1
|
Srisomboon Y, Tojima I, Iijima K, Kita H, O'Grady SM. Allergen-induced activation of epithelial P2Y 2 receptors promotes adenosine triphosphate exocytosis and type 2 immunity in airways. J Allergy Clin Immunol 2025:S0091-6749(25)00070-3. [PMID: 39863058 DOI: 10.1016/j.jaci.2025.01.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Revised: 12/29/2024] [Accepted: 01/13/2025] [Indexed: 01/27/2025]
Abstract
BACKGROUND Environmental allergens induce the release of danger signals from the airway epithelium that trigger type 2 immune responses and promote airway inflammation. OBJECTIVE We investigated the role of allergen-stimulated P2Y2 receptor activation in regulating adenosine triphosphate (ATP), IL-33, and DNA release by human bronchial epithelial (hBE) cells and mouse airways. METHODS The hBE cells were exposed to Alternaria alternata extract and secretion of ATP, IL-33, and DNA were studied in vitro. Molecular and cellular mechanisms were examined by biochemical and genetic approaches. Mice were treated intranasally with pharmacologic agents and exposed to Alternaria extract. RESULTS Exposure of hBE cells to Alternaria extract stimulated P2Y2 receptors coupled to phospholipase C β3, leading to activation of multiple protein kinase C (PKC) isoforms and an increase in intracellular Ca2+ concentration. Small interfering RNAs targeting PKC δ or inhibiting PKC δ activity with delcasertib blocked exocytosis of ATP and reduced IL-33 and DNA secretion. Moreover, a peptide antagonist for myristoylated alanine-rich C-kinase substrate (MARCKS) reduced vesicular ATP release. A proximity ligand assay showed that Alternaria extract stimulated MARCKS desorption from the plasma membrane and delcasertib prevented the response. Finally, the P2Y2 receptor antagonist AR-C118925XX and delcasertib blocked IL-33, DNA, and type 2 cytokine secretion in vivo in mice exposed to Alternaria. CONCLUSION P2Y2 receptor stimulation after allergen exposure promoted activation of PLC β3, PKC δ, and MARCKS protein desorption from the apical membrane, which facilitated ATP exocytosis and subsequent secretion of IL-33 and DNA. Epithelial P2Y2 receptors serve as primary sensors for aeroallergen-induced alarmin release by airway epithelial cells.
Collapse
Affiliation(s)
- Yotesawee Srisomboon
- Departments of Animal Science, Integrative Biology, and Physiology, University of Minnesota, St Paul, Minn
| | - Ichiro Tojima
- Division of Allergy, Asthma and Clinical Immunology, Department of Medicine, Mayo Clinic, Scottsdale, Ariz
| | - Koji Iijima
- Division of Allergy, Asthma and Clinical Immunology, Department of Medicine, Mayo Clinic, Scottsdale, Ariz
| | - Hirohito Kita
- Division of Allergy, Asthma and Clinical Immunology, Department of Medicine, Mayo Clinic, Scottsdale, Ariz.
| | - Scott M O'Grady
- Departments of Animal Science, Integrative Biology, and Physiology, University of Minnesota, St Paul, Minn.
| |
Collapse
|
2
|
Al-Mualem ZA, Chen X, Shafieenezhad A, Senning EN, Baiz CR. Binding-induced lipid domains: Peptide-membrane interactions with PIP 2 and PS. Biophys J 2024; 123:2001-2011. [PMID: 38142298 PMCID: PMC11309973 DOI: 10.1016/j.bpj.2023.12.019] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 11/08/2023] [Accepted: 12/20/2023] [Indexed: 12/25/2023] Open
Abstract
Cell signaling is an important process involving complex interactions between lipids and proteins. The myristoylated alanine-rich C-kinase substrate (MARCKS) has been established as a key signaling regulator, serving a range of biological roles. Its effector domain (ED), which anchors the protein to the plasma membrane, induces domain formation in membranes containing phosphatidylinositol 4,5-bisphosphate (PIP2) and phosphatidylserine (PS). The mechanisms governing the MARCKS-ED binding to membranes remain elusive. Here, we investigate the composition-dependent affinity and MARCKS-ED-binding-induced changes in interfacial environments using two-dimensional infrared spectroscopy and fluorescence anisotropy. Both negatively charged lipids facilitate the MARCKS-ED binding to lipid vesicles. Although the hydrogen-bonding structure at the lipid-water interface remains comparable across vesicles with varied lipid compositions, the dynamics of interfacial water show divergent patterns due to specific interactions between lipids and peptides. Our findings also reveal that PIP2 becomes sequestered by bound peptides, while the distribution of PS exhibits no discernible change upon peptide binding. Interestingly, PIP2 and PS become colocalized into domains both in the presence and absence of MARCKS-ED. More broadly, this work offers molecular insights into the effects of membrane composition on binding.
Collapse
Affiliation(s)
| | - Xiaobing Chen
- Department of Chemistry, The University of Texas at Austin, Austin, Texas
| | - Azam Shafieenezhad
- Department of Neuroscience, The University of Texas at Austin, Austin, Texas
| | - Eric N Senning
- Department of Neuroscience, The University of Texas at Austin, Austin, Texas.
| | - Carlos R Baiz
- Department of Chemistry, The University of Texas at Austin, Austin, Texas.
| |
Collapse
|
3
|
Razavi S, Wong F, Abubaker-Sharif B, Matsubayashi HT, Nakamura H, Nguyen NTH, Robinson DN, Chen B, Iglesias PA, Inoue T. Synthetic control of actin polymerization and symmetry breaking in active protocells. SCIENCE ADVANCES 2024; 10:eadk9731. [PMID: 38865458 PMCID: PMC11168455 DOI: 10.1126/sciadv.adk9731] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Accepted: 05/08/2024] [Indexed: 06/14/2024]
Abstract
Nonlinear biomolecular interactions on membranes drive membrane remodeling crucial for biological processes including chemotaxis, cytokinesis, and endocytosis. The complexity of biomolecular interactions, their redundancy, and the importance of spatiotemporal context in membrane organization impede understanding of the physical principles governing membrane mechanics. Developing a minimal in vitro system that mimics molecular signaling and membrane remodeling while maintaining physiological fidelity poses a major challenge. Inspired by chemotaxis, we reconstructed chemically regulated actin polymerization inside vesicles, guiding membrane self-organization. An external, undirected chemical input induced directed actin polymerization and membrane deformation uncorrelated with upstream biochemical cues, suggesting symmetry breaking. A biophysical model incorporating actin dynamics and membrane mechanics proposes that uneven actin distributions cause nonlinear membrane deformations, consistent with experimental findings. This protocellular system illuminates the interplay between actin dynamics and membrane shape during symmetry breaking, offering insights into chemotaxis and other cell biological processes.
Collapse
Affiliation(s)
- Shiva Razavi
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
- Department of Cell Biology, Center for Cell Dynamics, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Felix Wong
- Institute for Medical Engineering and Science, Department of Biological Engineering, Massachusetts Institute of Technology (MIT), Cambridge, MA 02139, USA
- Infectious Disease and Microbiome Program, Broad Institute of MIT and Harvard, Cambridge, MA 02139, USA
| | - Bedri Abubaker-Sharif
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
- Department of Cell Biology, Center for Cell Dynamics, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Hideaki T. Matsubayashi
- Department of Cell Biology, Center for Cell Dynamics, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Hideki Nakamura
- Department of Cell Biology, Center for Cell Dynamics, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Nhung Thi Hong Nguyen
- Department of Cell Biology, Center for Cell Dynamics, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Douglas N. Robinson
- Department of Cell Biology, Center for Cell Dynamics, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Baoyu Chen
- Roy J. Carver Department of Biochemistry, Biophysics and Molecular Biology, Iowa State University, Ames, IA 50011, USA
| | - Pablo A. Iglesias
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
- Department of Cell Biology, Center for Cell Dynamics, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
- Department of Electrical and Computer Engineering, Whiting School of Engineering, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Takanari Inoue
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
- Department of Cell Biology, Center for Cell Dynamics, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| |
Collapse
|
4
|
Fouedji C, Etémé AS, Tabi CB, Fouda HPE, Kofané TC. Multisolitons-like patterns in a one-dimensional MARCKS protein cyclic model. J Theor Biol 2024; 579:111702. [PMID: 38096977 DOI: 10.1016/j.jtbi.2023.111702] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2023] [Revised: 11/16/2023] [Accepted: 12/08/2023] [Indexed: 12/24/2023]
Abstract
In this paper, we study the nonlinear dynamics of the MARCKS protein between cytosol and cytoplasmic membrane through the modulational instability phenomenon. The reaction-diffusion generic model used here is firstly transformed into a cubic complex Ginzburg-Landau equation. Then, modulational instability (MI) is carried out in order to derive the MI criteria. We find the domains of some parameter space where nonlinear patterns are expected in the model. The analytical results on the MI growth rate predict that phosphorylation and binding rates affect MARCKS dynamics in opposite way: while the phosphorylation rate tends to support highly localized structures of MARCKS, the binding rate in turn tends to slow down such features. On the other hand, self-diffusion process always amplifies the MI phenomenon. These predictions are confirmed by numerical simulations. As a result, the cyclic transport of MARCKS protein from membrane to cytosol may be done by means of multisolitons-like patterns.
