plasma samples from COVID-19 patients, and we determined the influence of matrix metalloproteinase-3 (MMP-3) expression on the positive downstream of SL metabolism. Beyond plasma analysis, this method has potential applications in other biomedical contexts, such as extracellular vesicles (EVs), describing the cargo of sphingosine-1-phosphate (S1P) on macrophage-derived EVs. The establishment of this targeted workflow enabling precise quantification of a wide range of SL species, holds promise for identifying novel biomarkers and therapeutic targets.
Collapse
Affiliation(s)
- Thiago V D Felippe
- Departamento de Química, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto - FFCLRP, Universidade de São Paulo-USP, Ribeirão Preto, 14040-901, SP, Brazil
| | - Diana M Toro
- Departamento de Análises Clínicas, Toxicológicas e Bromatológicas, Faculdade de Ciências Farmacêuticas de Ribeirão Preto - FCFRP, Universidade de São Paulo-USP, Ribeirão Preto, 14040-903, SP, Brazil; Programa de Pós-Graduação em Imunologia Básica e Aplicada - PPGIBA, Instituto de Ciências Biológicas, Universidade Federal do Amazonas - UFAM, Manaus, 69080-900, AM, Brazil
| | - Jonatan C S de Carvalho
- Departamento de Química, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto - FFCLRP, Universidade de São Paulo-USP, Ribeirão Preto, 14040-901, SP, Brazil; Departamento de Análises Clínicas, Toxicológicas e Bromatológicas, Faculdade de Ciências Farmacêuticas de Ribeirão Preto - FCFRP, Universidade de São Paulo-USP, Ribeirão Preto, 14040-903, SP, Brazil
| | - Pedro Nobre-Azevedo
- Departamento de Química, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto - FFCLRP, Universidade de São Paulo-USP, Ribeirão Preto, 14040-901, SP, Brazil; Departamento de Bioquímica e Imunologia, Faculdade de Medicina de Ribeirão Preto - FMRP, Universidade de São Paulo-USP, Ribeirão Preto, 14049-900, SP, Brazil
| | - Luiz F M Rodrigues
- Departamento de Química, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto - FFCLRP, Universidade de São Paulo-USP, Ribeirão Preto, 14040-901, SP, Brazil
| | - Bianca T M Oliveira
- Departamento de Bioquímica e Imunologia, Faculdade de Medicina de Ribeirão Preto - FMRP, Universidade de São Paulo-USP, Ribeirão Preto, 14049-900, SP, Brazil
| | - Pedro V da Silva-Neto
- Departamento de Química, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto - FFCLRP, Universidade de São Paulo-USP, Ribeirão Preto, 14040-901, SP, Brazil; Departamento de Análises Clínicas, Toxicológicas e Bromatológicas, Faculdade de Ciências Farmacêuticas de Ribeirão Preto - FCFRP, Universidade de São Paulo-USP, Ribeirão Preto, 14040-903, SP, Brazil; Programa de Pós-Graduação em Imunologia Básica e Aplicada - PPGIBA, Instituto de Ciências Biológicas, Universidade Federal do Amazonas - UFAM, Manaus, 69080-900, AM, Brazil
| | - Adriana F L Vilela
- Departamento de Química, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto - FFCLRP, Universidade de São Paulo-USP, Ribeirão Preto, 14040-901, SP, Brazil
| | - Fausto Almeida
- Departamento de Bioquímica e Imunologia, Faculdade de Medicina de Ribeirão Preto - FMRP, Universidade de São Paulo-USP, Ribeirão Preto, 14049-900, SP, Brazil
| | - Lúcia H Faccioli
- Departamento de Análises Clínicas, Toxicológicas e Bromatológicas, Faculdade de Ciências Farmacêuticas de Ribeirão Preto - FCFRP, Universidade de São Paulo-USP, Ribeirão Preto, 14040-903, SP, Brazil; Centro de Excelência em Quantificação e Identificação de Lipídios (CEQIL), Faculdade de Ciências Farmacêuticas de Ribeirão Preto - FCFRP, Universidade de São Paulo-USP, Ribeirão Preto, 14040-903, SP, Brazil
| | - Carlos A Sorgi
- Departamento de Química, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto - FFCLRP, Universidade de São Paulo-USP, Ribeirão Preto, 14040-901, SP, Brazil; Programa de Pós-Graduação em Imunologia Básica e Aplicada - PPGIBA, Instituto de Ciências Biológicas, Universidade Federal do Amazonas - UFAM, Manaus, 69080-900, AM, Brazil; Departamento de Bioquímica e Imunologia, Faculdade de Medicina de Ribeirão Preto - FMRP, Universidade de São Paulo-USP, Ribeirão Preto, 14049-900, SP, Brazil; Centro de Excelência em Quantificação e Identificação de Lipídios (CEQIL), Faculdade de Ciências Farmacêuticas de Ribeirão Preto - FCFRP, Universidade de São Paulo-USP, Ribeirão Preto, 14040-903, SP, Brazil.
| |
Collapse
|
3
|
Kang JS, Lee SR, Lee M, Kim E, Lee PC. A novel fluorescein sodium-based screening platform for the identification of sphingoid base-producing Wickerhamomyces ciferrii mutants. Front Bioeng Biotechnol 2025; 13:1548051. [PMID: 40078793 PMCID: PMC11897276 DOI: 10.3389/fbioe.2025.1548051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2024] [Accepted: 02/06/2025] [Indexed: 03/14/2025] Open
Abstract
The efficient identification of microbial strains capable of producing rare sphingoid bases, such as sphingosine and sphinganine, is critical for advancing microbial fermentation processes and addressing increasing industrial demands. Wickerhamomyces ciferrii, a non-conventional yeast, naturally overproduces tetraacetyl phytosphingosine (TAPS); however, the production of other valuable sphingoid bases, including sphingosine, sphinganine, and triacetyl sphingosine, remains a key target. In this study, we developed a novel screening method utilizing fluorescein sodium, a selective fluorescent dye that specifically reacts with non-acetylated sphingoid bases-sphinganine, sphingosine, and phytosphingosine-while exhibiting no reactivity with TAPS. A mutant library of W. ciferrii was generated via gamma-ray mutagenesis and screened using fluorescence-activated cell sorting (FACS). Mutants exhibiting high fluorescence intensity, indicative of non-acetylated or partially acetylated sphingoid base production, were isolated through three rounds of sorting and further validated via HPLC analysis. This approach successfully identified three mutant strains: P41C3 (sphingosine-producing), M01_5 (sphinganine-producing), and P41E7 (triacetyl sphingosine-producing). Among them, the P41C3 mutant achieved a sphingosine titer of 36.7 mg/L during shake-flask cultivation, accompanied by a significant reduction in TAPS production, indicating a redirection of metabolic flux. This study demonstrates the utility of fluorescein sodium as a selective screening dye for sphingoid base-producing strains and establishes an effective platform for the metabolic engineering of W. ciferrii to enhance the production of industrially significant sphingolipids.
Collapse
Affiliation(s)
| | | | | | | | - Pyung Cheon Lee
- Department of Molecular Science and Technology and Advanced College of Bio-convergence Engineering, Ajou University, Suwon, Republic of Korea
| |
Collapse
|
4
|
Moseholm KF, Meineche JT, Jensen MK. The potential of circulating nonesterified fatty acids and sphingolipids in the biological understanding of cognitive decline and dementia. Curr Opin Lipidol 2025; 36:27-37. [PMID: 39641159 DOI: 10.1097/mol.0000000000000968] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/07/2024]
Abstract
PURPOSE OF REVIEW Cognitive decline and late-onset dementia pose significant challenges in aging societies, and many dementia cases could be prevented or delayed through modification of associated risk factors, many of which are tied to cardiovascular and metabolic dysfunction. As individuals age, the blood-brain barrier becomes more permeable, easing the exchange of molecules between the bloodstream and the brain. Consequently, blood-based biological markers (so-called biomarkers) provide a minimally invasive and accessible means of accessing molecular changes associated with aging and neurodegeneration. RECENT FINDINGS Circulating free fatty acids, also called nonesterified fatty acids (NEFAs), and sphingolipids are associated with cardiovascular disease, insulin resistance, and diabetes; thus, could be promising candidates as biomarkers for cognitive decline and dementia. SUMMARY The opportunity to study such minimally invasive biomarkers further opens up potential new avenues for improved understanding of the underlying biology of diseases of the brain.
Collapse
Affiliation(s)
- Kristine F Moseholm
- Department of Public Health, Section of Epidemiology, University of Copenhagen, Copenhagen, Denmark
| | - Josefine T Meineche
- Department of Public Health, Section of Epidemiology, University of Copenhagen, Copenhagen, Denmark
| | - Majken K Jensen
- Department of Public Health, Section of Epidemiology, University of Copenhagen, Copenhagen, Denmark
- Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, Massachusetts, USA
| |
Collapse
|
5
|
Merrill AH. Don't Be Surprised When These Surprise You: Some Infrequently Studied Sphingoid Bases, Metabolites, and Factors That Should Be Kept in Mind During Sphingolipidomic Studies. Int J Mol Sci 2025; 26:650. [PMID: 39859363 PMCID: PMC11765627 DOI: 10.3390/ijms26020650] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2024] [Revised: 01/09/2025] [Accepted: 01/11/2025] [Indexed: 01/27/2025] Open
Abstract
Sphingolipidomic mass spectrometry has provided valuable information-and surprises-about sphingolipid structures, metabolism, and functions in normal biological processes and disease. Nonetheless, many noteworthy compounds are not routinely determined, such as the following: most of the sphingoid bases that mammals biosynthesize de novo other than sphingosine (and sometimes sphinganine) or acquire from exogenous sources; infrequently considered metabolites of sphingoid bases, such as N-(methyl)n-derivatives; "ceramides" other than the most common N-acylsphingosines; and complex sphingolipids other than sphingomyelins and simple glycosphingolipids, including glucosyl- and galactosylceramides, which are usually reported as "monohexosylceramides". These and other subspecies are discussed, as well as some of the circumstances when they are likely to be seen (or present and missed) due to experimental conditions that can influence sphingolipid metabolism, uptake from the diet or from the microbiome, or as artifacts produced during extraction and analysis. If these compounds and factors are kept in mind during the design and interpretation of lipidomic studies, investigators are likely to be surprised by how often they appear and thereby advance knowledge about them.
Collapse
Affiliation(s)
- Alfred H Merrill
- School of Biological Sciences and The Petit Institute for Bioengineering and Biosciences, Georgia Institute of Technology, Atlanta, GA 30332, USA
| |
Collapse
|
6
|
Chen X, Zhu Y, Mazhar M, Qin L. Transcriptomic and Metabolomic Insights Into the Prebiotic Potential of Camellia Seed Oil for Enhancing Akkermansia muciniphila Proliferation In Vitro. Food Sci Nutr 2025; 13:e4637. [PMID: 39803248 PMCID: PMC11717052 DOI: 10.1002/fsn3.4637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 10/05/2024] [Accepted: 11/17/2024] [Indexed: 01/16/2025] Open
Abstract
Camellia seed oil (CSO), a potential prebiotic agent, can significantly increase the relative abundance of Akkermansia muciniphila (A. muciniphila) in mice gut microbiota following oral administration, this study aims to investigate the enhancing effect in vitro. The results showed that after 24-h co-cultivation with 0.5% (v/v) CSO, the growth of A. muciniphila increased from 11.61 ± 0.04 Log10CFU/mL to 12.17 ± 0.10 Log10CFU/mL (p < 0.05), accompanied by a reduction in the oxidation-reduction potential (ORP) value of the media from -126.67 ± 1.78 mV to -117.33 ± 0.72 mV (p < 0.05). Additionally, squalene and (+)-α-tocopherol, bioactive compounds present in CSO, were found to promote A. muciniphila proliferation (squalene OD600: 1.086 ± 0.002, tocopherol OD600: 1.100 ± 0.003, DMSO control OD600: 0.991 ± 0.003, p < 0.0001). Transcriptomic and metabolomic profiling revealed 464, 121, and 194 differentially expressed genes (DEGs) and 212, 160, and 156 differentially expressed metabolites (DEMs) in A. muciniphila co-cultivated with CSO after 4, 16, and 24 h, respectively (p < 0.05). The upregulated DEGs and DEMs were primarily enriched in pathways associated with energy generation (e.g., gap, icd, sucC, GOZ73_RS04175, succinate, phosphoenolpyruvate), nucleotide metabolism (e.g., mazG, deoxyguanosine), amino acid metabolism (e.g., argF, metK, L-tyrosine), translation (e.g., rplO, rpmC), and environmental adaptation (e.g., murA, katE, reduced nicotinamide adenine dinucleotide). These findings suggest that various bioactive compounds present in CSO exhibit prebiotic effects on the in vitro proliferation of A. muciniphila by facilitating nutrient utilization and environmental adaptation. This study provides insights into the extended utilization of CSO.
Collapse
Affiliation(s)
- Xi Chen
- Key Laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), College of Life Sciences/Institute of Agro‐BioengineeringGuizhou UniversityGuiyangChina
- Department of Laboratory MedicineAffiliated Jinyang Hospital of Guizhou Medical UniversityGuiyangChina
| | - Yong Zhu
- School of Liquor and Food EngineeringGuizhou UniversityGuiyangChina
| | - Muhammad Mazhar
- Key Laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), College of Life Sciences/Institute of Agro‐BioengineeringGuizhou UniversityGuiyangChina
- School of Liquor and Food EngineeringGuizhou UniversityGuiyangChina
| | - Likang Qin
- Key Laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), College of Life Sciences/Institute of Agro‐BioengineeringGuizhou UniversityGuiyangChina
- School of Liquor and Food EngineeringGuizhou UniversityGuiyangChina
| |
Collapse
|
7
|
Karmelić I, Jurilj Sajko M, Sajko T, Rotim K, Fabris D. The role of sphingolipid rheostat in the adult-type diffuse glioma pathogenesis. Front Cell Dev Biol 2024; 12:1466141. [PMID: 39723240 PMCID: PMC11668798 DOI: 10.3389/fcell.2024.1466141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Accepted: 11/11/2024] [Indexed: 12/28/2024] Open
Abstract
Gliomas are highly aggressive primary brain tumors, with glioblastoma multiforme being the most severe and the most common one. Aberrations in sphingolipid metabolism are a hallmark of glioma cells. The sphingolipid rheostat represents the balance between the pro-apoptotic ceramide and pro-survival sphingosine-1-phosphate (S1P), and in gliomas it is shifted toward cell survival and proliferation, promoting gliomas' aggressiveness, cellular migration, metastasis, and invasiveness. The sphingolipid rheostat can be altered by targeting enzymes that directly or indirectly affect the ratio of ceramide to S1P, leading to increased ceramide or decreased S1P levels. Targeting the sphingolipid rheostat offers a potential therapeutic pathway for glioma treatment which can be considered through reducing S1P levels or modulating S1P receptors to reduce cell proliferation, as well as through increasing ceramide levels to induce apoptosis in glioma cells. Although the practical translation into clinical therapy is still missing, sphingolipid rheostat targeting in gliomas has been of great research interest in recent years with several interesting achievements in the glioma therapy approach, offering hope for patients suffering from these vicious malignancies.
Collapse
Affiliation(s)
- Ivana Karmelić
- Department of Medical Chemistry, Biochemistry and Clinical Chemistry, School of Medicine, University of Zagreb, Zagreb, Croatia
| | - Mia Jurilj Sajko
- Department of Neurosurgery, University Hospital Center “Sestre milosrdnice”, Zagreb, Croatia
| | - Tomislav Sajko
- Department of Neurosurgery, University Hospital Center “Sestre milosrdnice”, Zagreb, Croatia
| | - Krešimir Rotim
- Department of Neurosurgery, University Hospital Center “Sestre milosrdnice”, Zagreb, Croatia
| | - Dragana Fabris
- Department of Medical Chemistry, Biochemistry and Clinical Chemistry, School of Medicine, University of Zagreb, Zagreb, Croatia
| |
Collapse
|
8
|
Jang Y, Kim CY. The Role of Vitamin E Isoforms and Metabolites in Cancer Prevention: Mechanistic Insights into Sphingolipid Metabolism Modulation. Nutrients 2024; 16:4115. [PMID: 39683509 DOI: 10.3390/nu16234115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2024] [Revised: 11/27/2024] [Accepted: 11/27/2024] [Indexed: 12/18/2024] Open
Abstract
Natural forms of vitamin E include four tocopherols and four tocotrienols (α, β, γ, and δ), which are essential as lipophilic antioxidants. Among these eight isoforms, α-tocopherol (αT), the predominant form of vitamin E found in tissues, has traditionally received the most attention in disease prevention research due to its robust antioxidant activity. However, recent studies suggest that other forms of vitamin E exhibit distinct and potentially more potent beneficial activities in disease prevention and treatment. These non-αT forms of vitamin E are metabolized in vivo, producing various metabolites, including 13'-carboxychromanol, though their biological roles remain largely unknown. Notably, sphingolipids, known for their significant roles in cancer biology, may be involved in the anticancer effects of vitamin E through the modulation of sphingolipid metabolism. This review focuses on the diverse biological activities of different vitamin E forms and their metabolites, particularly their anticancer effects, while highlighting the underlying mechanisms, including their novel impact on regulating sphingolipid pathways. By elucidating these interactions, we aim to provide a deeper understanding on the multifaceted roles of vitamin E in cancer prevention and therapy.
