1
|
Melcrová A, Klein C, Roos WH. Membrane-Active Antibiotics Affect Domains in Bacterial Membranes as the First Step of Their Activity. NANO LETTERS 2024; 24:11800-11807. [PMID: 39145544 PMCID: PMC11440642 DOI: 10.1021/acs.nanolett.4c01873] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 08/07/2024] [Accepted: 08/07/2024] [Indexed: 08/16/2024]
Abstract
The need to combat antimicrobial resistance is becoming more and more pressing. Here we investigate the working mechanism of a small cationic agent, N-alkylamide 3d, by conventional and high-speed atomic force microscopy. We show that N-alkylamide 3d interacts with the membrane of Staphylococcus aureus, where it changes the organization and dynamics of lipid domains. After this initial step, supramolecular structures of the antimicrobial agent attach on top of the affected membrane gradually, covering it entirely. These results demonstrate that lateral domains in the bacterial membranes might be affected by small antimicrobial agents more often than anticipated. At the same time, we show a new dual-step activity of N-alkylamide 3d that not only destroys the lateral membrane organization but also effectively covers the whole membrane with aggregates. This final step could render the membrane inaccessible from the outside and possibly prevent signaling and waste disposal of living bacteria.
Collapse
Affiliation(s)
- Adéla Melcrová
- Molecular
Biophysics, Zernike Institute for Advanced Materials, Rijksuniversiteit Groningen, 9712 AG Groningen, The Netherlands
| | - Christiaan Klein
- Molecular
Biophysics, Zernike Institute for Advanced Materials, Rijksuniversiteit Groningen, 9712 AG Groningen, The Netherlands
| | - Wouter H. Roos
- Molecular
Biophysics, Zernike Institute for Advanced Materials, Rijksuniversiteit Groningen, 9712 AG Groningen, The Netherlands
| |
Collapse
|
2
|
Wnętrzak A, Chachaj-Brekiesz A, Kobierski J, Dynarowicz-Latka P. The Structure of Oxysterols Determines Their Behavior at Phase Boundaries: Implications for Model Membranes and Structure-Activity Relationships. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2024; 1440:3-29. [PMID: 38036872 DOI: 10.1007/978-3-031-43883-7_1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/02/2023]
Abstract
The presence of an additional polar group in the cholesterol backbone increases the hydrophilicity of resulting compounds (oxysterols), determines their arrangement at the phase boundary, and interactions with other lipids and proteins. As a result, physicochemical properties of biomembranes (i.e., elasticity, permeability, and ability to bind proteins) are modified, which in turn may affect their functioning. The observed effect depends on the type of oxysterol and its concentration and can be both positive (e.g., antiviral activity) or negative (disturbance of cholesterol homeostasis, signal transduction, and protein segregation). The membrane activity of oxysterols has been successfully studied using membrane models (vesicles, monolayers, and solid supported films). Membrane models, in contrast to the natural systems, provide the possibility to selectively examine the specific aspect of biomolecule-membrane interactions. Moreover, the gradual increase in the complexity of the used model allows to understand the molecular phenomena occurring at the membrane level. The interest in research on artificial membranes has increased significantly in recent years, mainly due to the development of modern and sophisticated physicochemical methods (static and dynamic) in both the micro- and nanoscale, which are applied with the assistance of powerful theoretical calculations. This review provides an overview of the most important findings on this topic in the current literature.
Collapse
Affiliation(s)
- Anita Wnętrzak
- Faculty of Chemistry, Jagiellonian University, Kraków, Poland.