Collapse
Affiliation(s)
- Chenceline Fouedji
- Laboratory of Biophysics, Department of Physics, Faculty of Science, University of Yaounde I, P.O. Box 812, Yaounde, Cameroon.
| | - Armand Sylvin Etémé
- Laboratory of Biophysics, Department of Physics, Faculty of Science, University of Yaounde I, P.O. Box 812, Yaounde, Cameroon.
| | - Conrad Bertrand Tabi
- Botswana International University of Science and Technology, P/Bag 16 Palapye, Botswana.
| | - Henri Paul Ekobena Fouda
- Laboratory of Biophysics, Department of Physics, Faculty of Science, University of Yaounde I, P.O. Box 812, Yaounde, Cameroon.
| | - Timoléon Crépin Kofané
- Laboratory of Mechanics, Department of Physics, Faculty of Science, University of Yaounde I, P.O. Box 812, Yaounde, Cameroon.
| |
Collapse
|
5
|
Calabrese B, Halpain S. MARCKS and PI(4,5)P 2 reciprocally regulate actin-based dendritic spine morphology. Mol Biol Cell 2024; 35:ar23. [PMID: 38088877 PMCID: PMC10881156 DOI: 10.1091/mbc.e23-09-0370] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 11/27/2023] [Accepted: 12/07/2023] [Indexed: 01/14/2024] Open
Abstract
Myristoylated, alanine-rich C-kinase substrate (MARCKS) is an F-actin and phospholipid binding protein implicated in numerous cellular activities, including the regulation of morphology in neuronal dendrites and dendritic spines. MARCKS contains a lysine-rich effector domain that mediates its binding to plasma membrane phosphatidylinositol-4,5-biphosphate (PI(4,5)P2) in a manner controlled by PKC and calcium/calmodulin. In neurons, manipulations of MARCKS concentration and membrane targeting strongly affect the numbers, shapes, and F-actin properties of dendritic spines, but the mechanisms remain unclear. Here, we tested the hypothesis that the effects of MARCKS on dendritic spine morphology are due to its capacity to regulate the availability of plasma membrane PI(4,5)P2. We observed that the concentration of free PI(4,5)P2 on the dendritic plasma membrane was inversely proportional to the concentration of MARCKS. Endogenous PI(4,5)P2 levels were increased or decreased, respectively, by acutely overexpressing either phosphatidylinositol-4-phosphate 5-kinase (PIP5K) or inositol polyphosphate 5-phosphatase (5ptase). PIP5K, like MARCKS depletion, induced severe spine shrinkage; 5ptase, like constitutively membrane-bound MARCKS, induced aberrant spine elongation. These phenotypes involved changes in actin properties driven by the F-actin severing protein cofilin. Collectively, these findings support a model in which neuronal activity regulates actin-dependent spine morphology through antagonistic interactions of MARCKS and PI(4,5)P2.
Collapse
Affiliation(s)
- Barbara Calabrese
- Department of Neurobiology, School of Biological Sciences, University of California San Diego and Sanford Consortium for Regenerative Medicine, La Jolla, CA 92037
| | - Shelley Halpain
- Department of Neurobiology, School of Biological Sciences, University of California San Diego and Sanford Consortium for Regenerative Medicine, La Jolla, CA 92037
| |
Collapse
|
6
|
Razavi S, Wong F, Abubaker-Sharif B, Matsubayashi HT, Nakamura H, Sandoval E, Robinson DN, Chen B, Liu J, Iglesias PA, Inoue T. Synthetic control of actin polymerization and symmetry breaking in active protocells. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.09.22.559060. [PMID: 37790449 PMCID: PMC10542490 DOI: 10.1101/2023.09.22.559060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/05/2023]
Abstract
Non-linear biomolecular interactions on the membranes drive membrane remodeling that underlies fundamental biological processes including chemotaxis, cytokinesis, and endocytosis. The multitude of biomolecules, the redundancy in their interactions, and the importance of spatiotemporal context in membrane organization hampers understanding the physical principles governing membrane mechanics. A minimal, in vitro system that models the functional interactions between molecular signaling and membrane remodeling, while remaining faithful to cellular physiology and geometry is powerful yet remains unachieved. Here, inspired by the biophysical processes underpinning chemotaxis, we reconstituted externally-controlled actin polymerization inside giant unilamellar vesicles, guiding self-organization on the membrane. We show that applying undirected external chemical inputs to this system results in directed actin polymerization and membrane deformation that are uncorrelated with upstream biochemical cues, indicating symmetry breaking. A biophysical model of the dynamics and mechanics of both actin polymerization and membrane shape suggests that inhomogeneous distributions of actin generate membrane shape deformations in a non-linear fashion, a prediction consistent with experimental measurements and subsequent local perturbations. The active protocellular system demonstrates the interplay between actin dynamics and membrane shape in a symmetry breaking context that is relevant to chemotaxis and a suite of other biological processes.
Collapse
Affiliation(s)
- Shiva Razavi
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
- Department of Cell Biology, Center for Cell Dynamics, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Felix Wong
- Institute for Medical Engineering & Science, Department of Biological Engineering, Massachusetts Institute of Technology (MIT), Cambridge, MA 02139, USA
- Infectious Disease and Microbiome Program, Broad Institute of MIT and Harvard, Cambridge, MA 02139, USA
| | - Bedri Abubaker-Sharif
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
- Department of Cell Biology, Center for Cell Dynamics, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Hideaki T. Matsubayashi
- Department of Cell Biology, Center for Cell Dynamics, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Hideki Nakamura
- Department of Cell Biology, Center for Cell Dynamics, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Eduardo Sandoval
- Department of Cell Biology, Center for Cell Dynamics, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Douglas N. Robinson
- Department of Cell Biology, Center for Cell Dynamics, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Baoyu Chen
- Roy J. Carver Department of Biochemistry, Biophysics and Molecular Biology, Iowa State University, Ames, IA 50011, USA
| | - Jian Liu
- Department of Cell Biology, Center for Cell Dynamics, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Pablo A. Iglesias
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
- Department of Cell Biology, Center for Cell Dynamics, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
- Department of Electrical and Computer Engineering, Whiting School of Engineering, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Takanari Inoue
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
- Department of Cell Biology, Center for Cell Dynamics, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| |
Collapse
|
7
|
Santamaria A, Carrascosa-Tejedor J, Guzmán E, Zaccai NR, Maestro A. Unravelling the orientation of the inositol-biphosphate ring and its dependence on phosphatidylinositol 4,5-bisphosphate cluster formation in model membranes. J Colloid Interface Sci 2023; 629:785-795. [PMID: 36195018 DOI: 10.1016/j.jcis.2022.09.095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Revised: 09/03/2022] [Accepted: 09/18/2022] [Indexed: 10/14/2022]
Abstract
HYPOTHESIS Inositol phospholipids are well known to form clusters in the cytoplasmic leaflet of the plasma membrane that are responsible for the interaction and recruitment of proteins involved in key biological processes like endocytosis, ion channel activation and secondary messenger production. Although their phosphorylated inositol ring headgroup plays an important role in protein binding, its orientation with respect to the plane of the membrane and its lateral packing density has not been previously described experimentally. EXPERIMENTS Here, we study phosphatidylinositol 4,5-bisphosphate (PIP2) planar model membranes in the form of Langmuir monolayers by surface pressure-area isotherms, Brewster angle microscopy and neutron reflectometry to elucidate the relation between lateral (in-plane) and perpendicular (out-of-plane) molecular organization of PIP2. FINDINGS Different surface areas were explored through monolayer compression, allowing us to correlate the formation of transient PIP2 clusters with the change in orientation of the inositol-biphosphate headgroup, which was experimentally determined by neutron reflectometry.