Collapse
Affiliation(s)
- Yumi Jang
- Department of Food Science and Nutrition, University of Ulsan, Ulsan 44610, Republic of Korea
- Basic-Clinical Convergence Research Institute, University of Ulsan, Ulsan 44610, Republic of Korea
| | - Choon Young Kim
- Department of Food and Nutrition, Yeungnam University, Gyeongsan 38541, Republic of Korea
- Research Institute of Human Ecology, Yeungnam University, Gyeongsan 38541, Republic of Korea
| |
Collapse
|
9
|
Anconelli L, Farioli F, Lodeserto P, Andreadi A, Borsetti F, Voltattorni M, Galassi L, Rossi M, Farruggia G, Blasi P, Orienti I. Antiproliferative and Morphological Effects of Fenretinide Lipid Nanosystems in Colon Adenocarcinoma Cells. Pharmaceutics 2024; 16:1421. [PMID: 39598544 PMCID: PMC11597870 DOI: 10.3390/pharmaceutics16111421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Revised: 10/28/2024] [Accepted: 10/31/2024] [Indexed: 11/29/2024] Open
Abstract
Objective: Colon adenocarcinoma is characterized by the downregulation of the retinoic acid receptor, making natural retinoids such as all-trans retinoic acid, 9-cis retinoic acid and 13-cis retinoic acid effective in treatment and chemoprevention due to their ability to increase RARβ expression. However, major limitations to their use include tolerability and acquired resistance. In this study, we evaluated fenretinide, a semisynthetic derivative of all-trans retinoic acid, in an HT-29 cell line. Fenretinide was evaluated both as a free drug and encapsulated in self-assembling phosphatidylcholine nanosystems with the aim of increasing the aqueous solubility and cell availability of the drug. Methods: Fenretinide was encapsulated in lipid nanosystems obtained in water by the dispersion of an amphiphilic mixture of phospholipids, glyceryl tributyrate and polysorbate 80. The physico-chemical characterization of the nanosystems was carried out by dynamic light scattering and spectrophotometry. The biological activity was evaluated by quantitative phase imaging microscopy, MTT assay, flow cytometry and confocal laser-scanning fluorescence microscopy. Results: Fenretinide in phosphatidylcholine nanosystems was more active than free fenretinide in inhibiting HT-29 cells' proliferation, as indicated by quantitative phase imaging data. Indeed, encapsulated fenretinide increased duplication time, decreased dry mass and decreased the rate of cell growth more efficiently than fenretinide. Moreover, encapsulated fenretinide effectively decreased the motility of the cells that survived the treatment. Conclusions: The results indicate that the proposed nanosystems can be considered a valuable alternative to natural retinoids in the chemoprevention and treatment of colorectal cancer. This is due to the favorable pharmacologic characteristics of fenretinide in colorectal cancer and the improved drug activity provided by nanoencapsulation.
Collapse
Affiliation(s)
- Lorenzo Anconelli
- Department of Pharmacy and Biotechnology, University of Bologna, Via San Donato 19/2, 40127 Bologna, Italy; (L.A.); (F.F.); (F.B.); (M.V.); (L.G.); (M.R.); (G.F.)
| | - Francesca Farioli
- Department of Pharmacy and Biotechnology, University of Bologna, Via San Donato 19/2, 40127 Bologna, Italy; (L.A.); (F.F.); (F.B.); (M.V.); (L.G.); (M.R.); (G.F.)
| | - Pietro Lodeserto
- Section of Endocrinology and Metabolic Diseases, Department of Systems Medicine, University of Rome Tor Vergata, 00133 Rome, Italy; (P.L.); (A.A.)
| | - Aikaterini Andreadi
- Section of Endocrinology and Metabolic Diseases, Department of Systems Medicine, University of Rome Tor Vergata, 00133 Rome, Italy; (P.L.); (A.A.)
| | - Francesca Borsetti
- Department of Pharmacy and Biotechnology, University of Bologna, Via San Donato 19/2, 40127 Bologna, Italy; (L.A.); (F.F.); (F.B.); (M.V.); (L.G.); (M.R.); (G.F.)
- Center for Applied Biomedical Research (CRBA), University of Bologna, 40126 Bologna, Italy
| | - Manuela Voltattorni
- Department of Pharmacy and Biotechnology, University of Bologna, Via San Donato 19/2, 40127 Bologna, Italy; (L.A.); (F.F.); (F.B.); (M.V.); (L.G.); (M.R.); (G.F.)
| | - Lucrezia Galassi
- Department of Pharmacy and Biotechnology, University of Bologna, Via San Donato 19/2, 40127 Bologna, Italy; (L.A.); (F.F.); (F.B.); (M.V.); (L.G.); (M.R.); (G.F.)
| | - Martina Rossi
- Department of Pharmacy and Biotechnology, University of Bologna, Via San Donato 19/2, 40127 Bologna, Italy; (L.A.); (F.F.); (F.B.); (M.V.); (L.G.); (M.R.); (G.F.)
| | - Giovanna Farruggia
- Department of Pharmacy and Biotechnology, University of Bologna, Via San Donato 19/2, 40127 Bologna, Italy; (L.A.); (F.F.); (F.B.); (M.V.); (L.G.); (M.R.); (G.F.)
- Center for Applied Biomedical Research (CRBA), University of Bologna, 40126 Bologna, Italy
- National Institute of Biostructures and Biosystems, Via dei Carpegna 19, 00165 Rome, Italy
| | - Paolo Blasi
- Department of Pharmacy and Biotechnology, University of Bologna, Via San Donato 19/2, 40127 Bologna, Italy; (L.A.); (F.F.); (F.B.); (M.V.); (L.G.); (M.R.); (G.F.)
- Center for Applied Biomedical Research (CRBA), University of Bologna, 40126 Bologna, Italy
| | - Isabella Orienti
- Department of Pharmacy and Biotechnology, University of Bologna, Via San Donato 19/2, 40127 Bologna, Italy; (L.A.); (F.F.); (F.B.); (M.V.); (L.G.); (M.R.); (G.F.)
| |
Collapse
|
10
|
Clark C, Barzegar Behrooz A, da Silva Rosa SC, Jacobs J, Weng X, Srivastava A, Vitorino R, Ande SR, Ravandi A, Dhingra S, Pecic S, Miller D, Shojaei S, Ghavami S. BCL2L13 Influences Autophagy and Ceramide Metabolism without Affecting Temozolomide Resistance in Glioblastoma. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.08.23.609447. [PMID: 39253475 PMCID: PMC11383306 DOI: 10.1101/2024.08.23.609447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/11/2024]
Abstract
Temozolomide (TMZ) resistance in glioblastoma (GB) poses a significant therapeutic challenge. We developed a TMZ-resistant (TMZ-R) U251 GB model, revealing distinct differences in cell viability, apoptosis, autophagy, and lipid metabolism between TMZ-R and non-resistant (TMZ-NR) cells. TMZ-NR cells exhibited heightened sensitivity to TMZ-induced apoptosis, while TMZ-R cells-maintained viability. Autophagy flux was completely inhibited in TMZ-R cells, indicated by LC3βII and SQSTM1 accumulation. BCL2L13, which showed higher expression in TMZ-R cells, demonstrated increased interaction with Ceramide Synthase 6 (CerS6) and reduced interaction with Ceramide Synthase 2 (CerS2) in TMZ-NR cells. BCL2L13 knockdown (KD) disrupted autophagy flux, decreasing autophagosome accumulation in TMZ-R cells while increasing it in TMZ-NR cells. These changes contributed to altered ceramide profiles, where TMZ-R cells displayed elevated levels of Cer 16:0, 18:0, 20:0, 22:0, 24:0, and 24:1. Our findings highlight BCL2L13 and altered ceramide metabolism as potential therapeutic targets to overcome TMZ resistance in GB.
Collapse
|
11
|
Huang K, Ding R, Lai C, Wang H, Fan X, Chu Y, Fang Y, Hua T, Yuan H. Vitexin attenuates neuropathic pain by regulating astrocyte autophagy flux and polarization via the S1P/ S1PR1-PI3K/ Akt axis. Eur J Pharmacol 2024; 981:176848. [PMID: 39094925 DOI: 10.1016/j.ejphar.2024.176848] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 07/12/2024] [Accepted: 07/24/2024] [Indexed: 08/04/2024]
Abstract
Neuropathic pain (NP) is associated with astrocytes activation induced by nerve injury. Reactive astrocytes, strongly induced by central nervous system damage, can be classified into A1 and A2 types. Vitexin, a renowned flavonoid compound, is known for its anti-inflammatory and analgesic properties. However, its role in NP remains unexplored. This study aims to investigate the effects of vitexin on astrocyte polarization and its underlying mechanisms. A mouse model of NP was established, and primary astrocytes were stimulated with sphingosine-1-phosphate (S1P) to construct a cellular model. The results demonstrated significant activation of spinal astrocytes on days 14 and 21. Concurrently, reactive astrocytes predominantly differentiated into the A1 type. Western blot analysis revealed an increase in A1 astrocyte-associated protein (C3) and a decrease in A2 astrocyte-associated protein (S100A10). Serum S1P levels increased on days 14 and 21, alongside a significant upregulation of Sphingosine-1-phosphate receptor 1 (S1PR1) mRNA expression and elevated expression of chemokines. In vitro, stimulation with S1P inhibited the Phosphatidylinositol 3-kinase and protein kinase B (PI3K/Akt) signaling pathway and autophagy flux, promoting polarization of astrocytes towards the A1 phenotype while suppressing the polarization of A2 astrocytes. Our findings suggest that vitexin, acting on astrocytes but not microglia, attenuates S1P-induced downregulation of PI3K/Akt signaling, restores autophagy flux in astrocytes, regulates A1/A2 astrocyte ratio, and reduces chemokine and S1P secretion, thereby alleviating neuropathic pain caused by nerve injury.
Collapse
Affiliation(s)
- Kesheng Huang
- Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, Xuzhou, Jiangsu Province, China
| | - Ruifeng Ding
- Department of Anesthesiology, Changzheng Hospital, Naval Medical University, 415 Fengyang Road, Shanghai 200003, China
| | - Chengyuan Lai
- Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, Xuzhou, Jiangsu Province, China
| | - Haowei Wang
- Department of Anesthesiology, Changzheng Hospital, Naval Medical University, 415 Fengyang Road, Shanghai 200003, China
| | - Xiaoyi Fan
- Department of Anesthesiology, Changzheng Hospital, Naval Medical University, 415 Fengyang Road, Shanghai 200003, China
| | - Yan Chu
- Department of Anesthesiology, Changzheng Hospital, Naval Medical University, 415 Fengyang Road, Shanghai 200003, China
| | - Yuanyuan Fang
- Department of Anesthesiology, Changzheng Hospital, Naval Medical University, 415 Fengyang Road, Shanghai 200003, China
| | - Tong Hua
- Department of Anesthesiology, Changzheng Hospital, Naval Medical University, 415 Fengyang Road, Shanghai 200003, China.
| | - Hongbin Yuan
- Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, Xuzhou, Jiangsu Province, China; Department of Anesthesiology, Changzheng Hospital, Naval Medical University, 415 Fengyang Road, Shanghai 200003, China.
| |
Collapse
|
12
|
Maleš P, Munivrana J, Pašalić L, Pem B, Bakarić D. Reorientation of interfacial water molecules during melting of brain sphingomyelin is associated with the phase transition of its C24:1 sphingomyelin lipids. Chem Phys Lipids 2024; 264:105434. [PMID: 39216637 DOI: 10.1016/j.chemphyslip.2024.105434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 08/09/2024] [Accepted: 08/28/2024] [Indexed: 09/04/2024]
Abstract
Melting of brain sphingomyelin (bSM) manifests as a broad feature in the DSC curve that encompasses the temperature range of 25 - 45 °C, with two distinguished maxima originating from the phase transitions of two the most abundant components: C24:1 (Tm,1) and C18:0 (Tm,2). While C24:1/C18:0 sphingomyelin transforms from the gel/ripple phase to the fluid/fluid phase, the dynamics of water molecules in the interfacial layer remain completely unknown. Therefore, we carried out a calorimetric (DSC), spectroscopic (temperature-dependent UV-Vis and fluorescence) and MD simulation study of bSM in the absence/presence of Laurdan® (bSM ± L) suspended in Britton-Robinson buffer with three different pH values, 4 (BRB4), 7 (BRB7) and 9 (BRB9), and of comparable ionic strength (I = 100 mM). According to DSC, T̅m, 1 (≈ 34.5 °C/≈ 32.1 °C) and T̅m, 2 (≈ 38.0 °C/≈ 37.2 °C) of bSM suspended in BRB4, BRB7, and BRB9 in the absence/presence of Laurdan® are found to be practically pH-independent. Turbidity-based data (UV-Vis) detected both qualitative and quantitative differences in the response of bSM suspended in BRB4/BRB7/BRB9 (T̅m: ∼ 35 °C/32.0 ± 0.2 °C/36.4 ± 0.4), suggesting an intricate interplay of weakening of van der Waals forces between their hydrocarbon chains and of increased hydration in the polar headgroups region during melting. The temperature-dependent response of Laurdan® reported a discontinuous, pH-dependent change in the reorientation of interfacial water molecules that coincides with the melting of C24:1 lipids (on average, T̅m (LTC/HTC): ≈ 31.8 °C/30.6 °C/30.5 °C). MD simulations elucidated the impact of Laurdan® on a change in the physicochemical properties of bSM lipids and characterized the hydrogen bond network at the interface at 20 °C and 50 °C.
Collapse
Affiliation(s)
- Petra Maleš
- Division for Organic Chemistry and Biochemistry, Ruđer Bošković Institute, Bijenička 54, Zagreb 10000, Croatia
| | - Jana Munivrana
- Division of Analytical Chemistry, Department of Chemistry, Faculty of Science, University of Zagreb, Horvatovac 102a, Zagreb 10000, Croatia
| | - Lea Pašalić
- Division for Organic Chemistry and Biochemistry, Ruđer Bošković Institute, Bijenička 54, Zagreb 10000, Croatia
| | - Barbara Pem
- Division for Organic Chemistry and Biochemistry, Ruđer Bošković Institute, Bijenička 54, Zagreb 10000, Croatia
| | - Danijela Bakarić
- Division for Organic Chemistry and Biochemistry, Ruđer Bošković Institute, Bijenička 54, Zagreb 10000, Croatia.
| |
Collapse
|
13
|
Foran D, Antoniades C, Akoumianakis I. Emerging Roles for Sphingolipids in Cardiometabolic Disease: A Rational Therapeutic Target? Nutrients 2024; 16:3296. [PMID: 39408263 PMCID: PMC11478599 DOI: 10.3390/nu16193296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Revised: 09/19/2024] [Accepted: 09/25/2024] [Indexed: 10/20/2024] Open
Abstract
Cardiovascular disease is a leading cause of morbidity and mortality. New research elucidates increasingly complex relationships between cardiac and metabolic health, giving rise to new possible therapeutic targets. Sphingolipids are a heterogeneous class of bioactive lipids with critical roles in normal human physiology. They have also been shown to play both protective and deleterious roles in the pathogenesis of cardiovascular disease. Ceramides are implicated in dysregulating insulin signalling, vascular endothelial function, inflammation, oxidative stress, and lipoprotein aggregation, thereby promoting atherosclerosis and vascular disease. Ceramides also advance myocardial disease by enhancing pathological cardiac remodelling and cardiomyocyte death. Glucosylceramides similarly contribute to insulin resistance and vascular inflammation, thus playing a role in atherogenesis and cardiometabolic dysfunction. Sphingosing-1-phosphate, on the other hand, may ameliorate some of the pathological functions of ceramide by protecting endothelial barrier integrity and promoting cell survival. Sphingosine-1-phosphate is, however, implicated in the development of cardiac fibrosis. This review will explore the roles of sphingolipids in vascular, cardiac, and metabolic pathologies and will evaluate the therapeutic potential in targeting sphingolipids with the aim of prevention and reversal of cardiovascular disease in order to improve long-term cardiovascular outcomes.
Collapse
Affiliation(s)
| | | | - Ioannis Akoumianakis
- Cardiovascular Medicine Division, Radcliffe Department of Medicine, University of Oxford, Oxford OX3 9DU, UK; (D.F.); (C.A.)
| |
Collapse
|
14
|
Ung J, Kassai M, Tan SF, Loughran TP, Feith DJ, Cabot MC. The Drug Transporter P-Glycoprotein and Its Impact on Ceramide Metabolism-An Unconventional Ally in Cancer Treatment. Int J Mol Sci 2024; 25:9825. [PMID: 39337312 PMCID: PMC11432138 DOI: 10.3390/ijms25189825] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Revised: 09/06/2024] [Accepted: 09/09/2024] [Indexed: 09/30/2024] Open
Abstract
The tumor-suppressor sphingolipid ceramide is recognized as a key participant in the cytotoxic mechanism of action of many types of chemotherapy drugs, including anthracyclines, Vinca alkaloids, the podophyllotoxin etoposide, taxanes, and the platinum drug oxaliplatin. These drugs can activate de novo synthesis of ceramide or stimulate the production of ceramide via sphingomyelinases to limit cancer cell survival. On the contrary, dysfunctional sphingolipid metabolism, a prominent factor in cancer survival and therapy resistance, blunts the anticancer properties of ceramide-orchestrated cell death pathways, especially apoptosis. Although P-glycoprotein (P-gp) is famous for its role in chemotherapy resistance, herein, we propose alternate interpretations and discuss the capacity of this multidrug transporter as a "ceramide neutralizer", an unwelcome event, highlighting yet another facet of P-gp's versatility in drug resistance. We introduce sphingolipid metabolism and its dysfunctional regulation in cancer, present a summary of factors that contribute to chemotherapy resistance, explain how P-gp "neutralizes" ceramide by hastening its glycosylation, and consider therapeutic applications of the P-gp-ceramide connection in the treatment of cancer.
Collapse
Affiliation(s)
- Johnson Ung
- Department of Microbiology, Immunology, and Cancer Biology, University of Virginia School of Medicine, Charlottesville, VA 22908, USA;
| | - Miki Kassai
- Department of Biochemistry and Molecular Biology, Brody School of Medicine, East Carolina University, The East Carolina Diabetes and Obesity Institute, Greenville, NC 27834, USA;
| | - Su-Fern Tan
- University of Virginia Cancer Center, University of Virginia School of Medicine, Charlottesville, VA 22908, USA; (S.-F.T.); (D.J.F.)
- Department of Medicine, Hematology/Oncology, University of Virginia School of Medicine, Charlottesville, VA 22908, USA
| | - Thomas P. Loughran
- University of Virginia Cancer Center, University of Virginia School of Medicine, Charlottesville, VA 22908, USA; (S.-F.T.); (D.J.F.)
- Department of Medicine, Hematology/Oncology, University of Virginia School of Medicine, Charlottesville, VA 22908, USA
| | - David J. Feith
- University of Virginia Cancer Center, University of Virginia School of Medicine, Charlottesville, VA 22908, USA; (S.-F.T.); (D.J.F.)