| | | | - Jan Kobierski
- Department of Pharmaceutical Biophysics, Faculty of Pharmacy, Jagiellonian University Medical College, Kraków, Poland
| | | |
Collapse
|
3
|
Krok E, Stephan M, Dimova R, Piatkowski L. Tunable biomimetic bacterial membranes from binary and ternary lipid mixtures and their application in antimicrobial testing. BIOCHIMICA ET BIOPHYSICA ACTA. BIOMEMBRANES 2023; 1865:184194. [PMID: 37328023 DOI: 10.1016/j.bbamem.2023.184194] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 06/05/2023] [Accepted: 06/08/2023] [Indexed: 06/18/2023]
Abstract
The reconstruction of accurate yet simplified mimetic models of cell membranes is a very challenging goal of synthetic biology. To date, most of the research focuses on the development of eukaryotic cell membranes, while reconstitution of their prokaryotic counterparts has not been fully addressed, and the proposed models do not reflect well the complexity of bacterial cell envelopes. Here, we describe the reconstitution of biomimetic bacterial membranes with an increasing level of complexity, developed from binary and ternary lipid mixtures. Giant unilamellar vesicles composed of phosphatidylcholine (PC) and phosphatidylethanolamine (PE); PC and phosphatidylglycerol (PG); PE and PG; PE, PG and cardiolipin (CA) at varying molar ratios were successfully prepared by the electroformation method. Each of the proposed mimetic models focuses on reproducing specific membrane features such as membrane charge, curvature, leaflets asymmetry, or the presence of phase separation. GUVs were characterized in terms of size distribution, surface charge, and lateral organization. Finally, the developed models were tested against the lipopeptide antibiotic daptomycin. The obtained results showed a clear dependency of daptomycin binding efficiency on the amount of negatively charged lipid species present in the membrane. We anticipate that the models proposed here can be applied not only in antimicrobial testing but also serve as platforms for studying fundamental biological processes in bacteria as well as their interaction with physiologically relevant biomolecules.
Collapse
Affiliation(s)
- Emilia Krok
- Poznan University of Technology, Faculty of Materials Engineering and Technical Physics, Institute of Physics, Piotrowo 3, 60-965 Poznan, Poland; Max Planck Institute of Colloids and Interfaces, Science Park Golm, 14476 Potsdam, Germany.
| | - Mareike Stephan
- Max Planck Institute of Colloids and Interfaces, Science Park Golm, 14476 Potsdam, Germany
| | - Rumiana Dimova
- Max Planck Institute of Colloids and Interfaces, Science Park Golm, 14476 Potsdam, Germany.
| | - Lukasz Piatkowski
- Poznan University of Technology, Faculty of Materials Engineering and Technical Physics, Institute of Physics, Piotrowo 3, 60-965 Poznan, Poland
| |
Collapse
|
4
|
Kozon-Markiewicz D, Kopiasz RJ, Głusiec M, Łukasiak A, Bednarczyk P, Jańczewski D. Membrane lytic activity of antibacterial ionenes, critical role of phosphatidylcholine (PC) and cardiolipin (CL). Colloids Surf B Biointerfaces 2023; 229:113480. [PMID: 37536168 DOI: 10.1016/j.colsurfb.2023.113480] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 07/16/2023] [Accepted: 07/26/2023] [Indexed: 08/05/2023]
Abstract
Understanding the mechanism by which an antibacterial agent interacts with a model membrane provides vital information for better design of future antibiotics. In this study, we investigated two antibacterial polymers, hydrophilic C0-T-p and hydrophobic C8-T-p ionenes, known for their potent antimicrobial activity and ability to disrupt the integrity of lipid bilayers. Our hypothesize is that the composition of a lipid bilayer alters the mechanism of ionenes action, potentially providing an explanation for the observed differences in their bioactivity and selectivity. Calcein release experiments utilizing a range of liposomes to examine the impact of (i) cardiolipin (CL) to phosphatidylglycerol (PG) ratio, (ii) overall vesicle charge, and (iii) phosphatidylethanolamine (PE) to phosphatidylcholine (PC) ratio on the activity of ionenes were performed. Additionally, polymer-bilayer interactions were also investigated through vesicle fusion assay and the black lipid membrane (BLM) technique The activity of C0-T-p is strongly influenced by the amount of cardiolipin, while the activity of C8-T-p primarily depends on the overall vesicle charge. Consequently, C0-T-p acts through interactions with CL, whereas C8-T-p modifies the bulk properties of the membrane in a less-specific manner. Moreover, the presence of a small amount of PC in the membrane makes the vesicle resistant to permeabilization by tested molecules. Intriguingly, more hydrophilic C0-T-p retains higher membrane activity compared to the hydrophobic C8-T-p. However, both ionenes induce vesicle fusion and increase lipid bilayer ion permeability.