Collapse
Affiliation(s)
- Andreas Santamaria
- Large Scale Structures Group, Institut Laue-Langevin, 71 Avenue des Martyrs, 38042 Grenoble, Cedex 9, France; Departamento de Química-Física, Facultad de Ciencias Químicas, Universidad Complutense, Ciudad Universitaria s/n, 28040 Madrid, Spain
| | - Javier Carrascosa-Tejedor
- Large Scale Structures Group, Institut Laue-Langevin, 71 Avenue des Martyrs, 38042 Grenoble, Cedex 9, France; Division of Pharmacy and Optometry, University of Manchester, Manchester M13 9PT, United Kingdom
| | - Eduardo Guzmán
- Departamento de Química-Física, Facultad de Ciencias Químicas, Universidad Complutense, Ciudad Universitaria s/n, 28040 Madrid, Spain; Instituto Pluridisciplinar, Universidad Complutense de Madrid, Paseo Juan XXIII 1, 28040 Madrid, Spain.
| | - Nathan R Zaccai
- Cambridge Institute for Medical Research, University of Cambridge, Cambridge CB22 7QQ, United Kingdom.
| | - Armando Maestro
- Centro de Fı́sica de Materiales (CSIC, UPV/EHU) - Materials Physics Center MPC, Paseo Manuel de Lardizabal 5, E-20018 San Sebastián, Spain; IKERBASQUE-Basque Foundation for Science, Plaza Euskadi 5, Bilbao 48009, Spain.
| |
Collapse
|
8
|
Beckmann L, Berg V, Dickhut C, Sun C, Merkel O, Bloehdorn J, Robrecht S, Seifert M, da Palma Guerreiro A, Claasen J, Loroch S, Oliverio M, Underbayev C, Vaughn L, Thomalla D, Hülsemann MF, Tausch E, Fischer K, Fink AM, Eichhorst B, Sickmann A, Wendtner CM, Stilgenbauer S, Hallek M, Wiestner A, Zahedi RP, Frenzel LP. MARCKS affects cell motility and response to BTK inhibitors in CLL. Blood 2021; 138:544-556. [PMID: 33735912 PMCID: PMC8377477 DOI: 10.1182/blood.2020009165] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Revised: 03/18/2021] [Accepted: 03/06/2021] [Indexed: 12/26/2022] Open
Abstract
Bruton tyrosine kinase (BTK) inhibitors are highly active drugs for the treatment of chronic lymphocytic leukemia (CLL). To understand the response to BTK inhibitors on a molecular level, we performed (phospho)proteomic analyses under ibrutinib treatment. We identified 3466 proteins and 9184 phosphopeptides (representing 2854 proteins) in CLL cells exhibiting a physiological ratio of phosphorylated serines (pS), threonines (pT), and tyrosines (pY) (pS:pT:pY). Expression of 83 proteins differed between unmutated immunoglobulin heavy-chain variable region (IGHV) CLL (UM-CLL) and mutated IGHV CLL (M-CLL). Strikingly, UM-CLL cells showed higher basal phosphorylation levels than M-CLL samples. Effects of ibrutinib on protein phosphorylation levels were stronger in UM-CLL, especially on phosphorylated tyrosines. The differentially regulated phosphopeptides and proteins clustered in pathways regulating cell migration, motility, cytoskeleton composition, and survival. One protein, myristoylated alanine-rich C-kinase substrate (MARCKS), showed striking differences in expression and phosphorylation level in UM-CLL vs M-CLL. MARCKS sequesters phosphatidylinositol-4,5-bisphosphate, thereby affecting central signaling pathways and clustering of the B-cell receptor (BCR). Genetically induced loss of MARCKS significantly increased AKT signaling and migratory capacity. CD40L stimulation increased expression of MARCKS. BCR stimulation induced phosphorylation of MARCKS, which was reduced by BTK inhibitors. In line with our in vitro findings, low MARCKS expression is associated with significantly higher treatment-induced leukocytosis and more pronounced decrease of nodal disease in patients with CLL treated with acalabrutinib.
Collapse
Affiliation(s)
- Laura Beckmann
- Department I of Internal Medicine and
- Center of Integrated Oncology Aachen Bonn Cologne Dusseldorf (ABCD), University Hospital Cologne, Cologne, Germany
- Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Cologne, Germany
| | - Valeska Berg
- Department I of Internal Medicine and
- Center of Integrated Oncology Aachen Bonn Cologne Dusseldorf (ABCD), University Hospital Cologne, Cologne, Germany
- Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Cologne, Germany
| | - Clarissa Dickhut
- Leibniz-Institut für Analytische Wissenschaften (ISAS) eV, Dortmund, Germany
| | - Clare Sun
- Hematology Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD
| | - Olaf Merkel
- Department I of Internal Medicine and
- Center of Integrated Oncology Aachen Bonn Cologne Dusseldorf (ABCD), University Hospital Cologne, Cologne, Germany
- Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Cologne, Germany
| | | | - Sandra Robrecht
- Department I of Internal Medicine and
- Center of Integrated Oncology Aachen Bonn Cologne Dusseldorf (ABCD), University Hospital Cologne, Cologne, Germany
| | - Marc Seifert
- Institute of Cell Biology (Cancer Research), Medical Faculty, University of Duisburg-Essen, Essen, Germany
| | - Alexandra da Palma Guerreiro
- Department I of Internal Medicine and
- Center of Integrated Oncology Aachen Bonn Cologne Dusseldorf (ABCD), University Hospital Cologne, Cologne, Germany
- Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Cologne, Germany
| | - Julia Claasen
- Department I of Internal Medicine and
- Center of Integrated Oncology Aachen Bonn Cologne Dusseldorf (ABCD), University Hospital Cologne, Cologne, Germany
- Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Cologne, Germany
| | - Stefan Loroch
- Leibniz-Institut für Analytische Wissenschaften (ISAS) eV, Dortmund, Germany
| | - Matteo Oliverio
- Department I of Internal Medicine and
- Center of Integrated Oncology Aachen Bonn Cologne Dusseldorf (ABCD), University Hospital Cologne, Cologne, Germany
- Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Cologne, Germany
| | - Chingiz Underbayev
- Hematology Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD
| | - Lauren Vaughn
- Hematology Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD
| | - Daniel Thomalla
- Department I of Internal Medicine and
- Center of Integrated Oncology Aachen Bonn Cologne Dusseldorf (ABCD), University Hospital Cologne, Cologne, Germany
- Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Cologne, Germany
| | - Malte F Hülsemann
- Department I of Internal Medicine and
- Center of Integrated Oncology Aachen Bonn Cologne Dusseldorf (ABCD), University Hospital Cologne, Cologne, Germany
- Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Cologne, Germany
| | - Eugen Tausch
- Department of Internal Medicine III, Ulm University, Ulm, Germany
| | - Kirsten Fischer
- Department I of Internal Medicine and
- Center of Integrated Oncology Aachen Bonn Cologne Dusseldorf (ABCD), University Hospital Cologne, Cologne, Germany
| | - Anna Maria Fink
- Department I of Internal Medicine and
- Center of Integrated Oncology Aachen Bonn Cologne Dusseldorf (ABCD), University Hospital Cologne, Cologne, Germany
| | - Barbara Eichhorst
- Department I of Internal Medicine and
- Center of Integrated Oncology Aachen Bonn Cologne Dusseldorf (ABCD), University Hospital Cologne, Cologne, Germany
| | - Albert Sickmann
- Leibniz-Institut für Analytische Wissenschaften (ISAS) eV, Dortmund, Germany
| | - Clemens M Wendtner
- Department I of Internal Medicine and
- Munich Clinic Schwabing, Academic Teaching Hospital, Ludwig Maximilian University (LMU), Munich, Germany
| | - Stephan Stilgenbauer
- Department of Internal Medicine III, Ulm University, Ulm, Germany
- Department of Internal Medicine I, Saarland University, Homburg, Germany
| | - Michael Hallek
- Department I of Internal Medicine and
- Center of Integrated Oncology Aachen Bonn Cologne Dusseldorf (ABCD), University Hospital Cologne, Cologne, Germany
- Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Cologne, Germany
| | - Adrian Wiestner
- Hematology Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD
| | - René P Zahedi
- Leibniz-Institut für Analytische Wissenschaften (ISAS) eV, Dortmund, Germany
- Segal Cancer Proteomics Centre, Lady Davis Institute and
- Gerald Bronfman Department of Oncology, Jewish General Hospital, McGill University, QC, Canada; and
- Center for Computational and Data-Intensive Science and Engineering, Skolkovo Institute of Science and Technology, Moscow, Russia
| | - Lukas P Frenzel
- Department I of Internal Medicine and
- Center of Integrated Oncology Aachen Bonn Cologne Dusseldorf (ABCD), University Hospital Cologne, Cologne, Germany
- Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Cologne, Germany
| |
Collapse
|
9
|
Borges-Araújo L, Fernandes F. Structure and Lateral Organization of Phosphatidylinositol 4,5-bisphosphate. Molecules 2020; 25:molecules25173885. [PMID: 32858905 PMCID: PMC7503891 DOI: 10.3390/molecules25173885] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 08/22/2020] [Accepted: 08/23/2020] [Indexed: 02/07/2023] Open
Abstract
Phosphatidylinositol 4,5-bisphosphate (PI(4,5)P2) is a minor but ubiquitous component of the inner leaflet of the plasma membrane of eukaryotic cells. However, due to its particular complex biophysical properties, it stands out from its neighboring lipids as one of the most important regulators of membrane-associated signaling events. Despite its very low steady-state concentration, PI(4,5)P2 is able to engage in a multitude of simultaneous cellular functions that are temporally and spatially regulated through the presence of localized transient pools of PI(4,5)P2 in the membrane. These pools are crucial for the recruitment, activation, and organization of signaling proteins and consequent regulation of downstream signaling. The present review showcases some of the most important PI(4,5)P2 molecular and biophysical properties as well as their impact on its membrane dynamics, lateral organization, and interactions with other biochemical partners.