- Department of Medicine, Hematology/Oncology, University of Virginia School of Medicine, Charlottesville, VA 22908, USA
| | - Myles C. Cabot
- Department of Biochemistry and Molecular Biology, Brody School of Medicine, East Carolina University, The East Carolina Diabetes and Obesity Institute, Greenville, NC 27834, USA;
| |
Collapse
|
15
|
Li Y, Li G, Wang Y, Li L, Song Y, Cao F, Yang K. Discovery and biological evaluation of biaryl acetamide derivatives as selective and in vivo active sphingosine kinase-2 inhibitors. Eur J Med Chem 2024; 275:116577. [PMID: 38875809 DOI: 10.1016/j.ejmech.2024.116577] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 06/04/2024] [Accepted: 06/04/2024] [Indexed: 06/16/2024]
Abstract
Sphingosine kinase 2 (SphK2) has emerged as a promising target for cancer therapy due to its critical role in tumor growth. However, the lack of potent and selective inhibitors has hindered its clinical application. Herein, we report the design and synthesis of a series of novel SphK2 inhibitors, culminating in the identification of compound 12q as a highly selective and potent inhibitor of SphK2. Molecular dynamics simulations suggest that the incorporation of larger substitution groups facilitates a more effective occupation of the binding site, thereby stabilizing the complex. Compared to the widely used inhibitor ABC294640, compound 12q exhibits superior anti-proliferative activity against various cancer cells, inducing G2 phase arrest and apoptosis in liver cancer cells HepG2. Notably, 12q inhibited migration and colony formation in HepG2 and altered intracellular sphingolipid content. Moreover, intraperitoneal administration of 12q in mice resulted in decreased levels of S1P. 12q provides a valuable tool compound for exploring the therapeutic potential of targeting SphK2 in cancer.
Collapse
Affiliation(s)
- Yanan Li
- Key Laboratory of Pharmaceutical Quality Control of Hebei Province, College of Pharmaceutical Sciences, Hebei University, Baoding, 071002, China
| | - Gang Li
- Key Laboratory of Pharmaceutical Quality Control of Hebei Province, College of Pharmaceutical Sciences, Hebei University, Baoding, 071002, China
| | - Yiming Wang
- Key Laboratory of Pharmaceutical Quality Control of Hebei Province, College of Pharmaceutical Sciences, Hebei University, Baoding, 071002, China
| | - Longfei Li
- Key Laboratory of Pharmaceutical Quality Control of Hebei Province, College of Pharmaceutical Sciences, Hebei University, Baoding, 071002, China
| | - Yali Song
- Key Laboratory of Pharmaceutical Quality Control of Hebei Province, College of Pharmaceutical Sciences, Hebei University, Baoding, 071002, China
| | - Fei Cao
- Key Laboratory of Pharmaceutical Quality Control of Hebei Province, College of Pharmaceutical Sciences, Hebei University, Baoding, 071002, China; Key Laboratory of Medicinal Chemistry and Molecular Diagnosis, Ministry of Education, Hebei University, Baoding, Hebei, 071002, China
| | - Kan Yang
- Key Laboratory of Pharmaceutical Quality Control of Hebei Province, College of Pharmaceutical Sciences, Hebei University, Baoding, 071002, China; Key Laboratory of Medicinal Chemistry and Molecular Diagnosis, Ministry of Education, Hebei University, Baoding, Hebei, 071002, China.
| |
Collapse
|
16
|
Nguyen NTK, Huang SY, Fan HY, Tung TH, Huynh QTV, Yang C, Chen YC. Lipidomics reveals ceramide biomarkers for detecting central precocious puberty in girls. Obes Res Clin Pract 2024; 18:269-279. [PMID: 39127601 DOI: 10.1016/j.orcp.2024.07.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 07/15/2024] [Accepted: 07/30/2024] [Indexed: 08/12/2024]
Abstract
BACKGROUND Pubertal timing is modulated by complex interactions between the pituitary and gonadal sex steroid hormones. Evidence indicates that sphingolipids are involved in the biosynthesis of steroid hormones at multiple levels. METHOD This study recruited adolescent female patients from pubertal and pediatric endocrine clinics in Northern and Southern Taiwan from the Taiwan Puberty Longitudinal Study. A total of 112 plasma samples (22 healthy control, 29 peripheral precocious puberty (PPP), and 61 CPP samples) were collected. We extracted lipids from the plasma samples using the modified Folch method. The un-targeted ultrahigh-performance liquid chromatography tandem mass spectrometry (UPLC-MS/MS) was employed for the lipid analysis. RESULTS We identified sphingolipid-linked metabolites, including Cer(18:0/15:0), Cer(18:1/16:0), and Cer(18:1/26:0) as candidate biomarkers for distinguishing girls with CPP from the control group by using an excellent discrimination model (AUC = 0.964). Moreover, Cer(18:0/22:0) and Cer(d18:0/18:1) were identified as potential biomarkers of PPP, with an AUC value of 0.938. Furthermore, CerP(18:1/18:0) was identified as the sole candidate biomarker capable of differentiating CPP from PPP. CONCLUSIONS The biomarkers identified in this study can facilitate the accurate detection of CPP in girls, provide insights into lipid-linked pathophysiology, and present a novel method of monitoring the progression of this disorder.
Collapse
Affiliation(s)
- Ngan Thi Kim Nguyen
- Undergraduate and Graduate Programs of Nutrition Science, College of Life Science, National Taiwan Normal University, Taipei, Taiwan; School of Nutrition and Health Sciences, Taipei Medical University, Taipei, Taiwan
| | - Shih-Yi Huang
- School of Nutrition and Health Sciences, Taipei Medical University, Taipei, Taiwan; Graduate Institute of Metabolism and Obesity Sciences, Taipei Medical University, Taipei, Taiwan; Nutrition Research Center, Taipei Medical University Hospital, Taipei, Taiwan
| | - Hsien-Yu Fan
- School of Nutrition and Health Sciences, Taipei Medical University, Taipei, Taiwan; Institute of Epidemiology and Preventive Medicine, National Taiwan University, Taipei, Taiwan
| | - Te-Hsuan Tung
- School of Nutrition and Health Sciences, Taipei Medical University, Taipei, Taiwan
| | - Quynh Thi Vu Huynh
- Department of Pediatrics, Faculty of Medicine, University of Medicine and Pharmacy at Ho Chi Minh city, Vietnam; Department of Nephrology and Endocrinology, Children's Hospital 2, Ho Chi Minh city, Vietnam
| | - Chen Yang
- Department of Pediatrics, Taipei Medical University Hospital, Taipei, Taiwan
| | - Yang Ching Chen
- School of Nutrition and Health Sciences, Taipei Medical University, Taipei, Taiwan; Graduate Institute of Metabolism and Obesity Sciences, Taipei Medical University, Taipei, Taiwan; Nutrition Research Center, Taipei Medical University Hospital, Taipei, Taiwan; Department of Family Medicine, Wan Fang Hospital, Taipei Medical University, Taipei 116, Taiwan; Department of Family Medicine, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan.
| |
Collapse
|
17
|
Wilkerson JL, Tatum SM, Holland WL, Summers SA. Ceramides are fuel gauges on the drive to cardiometabolic disease. Physiol Rev 2024; 104:1061-1119. [PMID: 38300524 PMCID: PMC11381030 DOI: 10.1152/physrev.00008.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 01/23/2024] [Accepted: 01/25/2024] [Indexed: 02/02/2024] Open
Abstract
Ceramides are signals of fatty acid excess that accumulate when a cell's energetic needs have been met and its nutrient storage has reached capacity. As these sphingolipids accrue, they alter the metabolism and survival of cells throughout the body including in the heart, liver, blood vessels, skeletal muscle, brain, and kidney. These ceramide actions elicit the tissue dysfunction that underlies cardiometabolic diseases such as diabetes, coronary artery disease, metabolic-associated steatohepatitis, and heart failure. Here, we review the biosynthesis and degradation pathways that maintain ceramide levels in normal physiology and discuss how the loss of ceramide homeostasis drives cardiometabolic pathologies. We highlight signaling nodes that sense small changes in ceramides and in turn reprogram cellular metabolism and stimulate apoptosis. Finally, we evaluate the emerging therapeutic utility of these unique lipids as biomarkers that forecast disease risk and as targets of ceramide-lowering interventions that ameliorate disease.
Collapse
Affiliation(s)
- Joseph L Wilkerson
- Department of Nutrition and Integrative Physiology, University of Utah, Salt Lake City, Utah, United States
| | - Sean M Tatum
- Department of Nutrition and Integrative Physiology, University of Utah, Salt Lake City, Utah, United States
| | - William L Holland
- Department of Nutrition and Integrative Physiology, University of Utah, Salt Lake City, Utah, United States
| | - Scott A Summers
- Department of Nutrition and Integrative Physiology, University of Utah, Salt Lake City, Utah, United States
| |
Collapse
|
18
|
Moseholm KF, Cronjé HT, Koch M, Fitzpatrick AL, Lopez OL, Otto MCDO, Longstreth WT, Hoofnagle AN, Mukamal KJ, Lemaitre RN, Jensen MK. Circulating sphingolipids in relation to cognitive decline and incident dementia: The Cardiovascular Health Study. ALZHEIMER'S & DEMENTIA (AMSTERDAM, NETHERLANDS) 2024; 16:e12623. [PMID: 39130802 PMCID: PMC11310412 DOI: 10.1002/dad2.12623] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 06/21/2024] [Accepted: 06/22/2024] [Indexed: 08/13/2024]
Abstract
INTRODUCTION Whether circulating levels of sphingolipids are prospectively associated with cognitive decline and dementia risk is uncertain. METHODS We measured 14 sphingolipid species in plasma samples from 4488 participants (mean age 76.2 years; 40% male; and 25% apolipoprotein E (APOE) ε4 allele carriers). Cognitive decline was assessed annually across 6 years using modified Mini-Mental State Examination (3MSE) and Digital Symbol Substitution Test (DSST). Additionally, a subset of 3050 participants were followed for clinically adjudicated dementia. RESULTS Higher plasma levels of sphingomyelin-d18:1/16:0 (SM-16) were associated with a faster cognitive decline measured with 3MSE, in contrast, higher levels of sphingomyelin-d18:1/22:0 (SM-22) were associated with slower decline in cognition measured with DSST. In Cox regression, higher levels of SM-16 (hazard ration [HR] = 1.24 [95% confidence interval [CI]: 1.08-1.44]) and ceramide-d18:1/16:0 (Cer-16) (HR = 1.26 [95% CI: 1.10-1.45]) were associated with higher risk of incident dementia. DISCUSSION Several sphingolipid species appear to be involved in cognitive decline and dementia risk. Highlights Plasma levels of sphingolipids were associated with cognitive decline and dementia risk.Ceramides and sphingomyelins with palmitic acid were associated with faster annual cognitive decline and increased risk of dementia.The direction of association depended on the covalently bound saturated fatty acid chain length in analysis of cognitive decline.
Collapse
Affiliation(s)
- Kristine F. Moseholm
- Department of Public HealthSection of EpidemiologyUniversity of CopenhagenCopenhagenDenmark
| | - Héléne T. Cronjé
- Department of Public HealthSection of EpidemiologyUniversity of CopenhagenCopenhagenDenmark
| | - Manja Koch
- Department of NutritionHarvard T.H. Chan School of Public HealthBostonMassachusettsUSA
| | - Annette L. Fitzpatrick
- Departments of Family Medicine and EpidemiologySchool of Public HealthUniversity of WashingtonSeattleWashingtonUSA
| | - Oscar L. Lopez
- Department of NeurologySchool of MedicineUniversity of PittsburghPittsburghPennsylvaniaUSA
| | | | - W. T. Longstreth
- Departments of Family Medicine and EpidemiologySchool of Public HealthUniversity of WashingtonSeattleWashingtonUSA
- Department of NeurologySchool of MedicineUniversity of WashingtonSeattleWashingtonUSA
| | - Andrew N. Hoofnagle
- Department of Laboratory Medicine and PathologySchool of MedicineUniversity of WashingtonSeattleWashingtonUSA
| | - Kenneth J. Mukamal
- Department of MedicineBeth Israel Deaconess Medical CenterBostonMassachusettsUSA
| | - Rozenn N. Lemaitre
- Cardiovascular Health Research Unit, Department of MedicineUniversity of WashingtonSeattleWashingtonUSA
| | - Majken K. Jensen
- Department of Public HealthSection of EpidemiologyUniversity of CopenhagenCopenhagenDenmark
- Department of NutritionHarvard T.H. Chan School of Public HealthBostonMassachusettsUSA
| |
Collapse
|
19
|
Li L, Bai S, Zhao H, Tan J, Wang Y, Zhang A, Jiang L, Zhao Y. Dietary Supplementation with Naringin Improves Systemic Metabolic Status and Alleviates Oxidative Stress in Transition Cows via Modulating Adipose Tissue Function: A Lipid Perspective. Antioxidants (Basel) 2024; 13:638. [PMID: 38929076 PMCID: PMC11200899 DOI: 10.3390/antiox13060638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2024] [Revised: 05/15/2024] [Accepted: 05/21/2024] [Indexed: 06/28/2024] Open
Abstract
Dairy cows face metabolic challenges around the time of calving, leading to a negative energy balance and various postpartum health issues. Adipose tissue is crucial for cows during this period, as it regulates energy metabolism and supports immune function. Naringin, one of the main flavonoids in citrus fruit and their byproducts, is a potent antioxidant and anti-inflammatory phytoconstituent. The study aimed to evaluate the effects of supplemental naringin on performance, systemic inflammation, oxidative status, and adipose tissue metabolic status. A total of 36 multiparous Holstein cows (from ~21 d prepartum through 35 d postpartum) were provided a basal control (CON) diet or a CON diet containing naringin (NAR) at 30 g/d per cow. Supplemental NAR increased the yield of raw milk and milk protein, without affecting dry matter intake. Cows fed NAR showed significantly lower levels (p < 0.05) of serum non-esterified fatty acid (NEFA), C-reactive protein, IL-1β, IL-6, malonaldehyde, lipopolysaccharide (LPS), aspartate aminotransferase, and alanine aminotransferase, but increased (p < 0.05) glutathione peroxidase activity relative to those fed CON. Supplemental NAR increased (p < 0.05) adipose tissue adiponectin abundance, decreased inflammatory responses, and reduced oxidative stress. Lipidomic analysis showed that cows fed NAR had lower concentrations of ceramide species (p < 0.05) in the serum and adipose tissue than did the CON-fed cows. Adipose tissue proteomics showed that proteins related to lipolysis, ceramide biosynthesis, inflammation, and heat stress were downregulated (p < 0.05), while those related to glycerophospholipid biosynthesis and the extracellular matrix were upregulated (p < 0.05). Feeding NAR to cows may reduce the accumulation of ceramide by lowering serum levels of NEFA and LPS and increasing adiponectin expression, thereby decreasing inflammation and oxidative stress in adipose tissue, ultimately improving their systemic metabolic status. Including NAR in periparturient cows' diets improves lactational performance, reduces excessive lipolysis in adipose tissue, and decreases systemic and adipose tissue inflammation and oxidative stress. Integrating lipidomic and proteomic data revealed that reduced ceramide and increased glycerophospholipids may alleviate metabolic dysregulations in adipose tissue, which in turn benefits systemic metabolic status.
Collapse
Affiliation(s)
- Liuxue Li
- Beijing Key Laboratory of Dairy Cow Nutrition, College of Animal Science and Technology, Beijing University of Agriculture, Beijing 102206, China; (L.L.); (H.Z.); (J.T.); (Y.W.); (A.Z.)
| | - Sarula Bai
- Beijing Sunlon Livestock Development Co., Ltd., Beijing 100076, China;
| | - Huiying Zhao
- Beijing Key Laboratory of Dairy Cow Nutrition, College of Animal Science and Technology, Beijing University of Agriculture, Beijing 102206, China; (L.L.); (H.Z.); (J.T.); (Y.W.); (A.Z.)
| | - Jian Tan
- Beijing Key Laboratory of Dairy Cow Nutrition, College of Animal Science and Technology, Beijing University of Agriculture, Beijing 102206, China; (L.L.); (H.Z.); (J.T.); (Y.W.); (A.Z.)
| | - Ying Wang
- Beijing Key Laboratory of Dairy Cow Nutrition, College of Animal Science and Technology, Beijing University of Agriculture, Beijing 102206, China; (L.L.); (H.Z.); (J.T.); (Y.W.); (A.Z.)
| | - Ao Zhang
- Beijing Key Laboratory of Dairy Cow Nutrition, College of Animal Science and Technology, Beijing University of Agriculture, Beijing 102206, China; (L.L.); (H.Z.); (J.T.); (Y.W.); (A.Z.)
| | - Linshu Jiang
- Beijing Key Laboratory of Dairy Cow Nutrition, College of Animal Science and Technology, Beijing University of Agriculture, Beijing 102206, China; (L.L.); (H.Z.); (J.T.); (Y.W.); (A.Z.)
| | - Yuchao Zhao
- Beijing Key Laboratory of Dairy Cow Nutrition, College of Animal Science and Technology, Beijing University of Agriculture, Beijing 102206, China; (L.L.); (H.Z.); (J.T.); (Y.W.); (A.Z.)
| |
Collapse
|
20
|
Moseholm KF, Horn JW, Fitzpatrick AL, Djoussé L, Longstreth WT, Lopez OL, Hoofnagle AN, Jensen MK, Lemaitre RN, Mukamal KJ. Circulating sphingolipids and subclinical brain pathology: the cardiovascular health study. Front Neurol 2024; 15:1385623. [PMID: 38765262 PMCID: PMC11099203 DOI: 10.3389/fneur.2024.1385623] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Accepted: 04/08/2024] [Indexed: 05/21/2024] Open
Abstract
Background Sphingolipids are implicated in neurodegeneration and neuroinflammation. We assessed the potential role of circulating ceramides and sphingomyelins in subclinical brain pathology by investigating their association with brain magnetic resonance imaging (MRI) measures and circulating biomarkers of brain injury, neurofilament light chain (NfL) and glial fibrillary acidic protein (GFAP) in the Cardiovascular Health Study (CHS), a large and intensively phenotyped cohort of older adults. Methods Brain MRI was offered twice to CHS participants with a mean of 5 years between scans, and results were available from both time points in 2,116 participants (mean age 76 years; 40% male; and 25% APOE ε4 allele carriers). We measured 8 ceramide and sphingomyelin species in plasma samples and examined the associations with several MRI, including worsening grades of white matter hyperintensities and ventricular size, number of brain infarcts, and measures of brain atrophy in a subset with quantitative measures. We also investigated the sphingolipid associations with serum NfL and GFAP. Results In the fully adjusted model, higher plasma levels of ceramides and sphingomyelins with a long (16-carbon) saturated fatty acid were associated with higher blood levels of NfL [β = 0.05, false-discovery rate corrected P (PFDR) = 0.004 and β = 0.06, PFDR = < 0.001, respectively]. In contrast, sphingomyelins with very long (20- and 22-carbon) saturated fatty acids tended to have an inverse association with levels of circulating NfL. In secondary analyses, we found an interaction between ceramide d18:1/20:0 and sex (P for interaction = <0.001), such that ceramide d18:1/20:0 associated with higher odds for infarcts in women [OR = 1.26 (95%CI: 1.07, 1.49), PFDR = 0.03]. We did not observe any associations with GFAP blood levels, white matter grade, ventricular grade, mean bilateral hippocampal volume, or total brain volume. Conclusion Overall, our comprehensive investigation supports the evidence that ceramides and sphingomyelins are associated with increased aging brain pathology and that the direction of association depends on the fatty acid attached to the sphingosine backbone.