Collapse
Affiliation(s)
| | - Rafał J Kopiasz
- Faculty of Chemistry, Warsaw University of Technology, Noakowskiego 3, 00-664 Warsaw, Poland
| | - Martyna Głusiec
- Faculty of Chemistry, Warsaw University of Technology, Noakowskiego 3, 00-664 Warsaw, Poland
| | - Agnieszka Łukasiak
- Department of Physics and Biophysics, Institute of Biology, Warsaw University of Life Sciences - SGGW, Warsaw, Poland
| | - Piotr Bednarczyk
- Department of Physics and Biophysics, Institute of Biology, Warsaw University of Life Sciences - SGGW, Warsaw, Poland
| | - Dominik Jańczewski
- Faculty of Chemistry, Warsaw University of Technology, Noakowskiego 3, 00-664 Warsaw, Poland.
| |
Collapse
|
5
|
André C, Islam MM, Paschalis E, Bispo PJM. Comparative In Vitro Activity of New Lipoglycopeptides and Vancomycin Against Ocular Staphylococci and Their Toxicity on the Human Corneal Epithelium. Cornea 2023; 42:615-623. [PMID: 36455096 PMCID: PMC10060036 DOI: 10.1097/ico.0000000000003197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Revised: 09/26/2022] [Accepted: 10/11/2022] [Indexed: 12/05/2022]
Abstract
PURPOSE The purpose of this study was to assess the potential of new lipoglycopeptides as novel topical therapies for improved treatment of recalcitrant ocular infections. We evaluated the in vitro antimicrobial activity of oritavancin, dalbavancin, and telavancin compared with vancomycin (VAN) against a large collection of ocular staphylococcal isolates and their cytotoxicity on human corneal epithelial cells (HCECs). METHODS Antimicrobial susceptibility testing was performed by broth microdilution against 223 Staphylococcus spp. clinical isolates. Time-kill kinetics were determined for methicillin-resistant strains of Staphylococcus aureus (MRSA) (n = 2) and Staphylococcus epidermidis (MRSE) (n = 1). In vitro cytotoxicity assays were performed with AlamarBlue and live/dead staining on HCECs. RESULTS All new lipoglycopeptides showed strong in vitro potency against ocular staphylococci, including multidrug-resistant MRSA strains, with dalbavancin showing a slightly higher potency overall [minimum inhibitory concentration (MIC) 90 0.06 μg/mL] compared with telavancin and oritavancin (MIC 90 0.12 μg/mL), whereas VAN had the lowest potency (MIC 90 2 μg/mL). Oritavancin exerted rapid bactericidal activity within 1 h for MRSA and 2 h for MRSE. All other drugs were bactericidal within 24 h. At a concentration commonly used for topical preparations (25 mg/mL), cytotoxicity was observed for VAN after 5 min of incubation, whereas reduction in HCEC viability was not seen for telavancin and was less affected by oritavancin and dalbavancin. Cytotoxicity at 25 mg/mL was seen for all drugs at 30 and 60 min but was significantly reduced or undetected for lower concentrations. CONCLUSIONS Our study demonstrates that new lipoglycopeptides have substantially better in vitro antimicrobial activity against ocular staphylococcal isolates compared with VAN, with a similar or improved toxicity profile on HCECs.