Collapse
Affiliation(s)
- Luís Borges-Araújo
- iBB—Institute for Bioengineering and Biosciences, Instituto Superior Técnico, Universidade de Lisboa, 1049-001 Lisbon, Portugal;
- Correspondence:
| | - Fabio Fernandes
- iBB—Institute for Bioengineering and Biosciences, Instituto Superior Técnico, Universidade de Lisboa, 1049-001 Lisbon, Portugal;
- Department of Bioengineering, Instituto Superior Técnico, Universidade de Lisboa, 1049-001 Lisbon, Portugal
| |
Collapse
|
10
|
Munusamy S, Conde R, Bertrand B, Munoz-Garay C. Biophysical approaches for exploring lipopeptide-lipid interactions. Biochimie 2020; 170:173-202. [PMID: 31978418 PMCID: PMC7116911 DOI: 10.1016/j.biochi.2020.01.009] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2019] [Accepted: 01/19/2020] [Indexed: 02/07/2023]
Abstract
In recent years, lipopeptides (LPs) have attracted a lot of attention in the pharmaceutical industry due to their broad-spectrum of antimicrobial activity against a variety of pathogens and their unique mode of action. This class of compounds has enormous potential for application as an alternative to conventional antibiotics and for pest control. Understanding how LPs work from a structural and biophysical standpoint through investigating their interaction with cell membranes is crucial for the rational design of these biomolecules. Various analytical techniques have been developed for studying intramolecular interactions with high resolution. However, these tools have been barely exploited in lipopeptide-lipid interactions studies. These biophysical approaches would give precise insight on these interactions. Here, we reviewed these state-of-the-art analytical techniques. Knowledge at this level is indispensable for understanding LPs activity and particularly their potential specificity, which is relevant information for safe application. Additionally, the principle of each analytical technique is presented and the information acquired is discussed. The key challenges, such as the selection of the membrane model are also been briefly reviewed.
Collapse
Affiliation(s)
- Sathishkumar Munusamy
- Instituto de Ciencias Físicas, Universidad Nacional Autónoma de México, Av. Universidad 2001, Col. Chamilpa, 62210, Cuernavaca, Mexico
| | - Renaud Conde
- Centro de Investigación Sobre Enfermedades Infecciosas, Instituto Nacional de Salud Pública, Cuernavaca, Morelos, Mexico
| | - Brandt Bertrand
- Instituto de Ciencias Físicas, Universidad Nacional Autónoma de México, Av. Universidad 2001, Col. Chamilpa, 62210, Cuernavaca, Mexico
| | - Carlos Munoz-Garay
- Instituto de Ciencias Físicas, Universidad Nacional Autónoma de México, Av. Universidad 2001, Col. Chamilpa, 62210, Cuernavaca, Mexico.
| |
Collapse
|
11
|
Sheats MK, Yin Q, Fang S, Park J, Crews AL, Parikh I, Dickson B, Adler KB. MARCKS and Lung Disease. Am J Respir Cell Mol Biol 2019; 60:16-27. [PMID: 30339463 DOI: 10.1165/rcmb.2018-0285tr] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
MARCKS (myristoylated alanine-rich C kinase substrate) is a prominent PKC substrate expressed in all eukaryotic cells. It is known to bind to and cross-link actin filaments, to serve as a bridge between Ca2+/calmodulin and PKC signaling, and to sequester the signaling molecule phosphatidylinositol 4,5-bisphosphate in the plasma membrane. Since the mid-1980s, this evolutionarily conserved and ubiquitously expressed protein has been associated with regulating cellular events that require dynamic actin reorganization, including cellular adhesion, migration, and exocytosis. More recently, translational studies have implicated MARCKS in the pathophysiology of a number of airway diseases, including chronic obstructive pulmonary disease, asthma, lung cancer, and acute lung injury/acute respiratory distress syndrome. This article summarizes the structure and cellular function of MARCKS (also including MARCKS family proteins and MARCKSL1 [MARCKS-like protein 1]). Evidence for MARCKS's role in several lung diseases is discussed, as are the technological innovations that took MARCKS-targeting strategies from theoretical to therapeutic. Descriptions and updates derived from ongoing clinical trials that are investigating inhalation of a MARCKS-targeting peptide as therapy for patients with chronic bronchitis, lung cancer, and ARDS are provided.
Collapse
Affiliation(s)
| | - Qi Yin
- 2 Department of Molecular Biomedical Sciences, North Carolina State University College of Veterinary Medicine, Raleigh, North Carolina; and
| | - Shijing Fang
- 2 Department of Molecular Biomedical Sciences, North Carolina State University College of Veterinary Medicine, Raleigh, North Carolina; and
| | - Joungjoa Park
- 2 Department of Molecular Biomedical Sciences, North Carolina State University College of Veterinary Medicine, Raleigh, North Carolina; and
| | - Anne L Crews
- 2 Department of Molecular Biomedical Sciences, North Carolina State University College of Veterinary Medicine, Raleigh, North Carolina; and
| | - Indu Parikh
- 3 BioMarck Pharmaceuticals, Durham, North Carolina
| | | | - Kenneth B Adler
- 2 Department of Molecular Biomedical Sciences, North Carolina State University College of Veterinary Medicine, Raleigh, North Carolina; and
| |
Collapse
|
12
|
Ortiz-Collazos S, Picciani PH, Oliveira ON, Pimentel AS, Edler KJ. Influence of levofloxacin and clarithromycin on the structure of DPPC monolayers. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2019; 1861:182994. [DOI: 10.1016/j.bbamem.2019.05.016] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2019] [Revised: 05/20/2019] [Accepted: 05/22/2019] [Indexed: 12/11/2022]
|
13
|
Flentje A, Kalsi R, Monahan TS. Small GTPases and Their Role in Vascular Disease. Int J Mol Sci 2019; 20:ijms20040917. [PMID: 30791562 PMCID: PMC6413073 DOI: 10.3390/ijms20040917] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2019] [Revised: 01/31/2019] [Accepted: 02/07/2019] [Indexed: 12/18/2022] Open
Abstract
Over eighty million people in the United States have cardiovascular disease that can affect the heart causing myocardial infarction; the carotid arteries causing stroke; and the lower extremities leading to amputation. The treatment for end-stage cardiovascular disease is surgical—either endovascular therapy with balloons and stents—or open reconstruction to reestablish blood flow. All interventions damage or destroy the protective inner lining of the blood vessel—the endothelium. An intact endothelium is essential to provide a protective; antithrombotic lining of a blood vessel. Currently; there are no agents used in the clinical setting that promote reendothelialization. This process requires migration of endothelial cells to the denuded vessel; proliferation of endothelial cells on the denuded vessel surface; and the reconstitution of the tight adherence junctions responsible for the formation of an impermeable surface. These processes are all regulated in part and are dependent on small GTPases. As important as the small GTPases are for reendothelialization, dysregulation of these molecules can result in various vascular pathologies including aneurysm formation, atherosclerosis, diabetes, angiogenesis, and hypertension. A better understanding of the role of small GTPases in endothelial cell migration is essential to the development for novel agents to treat vascular disease.