Collapse
Affiliation(s)
- Kristine F. Moseholm
- Department of Public Health, Section of Epidemiology, University of Copenhagen, Copenhagen, Denmark
| | - Jens W. Horn
- Department of Internal Medicine, Levanger Hospital, Health Trust Nord-Trøndelag, Levanger, Norway
| | - Annette L. Fitzpatrick
- Departments of Family Medicine and Epidemiology, School of Public Health, University of Washington, Seattle, WA, United States
| | - Luc Djoussé
- Division of Aging, Department of Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA, United States
- Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, MA, United States
| | - W. T. Longstreth
- Departments of Family Medicine and Epidemiology, School of Public Health, University of Washington, Seattle, WA, United States
- Department of Neurology, School of Medicine, University of Washington, Seattle, WA, United States
| | - Oscar L. Lopez
- Department of Neurology, School of Medicine, University of Pittsburgh, Pittsburgh, PA, United States
| | - Andrew N. Hoofnagle
- Department of Laboratory Medicine and Pathology, School of Medicine, University of Washington, Seattle, WA, United States
| | - Majken K. Jensen
- Department of Public Health, Section of Epidemiology, University of Copenhagen, Copenhagen, Denmark
- Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, MA, United States
| | - Rozenn N. Lemaitre
- Cardiovascular Health Research Unit, Department of Medicine, University of Washington, Seattle, WA, United States
| | - Kenneth J. Mukamal
- Department of Medicine, Beth Israel Deaconess Medical Center, Boston, MA, United States
| |
Collapse
|
21
|
Ide T, Izawa K, Diono W, Kamei A, Ando T, Kaitani A, Maehara A, Yoshikawa A, Yamamoto R, Uchida S, Wang H, Kojima M, Maeda K, Nakano N, Nakamura M, Shimizu T, Ogawa H, Okumura K, Matsumoto F, Ikeda K, Goto M, Kitaura J. Intranasal administration of ceramide liposome suppresses allergic rhinitis by targeting CD300f in murine models. Sci Rep 2024; 14:8398. [PMID: 38600251 PMCID: PMC11006841 DOI: 10.1038/s41598-024-58923-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Accepted: 04/04/2024] [Indexed: 04/12/2024] Open
Abstract
Allergic rhinitis (AR) is caused by type I hypersensitivity reaction in the nasal tissues. The interaction between CD300f and its ligand ceramide suppresses immunoglobulin E (IgE)-mediated mast cell activation. However, whether CD300f inhibits the development of allergic rhinitis (AR) remains elusive. We aimed to investigate the roles of CD300f in the development of AR and the effectiveness of intranasal administration of ceramide liposomes on AR in murine models. We used ragweed pollen-induced AR models in mice. Notably, CD300f deficiency did not significantly influence the ragweed-specific IgE production, but increased the frequency of mast cell-dependent sneezing as well as the numbers of degranulated mast cells and eosinophils in the nasal tissues in our models. Similar results were also obtained for MCPT5-exprssing mast cell-specific loss of CD300f. Importantly, intranasal administration of ceramide liposomes reduced the frequency of sneezing as well as the numbers of degranulated mast cells and eosinophils in the nasal tissues in AR models. Thus, CD300f-ceramide interaction, predominantly in mast cells, alleviates the symptoms and progression of AR. Therefore, intranasal administration of ceramide liposomes may be a promising therapeutic approach against AR by targeting CD300f.
Collapse
Affiliation(s)
- Takuma Ide
- Atopy (Allergy) Research Center, Juntendo University Graduate School of Medicine, 2-1-1 Hongo, Bunkyo-Ku, Tokyo, 113-8421, Japan
- Department of Otorhinolaryngology, Juntendo University Graduate School of Medicine, 2-1-1 Hongo, Bunkyo-Ku, Tokyo, 113-8421, Japan
| | - Kumi Izawa
- Atopy (Allergy) Research Center, Juntendo University Graduate School of Medicine, 2-1-1 Hongo, Bunkyo-Ku, Tokyo, 113-8421, Japan.
| | - Wahyu Diono
- Department of Materials Process Engineering, Nagoya University, Furo-Cho, Chikusa-Ku, Nagoya, 464-8603, Japan
| | - Anna Kamei
- Atopy (Allergy) Research Center, Juntendo University Graduate School of Medicine, 2-1-1 Hongo, Bunkyo-Ku, Tokyo, 113-8421, Japan
- Department of Science of Allergy and Inflammation, Juntendo University Graduate School of Medicine, 2-1-1 Hongo, Bunkyo-Ku, Tokyo, 113-8421, Japan
| | - Tomoaki Ando
- Atopy (Allergy) Research Center, Juntendo University Graduate School of Medicine, 2-1-1 Hongo, Bunkyo-Ku, Tokyo, 113-8421, Japan
| | - Ayako Kaitani
- Atopy (Allergy) Research Center, Juntendo University Graduate School of Medicine, 2-1-1 Hongo, Bunkyo-Ku, Tokyo, 113-8421, Japan
| | - Akie Maehara
- Atopy (Allergy) Research Center, Juntendo University Graduate School of Medicine, 2-1-1 Hongo, Bunkyo-Ku, Tokyo, 113-8421, Japan
| | - Akihisa Yoshikawa
- Atopy (Allergy) Research Center, Juntendo University Graduate School of Medicine, 2-1-1 Hongo, Bunkyo-Ku, Tokyo, 113-8421, Japan
- Department of Otorhinolaryngology, Juntendo University Graduate School of Medicine, 2-1-1 Hongo, Bunkyo-Ku, Tokyo, 113-8421, Japan
| | - Risa Yamamoto
- Atopy (Allergy) Research Center, Juntendo University Graduate School of Medicine, 2-1-1 Hongo, Bunkyo-Ku, Tokyo, 113-8421, Japan
| | - Shino Uchida
- Atopy (Allergy) Research Center, Juntendo University Graduate School of Medicine, 2-1-1 Hongo, Bunkyo-Ku, Tokyo, 113-8421, Japan
- Department of Gastroenterology Immunology, Juntendo University Graduate School of Medicine, 2-1-1 Hongo, Bunkyo-Ku, Tokyo, 113-8421, Japan
| | - Hexing Wang
- Atopy (Allergy) Research Center, Juntendo University Graduate School of Medicine, 2-1-1 Hongo, Bunkyo-Ku, Tokyo, 113-8421, Japan
- Department of Science of Allergy and Inflammation, Juntendo University Graduate School of Medicine, 2-1-1 Hongo, Bunkyo-Ku, Tokyo, 113-8421, Japan
| | - Mayuki Kojima
- Atopy (Allergy) Research Center, Juntendo University Graduate School of Medicine, 2-1-1 Hongo, Bunkyo-Ku, Tokyo, 113-8421, Japan
- Department of Pediatrics and Adolescent Medicine, Juntendo University Graduate School of Medicine, 2-1-1 Hongo, Bunkyo-Ku, Tokyo, 113-8421, Japan
| | - Keiko Maeda
- Atopy (Allergy) Research Center, Juntendo University Graduate School of Medicine, 2-1-1 Hongo, Bunkyo-Ku, Tokyo, 113-8421, Japan
- Department of Immunological Diagnosis, Juntendo University Graduate School of Medicine, 2-1-1 Hongo, Bunkyo-Ku, Tokyo, 113-8421, Japan
| | - Nobuhiro Nakano
- Atopy (Allergy) Research Center, Juntendo University Graduate School of Medicine, 2-1-1 Hongo, Bunkyo-Ku, Tokyo, 113-8421, Japan
| | - Masahiro Nakamura
- Department of Otorhinolaryngology, Juntendo University Graduate School of Medicine, 2-1-1 Hongo, Bunkyo-Ku, Tokyo, 113-8421, Japan
| | - Toshiaki Shimizu
- Atopy (Allergy) Research Center, Juntendo University Graduate School of Medicine, 2-1-1 Hongo, Bunkyo-Ku, Tokyo, 113-8421, Japan
- Department of Pediatrics and Adolescent Medicine, Juntendo University Graduate School of Medicine, 2-1-1 Hongo, Bunkyo-Ku, Tokyo, 113-8421, Japan
| | - Hideoki Ogawa
- Atopy (Allergy) Research Center, Juntendo University Graduate School of Medicine, 2-1-1 Hongo, Bunkyo-Ku, Tokyo, 113-8421, Japan
| | - Ko Okumura
- Atopy (Allergy) Research Center, Juntendo University Graduate School of Medicine, 2-1-1 Hongo, Bunkyo-Ku, Tokyo, 113-8421, Japan
| | - Fumihiko Matsumoto
- Department of Otorhinolaryngology, Juntendo University Graduate School of Medicine, 2-1-1 Hongo, Bunkyo-Ku, Tokyo, 113-8421, Japan
| | - Katsuhisa Ikeda
- Department of Otorhinolaryngology, Juntendo University Graduate School of Medicine, 2-1-1 Hongo, Bunkyo-Ku, Tokyo, 113-8421, Japan
| | - Motonobu Goto
- Department of Materials Process Engineering, Nagoya University, Furo-Cho, Chikusa-Ku, Nagoya, 464-8603, Japan
| | - Jiro Kitaura
- Atopy (Allergy) Research Center, Juntendo University Graduate School of Medicine, 2-1-1 Hongo, Bunkyo-Ku, Tokyo, 113-8421, Japan.
- Department of Science of Allergy and Inflammation, Juntendo University Graduate School of Medicine, 2-1-1 Hongo, Bunkyo-Ku, Tokyo, 113-8421, Japan.
| |
Collapse
|
22
|
Rivero P, Ivanova V, Barril X, Casampere M, Casas J, Fabriàs G, Díaz Y, Matheu MI. Targeting dihydroceramide desaturase 1 (Des1): Syntheses of ceramide analogues with a rigid scaffold, inhibitory assays, and AlphaFold2-assisted structural insights reveal cyclopropenone PR280 as a potent inhibitor. Bioorg Chem 2024; 145:107233. [PMID: 38422591 DOI: 10.1016/j.bioorg.2024.107233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 01/04/2024] [Accepted: 02/19/2024] [Indexed: 03/02/2024]
Abstract
Dihydroceramide desaturase 1 (Des1) catalyzes the formation of a CC double bond in dihydroceramide to furnish ceramide. Inhibition of Des1 is related to cell cycle arrest and programmed cell death. The lack of the Des1 crystalline structure, as well as that of a close homologue, hampers the detailed understanding of its inhibition mechanism and difficults the design of new inhibitors, thus making Des1 a strategic target. Based on previous structure-activity studies, different ceramides containing rigid scaffolds were designed. The synthesis and evaluation of these compounds as Des1 inhibitors allowed the identification of PR280 as a better Des 1 inhibitor in vitro (IC50 = 700 nM) than GT11 and XM462, the current reference inhibitors. This cyclopropenone ceramide was obtained in a 6-step synthesis with a 24 % overall yield. The highly confident 3D structure of Des1, recently predicted by AlphaFold2, served as the basis for conducting docking studies of known Des1 inhibitors and the ceramide derivatives synthesized by us in this study. For this purpose, a complete holoprotein structure was previously constructed. This study has allowed a better knowledge of key ligand-enzyme interactions for Des1 inhibitory activity. Furthermore, it sheds some light on the inhibition mechanism of GT11.
Collapse
Affiliation(s)
- Pablo Rivero
- Universitat Rovira i Virgili, Departament de Química Analítica i Química Orgànica, Faculty of Chemistry, C/Marcel.lí Domingo 1, Tarragona 43007, Spain
| | - Varbina Ivanova
- Universitat de Barcelona, Department of Physical Chemistry, Faculty of Pharmacy, Av. Joan XXIII s/n, Barcelona 08028, Spain
| | - Xavier Barril
- Universitat de Barcelona, Department of Physical Chemistry, Faculty of Pharmacy, Av. Joan XXIII s/n, Barcelona 08028, Spain
| | - Mireia Casampere
- Institute for Advanced Chemistry of Catalonia (IQAC-CSIC), Department of Biological Chemistry, C/Jordi Girona 18-26, Barcelona 08034, Spain
| | - Josefina Casas
- Institute for Advanced Chemistry of Catalonia (IQAC-CSIC), Department of Biological Chemistry, C/Jordi Girona 18-26, Barcelona 08034, Spain
| | - Gemma Fabriàs
- Institute for Advanced Chemistry of Catalonia (IQAC-CSIC), Department of Biological Chemistry, C/Jordi Girona 18-26, Barcelona 08034, Spain
| | - Yolanda Díaz
- Universitat Rovira i Virgili, Departament de Química Analítica i Química Orgànica, Faculty of Chemistry, C/Marcel.lí Domingo 1, Tarragona 43007, Spain.
| | - M Isabel Matheu
- Universitat Rovira i Virgili, Departament de Química Analítica i Química Orgànica, Faculty of Chemistry, C/Marcel.lí Domingo 1, Tarragona 43007, Spain.
| |
Collapse
|
23
|
Yan J, Yu X, Li Q, Miao M, Shao Y. Machine learning to establish three sphingolipid metabolism genes signature to characterize the immune landscape and prognosis of patients with gastric cancer. BMC Genomics 2024; 25:319. [PMID: 38549047 PMCID: PMC10976768 DOI: 10.1186/s12864-024-10243-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Accepted: 03/19/2024] [Indexed: 04/01/2024] Open
Abstract
BACKGROUND Gastric cancer (GC) is one of the most common malignant tumors worldwide. Nevertheless, GC still lacks effective diagnosed and monitoring method and treating targets. This study used multi omics data to explore novel biomarkers and immune therapy targets around sphingolipids metabolism genes (SMGs). METHOD LASSO regression analysis was performed to filter prognostic and differently expression SMGs among TCGA and GTEx data. Risk score model and Kaplan-Meier were built to validate the prognostic SMG signature and prognostic nomogram was further constructed. The biological functions of SMG signature were annotated via multi omics. The heterogeneity landscape of immune microenvironment in GC was explored. qRT-PCR was performed to validate the expression level of SMG signature. Competing endogenous RNA regulatory network was established to explore the molecular regulatory mechanisms. RESULT 3-SMGs prognostic signature (GLA, LAMC1, TRAF2) and related nomogram were constructed combing several clinical characterizes. The expression difference and diagnostic value were validated by PCR data. Multi omics data reveals 3-SMG signature affects cell cycle and death via several signaling pathways to regulate GC progression. Overexpression of 3-SMG signature influenced various immune cell infiltration in GC microenvironment. RBP-SMGs-miRNA-mRNAs/lncRNAs regulatory network was built to annotate regulatory system. CONCLUSION Upregulated 3-SMGs signature are excellent predictive diagnosed and prognostic biomarkers, providing a new perspective for future GC immunotherapy.
Collapse
Affiliation(s)
- Jianing Yan
- Department of Gastroenterology, The First Affiliated Hospital of Ningbo University, 315020, Ningbo, China
| | - Xuan Yu
- Department of Gastroenterology, The First Affiliated Hospital of Ningbo University, 315020, Ningbo, China
| | - Qier Li
- Department of Gastroenterology, The First Affiliated Hospital of Ningbo University, 315020, Ningbo, China
| | - Min Miao
- Department of Gastroenterology, The First Affiliated Hospital of Ningbo University, 315020, Ningbo, China.
| | - Yongfu Shao
- Department of Gastroenterology, The First Affiliated Hospital of Ningbo University, 315020, Ningbo, China.
| |
Collapse
|
24
|
Varela YR, Iriondo MN, Goñi FM, Alonso A, Montes LR. Ceramide regulation of autophagy: A biophysical approach. Biochim Biophys Acta Mol Cell Biol Lipids 2024; 1869:159444. [PMID: 38056762 DOI: 10.1016/j.bbalip.2023.159444] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 11/29/2023] [Accepted: 11/30/2023] [Indexed: 12/08/2023]
Abstract
Specific membrane lipids play unique roles in (macro)autophagy. Those include phosphatidylethanolamine, to which LC3/GABARAP autophagy proteins become covalently bound in the process, or cardiolipin, an important effector in mitochondrial autophagy (or mitophagy). Ceramide (Cer), or N-acyl sphingosine, is one of the simplest sphingolipids, known as a stress signal in the apoptotic pathway. Moreover, Cer is increasingly being recognized as an autophagy activator, although its mechanism of action is unclear. In the present review, the proposed Cer roles in autophagy are summarized, together with some biophysical properties of Cer in membranes. Possible pathways for Cer activation of autophagy are discussed, including specific protein binding of the lipid, and Cer-dependent perturbation of bilayer properties. Cer generation of lateral inhomogeneities (domain formation) is given special attention. Recent biophysical results, including fluorescence and atomic force microscopy data, show Cer-promoted enhanced binding of LC3/GABARAP to lipid bilayers. These observations could be interpreted in terms of the putative formation of Cer-rich nanodomains.