Collapse
Affiliation(s)
- Camille André
- Department of Ophthalmology, Massachusetts Eye and Ear, Harvard Medical School, Boston, MA
- Infectious Disease Institute, Massachusetts Eye and Ear, Harvard Medical School, Boston, MA; and
| | - Mohammad Mirazul Islam
- Department of Ophthalmology, Massachusetts Eye and Ear, Harvard Medical School, Boston, MA
- Department of Ophthalmology, Schepens Eye Research Institute, Harvard Medical School, Boston, MA
| | - Eleftherios Paschalis
- Department of Ophthalmology, Massachusetts Eye and Ear, Harvard Medical School, Boston, MA
- Department of Ophthalmology, Schepens Eye Research Institute, Harvard Medical School, Boston, MA
| | - Paulo J. M. Bispo
- Department of Ophthalmology, Massachusetts Eye and Ear, Harvard Medical School, Boston, MA
- Infectious Disease Institute, Massachusetts Eye and Ear, Harvard Medical School, Boston, MA; and
| |
Collapse
|
6
|
Ju H, Liu L, Liu X, Wu Y, Li L, Gin KYH, Zhang G, Zhang J. A comprehensive study of the source, occurrence, and spatio-seasonal dynamics of 12 target antibiotics and their potential risks in a cold semi-arid catchment. WATER RESEARCH 2023; 229:119433. [PMID: 36493699 DOI: 10.1016/j.watres.2022.119433] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Revised: 11/06/2022] [Accepted: 11/25/2022] [Indexed: 06/17/2023]
Abstract
Antibiotics are widely consumed and are ubiquitous in aquatic ecosystems, such as in agricultural and fishery lake catchments, for prophylactic treatment. However, there are very few comprehensive studies reporting all seasonal occurrences, spatiotemporal dynamics, and risk assessments of antibiotics in agricultural lake catchments, especially in cold regions during the winter season. This study measured seasonality in the concentrations of 12 antibiotics belonging to seven different classes in the surface waters (tributary rivers and lakes) of the Chagan lake catchment in northeast China. All antibiotics were detected in most of the water samples across most seasons, with concentrations varying for different compounds, locations, and seasons. These levels were discussed in terms of the main sources at different sampling sites, including agriculture, fish farming, municipal wastewater, and others. In general, the highest concentrations of most compounds were observed during the freeze-thaw periods. The number of antibiotic resistance genes (ARGs) correlated with compound lipophilicity and half-life. Based on the ecological risks of antibiotics and the relative abundance of ARGs, a hierarchical control priority list (HCPL) of antibiotics was determined, considering four levels (critical, high, medium, and low). To further strengthen the control and effectively manage antibiotics, we highly recommend the reduction and selective use of veterinary antibiotics in winter and spring during the freeze-thaw periods in the Chagan lake catchment.
Collapse
Affiliation(s)
- Hanyu Ju
- Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun 130102, China; University of the Chinese Academy of Sciences, Beijing 100049, China
| | - Ling Liu
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China
| | - Xuemei Liu
- Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun 130102, China
| | - Yao Wu
- Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun 130102, China
| | - Lei Li
- Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun 130102, China
| | - Karina Yew-Hoong Gin
- Department of Civil & Environmental Engineering, National University of Singapore, E1A-07-03, 1 Engineering Drive 2, Singapore 117576, Singapore; NUS Environmental Research Institute, National University of Singapore, 1 Create way, Create Tower, #15-02, Singapore 138602, Singapore
| | - Guangxin Zhang
- Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun 130102, China.
| | - Jingjie Zhang
- Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun 130102, China; Department of Civil & Environmental Engineering, National University of Singapore, E1A-07-03, 1 Engineering Drive 2, Singapore 117576, Singapore; NUS Environmental Research Institute, National University of Singapore, 1 Create way, Create Tower, #15-02, Singapore 138602, Singapore; Shenzhen Municipal Engineering Lab of Environmental IoT Technologies, Southern University of Science and Technology, Shenzhen 518055, China.