Collapse
Affiliation(s)
- Alison Flentje
- Division of Vascular Surgery, Department of Surgery, University of Maryland School of Medicine, 22 South Greene Street, Suite S10B00, Baltimore, MD 21201, USA.
| | - Richa Kalsi
- Division of Vascular Surgery, Department of Surgery, University of Maryland School of Medicine, 22 South Greene Street, Suite S10B00, Baltimore, MD 21201, USA.
| | - Thomas S Monahan
- Division of Vascular Surgery, Department of Surgery, University of Maryland School of Medicine, 22 South Greene Street, Suite S10B00, Baltimore, MD 21201, USA.
| |
Collapse
|
14
|
Li X, Shi X, Kaliszewski MJ, Smith AW. Fluorescence cross-correlation spectroscopy of lipid-peptide interactions on supported lipid bilayers. ADVANCES IN BIOMEMBRANES AND LIPID SELF-ASSEMBLY 2019. [DOI: 10.1016/bs.abl.2019.01.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
|
15
|
MARCKS regulates neuritogenesis and interacts with a CDC42 signaling network. Sci Rep 2018; 8:13278. [PMID: 30185885 PMCID: PMC6125478 DOI: 10.1038/s41598-018-31578-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2018] [Accepted: 08/21/2018] [Indexed: 01/24/2023] Open
Abstract
Through the process of neuronal differentiation, newly born neurons change from simple, spherical cells to complex, sprawling cells with many highly branched processes. One of the first stages in this process is neurite initiation, wherein cytoskeletal modifications facilitate membrane protrusion and extension from the cell body. Hundreds of actin modulators and microtubule-binding proteins are known to be involved in this process, but relatively little is known about how upstream regulators bring these complex networks together at discrete locations to produce neurites. Here, we show that Myristoylated alanine-rich C kinase substrate (MARCKS) participates in this process. Marcks−/− cortical neurons extend fewer neurites and have less complex neurite arborization patterns. We use an in vitro proteomics screen to identify MARCKS interactors in developing neurites and characterize an interaction between MARCKS and a CDC42-centered network. While the presence of MARCKS does not affect whole brain levels of activated or total CDC42, we propose that MARCKS is uniquely positioned to regulate CDC42 localization and interactions within specialized cellular compartments, such as nascent neurites.
Collapse
|
16
|
Abstract
Extracellular vesicles (EVs) are submicroscopic lipid vesicles secreted from cells and play significant roles in cell-to-cell communication by transporting varieties of cell signaling molecules like proteins, DNA, mRNA, and microRNA. Recent studies showed that EVs are highly correlated with cancer progression and metastasis. However, there are some difficulties in probing each vesicle using popular analytical methods because of their small sizes and heterogeneous origins. These obstacles may be overcome by using a novel approach that senses highly curved membrane and negatively charged membrane lipids. In this chapter, we highlight the basic biological concepts of EVs, isolation, and quantification methods, and recent advent of peptide probes for EVs.
Collapse
Affiliation(s)
- R Tamura
- BioFrontiers Institute, University of Colorado Boulder, Boulder, CO, United States
| | - H Yin
- BioFrontiers Institute, University of Colorado Boulder, Boulder, CO, United States.
| |
Collapse
|
17
|
Zhang L, Yethiraj A, Cui Q. Free Energy Calculations for the Peripheral Binding of Proteins/Peptides to an Anionic Membrane. 1. Implicit Membrane Models. J Chem Theory Comput 2015; 10:2845-59. [PMID: 26586509 DOI: 10.1021/ct500218p] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The binding of peptides and proteins to the surface of complex lipid membranes is important in many biological processes such as cell signaling and membrane remodeling. Computational studies can aid experiments by identifying physical interactions and structural motifs that determine the binding affinity and specificity. However, previous studies focused on either qualitative behaviors of protein/membrane interactions or the binding affinity of small peptides. Motivated by this observation, we set out to develop computational protocols for bimolecular binding to charged membranes that are applicable to both peptides and large proteins. In this work, we explore a method based on an implicit membrane/solvent model (generalized Born with a simple switching in combination with the Gouy-Chapman-Stern model for a charged interface), which we expect to lead to useful results when the binding does not implicate significant membrane deformation and local demixing of lipids. We show that the binding free energy can be efficiently computed following a thermodynamic cycle similar to protein-ligand binding calculations, especially when a Bennett acceptance ratio based protocol is used to consider both the membrane bound and solution conformational ensembles. Test calculations on a series of peptides show that our computational approach leads to binding affinities in encouraging agreement with experimental data, including for the challenging example of the bringing of flexible MARCKS-ED peptides to membranes. The calculations highlight that for a membrane with a significant fraction of anionic lipids, it is essential to include the effect of ion adsorption using the Stern model, which significantly modifies the effective surface charge. This implicit membrane model based computational protocol helps lay the groundwork for more systematic analysis of protein/peptide binding to membranes of complex shape and composition.
Collapse
Affiliation(s)
- Leili Zhang
- Department of Chemistry and Theoretical Chemistry Institute, University of Wisconsin-Madison , 1101 University Avenue, Madison, Wisconsin 53706, United States
| | - Arun Yethiraj
- Department of Chemistry and Theoretical Chemistry Institute, University of Wisconsin-Madison , 1101 University Avenue, Madison, Wisconsin 53706, United States
| | - Qiang Cui
- Department of Chemistry and Theoretical Chemistry Institute, University of Wisconsin-Madison , 1101 University Avenue, Madison, Wisconsin 53706, United States
| |
Collapse
|
18
|
Stahlberg H, Biyani N, Engel A. 3D reconstruction of two-dimensional crystals. Arch Biochem Biophys 2015; 581:68-77. [PMID: 26093179 DOI: 10.1016/j.abb.2015.06.006] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2015] [Revised: 06/08/2015] [Accepted: 06/11/2015] [Indexed: 02/02/2023]
Abstract
Electron crystallography of two-dimensional (2D) crystals determines the structure of membrane proteins in the lipid bilayer by imaging with cryo-electron microscopy and image processing. Membrane proteins can be packed in regular 2D arrays by their reconstitution in the presence of lipids at low lipid to protein weight-to-weight ratio. The crystal quality depends on the protein purity and homogeneity, its stability, and on the crystallization conditions. A 2D crystal presents the membrane protein in a functional and fully lipidated state. Electron crystallography determines the 3D structure even of small membrane proteins up to atomic resolution, but 3D density maps have a better resolution in the membrane plane than in the vertical direction. This problem can be partly eliminated by applying an iterative algorithm that exploits additional known constraints about the 2D crystal. 2D electron crystallography is particularly attractive for the structural analysis of membrane proteins that are too small for single particle analyses and too unstable to form 3D crystals. With the recent introduction of direct electron detector cameras, the routine determination of the atomic 3D structure of membrane-embedded membrane proteins is in reach.