Collapse
Affiliation(s)
- Yaiza R Varela
- Instituto Biofisika (UPV/EHU, CSIC) and Departamento de Bioquímica, Universidad del País Vasco, 48940 Leioa, Spain
| | - Marina N Iriondo
- Instituto Biofisika (UPV/EHU, CSIC) and Departamento de Bioquímica, Universidad del País Vasco, 48940 Leioa, Spain
| | - Félix M Goñi
- Instituto Biofisika (UPV/EHU, CSIC) and Departamento de Bioquímica, Universidad del País Vasco, 48940 Leioa, Spain
| | - Alicia Alonso
- Instituto Biofisika (UPV/EHU, CSIC) and Departamento de Bioquímica, Universidad del País Vasco, 48940 Leioa, Spain.
| | - L Ruth Montes
- Instituto Biofisika (UPV/EHU, CSIC) and Departamento de Bioquímica, Universidad del País Vasco, 48940 Leioa, Spain
| |
Collapse
|
25
|
Rezaul Islam M, Rauf A, Akash S, Kumer A, Hussain MS, Akter S, Gupta JK, Thameemul Ansari L, Mahfoj Islam Raj MM, Bin Emran T, Aljohani AS, Abdulmonem WA, Thiruvengadam R, Thiruvengadam M. Recent perspective on the potential role of phytocompounds in the prevention of gastric cancer. Process Biochem 2023; 135:83-101. [DOI: 10.1016/j.procbio.2023.11.006] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 09/05/2024]
|
26
|
Mesén-Porras S, Rojas-Céspedes A, Molina-Mora JA, Vega-Baudrit J, Siles F, Quiros S, Mora-Rodríguez R. Sphingolipid-Based Synergistic Interactions to Enhance Chemosensitivity in Lung Cancer Cells. Cells 2023; 12:2588. [PMID: 37998323 PMCID: PMC10670127 DOI: 10.3390/cells12222588] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 10/13/2023] [Accepted: 10/25/2023] [Indexed: 11/25/2023] Open
Abstract
Tumor heterogeneity leads to drug resistance in cancer treatment with the crucial role of sphingolipids in cell fate and stress signaling. We analyzed sphingolipid metabolism and autophagic flux to study chemotherapeutic interactions on the A549 lung cancer model. Loaded cells with fluorescent sphingomyelin analog (BODIPY) and mCherry-EGFP-LC3B were used to track autophagic flux and assess cytotoxicity when cells are exposed to chemotherapy (epirubicin, cisplatin, and paclitaxel) together with sphingolipid pathway inhibitors and autophagy modulators. Our cell model approach employed fluorescent sphingolipid biosensors and a Gaussian Mixture Model of cell heterogeneity profiles to map the influence of chemotherapy on the sphingolipid pathway and infer potential synergistic interactions. Results showed significant synergy, especially when combining epirubicin with autophagy inducers (rapamycin and Torin), reducing cell viability. Cisplatin also synergized with a ceramidase inhibitor. However, paclitaxel often led to antagonistic effects. Our mapping model suggests that combining chemotherapies with autophagy inducers increases vesicle formation, possibly linked to ceramide accumulation, triggering cell death. However, the in silico model proposed ceramide accumulation in autophagosomes, and kinetic analysis provided evidence of sphingolipid colocalization in autophagosomes. Further research is needed to identify specific sphingolipids accumulating in autophagosomes. These findings offer insights into potential strategies for overcoming chemotherapy resistance by targeting the sphingolipid pathway.
Collapse
Affiliation(s)
- Susana Mesén-Porras
- Research Center on Tropical Diseases (CIET), Faculty of Microbiology, University of Costa Rica, San José 11501-2060, Costa Rica; (S.M.-P.); (A.R.-C.); (J.A.M.-M.); (S.Q.)
- Research Center on Surgery and Cancer (CICICA), Campus Rodrigo Facio, University of Costa Rica, San José 11501-2060, Costa Rica;
- Master Program in Microbiology, University of Costa Rica, San José 11501-2060, Costa Rica
- National Laboratory of Nanotechnology (LANOTEC), National Center of High Technology (CeNAT), Pavas, San José 1174-1200, Costa Rica;
| | - Andrea Rojas-Céspedes
- Research Center on Tropical Diseases (CIET), Faculty of Microbiology, University of Costa Rica, San José 11501-2060, Costa Rica; (S.M.-P.); (A.R.-C.); (J.A.M.-M.); (S.Q.)
| | - José Arturo Molina-Mora
- Research Center on Tropical Diseases (CIET), Faculty of Microbiology, University of Costa Rica, San José 11501-2060, Costa Rica; (S.M.-P.); (A.R.-C.); (J.A.M.-M.); (S.Q.)
| | - José Vega-Baudrit
- National Laboratory of Nanotechnology (LANOTEC), National Center of High Technology (CeNAT), Pavas, San José 1174-1200, Costa Rica;
| | - Francisco Siles
- Research Center on Surgery and Cancer (CICICA), Campus Rodrigo Facio, University of Costa Rica, San José 11501-2060, Costa Rica;
- Pattern Recognition and Intelligent Systems Laboratory (PRIS-Lab), Department and Postgraduate Studies in Electrical Engineering, University of Costa Rica, San José 11501-2060, Costa Rica
| | - Steve Quiros
- Research Center on Tropical Diseases (CIET), Faculty of Microbiology, University of Costa Rica, San José 11501-2060, Costa Rica; (S.M.-P.); (A.R.-C.); (J.A.M.-M.); (S.Q.)
- Research Center on Surgery and Cancer (CICICA), Campus Rodrigo Facio, University of Costa Rica, San José 11501-2060, Costa Rica;
| | - Rodrigo Mora-Rodríguez
- Research Center on Tropical Diseases (CIET), Faculty of Microbiology, University of Costa Rica, San José 11501-2060, Costa Rica; (S.M.-P.); (A.R.-C.); (J.A.M.-M.); (S.Q.)
- Research Center on Surgery and Cancer (CICICA), Campus Rodrigo Facio, University of Costa Rica, San José 11501-2060, Costa Rica;
- Master Program in Microbiology, University of Costa Rica, San José 11501-2060, Costa Rica
| |
Collapse
|
27
|
Xiao S, Peng K, Li C, Long Y, Yu Q. The role of sphingosine-1-phosphate in autophagy and related disorders. Cell Death Discov 2023; 9:380. [PMID: 37852968 PMCID: PMC10584985 DOI: 10.1038/s41420-023-01681-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2023] [Revised: 10/03/2023] [Accepted: 10/12/2023] [Indexed: 10/20/2023] Open
Abstract
S1P, also referred to as sphingosine-1-phosphate, is a lipid molecule with bioactive properties involved in numerous cellular processes such as cell growth, movement, programmed cell death, self-degradation, cell specialization, aging, and immune system reactions. Autophagy is a meticulously controlled mechanism in which cells repurpose their elements to maintain cellular balance. There are five stages in autophagy: initiation, nucleation, elongation and maturation, fusion, and degradation. New research has provided insight into the complex connection between S1P and autophagy, uncovering their interaction in both normal and abnormal circumstances. Gaining knowledge about the regulatory mechanism of S1P signaling on autophagy can offer a valuable understanding of its function in well-being and illness, potentially leading to innovative therapeutic concepts for diverse ailments. Hence, this review analyzes the essential stages in mammalian autophagy, with a specific emphasis on recent research exploring the control of each stage by S1P. Additionally, it sheds light on the roles of S1P-induced autophagy in various disorders.
Collapse
Affiliation(s)
- Siqi Xiao
- Department of Gastroenterology & Hepatology, Tongji Hospital, Tongji Medical College, Huazhong University of Science & Technology, Jiefang Avenue 1095#, Wuhan City, Hubei Province, 430030, P.R. China
| | - Kaixin Peng
- Department of Gastroenterology & Hepatology, Tongji Hospital, Tongji Medical College, Huazhong University of Science & Technology, Jiefang Avenue 1095#, Wuhan City, Hubei Province, 430030, P.R. China
| | - Congxin Li
- Department of Gastroenterology & Hepatology, Tongji Hospital, Tongji Medical College, Huazhong University of Science & Technology, Jiefang Avenue 1095#, Wuhan City, Hubei Province, 430030, P.R. China
| | - Yuanyuan Long
- Department of Gastroenterology & Hepatology, Tongji Hospital, Tongji Medical College, Huazhong University of Science & Technology, Jiefang Avenue 1095#, Wuhan City, Hubei Province, 430030, P.R. China
| | - Qin Yu
- Department of Gastroenterology & Hepatology, Tongji Hospital, Tongji Medical College, Huazhong University of Science & Technology, Jiefang Avenue 1095#, Wuhan City, Hubei Province, 430030, P.R. China.
| |
Collapse
|
28
|
Hameed A, Anwar MJ, Perveen S, Amir M, Naeem I, Imran M, Hussain M, Ahmad I, Afzal MI, Inayat S, Awuchi CG. Functional, industrial and therapeutic applications of dairy waste materials. INTERNATIONAL JOURNAL OF FOOD PROPERTIES 2023; 26:1470-1496. [DOI: 10.1080/10942912.2023.2213854] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 05/08/2023] [Accepted: 05/09/2023] [Indexed: 05/18/2024]
Affiliation(s)
- Aneela Hameed
- Faculty of Food Science and Nutrition, Bahauddin Zakariya University, Multan, Punjab, Pakistan
| | - Muhammad Junaid Anwar
- Faculty of Food Science and Nutrition, Bahauddin Zakariya University, Multan, Punjab, Pakistan
| | - Saima Perveen
- Faculty of Food Science and Nutrition, Bahauddin Zakariya University, Multan, Punjab, Pakistan
| | - Muhammad Amir
- Faculty of Food Science and Nutrition, Bahauddin Zakariya University, Multan, Punjab, Pakistan
| | - Iqra Naeem
- Faculty of Food Science and Nutrition, Bahauddin Zakariya University, Multan, Punjab, Pakistan
| | - Muhammad Imran
- Department of food science and technology, University of Narowal-Pakistan, Narowal, Pakistan
| | - Muzzamal Hussain
- Department of Food Sciences, Government College University Faisalabad, Faisalabad, Pakistan
| | - Ishtiaque Ahmad
- Department of Dairy Technology, University of Veterinary & Animal Sciences, Lahore, Pakistan
| | - Muhamad Inam Afzal
- Department of Biosciences, COMSATS University Islamabad, Islamabad, Pakistan
| | - Saima Inayat
- Department of Dairy Technology, University of Veterinary & Animal Sciences, Lahore, Pakistan
| | | |
Collapse
|
29
|
Afrin F, Mateen S, Oman J, Lai JCK, Barrott JJ, Pashikanti S. Natural Products and Small Molecules Targeting Cellular Ceramide Metabolism to Enhance Apoptosis in Cancer Cells. Cancers (Basel) 2023; 15:4645. [PMID: 37760612 PMCID: PMC10527029 DOI: 10.3390/cancers15184645] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2023] [Revised: 09/08/2023] [Accepted: 09/11/2023] [Indexed: 09/29/2023] Open
Abstract
Molecular targeting strategies have been used for years in order to control cancer progression and are often based on targeting various enzymes involved in metabolic pathways. Keeping this in mind, it is essential to determine the role of each enzyme in a particular metabolic pathway. In this review, we provide in-depth information on various enzymes such as ceramidase, sphingosine kinase, sphingomyelin synthase, dihydroceramide desaturase, and ceramide synthase which are associated with various types of cancers. We also discuss the physicochemical properties of well-studied inhibitors with natural product origins and their related structures in terms of these enzymes. Targeting ceramide metabolism exhibited promising mono- and combination therapies at preclinical stages in preventing cancer progression and cemented the significance of sphingolipid metabolism in cancer treatments. Targeting ceramide-metabolizing enzymes will help medicinal chemists design potent and selective small molecules for treating cancer progression at various levels.
Collapse
Affiliation(s)
- Farjana Afrin
- Biomedical and Pharmaceutical Sciences, Kasiska Division of Health Sciences, College of Pharmacy, Idaho State University, Pocatello, ID 83209, USA; (F.A.); (S.M.); (J.O.); (J.C.K.L.)
| | - Sameena Mateen
- Biomedical and Pharmaceutical Sciences, Kasiska Division of Health Sciences, College of Pharmacy, Idaho State University, Pocatello, ID 83209, USA; (F.A.); (S.M.); (J.O.); (J.C.K.L.)
| | - Jordan Oman
- Biomedical and Pharmaceutical Sciences, Kasiska Division of Health Sciences, College of Pharmacy, Idaho State University, Pocatello, ID 83209, USA; (F.A.); (S.M.); (J.O.); (J.C.K.L.)
| | - James C. K. Lai
- Biomedical and Pharmaceutical Sciences, Kasiska Division of Health Sciences, College of Pharmacy, Idaho State University, Pocatello, ID 83209, USA; (F.A.); (S.M.); (J.O.); (J.C.K.L.)
| | - Jared J. Barrott
- Cell Biology and Physiology, College of Life Sciences, Brigham Young University, Provo, UT 84602, USA;
| | - Srinath Pashikanti
- Biomedical and Pharmaceutical Sciences, Kasiska Division of Health Sciences, College of Pharmacy, Idaho State University, Pocatello, ID 83209, USA; (F.A.); (S.M.); (J.O.); (J.C.K.L.)
| |
Collapse
|
30
|
Pokrovsky VS, Ivanova-Radkevich VI, Kuznetsova OM. Sphingolipid Metabolism in Tumor Cells. BIOCHEMISTRY. BIOKHIMIIA 2023; 88:847-866. [PMID: 37751859 DOI: 10.1134/s0006297923070015] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2023] [Revised: 05/16/2023] [Accepted: 05/17/2023] [Indexed: 09/28/2023]
Abstract
Sphingolipids are a diverse family of complex lipids typically composed of a sphingoid base bound to a fatty acid via amide bond. The metabolism of sphingolipids has long remained out of focus of biochemical studies. Recently, it has been attracting an increasing interest of researchers because of different and often multidirectional effects demonstrated by sphingolipids with a similar chemical structure. Sphingosine, ceramides (N-acylsphingosines), and their phosphorylated derivatives (sphingosine-1-phosphate and ceramide-1-phosphates) act as signaling molecules. Ceramides induce apoptosis and regulate stability of cell membranes and cell response to stress. Ceramides and sphingoid bases slow down anabolic and accelerate catabolic reactions, thus suppressing cell proliferation. On the contrary, their phosphorylated derivatives (ceramide-1-phosphate and sphingosine-1-phosphate) stimulate cell proliferation. Involvement of sphingolipids in the regulation of apoptosis and cell proliferation makes them critically important in tumor progression. Sphingolipid metabolism enzymes and sphingolipid receptors can be potential targets for antitumor therapy. This review describes the main pathways of sphingolipid metabolism in human cells, with special emphasis on the properties of this metabolism in tumor cells.
Collapse
Affiliation(s)
- Vadim S Pokrovsky
- People's Friendship University of Russia (RUDN University), Moscow, 117198, Russia.
| | | | - Olga M Kuznetsova
- People's Friendship University of Russia (RUDN University), Moscow, 117198, Russia
| |
Collapse
|
31
|
Tzou FY, Hornemann T, Yeh JY, Huang SY. The pathophysiological role of dihydroceramide desaturase in the nervous system. Prog Lipid Res 2023; 91:101236. [PMID: 37187315 DOI: 10.1016/j.plipres.2023.101236] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2022] [Revised: 04/18/2023] [Accepted: 05/12/2023] [Indexed: 05/17/2023]
Abstract
Dihydroceramide desaturase 1 (DEGS1) converts dihydroceramide (dhCer) to ceramide (Cer) by inserting a C4-C5 trans (∆4E) double bond into the sphingoid backbone. Low DEGS activity causes accumulation of dhCer and other dihydrosphingolipid species. Although dhCer and Cer are structurally very similar, their imbalances can have major consequences both in vitro and in vivo. Mutations in the human DEGS1 gene are known to cause severe neurological defects, such as hypomyelinating leukodystrophy. Likewise, inhibition of DEGS1 activity in fly and zebrafish models causes dhCer accumulation and subsequent neuronal dysfunction, suggesting that DEGS1 activity plays a conserved and critical role in the nervous system. Dihydrosphingolipids and their desaturated counterparts are known to control various essential processes, including autophagy, exosome biogenesis, ER stress, cell proliferation, and cell death. Furthermore, model membranes with either dihydrosphingolipids or sphingolipids exhibit different biophysical properties, including membrane permeability and packing, thermal stability, and lipid diffusion. However, the links between molecular properties, in vivo functional data, and clinical manifestations that underlie impaired DEGS1 function remain largely unresolved. In this review, we summarize the known biological and pathophysiological roles of dhCer and its derivative dihydrosphingolipid species in the nervous system, and we highlight several possible disease mechanisms that warrant further investigation.
Collapse
Affiliation(s)
- Fei-Yang Tzou
- Graduate Institute of Physiology, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Thorsten Hornemann
- Institute for Clinical Chemistry, University Hospital and University Zurich, 8091 Zürich, Switzerland
| | - Jui-Yu Yeh
- Graduate Institute of Physiology, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Shu-Yi Huang
- Department of Medical Research, National Taiwan University Hospital, Taipei, Taiwan.
| |
Collapse
|
32
|
Liu S, Chen M, Wang Y, Lei Y, Huang T, Zhang Y, Lam SM, Li H, Qi S, Geng J, Lu K. The ER calcium channel Csg2 integrates sphingolipid metabolism with autophagy. Nat Commun 2023; 14:3725. [PMID: 37349354 PMCID: PMC10287731 DOI: 10.1038/s41467-023-39482-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Accepted: 06/15/2023] [Indexed: 06/24/2023] Open
Abstract
Sphingolipids are ubiquitous components of membranes and function as bioactive lipid signaling molecules. Here, through genetic screening and lipidomics analyses, we find that the endoplasmic reticulum (ER) calcium channel Csg2 integrates sphingolipid metabolism with autophagy by regulating ER calcium homeostasis in the yeast Saccharomyces cerevisiae. Csg2 functions as a calcium release channel and maintains calcium homeostasis in the ER, which enables normal functioning of the essential sphingolipid synthase Aur1. Under starvation conditions, deletion of Csg2 causes increases in calcium levels in the ER and then disturbs Aur1 stability, leading to accumulation of the bioactive sphingolipid phytosphingosine, which specifically and completely blocks autophagy and induces loss of starvation resistance in cells. Our findings indicate that calcium homeostasis in the ER mediated by the channel Csg2 translates sphingolipid metabolism into autophagy regulation, further supporting the role of the ER as a signaling hub for calcium homeostasis, sphingolipid metabolism and autophagy.