| |
Collapse
|
7
|
van Groesen E, Innocenti P, Martin NI. Recent Advances in the Development of Semisynthetic Glycopeptide Antibiotics: 2014-2022. ACS Infect Dis 2022; 8:1381-1407. [PMID: 35895325 PMCID: PMC9379927 DOI: 10.1021/acsinfecdis.2c00253] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The accelerated appearance of drug-resistant bacteria poses an ever-growing threat to modern medicine's capacity to fight infectious diseases. Gram-positive species such as methicillin-resistant Staphylococcus aureus (MRSA) and Streptococcus pneumoniae continue to contribute significantly to the global burden of antimicrobial resistance. For decades, the treatment of serious Gram-positive infections relied upon the glycopeptide family of antibiotics, typified by vancomycin, as a last line of defense. With the emergence of vancomycin resistance, the semisynthetic glycopeptides telavancin, dalbavancin, and oritavancin were developed. The clinical use of these compounds is somewhat limited due to toxicity concerns and their unusual pharmacokinetics, highlighting the importance of developing next-generation semisynthetic glycopeptides with enhanced antibacterial activities and improved safety profiles. This Review provides an updated overview of recent advancements made in the development of novel semisynthetic glycopeptides, spanning the period from 2014 to today. A wide range of approaches are covered, encompassing innovative strategies that have delivered semisynthetic glycopeptides with potent activities against Gram-positive bacteria, including drug-resistant strains. We also address recent efforts aimed at developing targeted therapies and advances made in extending the activity of the glycopeptides toward Gram-negative organisms.
Collapse
Affiliation(s)
- Emma van Groesen
- Biological Chemistry Group, Institute of Biology Leiden, Leiden University 2333 BE Leiden, The Netherlands
| | - Paolo Innocenti
- Biological Chemistry Group, Institute of Biology Leiden, Leiden University 2333 BE Leiden, The Netherlands
| | - Nathaniel I Martin
- Biological Chemistry Group, Institute of Biology Leiden, Leiden University 2333 BE Leiden, The Netherlands
| |
Collapse
|
8
|
Carey AB, Ashenden A, Köper I. Model architectures for bacterial membranes. Biophys Rev 2022; 14:111-143. [PMID: 35340604 PMCID: PMC8921416 DOI: 10.1007/s12551-021-00913-7] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Accepted: 11/14/2021] [Indexed: 02/06/2023] Open
Abstract
The complex composition of bacterial membranes has a significant impact on the understanding of pathogen function and their development towards antibiotic resistance. In addition to the inherent complexity and biosafety risks of studying biological pathogen membranes, the continual rise of antibiotic resistance and its significant economical and clinical consequences has motivated the development of numerous in vitro model membrane systems with tuneable compositions, geometries, and sizes. Approaches discussed in this review include liposomes, solid-supported bilayers, and computational simulations which have been used to explore various processes including drug-membrane interactions, lipid-protein interactions, host-pathogen interactions, and structure-induced bacterial pathogenesis. The advantages, limitations, and applicable analytical tools of all architectures are summarised with a perspective for future research efforts in architectural improvement and elucidation of resistance development strategies and membrane-targeting antibiotic mechanisms. Supplementary Information The online version contains supplementary material available at 10.1007/s12551-021-00913-7.
Collapse
Affiliation(s)
- Ashley B. Carey
- Institute for Nanoscale Science and Technology, College for Science and Engineering, Flinders University, Adelaide, SA 5042 Australia
| | - Alex Ashenden
- Institute for Nanoscale Science and Technology, College for Science and Engineering, Flinders University, Adelaide, SA 5042 Australia
| | - Ingo Köper
- Institute for Nanoscale Science and Technology, College for Science and Engineering, Flinders University, Adelaide, SA 5042 Australia
| |
Collapse
|
9
|
Eckmann C, Tulkens PM. Current and future options for treating complicated skin and soft tissue infections: focus on fluoroquinolones and long-acting lipoglycopeptide antibiotics. J Antimicrob Chemother 2021; 76:iv9-iv22. [PMID: 34849999 PMCID: PMC8632788 DOI: 10.1093/jac/dkab351] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
Bacterial skin and soft tissue infections are among the most common bacterial infections and constitute a major burden for patients and healthcare systems. Care is complicated by the variety of potential pathogens, some with resistance to previously effective antimicrobial agents, the wide spectrum of clinical presentations and the risk of progression to life-threatening forms. More-efficient care pathways are needed that can reduce hospital admissions and length of stay, while maintaining a high quality of care and adhering to antimicrobial stewardship principles. Several agents approved recently for treating acute bacterial skin and skin structure infections have characteristics that meet these requirements. We address the clinical and pharmacological characteristics of the fourth-generation fluoroquinolone delafloxacin, and the long-acting lipoglycopeptide agents dalbavancin and oritavancin.