Collapse
Affiliation(s)
- Henning Stahlberg
- Center for Cellular Imaging and NanoAnalytics, Biozentrum, University of Basel, Mattenstrasse 26, 4058 Basel, Switzerland
| | - Nikhil Biyani
- Center for Cellular Imaging and NanoAnalytics, Biozentrum, University of Basel, Mattenstrasse 26, 4058 Basel, Switzerland
| | - Andreas Engel
- Department of BioNanoscience, Delft University of Technology, Van der Waalsweg 8, 2628 CH Delft, The Netherlands; Department of Pharmacology, Case Western Reserve University, 10900 Euclid Avenue, Wood Bldg 321D, Cleveland, OH 44106-4965, USA.
| |
Collapse
|
19
|
Duan X, Ding M, Zhang R, Li L, Shi T, An L, Huang Q, Xu WS. Effects of Chain Rigidity on the Adsorption of a Polyelectrolyte Chain on Mixed Lipid Monolayer: A Monte Carlo Study. J Phys Chem B 2015; 119:6041-9. [DOI: 10.1021/acs.jpcb.5b00515] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Xiaozheng Duan
- State
Key Laboratory of Polymer Physics and Chemistry, Changchun Institute
of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, P. R. China
| | - Mingming Ding
- State
Key Laboratory of Polymer Physics and Chemistry, Changchun Institute
of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, P. R. China
| | - Ran Zhang
- State
Key Laboratory of Polymer Physics and Chemistry, Changchun Institute
of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, P. R. China
| | - Liangyi Li
- State
Key Laboratory of Polymer Physics and Chemistry, Changchun Institute
of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, P. R. China
| | - Tongfei Shi
- State
Key Laboratory of Polymer Physics and Chemistry, Changchun Institute
of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, P. R. China
| | - Lijia An
- State
Key Laboratory of Polymer Physics and Chemistry, Changchun Institute
of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, P. R. China
| | - Qingrong Huang
- Department
of Food Science, Rutgers University, 65 Dudley Road, New Brunswick, New Jersey 08901, United States
| | - Wen-Sheng Xu
- James
Franck Institute, The University of Chicago, Chicago, Illinois 60637, United States
| |
Collapse
|
20
|
Wang SJH, Tsai A, Wang M, Yoo S, Kim HY, Yoo B, Chui V, Kisiel M, Stewart B, Parkhouse W, Harden N, Krieger C. Phospho-regulated Drosophila adducin is a determinant of synaptic plasticity in a complex with Dlg and PIP2 at the larval neuromuscular junction. Biol Open 2014; 3:1196-206. [PMID: 25416060 PMCID: PMC4265757 DOI: 10.1242/bio.20148342] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2014] [Accepted: 10/15/2014] [Indexed: 12/12/2022] Open
Abstract
Adducin is a ubiquitously expressed actin- and spectrin-binding protein involved in cytoskeleton organization, and is regulated through phosphorylation of the myristoylated alanine-rich C-terminal kinase (MARCKS)-homology domain by protein kinase C (PKC). We have previously shown that the Drosophila adducin, Hu-li tai shao (Hts), plays a role in larval neuromuscular junction (NMJ) growth. Here, we find that the predominant isoforms of Hts at the NMJ contain the MARCKS-homology domain, which is important for interactions with Discs large (Dlg) and phosphatidylinositol 4,5-bisphosphate (PIP2). Through the use of Proximity Ligation Assay (PLA), we show that the adducin-like Hts isoforms are in complexes with Dlg and PIP2 at the NMJ. We provide evidence that Hts promotes the phosphorylation and delocalization of Dlg at the NMJ through regulation of the transcript distribution of the PAR-1 and CaMKII kinases in the muscle. We also show that Hts interactions with Dlg and PIP2 are impeded through phosphorylation of the MARCKS-homology domain. These results are further evidence that Hts is a signaling-responsive regulator of synaptic plasticity in Drosophila.
Collapse
Affiliation(s)
- Simon Ji Hau Wang
- Department of Molecular Biology and Biochemistry, Simon Fraser University, 8888 University Drive, Burnaby, BC V5A 1S6, Canada
| | - Amy Tsai
- Department of Biomedical Physiology and Kinesiology, Simon Fraser University, 8888 University Drive, Burnaby, BC V5A 1S6, Canada
| | - Mannan Wang
- Department of Biomedical Physiology and Kinesiology, Simon Fraser University, 8888 University Drive, Burnaby, BC V5A 1S6, Canada
| | - SooHyun Yoo
- Department of Molecular Biology and Biochemistry, Simon Fraser University, 8888 University Drive, Burnaby, BC V5A 1S6, Canada
| | - Hae-Yoon Kim
- Department of Molecular Biology and Biochemistry, Simon Fraser University, 8888 University Drive, Burnaby, BC V5A 1S6, Canada
| | - Byoungjoo Yoo
- Department of Molecular Biology and Biochemistry, Simon Fraser University, 8888 University Drive, Burnaby, BC V5A 1S6, Canada
| | - Vincent Chui
- Department of Biomedical Physiology and Kinesiology, Simon Fraser University, 8888 University Drive, Burnaby, BC V5A 1S6, Canada
| | - Marta Kisiel
- Department of Biology, University of Toronto at Mississauga, 3359 Mississauga Road, Mississauga, ON L5L 1C6, Canada
| | - Bryan Stewart
- Department of Biology, University of Toronto at Mississauga, 3359 Mississauga Road, Mississauga, ON L5L 1C6, Canada
| | - Wade Parkhouse
- Department of Biomedical Physiology and Kinesiology, Simon Fraser University, 8888 University Drive, Burnaby, BC V5A 1S6, Canada
| | - Nicholas Harden
- Department of Molecular Biology and Biochemistry, Simon Fraser University, 8888 University Drive, Burnaby, BC V5A 1S6, Canada
| | - Charles Krieger
- Department of Biomedical Physiology and Kinesiology, Simon Fraser University, 8888 University Drive, Burnaby, BC V5A 1S6, Canada
| |
Collapse
|
21
|
Lippoldt J, Händel C, Dietrich U, Käs J. Dynamic membrane structure induces temporal pattern formation. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2014; 1838:2380-90. [DOI: 10.1016/j.bbamem.2014.05.018] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2014] [Revised: 05/05/2014] [Accepted: 05/16/2014] [Indexed: 10/25/2022]
|
22
|
Trovò L, Stroobants S, D'Hooge R, Ledesma MD, Dotti CG. Improvement of biochemical and behavioral defects in the Niemann-Pick type A mouse by intraventricular infusion of MARCKS. Neurobiol Dis 2014; 73:319-26. [PMID: 25251606 DOI: 10.1016/j.nbd.2014.09.008] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2014] [Revised: 07/31/2014] [Accepted: 09/12/2014] [Indexed: 12/28/2022] Open
Abstract
Niemann-Pick disease type A (NPDA) is a fatal disease due to mutations in the acid sphingomyelinase (ASM) gene, which triggers the abnormal accumulation of sphingomyelin (SM) in lysosomes and the plasma membrane of mutant cells. Although the disease affects multiple organs, the impact on the brain is the most invalidating feature. The mechanisms responsible for the cognitive deficit characteristic of this condition are only partially understood. Using mice lacking the ASM gene (ASMko), a model system in NPDA research, we report here that high sphingomyelin levels in mutant neurons lead to low synaptic levels of phosphoinositide PI(4,5)P2 and reduced activity of its hydrolyzing phosphatase PLCγ, which are key players in synaptic plasticity events. In addition, mutant neurons have reduced levels of membrane-bound MARCKS, a protein required for PI(4,5)P2 membrane clustering and hydrolysis. Intracerebroventricular infusion of a peptide that mimics the effector domain of MARCKS increases the content of PI(4,5)P2 in the synaptic membrane and ameliorates behavioral abnormalities in ASMko mice.