Collapse
Affiliation(s)
- Shiyan Liu
- Department of Neurosurgery, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Mutian Chen
- Department of Laboratory Medicine, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
- Department of Laboratory Medicine, State Key Laboratory of Biotherapy, Med-X Center for Manufacturing, West China Hospital, Sichuan University, Chengdu, 610041, China
- Tianfu Jincheng Laboratory, City of Future Medicine, Chengdu, 641400, China
| | - Yichang Wang
- Department of Urology, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Yuqing Lei
- Department of Pathology, West China Second University Hospital, Sichuan University, Chengdu, 610041, China
| | - Ting Huang
- Department of Neurosurgery, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Yabin Zhang
- Department of Neurosurgery, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Sin Man Lam
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
- LipidALL Technologies Company Limited, Changzhou, 213022, China
| | - Huihui Li
- Department of Pathology, West China Second University Hospital, Sichuan University, Chengdu, 610041, China.
| | - Shiqian Qi
- Department of Urology, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China.
| | - Jia Geng
- Department of Laboratory Medicine, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China.
- Department of Laboratory Medicine, State Key Laboratory of Biotherapy, Med-X Center for Manufacturing, West China Hospital, Sichuan University, Chengdu, 610041, China.
- Tianfu Jincheng Laboratory, City of Future Medicine, Chengdu, 641400, China.
| | - Kefeng Lu
- Department of Neurosurgery, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China.
| |
Collapse
|
33
|
Bertran L, Capellades J, Abelló S, Durán-Bertran J, Aguilar C, Martinez S, Sabench F, Correig X, Yanes O, Auguet T, Richart C. LC/MS-Based Untargeted Metabolomics Study in Women with Nonalcoholic Steatohepatitis Associated with Morbid Obesity. Int J Mol Sci 2023; 24:9789. [PMID: 37372937 DOI: 10.3390/ijms24129789] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 06/01/2023] [Accepted: 06/03/2023] [Indexed: 06/29/2023] Open
Abstract
This study investigated the importance of a metabolomic analysis in a complex disease such as nonalcoholic steatohepatitis (NASH) associated with obesity. Using an untargeted metabolomics technique, we studied blood metabolites in 216 morbidly obese women with liver histological diagnosis. A total of 172 patients were diagnosed with nonalcoholic fatty liver disease (NAFLD), and 44 were diagnosed with normal liver (NL). Patients with NAFLD were classified into simple steatosis (n = 66) and NASH (n = 106) categories. A comparative analysis of metabolites levels between NASH and NL demonstrated significant differences in lipid metabolites and derivatives, mainly from the phospholipid group. In NASH, there were increased levels of several phosphatidylinositols and phosphatidylethanolamines, as well as isolated metabolites such as diacylglycerol 34:1, lyso-phosphatidylethanolamine 20:3 and sphingomyelin 38:1. By contrast, there were decreased levels of acylcarnitines, sphingomyelins and linoleic acid. These findings may facilitate identification studies of the main pathogenic metabolic pathways related to NASH and may also have a possible applicability in a panel of metabolites to be used as biomarkers in future algorithms of the disease diagnosis and its follow-up. Further confirmatory studies in groups with different ages and sexes are necessary.
Collapse
Affiliation(s)
- Laia Bertran
- Grup de Recerca GEMMAIR (AGAUR)-Medicina Aplicada (URV), Departament de Medicina i Cirurgia, Universitat Rovira i Virgili, Institut d'Investigació Sanitària Pere Virgili, 43005 Tarragona, Spain
| | - Jordi Capellades
- Department of Electronic Engineering, Universitat Rovira i Virgili, Institut d'Investigació Sanitària Pere Virgili, 43007 Tarragona, Spain
| | - Sonia Abelló
- Servei de Recursos Científics i Tècnics, Universitat Rovira i Virgili, 43007 Tarragona, Spain
| | - Joan Durán-Bertran
- Grup de Recerca GEMMAIR (AGAUR)-Medicina Aplicada (URV), Departament de Medicina i Cirurgia, Universitat Rovira i Virgili, Institut d'Investigació Sanitària Pere Virgili, 43005 Tarragona, Spain
| | - Carmen Aguilar
- Grup de Recerca GEMMAIR (AGAUR)-Medicina Aplicada (URV), Departament de Medicina i Cirurgia, Universitat Rovira i Virgili, Institut d'Investigació Sanitària Pere Virgili, 43005 Tarragona, Spain
| | - Salomé Martinez
- Grup de Recerca GEMMAIR (AGAUR)-Medicina Aplicada (URV), Departament de Medicina i Cirurgia, Universitat Rovira i Virgili, Institut d'Investigació Sanitària Pere Virgili, 43005 Tarragona, Spain
| | - Fàtima Sabench
- Grup de Recerca GEMMAIR (AGAUR)-Medicina Aplicada (URV), Departament de Medicina i Cirurgia, Universitat Rovira i Virgili, Institut d'Investigació Sanitària Pere Virgili, 43005 Tarragona, Spain
- Unitat de Cirurgia, Facultad de Medicina i Ciències de la Salut, Hospital Universitari Sant Joan de Reus, Universitat Rovira i Virgili, Institut d'Investigació Sanitària Pere Virgili, 43204 Reus, Spain
| | - Xavier Correig
- Department of Electronic Engineering, Universitat Rovira i Virgili, Institut d'Investigació Sanitària Pere Virgili, 43007 Tarragona, Spain
- CIBER de Diabetes y Enfermedades Metabólicas Asociadas, Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Oscar Yanes
- Department of Electronic Engineering, Universitat Rovira i Virgili, Institut d'Investigació Sanitària Pere Virgili, 43007 Tarragona, Spain
- CIBER de Diabetes y Enfermedades Metabólicas Asociadas, Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Teresa Auguet
- Grup de Recerca GEMMAIR (AGAUR)-Medicina Aplicada (URV), Departament de Medicina i Cirurgia, Universitat Rovira i Virgili, Institut d'Investigació Sanitària Pere Virgili, 43005 Tarragona, Spain
| | - Cristóbal Richart
- Grup de Recerca GEMMAIR (AGAUR)-Medicina Aplicada (URV), Departament de Medicina i Cirurgia, Universitat Rovira i Virgili, Institut d'Investigació Sanitària Pere Virgili, 43005 Tarragona, Spain
| |
Collapse
|
34
|
Bandet CL, Tan-Chen S, Ali-Berrada S, Campana M, Poirier M, Blachnio-Zabielska A, Pais-de-Barros JP, Rouch C, Ferré P, Foufelle F, Le Stunff H, Hajduch E. Ceramide analogue C2-cer induces a loss in insulin sensitivity in muscle cells through the salvage/recycling pathway. J Biol Chem 2023:104815. [PMID: 37178918 DOI: 10.1016/j.jbc.2023.104815] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 05/01/2023] [Accepted: 05/02/2023] [Indexed: 05/15/2023] Open
Abstract
Ceramides have been shown to play a major role in the onset of skeletal muscle insulin resistance and therefore in the prevalence of type 2 diabetes (T2D). However, many of the studies involved in the discovery of deleterious ceramide actions used a non-physiological cell-permeable short-chain ceramide analogue, the C2-ceramide (C2-cer). In the present study, we determined how C2-cer promotes insulin resistance in muscle cells. We demonstrate that C2-cer enters the salvage/recycling pathway and becomes de-acylated, yielding sphingosine, re-acylation of which depends on the availability of long chain fatty acids provided by the lipogenesis pathway in muscle cells. Importantly, we show these salvaged ceramides are actually responsible for the inhibition of insulin signaling induced by C2-cer. Interestingly, we also show that the exogenous and endogenous mono-unsaturated fatty acid oleate prevents C2-cer to be recycled into endogenous ceramide species in a diacylglycerol O-acyltransferase 1 (DGAT1)-dependent mechanism, which forces free fatty acid metabolism towards triacylglyceride production. Altogether, the study highlights for the first time that C2-cer induces a loss in insulin sensitivity through the salvage/recycling pathway in muscle cells. This study also validates C2-cer as a convenient tool to decipher mechanisms by which long-chain ceramides mediate insulin resistance in muscle cells and suggests that in addition to the de novo ceramide synthesis, recycling of ceramide could contribute to muscle insulin resistance observed in obesity and T2D.
Collapse
Affiliation(s)
- Cécile L Bandet
- Centre de Recherche des Cordeliers, INSERM, Sorbonne Université, F-75006 Paris, France; Institut Hospitalo-Universitaire ICAN, Paris, France
| | - Sophie Tan-Chen
- Centre de Recherche des Cordeliers, INSERM, Sorbonne Université, F-75006 Paris, France; Institut Hospitalo-Universitaire ICAN, Paris, France
| | - Sarah Ali-Berrada
- Centre de Recherche des Cordeliers, INSERM, Sorbonne Université, F-75006 Paris, France; Institut Hospitalo-Universitaire ICAN, Paris, France
| | - Mélanie Campana
- Université Paris-Saclay, CNRS UMR 9197, Institut des Neurosciences Paris-Saclay, CNRS UMR 9197, Saclay, France
| | - Maxime Poirier
- Centre de Recherche des Cordeliers, INSERM, Sorbonne Université, F-75006 Paris, France; Institut Hospitalo-Universitaire ICAN, Paris, France
| | | | - Jean-Paul Pais-de-Barros
- Lipidomics Core Facility, INSERM UMR1231 - Université Bourgogne Franche Comté, 15 Boulevard Mal de Lattre de Tassigny, F-21000 Dijon, France
| | - Claude Rouch
- Université de Paris Cité, Functional and Adaptive Biology Unit, UMR 8251, CNRS, Paris, France
| | - Pascal Ferré
- Centre de Recherche des Cordeliers, INSERM, Sorbonne Université, F-75006 Paris, France; Institut Hospitalo-Universitaire ICAN, Paris, France
| | - Fabienne Foufelle
- Centre de Recherche des Cordeliers, INSERM, Sorbonne Université, F-75006 Paris, France; Institut Hospitalo-Universitaire ICAN, Paris, France
| | - Hervé Le Stunff
- Université Paris-Saclay, CNRS UMR 9197, Institut des Neurosciences Paris-Saclay, CNRS UMR 9197, Saclay, France
| | - Eric Hajduch
- Centre de Recherche des Cordeliers, INSERM, Sorbonne Université, F-75006 Paris, France; Institut Hospitalo-Universitaire ICAN, Paris, France.
| |
Collapse
|
35
|
Fisher-Wellman KH, Kassai M, Hagen JT, Neufer PD, Kester M, Loughran TP, Chalfant CE, Feith DJ, Tan SF, Fox TE, Ung J, Fabrias G, Abad JL, Sharma A, Golla U, Claxton DF, Shaw JJP, Bhowmick D, Cabot MC. Simultaneous Inhibition of Ceramide Hydrolysis and Glycosylation Synergizes to Corrupt Mitochondrial Respiration and Signal Caspase Driven Cell Death in Drug-Resistant Acute Myeloid Leukemia. Cancers (Basel) 2023; 15:1883. [PMID: 36980769 PMCID: PMC10046858 DOI: 10.3390/cancers15061883] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 03/10/2023] [Accepted: 03/15/2023] [Indexed: 03/30/2023] Open
Abstract
Acute myelogenous leukemia (AML), the most prevalent acute and aggressive leukemia diagnosed in adults, often recurs as a difficult-to-treat, chemotherapy-resistant disease. Because chemotherapy resistance is a major obstacle to successful treatment, novel therapeutic intervention is needed. Upregulated ceramide clearance via accelerated hydrolysis and glycosylation has been shown to be an element in chemotherapy-resistant AML, a problem considering the crucial role ceramide plays in eliciting apoptosis. Herein we employed agents that block ceramide clearance to determine if such a "reset" would be of therapeutic benefit. SACLAC was utilized to limit ceramide hydrolysis, and D-threo-1-phenyl-2-decanoylamino-3-morpholino-1-propanol (D-threo-PDMP) was used to block the glycosylation route. The SACLAC D-threo-PDMP inhibitor combination was synergistically cytotoxic in drug-resistant, P-glycoprotein-expressing (P-gp) AML but not in wt, P-gp-poor cells. Interestingly, P-gp antagonists that can limit ceramide glycosylation via depression of glucosylceramide transit also synergized with SACLAC, suggesting a paradoxical role for P-gp in the implementation of cell death. Mechanistically, cell death was accompanied by a complete drop in ceramide glycosylation, concomitant, striking increases in all molecular species of ceramide, diminished sphingosine 1-phosphate levels, resounding declines in mitochondrial respiratory kinetics, altered Akt, pGSK-3β, and Mcl-1 expression, and caspase activation. Although ceramide was generated in wt cells upon inhibitor exposure, mitochondrial respiration was not corrupted, suggestive of mitochondrial vulnerability in the drug-resistant phenotype, a potential therapeutic avenue. The inhibitor regimen showed efficacy in an in vivo model and in primary AML cells from patients. These results support the implementation of SL enzyme targeting to limit ceramide clearance as a therapeutic strategy in chemotherapy-resistant AML, inclusive of a novel indication for the use of P-gp antagonists.
Collapse
Affiliation(s)
- Kelsey H. Fisher-Wellman
- Department of Integrative Physiology and Metabolism, Brody School of Medicine, East Carolina University, Greenville, NC 27834, USA
- East Carolina Diabetes and Obesity Institute, East Carolina University, Greenville, NC 27858, USA
- UNC Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC 27599, USA
| | - Miki Kassai
- East Carolina Diabetes and Obesity Institute, East Carolina University, Greenville, NC 27858, USA
- Department of Biochemistry and Molecular Biology, Brody School of Medicine, East Carolina University, Greenville, NC 27834, USA
| | - James T. Hagen
- Department of Integrative Physiology and Metabolism, Brody School of Medicine, East Carolina University, Greenville, NC 27834, USA
- East Carolina Diabetes and Obesity Institute, East Carolina University, Greenville, NC 27858, USA
| | - P. Darrell Neufer
- Department of Integrative Physiology and Metabolism, Brody School of Medicine, East Carolina University, Greenville, NC 27834, USA
- East Carolina Diabetes and Obesity Institute, East Carolina University, Greenville, NC 27858, USA
| | - Mark Kester
- Department of Medicine, Hematology/Oncology, University of Virginia School of Medicine, Charlottesville, VA 22903, USA
- University of Virginia Cancer Center, Charlottesville, VA 22908, USA
| | - Thomas P. Loughran
- Department of Medicine, Hematology/Oncology, University of Virginia School of Medicine, Charlottesville, VA 22903, USA
- University of Virginia Cancer Center, Charlottesville, VA 22908, USA
| | - Charles E. Chalfant
- Department of Medicine, Hematology/Oncology, University of Virginia School of Medicine, Charlottesville, VA 22903, USA
- University of Virginia Cancer Center, Charlottesville, VA 22908, USA
- Department of Cell Biology, University of Virginia, Charlottesville, VA 22903, USA
- Research Service, Richmond Veterans Administration Medical Center, Richmond, VA 23298, USA
| | - David J. Feith
- Department of Medicine, Hematology/Oncology, University of Virginia School of Medicine, Charlottesville, VA 22903, USA
- University of Virginia Cancer Center, Charlottesville, VA 22908, USA
| | - Su-Fern Tan
- Department of Medicine, Hematology/Oncology, University of Virginia School of Medicine, Charlottesville, VA 22903, USA
| | - Todd E. Fox
- Department of Pharmacology, University of Virginia School of Medicine, Charlottesville, VA 22904, USA
| | - Johnson Ung
- Department of Medicine, Hematology/Oncology, University of Virginia School of Medicine, Charlottesville, VA 22903, USA
- University of Virginia Cancer Center, Charlottesville, VA 22908, USA
- Department of Microbiology, Immunology, and Cancer Biology, University of Virginia School of Medicine, Charlottesville, VA 22908, USA
| | - Gemma Fabrias
- Research Unit on Bioactive Molecules (RUBAM), Department of Biological Chemistry, Institute for Advanced Chemistry of Catalonia (IQAC), Spanish Council for Scientific Research (CSIC), Jordi Girona 18-26, 08034 Barcelona, Spain
| | - Jose’ Luis Abad
- Research Unit on Bioactive Molecules (RUBAM), Department of Biological Chemistry, Institute for Advanced Chemistry of Catalonia (IQAC), Spanish Council for Scientific Research (CSIC), Jordi Girona 18-26, 08034 Barcelona, Spain
| | - Arati Sharma
- Penn State Cancer Institute, Hershey, PA 17033, USA
- Department of Pharmacology, Penn State College of Medicine, Hershey, PA 17033, USA
| | - Upendarrao Golla
- Penn State Cancer Institute, Hershey, PA 17033, USA
- Division of Hematology and Oncology, Penn State Cancer Institute, Hershey, PA 17033, USA
| | - David F. Claxton
- Division of Hematology and Oncology, Penn State Cancer Institute, Hershey, PA 17033, USA
| | - Jeremy J. P. Shaw
- University of Virginia Cancer Center, Charlottesville, VA 22908, USA
- Department of Experimental Pathology, University of Virginia School of Medicine, Charlottesville, VA 22904, USA
| | - Debajit Bhowmick
- Flow Cytometry Division, Brody School of Medicine, East Carolina University, Greenville, NC 27834, USA
| | - Myles C. Cabot
- East Carolina Diabetes and Obesity Institute, East Carolina University, Greenville, NC 27858, USA
- Department of Biochemistry and Molecular Biology, Brody School of Medicine, East Carolina University, Greenville, NC 27834, USA
| |
Collapse
|
36
|
Corsetto PA, Zava S, Rizzo AM, Colombo I. The Critical Impact of Sphingolipid Metabolism in Breast Cancer Progression and Drug Response. Int J Mol Sci 2023; 24:ijms24032107. [PMID: 36768427 PMCID: PMC9916652 DOI: 10.3390/ijms24032107] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 01/11/2023] [Accepted: 01/17/2023] [Indexed: 01/25/2023] Open
Abstract
Breast cancer is the second leading cause of cancer-related death in women in the world, and its management includes a combination of surgery, radiation therapy, chemotherapy, and immunotherapy, whose effectiveness depends largely, but not exclusively, on the molecular subtype (Luminal A, Luminal B, HER2+ and Triple Negative). All breast cancer subtypes are accompanied by peculiar and substantial changes in sphingolipid metabolism. Alterations in sphingolipid metabolite levels, such as ceramides, dihydroceramide, sphingosine, sphingosine-1-phosphate, and sphingomyelin, as well as in their biosynthetic and catabolic enzymatic pathways, have emerged as molecular mechanisms by which breast cancer cells grow, respond to or escape therapeutic interventions and could take on diagnostic and prognostic value. In this review, we summarize the current landscape around two main themes: 1. sphingolipid metabolites, enzymes and transport proteins that have been found dysregulated in human breast cancer cells and/or tissues; 2. sphingolipid-driven mechanisms that allow breast cancer cells to respond to or evade therapies. Having a complete picture of the impact of the sphingolipid metabolism in the development and progression of breast cancer may provide an effective means to improve and personalize treatments and reduce associated drug resistance.