Collapse
Affiliation(s)
- Laura Trovò
- Center for Human Genetics, VIB Center for the Biology of Disease and Katholieke Universiteit Leuven, Herestraat 49, 3000 Leuven, Belgium.
| | - Stijn Stroobants
- Laboratory of Biological Psychology, Faculty of Psychology and Educational Sciences, University of Leuven (K.U. Leuven), Belgium
| | - Rudi D'Hooge
- Laboratory of Biological Psychology, Faculty of Psychology and Educational Sciences, University of Leuven (K.U. Leuven), Belgium
| | - Maria Dolores Ledesma
- Centro Biología Molecular "Severo Ochoa" (CSIC-UAM), Campus Universidad Autónoma de Madrid, Nicolás Cabrera 1, 28049 Madrid, Spain
| | - Carlos G Dotti
- Centro Biología Molecular "Severo Ochoa" (CSIC-UAM), Campus Universidad Autónoma de Madrid, Nicolás Cabrera 1, 28049 Madrid, Spain.
| |
Collapse
|
23
|
Duan X, Li Y, Zhang R, Shi T, An L, Huang Q. Compositional redistribution and dynamic heterogeneity in mixed lipid membrane induced by polyelectrolyte adsorption: effects of chain rigidity. THE EUROPEAN PHYSICAL JOURNAL. E, SOFT MATTER 2014; 37:27. [PMID: 25143187 DOI: 10.1140/epje/i2014-14071-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2014] [Revised: 03/21/2014] [Accepted: 07/07/2014] [Indexed: 06/03/2023]
Abstract
Monte Carlo simulation is employed to investigate the interaction between a polyelectrolyte and a fluid mixed membrane containing neutral (phosphatidyl-choline, PC), monovalent anionic (phosphatidylserine, PS), and multivalent anionic (phosphatidylinositol, PIP2) lipids. The effects of the intrinsic polyelectrolyte rigidity and solution ionic strength on the lateral rearrangement and dynamics of different anionic lipid species are systematically studied. Our results show that, the increase of polyelectrolyte chain rigidity reduces the loss of polyelectrolyte conformational entropy and the energy gains in electrostatic interaction, but raises the demixing entropy loss of the segregated anionic lipids. Therefore, the polyelectrolyte/membrane adsorption strength exhibits a non-monotonic dependence on the polyelectrolyte rigid parameter k ang, and there exists a certain optimal k ang for which the adsorption strength is maximal. Because the less loss of chain conformational entropy dominates the increase of the demixing entropy loss of the segregated anionic lipids and the decreases of the electrostatic energy gains, the semiflexible polyelectrolyte adsorbs onto the membrane more firmly than the flexible one. Whereas, for the adsorption of rigid polyelectrolyte, larger anionic lipid demixing entropy loss and less energy gain in the electrostatic interaction dominate over the decrease of the polyelectrolyte conformation entropy loss, leading to the desorption of the chain from the membrane. By decreasing the ionic concentration of the salt solution, the certain optimal k ang shifts to larger values. The cooperative effects of the adsorbing polyelectrolyte beads determine the concentration gradients and hierarchical mobility of the bound anionic lipids, as well as the polyelectrolyte dynamics.
Collapse
Affiliation(s)
- Xiaozheng Duan
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 130022, Changchun, China
| | | | | | | | | | | |
Collapse
|
24
|
Effect of polyelectrolyte adsorption on lateral distribution and dynamics of anionic lipids: a Monte Carlo study of a coarse-grain model. EUROPEAN BIOPHYSICS JOURNAL: EBJ 2014; 43:377-91. [DOI: 10.1007/s00249-014-0969-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2014] [Revised: 05/12/2014] [Accepted: 05/20/2014] [Indexed: 01/12/2023]
|
25
|
Lhor M, Bernier SC, Horchani H, Bussières S, Cantin L, Desbat B, Salesse C. Comparison between the behavior of different hydrophobic peptides allowing membrane anchoring of proteins. Adv Colloid Interface Sci 2014; 207:223-39. [PMID: 24560216 PMCID: PMC4028306 DOI: 10.1016/j.cis.2014.01.015] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2013] [Revised: 01/11/2014] [Accepted: 01/13/2014] [Indexed: 10/25/2022]
Abstract
Membrane binding of proteins such as short chain dehydrogenase reductases or tail-anchored proteins relies on their N- and/or C-terminal hydrophobic transmembrane segment. In this review, we propose guidelines to characterize such hydrophobic peptide segments using spectroscopic and biophysical measurements. The secondary structure content of the C-terminal peptides of retinol dehydrogenase 8, RGS9-1 anchor protein, lecithin retinol acyl transferase, and of the N-terminal peptide of retinol dehydrogenase 11 has been deduced by prediction tools from their primary sequence as well as by using infrared or circular dichroism analyses. Depending on the solvent and the solubilization method, significant structural differences were observed, often involving α-helices. The helical structure of these peptides was found to be consistent with their presumed membrane binding. Langmuir monolayers have been used as membrane models to study lipid-peptide interactions. The values of maximum insertion pressure obtained for all peptides using a monolayer of 1,2-dioleoyl-sn-glycero-3-phospho-ethanolamine (DOPE) are larger than the estimated lateral pressure of membranes, thus suggesting that they bind membranes. Polarization modulation infrared reflection absorption spectroscopy has been used to determine the structure and orientation of these peptides in the absence and in the presence of a DOPE monolayer. This lipid induced an increase or a decrease in the organization of the peptide secondary structure. Further measurements are necessary using other lipids to better understand the membrane interactions of these peptides.
Collapse
Affiliation(s)
- Mustapha Lhor
- CUO-Recherche, Centre de recherche du CHU de Québec, Hôpital du Saint-Sacrement, Département d'ophtalmologie, Faculté de médecine, Université Laval, Québec, Québec G1V 0A6, Canada; Regroupement stratégique PROTEO, Université Laval, Québec, Québec G1V 0A6, Canada
| | - Sarah C Bernier
- CUO-Recherche, Centre de recherche du CHU de Québec, Hôpital du Saint-Sacrement, Département d'ophtalmologie, Faculté de médecine, Université Laval, Québec, Québec G1V 0A6, Canada; Regroupement stratégique PROTEO, Université Laval, Québec, Québec G1V 0A6, Canada
| | - Habib Horchani
- CUO-Recherche, Centre de recherche du CHU de Québec, Hôpital du Saint-Sacrement, Département d'ophtalmologie, Faculté de médecine, Université Laval, Québec, Québec G1V 0A6, Canada; Regroupement stratégique PROTEO, Université Laval, Québec, Québec G1V 0A6, Canada
| | - Sylvain Bussières
- CUO-Recherche, Centre de recherche du CHU de Québec, Hôpital du Saint-Sacrement, Département d'ophtalmologie, Faculté de médecine, Université Laval, Québec, Québec G1V 0A6, Canada; Regroupement stratégique PROTEO, Université Laval, Québec, Québec G1V 0A6, Canada
| | - Line Cantin
- CUO-Recherche, Centre de recherche du CHU de Québec, Hôpital du Saint-Sacrement, Département d'ophtalmologie, Faculté de médecine, Université Laval, Québec, Québec G1V 0A6, Canada; Regroupement stratégique PROTEO, Université Laval, Québec, Québec G1V 0A6, Canada
| | - Bernard Desbat
- CBMN-UMR 5248 CNRS, Université de Bordeaux, IPB, Allée Geoffroy Saint Hilaire, 33600 Pessac, France
| | - Christian Salesse
- CUO-Recherche, Centre de recherche du CHU de Québec, Hôpital du Saint-Sacrement, Département d'ophtalmologie, Faculté de médecine, Université Laval, Québec, Québec G1V 0A6, Canada; Regroupement stratégique PROTEO, Université Laval, Québec, Québec G1V 0A6, Canada.
| |
Collapse
|
26
|
Alonso S, Bär M. Modeling domain formation of MARCKS and protein kinase C at cellular membranes. ACTA ACUST UNITED AC 2014. [DOI: 10.1140/epjnbp14] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
27
|
Duan X, Zhang R, Li Y, Shi T, An L, Huang Q. Monte Carlo Study of Polyelectrolyte Adsorption on Mixed Lipid Membrane. J Phys Chem B 2013; 117:989-1002. [DOI: 10.1021/jp310017j] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Affiliation(s)
- Xiaozheng Duan
- State Key Laboratory of Polymer
Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, P.
R. China
| | - Ran Zhang
- State Key Laboratory of Polymer
Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, P.
R. China
| | - Yunqi Li
- Food Science Department, Rutgers University, New Brunswick, New Jersey 08901,
United States
| | - Tongfei Shi
- State Key Laboratory of Polymer
Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, P.
R. China
| | - Lijia An
- State Key Laboratory of Polymer
Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, P.