Collapse
|
37
|
The Effect of Oxidative Phosphorylation on Cancer Drug Resistance. Cancers (Basel) 2022; 15:cancers15010062. [PMID: 36612059 PMCID: PMC9817696 DOI: 10.3390/cancers15010062] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 12/10/2022] [Accepted: 12/16/2022] [Indexed: 12/24/2022] Open
Abstract
Recent studies have shown that oxidative phosphorylation (OXPHOS) is a target for the effective attenuation of cancer drug resistance. OXPHOS inhibitors can improve treatment responses to anticancer therapy in certain cancers, such as melanomas, lymphomas, colon cancers, leukemias and pancreatic ductal adenocarcinoma (PDAC). However, the effect of OXPHOS on cancer drug resistance is complex and associated with cell types in the tumor microenvironment (TME). Cancer cells universally promote OXPHOS activity through the activation of various signaling pathways, and this activity is required for resistance to cancer therapy. Resistant cancer cells are prevalent among cancer stem cells (CSCs), for which the main metabolic phenotype is increased OXPHOS. CSCs depend on OXPHOS to survive targeting by anticancer drugs and can be selectively eradicated by OXPHOS inhibitors. In contrast to that in cancer cells, mitochondrial OXPHOS is significantly downregulated in tumor-infiltrating T cells, impairing antitumor immunity. In this review, we summarize novel research showing the effect of OXPHOS on cancer drug resistance, thereby explaining how this metabolic process plays a dual role in cancer progression. We highlight the underlying mechanisms of metabolic reprogramming in cancer cells, as it is vital for discovering new drug targets.
Collapse
|
38
|
Interorgan Metabolism of Ganglioside Is Altered in Type 2 Diabetes. Biomedicines 2022; 10:biomedicines10123141. [PMID: 36551897 PMCID: PMC9775016 DOI: 10.3390/biomedicines10123141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 11/22/2022] [Accepted: 11/30/2022] [Indexed: 12/12/2022] Open
Abstract
GM3 is implicated in cell signaling, inflammation and insulin resistance. The intestinal mucosa metabolizes ganglioside and provides gangliosides for uptake by peripheral tissues. Gangliosides downregulate acute and chronic inflammatory signals. It is likely that transport of intestinal derived gangliosides to other tissues impact the same signals characteristic of inflammatory change in other chronic conditions such as Type 2 Diabetes (T2DM). The postprandial ceramide composition of GM3 and other gangliosides in plasma and chylomicrons has not been examined in T2DM. The present study assessed if diet or T2DM alters ganglioside components in plasma and chylomicrons secreted from the intestinal mucosa after a meal. GD1, GD3, and GM3 content of chylomicrons and plasma was determined by LC/triple quad MS in non-diabetic (control) and T2DM individuals in the fasting and postprandial state after 2 days of consuming a low or high fat diet in a randomized blinded crossover design. Diet fat level did not alter baseline plasma or chylomicron ganglioside levels. Four hours after the test meal, plasma monounsaturated GD3 was 75% higher, plasma saturated GD3 was 140% higher and plasma polyunsaturated GM3 30% lower in diabetic subjects compared to control subjects. At 4 h, chylomicron GD1 was 50% lower in T2DM compared to controls. The proportion of d34:1 in GD3 was more abundant and d36:1 in GD1 less abundant in T2DM compared to control subjects at 4 h. The present study indicates that T2DM alters ceramide composition of ganglioside available for uptake by peripheral tissues.
Collapse
|
39
|
Wang L, Deng H, Wang T, Qiao Y, Zhu J, Xiong M. Investigation into the protective effects of hypaconitine and glycyrrhetinic acid against chronic heart failure of the rats. BMC Complement Med Ther 2022; 22:160. [PMID: 35710396 PMCID: PMC9202221 DOI: 10.1186/s12906-022-03632-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Accepted: 05/24/2022] [Indexed: 11/10/2022] Open
Abstract
Abstract
Background
The present study aimed to determine the protective effects of hypaconitine (HA) and glycyrrhetinic acid (GA) against chronic heart failure (CHF) in the rats and to explore the underlying molecular mechanisms.
Methods
The CHF rat model was established by transverse-aortic constriction (TAC) operation. Transthoracic echocardiography and hematoxylin eosin (HE) staining were used to evaluate the pathophysiological and histopathological changes of CHF model. The total cholesterol (TCHO) and triglyceride (TG) levels were determined by ELISA assay. The protein expression of fibroblast growth factor 2 (FGF2), vascular endothelial growth factor A (VEGFA) and endothelial nitric oxide synthase (eNOS) in the rat ventricular tissues was determined by immunohistochemistry. The serum metabolites were determined by LC-MS/MS assay.
Results
After applied the HA + GA, the cardiac tissue and structure were obviously improved, and the HA + GA treatment also significantly reduced the plasma levels of TCHO and TG in the CHF rats. The expression of FGF2 and VEGFA protein was up-regulated and the expression of eNOS protein was down-regulated in the ventricular tissues of CHF rats, which was significantly restored after HA + GA treatment. HA + GA treatment down-regulated serum isonicotinic acid, phosphatidylcholine, cardiolipin, estrogen glucuronide, and glycocholic acid, up-regulated serum sphingosine and deoxycholic acid in the CHF rats.
Conclusions
In conclusion, HA + GA showed protective effects on CHF in the rats, and the HA + GA may exert protective effects by reducing lipid levels, up-regulating the expression of FGF2 and VEGFA proteins, attenuating eNOS protein expression, and modulating metabolic pathways. However, the molecular mechanisms underlying HA + GA-mediated effects still require further examination.
Collapse
|
40
|
Kadyrov M, Whiley L, Brown B, Erickson KI, Holmes E. Associations of the Lipidome with Ageing, Cognitive Decline and Exercise Behaviours. Metabolites 2022; 12:metabo12090822. [PMID: 36144226 PMCID: PMC9505967 DOI: 10.3390/metabo12090822] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 08/22/2022] [Accepted: 08/22/2022] [Indexed: 11/16/2022] Open
Abstract
One of the most recognisable features of ageing is a decline in brain health and cognitive dysfunction, which is associated with perturbations to regular lipid homeostasis. Although ageing is the largest risk factor for several neurodegenerative diseases such as dementia, a loss in cognitive function is commonly observed in adults over the age of 65. Despite the prevalence of normal age-related cognitive decline, there is a lack of effective methods to improve the health of the ageing brain. In light of this, exercise has shown promise for positively influencing neurocognitive health and associated lipid profiles. This review summarises age-related changes in several lipid classes that are found in the brain, including fatty acyls, glycerolipids, phospholipids, sphingolipids and sterols, and explores the consequences of age-associated pathological cognitive decline on these lipid classes. Evidence of the positive effects of exercise on the affected lipid profiles are also discussed to highlight the potential for exercise to be used therapeutically to mitigate age-related changes to lipid metabolism and prevent cognitive decline in later life.
Collapse
Affiliation(s)
- Maria Kadyrov
- Australian National Phenome Centre, Health Futures Institute, Murdoch University, Harry Perkins Building, 5 Robin Warren Drive, Murdoch, WA 6150, Australia
- Centre for Computational and Systems Medicine, Health Futures Institute, Murdoch University, Harry Perkins Building, 5 Robin Warren Drive, Murdoch, WA 6150, Australia
- Discipline of Exercise Science, College of Science, Health, Engineering and Education, Murdoch University, 90 South Street, Murdoch, WA 6150, Australia
- Centre for Healthy Ageing, Health Futures Institute, Murdoch University, 90 South Street, Murdoch, WA 6150, Australia
- Correspondence: (M.K.); (B.B.); (E.H.)
| | - Luke Whiley
- Australian National Phenome Centre, Health Futures Institute, Murdoch University, Harry Perkins Building, 5 Robin Warren Drive, Murdoch, WA 6150, Australia
- Centre for Computational and Systems Medicine, Health Futures Institute, Murdoch University, Harry Perkins Building, 5 Robin Warren Drive, Murdoch, WA 6150, Australia
- Perron Institute for Neurological and Translational Science, Nedlands, WA 6009, Australia
| | - Belinda Brown
- Discipline of Exercise Science, College of Science, Health, Engineering and Education, Murdoch University, 90 South Street, Murdoch, WA 6150, Australia
- Centre for Healthy Ageing, Health Futures Institute, Murdoch University, 90 South Street, Murdoch, WA 6150, Australia
- School of Medical Sciences, Sarich Neuroscience Research Institute, Edith Cowan University, Nedlands, WA 6009, Australia
- Correspondence: (M.K.); (B.B.); (E.H.)
| | - Kirk I. Erickson
- Department of Psychology, University of Pittsburgh, Pittsburgh, PA 15260, USA
- AdventHealth Research Institute, Neuroscience Institute, Orlando, FL 32804, USA
- PROFITH “PROmoting FITness and Health Through Physical Activity” Research Group, Sport and Health University Research Institute (iMUDS), Department of Physical Education and Sports, Faculty of Sport Sciences, University of Granada, 18071 Granada, Spain
| | - Elaine Holmes
- Australian National Phenome Centre, Health Futures Institute, Murdoch University, Harry Perkins Building, 5 Robin Warren Drive, Murdoch, WA 6150, Australia
- Centre for Computational and Systems Medicine, Health Futures Institute, Murdoch University, Harry Perkins Building, 5 Robin Warren Drive, Murdoch, WA 6150, Australia
- Division of Integrative Systems and Digestive Medicine, Department of Surgery and Cancer, Imperial College London, London SW7 2AZ, UK
- Correspondence: (M.K.); (B.B.); (E.H.)
| |
Collapse
|
41
|
Potenza RL, Lodeserto P, Orienti I. Fenretinide in Cancer and Neurological Disease: A Two-Face Janus Molecule. Int J Mol Sci 2022; 23:ijms23137426. [PMID: 35806431 PMCID: PMC9266536 DOI: 10.3390/ijms23137426] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Revised: 06/30/2022] [Accepted: 07/02/2022] [Indexed: 02/05/2023] Open
Abstract
Recently, several chemotherapeutic drugs have been repositioned in neurological diseases, based on common biological backgrounds and the inverse comorbidity between cancer and neurodegenerative diseases. Fenretinide (all-trans-N-(4-hydroxyphenyl) retinamide, 4-HPR) is a synthetic derivative of all-trans-retinoic acid initially proposed in anticancer therapy for its antitumor effects combined with limited toxicity. Subsequently, fenretinide has been proposed for other diseases, for which it was not intentionally designed for, due to its ability to influence different biological pathways, providing a broad spectrum of pharmacological effects. Here, we review the most relevant preclinical and clinical findings from fenretinide and discuss its therapeutic role towards cancer and neurological diseases, highlighting the hormetic behavior of this pleiotropic molecule.
Collapse
Affiliation(s)
- Rosa Luisa Potenza
- National Center for Drug Research and Evaluation, Istituto Superiore di Sanità, 00161 Rome, Italy
- Correspondence: ; Tel.: +39-06-49902389
| | - Pietro Lodeserto
- Department of Pharmacy and Biotechnology, Alma Mater Studiorum-University of Bologna, 40127 Bologna, Italy; (P.L.); (I.O.)
| | - Isabella Orienti
- Department of Pharmacy and Biotechnology, Alma Mater Studiorum-University of Bologna, 40127 Bologna, Italy; (P.L.); (I.O.)
| |
Collapse
|
42
|
Zahoor I, Suhail H, Datta I, Ahmed ME, Poisson LM, Waters J, Rashid F, Bin R, Singh J, Cerghet M, Kumar A, Hoda MN, Rattan R, Mangalam AK, Giri S. Blood-based untargeted metabolomics in relapsing-remitting multiple sclerosis revealed the testable therapeutic target. Proc Natl Acad Sci U S A 2022; 119:e2123265119. [PMID: 35700359 PMCID: PMC9231486 DOI: 10.1073/pnas.2123265119] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Accepted: 04/06/2022] [Indexed: 02/06/2023] Open
Abstract
Metabolic aberrations impact the pathogenesis of multiple sclerosis (MS) and possibly can provide clues for new treatment strategies. Using untargeted metabolomics, we measured serum metabolites from 35 patients with relapsing-remitting multiple sclerosis (RRMS) and 14 healthy age-matched controls. Of 632 known metabolites detected, 60 were significantly altered in RRMS. Bioinformatics analysis identified an altered metabotype in patients with RRMS, represented by four changed metabolic pathways of glycerophospholipid, citrate cycle, sphingolipid, and pyruvate metabolism. Interestingly, the common upstream metabolic pathway feeding these four pathways is the glycolysis pathway. Real-time bioenergetic analysis of the patient-derived peripheral blood mononuclear cells showed enhanced glycolysis, supporting the altered metabolic state of immune cells. Experimental autoimmune encephalomyelitis mice treated with the glycolytic inhibitor 2-deoxy-D-glucose ameliorated the disease progression and inhibited the disease pathology significantly by promoting the antiinflammatory phenotype of monocytes/macrophage in the central nervous system. Our study provided a proof of principle for how a blood-based metabolomic approach using patient samples could lead to the identification of a therapeutic target for developing potential therapy.
Collapse
Affiliation(s)
- Insha Zahoor
- Department of Neurology, Henry Ford Health System, Detroit, MI 48202
| | - Hamid Suhail
- Department of Neurology, Henry Ford Health System, Detroit, MI 48202
| | - Indrani Datta
- Department of Public Health Sciences, Henry Ford Health System, Detroit, MI 48202
| | | | - Laila M. Poisson
- Department of Public Health Sciences, Henry Ford Health System, Detroit, MI 48202
| | - Jeffrey Waters
- Department of Neurology, Henry Ford Health System, Detroit, MI 48202
| | - Faraz Rashid
- Department of Neurology, Henry Ford Health System, Detroit, MI 48202
| | - Rui Bin
- Department of Neurology, Henry Ford Health System, Detroit, MI 48202
| | - Jaspreet Singh
- Department of Neurology, Henry Ford Health System, Detroit, MI 48202
| | - Mirela Cerghet
- Department of Neurology, Henry Ford Health System, Detroit, MI 48202
| | - Ashok Kumar
- Department of Anatomy and Cell Biology, School of Medicine, Wayne State University, Detroit, MI 48202
| | - Md Nasrul Hoda
- Department of Neurology, Henry Ford Health System, Detroit, MI 48202
| | - Ramandeep Rattan
- Women’s Health Services, Henry Ford Health System, Detroit, MI 48202
| | - Ashutosh K. Mangalam
- Department of Pathology, University of Iowa Carver College of Medicine, Iowa City, IA 5224
| | - Shailendra Giri
- Department of Neurology, Henry Ford Health System, Detroit, MI 48202
| |
Collapse
|
43
|
Voelkel-Johnson C. Sphingolipids in embryonic development, cell cycle regulation, and stemness - Implications for polyploidy in tumors. Semin Cancer Biol 2022; 81:206-219. [PMID: 33429049 PMCID: PMC8263803 DOI: 10.1016/j.semcancer.2020.12.027] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2020] [Revised: 12/26/2020] [Accepted: 12/30/2020] [Indexed: 12/12/2022]
Abstract
The aberrant biology of polyploid giant cancer cells (PGCC) includes dysregulation of the cell cycle, induction of stress responses, and dedifferentiation, all of which are likely accompanied by adaptations in biophysical properties and metabolic activity. Sphingolipids are the second largest class of membrane lipids and play important roles in many aspects of cell biology that are potentially relevant to polyploidy. We have recently shown that the function of the sphingolipid enzyme acid ceramidase (ASAH1) is critical for the ability of PGCC to generate progeny by depolyploidization but mechanisms by which sphingolipids contribute to polyploidy and generation of offspring with stem-like properties remain elusive. This review discusses the role of sphingolipids during embryonic development, cell cycle regulation, and stem cells in an effort to highlight parallels to polyploidy.
Collapse
Affiliation(s)
- Christina Voelkel-Johnson
- Department of Microbiology and Immunology, Medical University of South Carolina, Charleston, SC, USA.
| |
Collapse
|
44
|
Li J, Li Z, Ran J, Yang C, Lin Z, Liu Y. LC/MS-based lipidomics to characterize breed-specific and tissue-specific lipid composition of chicken meat and abdominal fat. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2022.113611] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
45
|
DeVeaux SA, Ogle ME, Vyshnya S, Chiappa NF, Leitmann B, Rudy R, Day A, Mortensen LJ, Kurtzberg J, Roy K, Botchwey EA. Characterizing human mesenchymal stromal cells' immune-modulatory potency using targeted lipidomic profiling of sphingolipids. Cytotherapy 2022; 24:608-618. [PMID: 35190267 PMCID: PMC10725732 DOI: 10.1016/j.jcyt.2021.12.009] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Revised: 11/29/2021] [Accepted: 12/06/2021] [Indexed: 12/17/2022]
Abstract
Cell therapies are expected to increase over the next decade owing to increasing demand for clinical applications. Mesenchymal stromal cells (MSCs) have been explored to treat a number of diseases, with some successes in early clinical trials. Despite early successes, poor MSC characterization results in lessened therapeutic capacity once in vivo. Here, we characterized MSCs derived from bone marrow (BM), adipose tissue and umbilical cord tissue for sphingolipids (SLs), a class of bioactive lipids, using liquid chromatography/tandem mass spectrometry. We found that ceramide levels differed based on the donor's sex in BM-MSCs. We detected fatty acyl chain variants in MSCs from all three sources. Linear discriminant analysis revealed that MSCs separated based on tissue source. Principal component analysis showed that interferon-γ-primed and unstimulated MSCs separated according to their SL signature. Lastly, we detected higher ceramide levels in low indoleamine 2,3-dioxygenase MSCs, indicating that sphingomyelinase or ceramidase enzymatic activity may be involved in their immune potency.