R. China
| | - Qingrong Huang
- Food Science Department, Rutgers University, New Brunswick, New Jersey 08901,
United States
| |
Collapse
|
28
|
Kalwa H, Sartoretto JL, Sartoretto SM, Michel T. Angiotensin-II and MARCKS: a hydrogen peroxide- and RAC1-dependent signaling pathway in vascular endothelium. J Biol Chem 2012; 287:29147-58. [PMID: 22773836 DOI: 10.1074/jbc.m112.381517] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
MARCKS is an actin-binding protein that modulates vascular endothelial cell migration and cytoskeleton signaling (Kalwa, H., and Michel, T. (2011) J. Biol. Chem. 286, 2320-2330). Angiotensin-II is a vasoactive peptide implicated in vascular physiology as well as pathophysiology; the pathways connecting angiotensin-II and cytoskeletal remodeling are incompletely understood. Here we show that MARCKS is expressed in intact arterial preparations, with prominent staining of the endothelium. In endothelial cells, angiotensin-II-promoted MARCKS phosphorylation is abrogated by PEG-catalase, implicating endogenous H(2)O(2) in the angiotensin-II response. Studies using the H(2)O(2) biosensor HyPer2 reveal that angiotensin-II promotes increases in intracellular H(2)O(2). We used a Rac1 FRET biosensor to show that angiotensin-II promotes Rac1 activation that is attenuated by PEG-catalase. siRNA-mediated Rac1 knockdown blocks angiotensin-II-stimulated MARCKS phosphorylation. Cell imaging studies using a phosphoinositide 4,5-bisphosphate (PIP(2)) biosensor revealed that angiotensin-II PIP(2) regulation depends on MARCKS and H(2)O(2). siRNA-mediated knockdown of MARCKS or Rac1 attenuates receptor-mediated activation of the tyrosine kinase c-Abl and disrupts actin fiber formation. These studies establish a critical role for H(2)O(2) in angiotensin-II signaling to the endothelial cytoskeleton in a novel pathway that is critically dependent on MARCKS, Rac1, and c-Abl.
Collapse
Affiliation(s)
- Hermann Kalwa
- Cardiovascular Division, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts 02115, USA
| | | | | | | |
Collapse
|
29
|
Alonso S, Dietrich U, Händel C, Käs JA, Bär M. Oscillations in the lateral pressure of lipid monolayers induced by nonlinear chemical dynamics of the second messengers MARCKS and protein kinase C. Biophys J 2011; 100:939-47. [PMID: 21320438 DOI: 10.1016/j.bpj.2010.12.3702] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2010] [Revised: 11/26/2010] [Accepted: 12/02/2010] [Indexed: 11/29/2022] Open
Abstract
The binding of the MARCKS peptide to the lipid monolayer containing PIP(2) increases the lateral pressure of the monolayer. The unbinding dynamics modulated by protein kinase C leads to oscillations in lateral pressure of lipid monolayers. These periodic dynamics can be attributed to changes in the crystalline lipid domain size. We have developed a mathematical model to explain these observations based on the changes in the physical structure of the monolayer by the translocation of MARCKS peptide. The model indicates that changes in lipid domain size drives these oscillations. The model is extended to an open system that sustains chemical oscillations.
Collapse
Affiliation(s)
- Sergio Alonso
- Physikalisch-Technische Bundesanstalt, Berlin, Germany.
| | | | | | | | | |
Collapse
|
30
|
Dietrich U, Krüger P, Käs JA. Structural investigation on the adsorption of the MARCKS peptide on anionic lipid monolayers - effects beyond electrostatic. Chem Phys Lipids 2011; 164:266-75. [PMID: 21376024 DOI: 10.1016/j.chemphyslip.2011.02.004] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2010] [Revised: 02/16/2011] [Accepted: 02/17/2011] [Indexed: 11/25/2022]
Abstract
The presence of charged lipids in the cell membrane constitutes the background for the interaction with numerous membrane proteins. As a result, the valence of the lipids plays an important role concerning their lateral organization in the membrane and therefore the very manner of this interaction. This present study examines this aspect, particularly regarding to the interaction of the anionic lipid DPPS with the highly basic charged effector domain of the MARCKS protein, examined in monolayer model systems. Film balance, fluorescence microscopy and X-ray reflection/diffraction measurements were used to study the behavior of DPPS in a mixture with DPPC for its dependance on the presence of MARCKS (151-175). In the mixed monolayer, both lipids are completely miscible therefore DPPS is incorporated in the ordered crystalline DPPC domains as well. The interaction of MARCKS peptide with the mixed monolayer leads to the formation of lipid/peptide clusters causing an elongation of the serine group of the DPPS up to 7Å in direction to surface normal into the subphase. The large cationic charge of the peptide pulls out the serine group of the interface which simultaneously causes an elongation of the phosphodiester group of the lipid fraction too. The obtained results were used to compare the interaction of MARCKS peptide with the polyvalent PIP(2) in mixed monolayers. On this way we surprisingly find out, that the relative small charge difference of the anionic lipids causes a significant different interaction with MARCKS (151-175). The lateral arrangement of the anionic lipids depends on their charge values and determines the diffusion of the electrostatic binding clusters within the membrane.
Collapse
Affiliation(s)
- Undine Dietrich
- Division of Soft Matter Physics, Leipzig University, Linnstrasse, Germany.
| | | | | |
Collapse
|
31
|
Alonso S, Bär M. Phase separation and bistability in a three-dimensional model for protein domain formation at biomembranes. Phys Biol 2010; 7:046012. [PMID: 21149929 DOI: 10.1088/1478-3975/7/4/046012] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Proteins in living cells interact with membranes. They may bind to or unbind from the membrane to the cytosol depending on the lipid composition of the membrane and their interaction with cytosolic enzymes. Moreover, proteins can accumulate at the membrane and assemble in spatial domains. Here, a simple model of protein cycling at biomembranes is studied, when the total number of proteins is conserved. Specifically, we consider the spatio-temporal dynamics of MARCKS proteins and their interactions with enzymes facilitating translocation from and rebinding to the membrane. The model exhibits two qualitatively different mechanisms of protein domain formation: phase separation related to a long-wave instability of a membrane state with homogeneous protein coverage and stable coexistence of two states with different homogeneous protein coverage in bistable media. We evaluate the impact of the cytosolic volume on the occurrence of protein pattern formation by simulations in a three-dimensional model. We show that the explicit treatment of the volume in the model leads to an effective rescaling of the reaction rates. For a simplified model of protein cycling, we can derive analytical expressions for the rescaling coefficients and verify them by direct simulations with the complete three-dimensional model.
Collapse
Affiliation(s)
- Sergio Alonso
- Physikalisch-Technische Bundesanstalt, Abbestrasse 2-12, 10587 Berlin, Germany.
| | | |
Collapse
|
32
|
Abstract
All vertebrate nervous systems, except those of agnathans, make extensive use of the myelinated fiber, a structure formed by coordinated interplay between neuronal axons and glial cells. Myelinated fibers, by enhancing the speed and efficiency of nerve cell communication allowed gnathostomes to evolve extensively, forming a broad range of diverse lifestyles in most habitable environments. The axon-covering myelin sheaths are structurally and biochemically novel as they contain high portions of lipid and a few prominent low molecular weight proteins often considered unique to myelin. Here we searched genome and EST databases to identify orthologs and paralogs of the following myelin-related proteins: (1) myelin basic protein (MBP), (2) myelin protein zero (MPZ, formerly P0), (3) proteolipid protein (PLP1, formerly PLP), (4) peripheral myelin protein-2 (PMP2, formerly P2), (5) peripheral myelin protein-22 (PMP22) and (6) stathmin-1 (STMN1). Although widely distributed in gnathostome/vertebrate genomes, neither MBP nor MPZ are present in any of nine invertebrate genomes examined. PLP1, which replaced MPZ in tetrapod CNS myelin sheaths, includes a novel 'tetrapod-specific' exon (see also Möbius et al., 2009). Like PLP1, PMP2 first appears in tetrapods and like PLP1 its origins can be traced to invertebrate paralogs. PMP22, with origins in agnathans, and STMN1 with origins in protostomes, existed well before the evolution of gnathostomes. The coordinated appearance of MBP and MPZ with myelin sheaths and of PLP1 with tetrapod CNS myelin suggests interdependence - new proteins giving rise to novel vertebrate structures.
Collapse
|