Collapse
Affiliation(s)
- S’Dravious A. DeVeaux
- The Wallace H. Coulter Department of Biomedical Engineering, Georgia Tech and Emory, Atlanta, GA
- Petit Institute of Bioengineering and Biosciences, Georgia Institute of Technology, Atlanta, GA
| | - Molly E. Ogle
- The Wallace H. Coulter Department of Biomedical Engineering, Georgia Tech and Emory, Atlanta, GA
- Petit Institute of Bioengineering and Biosciences, Georgia Institute of Technology, Atlanta, GA
| | - Sofiya Vyshnya
- The Wallace H. Coulter Department of Biomedical Engineering, Georgia Tech and Emory, Atlanta, GA
- Petit Institute of Bioengineering and Biosciences, Georgia Institute of Technology, Atlanta, GA
| | - Nathan F. Chiappa
- The Wallace H. Coulter Department of Biomedical Engineering, Georgia Tech and Emory, Atlanta, GA
- Petit Institute of Bioengineering and Biosciences, Georgia Institute of Technology, Atlanta, GA
| | - Bobby Leitmann
- Regenerative Bioscience Center, Rhodes Center for ADS, University of Georgia, Athens, GA
- School of Chemical, Materials and Biomedical Engineering, University of Georgia, Athens, GA
| | - Ryan Rudy
- The Wallace H. Coulter Department of Biomedical Engineering, Georgia Tech and Emory, Atlanta, GA
- Petit Institute of Bioengineering and Biosciences, Georgia Institute of Technology, Atlanta, GA
| | - Abigail Day
- The Wallace H. Coulter Department of Biomedical Engineering, Georgia Tech and Emory, Atlanta, GA
- Petit Institute of Bioengineering and Biosciences, Georgia Institute of Technology, Atlanta, GA
| | - Luke J. Mortensen
- Regenerative Bioscience Center, Rhodes Center for ADS, University of Georgia, Athens, GA
- School of Chemical, Materials and Biomedical Engineering, University of Georgia, Athens, GA
| | - Joanne Kurtzberg
- Marcus Center for Cellular Cures, Duke University School of Medicine, Durham, NC
| | - Krishnendu Roy
- The Wallace H. Coulter Department of Biomedical Engineering, Georgia Tech and Emory, Atlanta, GA
- Marcus Center for Therapeutic Cell Characterization and Manufacturing, Georgia Institute of Technology, Atlanta, GA
- NSF Engineering Research Center (ERC) for Cell Manufacturing Technologies (CMaT), Georgia Institute of Technology, Atlanta, GA
| | - Edward A. Botchwey
- The Wallace H. Coulter Department of Biomedical Engineering, Georgia Tech and Emory, Atlanta, GA
- Petit Institute of Bioengineering and Biosciences, Georgia Institute of Technology, Atlanta, GA
| |
Collapse
|
46
|
Zhao L, Liao C, Chen D, Zhang D, Li G, Zhang X. Stiffening Effect of Ceramide on Lipid Membranes Provides Non-Sacrificial Protection against Potent Chemical Damage. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2022; 38:3522-3529. [PMID: 35263105 DOI: 10.1021/acs.langmuir.1c03427] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Ceramide is a sphingolipid that constitutes only a small fraction of membrane biomolecules but plays a central role in regulating many biological processes. The ceramide level in cell membranes can drastically increase in response to external damage, which has been hypothesized to involve ceramide's biophysical role that increases the membrane packing density and lowers the membrane permeability. However, direct observation of the consequent influence on membrane chemistry resulting from these ceramide-induced physical properties has been absent. Using our unique field-induced droplet ionization mass spectrometry technique combined with molecular dynamics simulations, here we report that the addition of ceramide to POPC monolayer membranes at the air-water interface greatly reduces the chemical damage from potent chemicals, •OH radicals, and HCl vapor, by stiffening the membrane packing and lowering the permeability. These results shed new light on the underlying chemoprotective role of ceramide in lipid membranes, which might serve as a previously unknown protection mechanism in response to external stimuli that cause cell stress or death.
Collapse
Affiliation(s)
- Lingling Zhao
- College of Chemistry, Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), Renewable Energy Conversion and Storage Center (ReCAST), Haihe Laboratory of Sustainable Chemical Transformations, Beijing National Laboratory for Molecular Sciences, Shenzhen Research Institute, Frontiers Science Center for New Organic Matter, Nankai University, Tianjin 300071, China
| | - Chenyi Liao
- Laboratory of Molecular Modeling and Design, State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Danye Chen
- College of Chemistry, Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), Renewable Energy Conversion and Storage Center (ReCAST), Haihe Laboratory of Sustainable Chemical Transformations, Beijing National Laboratory for Molecular Sciences, Shenzhen Research Institute, Frontiers Science Center for New Organic Matter, Nankai University, Tianjin 300071, China
| | - Dongmei Zhang
- College of Chemistry, Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), Renewable Energy Conversion and Storage Center (ReCAST), Haihe Laboratory of Sustainable Chemical Transformations, Beijing National Laboratory for Molecular Sciences, Shenzhen Research Institute, Frontiers Science Center for New Organic Matter, Nankai University, Tianjin 300071, China
| | - Guohui Li
- Laboratory of Molecular Modeling and Design, State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Xinxing Zhang
- College of Chemistry, Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), Renewable Energy Conversion and Storage Center (ReCAST), Haihe Laboratory of Sustainable Chemical Transformations, Beijing National Laboratory for Molecular Sciences, Shenzhen Research Institute, Frontiers Science Center for New Organic Matter, Nankai University, Tianjin 300071, China
| |
Collapse
|
47
|
Bhat AH, Dar KB, Khan A, Alshahrani S, Alshehri SM, Ghoneim MM, Alam P, Shakeel F. Tricyclodecan-9-yl-Xanthogenate (D609): Mechanism of Action and Pharmacological Applications. Int J Mol Sci 2022; 23:3305. [PMID: 35328726 PMCID: PMC8954530 DOI: 10.3390/ijms23063305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Revised: 03/14/2022] [Accepted: 03/16/2022] [Indexed: 12/04/2022] Open
Abstract
Tricyclodecan-9-yl xanthogenate (D609) is a synthetic tricyclic compound possessing a xanthate group. This xanthogenate compound is known for its diverse pharmacological properties. Over the last three decades, many studies have reported the biological activities of D609, including antioxidant, antiapoptotic, anticholinergic, anti-tumor, anti-inflammatory, anti-viral, anti-proliferative, and neuroprotective activities. Its mechanism of action is extensively attributed to its ability to cause the competitive inhibition of phosphatidylcholine (PC)-specific phospholipase C (PC-PLC) and sphingomyelin synthase (SMS). The inhibition of PCPLC or SMS affects secondary messengers with a lipidic nature, i.e., 1,2-diacylglycerol (DAG) and ceramide. Various in vitro/in vivo studies suggest that PCPLC and SMS inhibition regulate the cell cycle, block cellular proliferation, and induce differentiation. D609 acts as a pro-inflammatory cytokine antagonist and diminishes Aβ-stimulated toxicity. PCPLC enzymatic activity essentially requires Zn2+, and D609 might act as a potential chelator of Zn2+, thereby blocking PCPLC enzymatic activity. D609 also demonstrates promising results in reducing atherosclerotic plaque formation, post-stroke cerebral infarction, and cancer progression. The present compilation provides a comprehensive mechanistic insight into D609, including its chemistry, mechanism of action, and regulation of various pharmacological activities.
Collapse
Affiliation(s)
- Aashiq Hussain Bhat
- Department of Clinical Biochemistry, University of Kashmir, Srinagar 190006, India; (A.H.B.); (K.B.D.)
| | - Khalid Bashir Dar
- Department of Clinical Biochemistry, University of Kashmir, Srinagar 190006, India; (A.H.B.); (K.B.D.)
| | - Andleeb Khan
- Department of Pharmacology and Toxicology, College of Pharmacy, Jazan University, Jazan 45142, Saudi Arabia;
| | - Saeed Alshahrani
- Department of Pharmacology and Toxicology, College of Pharmacy, Jazan University, Jazan 45142, Saudi Arabia;
| | - Sultan M. Alshehri
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia; (S.M.A.); (F.S.)
| | - Mohammed M. Ghoneim
- Department of Pharmacy Practice, College of Pharmacy, AlMaarefa University, Ad Diriyah 13713, Saudi Arabia;
| | - Prawez Alam
- Department of Pharmacognosy, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia;
| | - Faiyaz Shakeel
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia; (S.M.A.); (F.S.)
| |
Collapse
|
48
|
Stankeviciute G, Tang P, Ashley B, Chamberlain JD, Hansen ME, Coleman A, D’Emilia R, Fu L, Mohan EC, Nguyen H, Guan Z, Campopiano DJ, Klein EA. Convergent evolution of bacterial ceramide synthesis. Nat Chem Biol 2022; 18:305-312. [PMID: 34969973 PMCID: PMC8891067 DOI: 10.1038/s41589-021-00948-7] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Accepted: 10/29/2021] [Indexed: 12/20/2022]
Abstract
The bacterial domain produces numerous types of sphingolipids with various physiological functions. In the human microbiome, commensal and pathogenic bacteria use these lipids to modulate the host inflammatory system. Despite their growing importance, their biosynthetic pathway remains undefined since several key eukaryotic ceramide synthesis enzymes have no bacterial homolog. Here we used genomic and biochemical approaches to identify six proteins comprising the complete pathway for bacterial ceramide synthesis. Bioinformatic analyses revealed the widespread potential for bacterial ceramide synthesis leading to our discovery of a Gram-positive species that produces ceramides. Biochemical evidence demonstrated that the bacterial pathway operates in a different order from that in eukaryotes. Furthermore, phylogenetic analyses support the hypothesis that the bacterial and eukaryotic ceramide pathways evolved independently.
Collapse
Affiliation(s)
- Gabriele Stankeviciute
- Center for Computational and Integrative Biology, Rutgers University-Camden, Camden, NJ 08102, USA,Rutgers Center for Lipid Research, Rutgers University, New Brunswick, NJ 08901, USA
| | - Peijun Tang
- East Chem School of Chemistry, University of Edinburgh, Edinburgh EH9 3FJ, United Kingdom
| | - Ben Ashley
- East Chem School of Chemistry, University of Edinburgh, Edinburgh EH9 3FJ, United Kingdom
| | - Joshua D. Chamberlain
- Center for Computational and Integrative Biology, Rutgers University-Camden, Camden, NJ 08102, USA
| | - Matthew E.B. Hansen
- Department of Genetics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Aimiyah Coleman
- Center for Computational and Integrative Biology, Rutgers University-Camden, Camden, NJ 08102, USA
| | - Rachel D’Emilia
- Center for Computational and Integrative Biology, Rutgers University-Camden, Camden, NJ 08102, USA
| | - Larina Fu
- Center for Computational and Integrative Biology, Rutgers University-Camden, Camden, NJ 08102, USA
| | - Eric C. Mohan
- East Chem School of Chemistry, University of Edinburgh, Edinburgh EH9 3FJ, United Kingdom
| | - Hung Nguyen
- Center for Computational and Integrative Biology, Rutgers University-Camden, Camden, NJ 08102, USA
| | - Ziqiang Guan
- Department of Biochemistry, Duke University Medical Center, Durham, NC, USA.
| | - Dominic J. Campopiano
- East Chem School of Chemistry, University of Edinburgh, Edinburgh EH9 3FJ, United Kingdom,Correspondence to: , , and
| | - Eric A. Klein
- Center for Computational and Integrative Biology, Rutgers University-Camden, Camden, NJ 08102, USA,Rutgers Center for Lipid Research, Rutgers University, New Brunswick, NJ 08901, USA,Biology Department, Rutgers University-Camden, Camden, NJ 08102, USA.,Correspondence to: , , and
| |
Collapse
|
49
|
Ijuin S, Oda K, Mawatari S, Taniyama O, Toyodome A, Sakae H, Tabu K, Kumagai K, Kanmura S, Tamai T, Moriuchi A, Uto H, Ido A. Serine palmitoyltransferase long chain subunit 3 is associated with hepatocellular carcinoma in patients with NAFLD. Mol Clin Oncol 2021; 16:55. [PMID: 35070304 PMCID: PMC8764653 DOI: 10.3892/mco.2021.2488] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Accepted: 10/14/2021] [Indexed: 11/05/2022] Open
Abstract
The prevalence of non-alcoholic fatty liver disease (NAFLD) is continuously increasing, with the proportion of patients with liver carcinogenesis due to non-alcoholic steatohepatitis (NASH) rising accordingly. Although it is important to identify individuals with hepatic carcinogenesis among patients with NAFLD, useful biomarkers have not yet been established. Previously, in a mouse model of diabetes mellitus without genetic modifications, we reported that a high-fat diet increases serine palmitoyltransferase long chain subunit 3 (SPTLC3) expression in liver tissue, accompanied by high frequency of liver carcinogenesis. Serine palmitoyltransferase (SPT) catalyzes the metabolism of fatty acids, particularly sphingolipid synthesis, and SPTLC3 has been identified as its catalytic subunit, but its role in liver disease is unclear. In the present study, the importance of SPTLC3 in NAFLD development was investigated. SPTLC3 mRNA expression was observed in a liver cancer cell line and in liver tissues from patients with NAFLD and liver cancer. In total, 99 patients with NAFLD (66 without hepatocellular carcinoma (HCC) and 33 with HCC were recruited, having been diagnosed by liver biopsy or imaging, along with 6 healthy volunteers (HVs). Serum was collected from patients and HVs, and SPTLC3 level was assessed by ELISA. SPTLC3 expression was higher in non-cancerous compared with that in cancerous liver tissues. Serum SPTLC3 levels were negatively correlated with platelet count and positively correlated with hyaluronic acid levels, suggesting an association with liver fibrosis. Moreover, SPTLC3 levels were significantly higher in the HCC group than in the HV and NAFLD groups. Multivariate analysis of HCC-related factors identified platelets, alanine transferase, albumin and SPTLC3 as independent factors associated with HCC. Furthermore, in patients with other chronic liver diseases (hepatitis B and C, and alcoholic liver disease), no significant differences in serum SPTLC3 levels were observed between patients with or without HCC. Thus, SPTLC3 expression increases specifically with the progression of NAFLD. Overall, the present results indicate that SPTLC3 may be involved in the development of liver carcinogenesis during NAFLD.
Collapse
Affiliation(s)
- Sho Ijuin
- Digestive and Lifestyle Diseases, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima 890‑8520, Japan
| | - Kohei Oda
- Digestive and Lifestyle Diseases, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima 890‑8520, Japan
| | - Seiichi Mawatari
- Digestive and Lifestyle Diseases, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima 890‑8520, Japan
| | - Ohki Taniyama
- Digestive and Lifestyle Diseases, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima 890‑8520, Japan
| | - Ai Toyodome
- Digestive and Lifestyle Diseases, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima 890‑8520, Japan
| | - Haruka Sakae
- Digestive and Lifestyle Diseases, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima 890‑8520, Japan
| | - Kazuaki Tabu
- Digestive and Lifestyle Diseases, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima 890‑8520, Japan
| | - Kotaro Kumagai
- Digestive and Lifestyle Diseases, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima 890‑8520, Japan
| | - Shuji Kanmura
- Digestive and Lifestyle Diseases, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima 890‑8520, Japan
| | - Tsutomu Tamai
- Department of Gastroenterology and Hepatology, Kagoshima City Hospital, Kagoshima 890‑8760, Japan
| | - Akihiro Moriuchi
- Department of Gastroenterology, National Hospital Organization Kagoshima Medical Center, Kagoshima 892‑0853, Japan
| | - Hirofumi Uto
- Center for Digestive and Liver Diseases, Miyazaki Medical Center Hospital, Miyazaki 880‑0003, Japan
| | - Akio Ido
- Digestive and Lifestyle Diseases, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima 890‑8520, Japan
| |
Collapse
|
50
|
Uzbekova S, Bertevello PS, Dalbies-Tran R, Elis S, Labas V, Monget P, Teixeira-Gomes AP. Metabolic exchanges between the oocyte and its environment: focus on lipids. Reprod Fertil Dev 2021; 34:1-26. [PMID: 35231385 DOI: 10.1071/rd21249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Finely regulated fatty acid (FA) metabolism within ovarian follicles is crucial to follicular development and influences the quality of the enclosed oocyte, which relies on the surrounding intra-follicular environment for its growth and maturation. A growing number of studies have examined the association between the lipid composition of follicular compartments and oocyte quality. In this review, we focus on lipids, their possible exchanges between compartments within the ovarian follicle and their involvement in different pathways during oocyte final growth and maturation. Lipidomics provides a detailed snapshot of the global lipid profiles and identified lipids, clearly discriminating the cells or fluid from follicles at distinct physiological stages. Follicular fluid appears as a main mediator of lipid exchanges between follicular somatic cells and the oocyte, through vesicle-mediated and non-vesicular transport of esterified and free FA. A variety of expression data allowed the identification of common and cell-type-specific actors of lipid metabolism in theca cells, granulosa cells, cumulus cells and oocytes, including key regulators of FA uptake, FA transport, lipid transformation, lipoprotein synthesis and protein palmitoylation. They act in harmony to accompany follicular development, and maintain intra-follicular homeostasis to allow the oocyte to accumulate energy and membrane lipids for subsequent meiotic divisions and first embryo cleavages.
Collapse
Affiliation(s)
- Svetlana Uzbekova
- CNRS, IFCE, INRAE, Université de Tours, PRC, F-37380 Nouzilly, France; and LK Ernst Federal Science Centre for Animal Husbandry, Podolsk, Russia
| | | | | | - Sebastien Elis
- CNRS, IFCE, INRAE, Université de Tours, PRC, F-37380 Nouzilly, France
| | - Valerie Labas
- CNRS, IFCE, INRAE, Université de Tours, PRC, F-37380 Nouzilly, France; and INRAE, Université de Tours, CHRU Tours, Plate-Forme PIXANIM, F-37380 Nouzilly, France
| | - Philippe Monget
- CNRS, IFCE, INRAE, Université de Tours, PRC, F-37380 Nouzilly, France
| | - Ana-Paula Teixeira-Gomes
- CNRS, IFCE, INRAE, Université de Tours, PRC, F-37380 Nouzilly, France; and INRAE, Université de Tours, CHRU Tours, Plate-Forme PIXANIM, F-37380 Nouzilly, France
| |
Collapse
|