Collapse
Affiliation(s)
- Christian Eckmann
- Department of General, Visceral and Thoracic Surgery, Klinikum Hannoversch-Muenden, Goettingen University, Germany
| | - Paul M Tulkens
- Cellular and Molecular Pharmacology, Louvain Drug Research Institute, Université catholique de Louvain (UCLouvain), Brussels, Belgium
| |
Collapse
|
10
|
Role or oritavancin and dalbavancin in acute bacterial skin and skin structure infections and other potential indications. Curr Opin Infect Dis 2021; 34:96-108. [PMID: 33405480 DOI: 10.1097/qco.0000000000000714] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
PURPOSE OF REVIEW To discuss the currently available evidence about the use oritavancin and dalbavancin for the treatment of acute bacterial skin and skin structure infections (ABSSSI) and for other potential indications. RECENT FINDINGS In this review, we briefly summarize the available data on efficacy (from randomized controlled trials) and on effectiveness and cure rates (from observational studies) pertaining to the use of oritavancin and dalbavancin either for ABSSSI or for other indications. SUMMARY Oritavancin and dalbavancin are valid options for outpatient therapy and early discharge in patients with ABSSSI, especially when adherence to oral therapy cannot be guaranteed or no oral choices are available. Furthermore, it is worth noting that a non-negligible portion (sometimes the majority) of oritavancin and dalbavancin use in available real-life experiences is for indications other than ABSSSI, especially for Gram-positive osteomyelitis and endocarditis. The number of studies on the use of long-acting lipoglycopeptides for these currently off-label indications is rapidly increasing and will help to further optimize the use of these peculiar antibiotics in the forthcoming future.
Collapse
|
11
|
Reinseth IS, Ovchinnikov KV, Tønnesen HH, Carlsen H, Diep DB. The Increasing Issue of Vancomycin-Resistant Enterococci and the Bacteriocin Solution. Probiotics Antimicrob Proteins 2021; 12:1203-1217. [PMID: 31758332 PMCID: PMC8613153 DOI: 10.1007/s12602-019-09618-6] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Enterococci are commensals of human and other animals’ gastrointestinal tracts. Only making up a small part of the microbiota, they have not played a significant role in research, until the 1980s. Although the exact year is variable according to different geographical areas, this was the decade when vancomycin-resistant enterococci (VRE) were discovered and since then their role as causative agents of human infections has increased. Enterococcus faecium is on the WHO’s list of “bacteria for which new antibiotics are urgently needed,” and with no new antibiotics in development, the situation is desperate. In this review, different aspects of VRE are outlined, including the mortality caused by VRE, antibiotic resistance profiles, animal-modeling efforts, and virulence. In addition, the limitations of current antibiotic treatments for VRE and prospective new treatments, such as bacteriocins, are reviewed.
Collapse
Affiliation(s)
- Ingvild S Reinseth
- Department of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences, P.O. Box 5003, 1432, Ås, Norway
| | - Kirill V Ovchinnikov
- Department of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences, P.O. Box 5003, 1432, Ås, Norway
| | - Hanne H Tønnesen
- Section of Pharmaceutics and Social Pharmacy, Department of Pharmacy, University of Oslo, P.O. Box 1068 Blindern, 0316, Oslo, Norway
| | - Harald Carlsen
- Department of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences, P.O. Box 5003, 1432, Ås, Norway
| | - Dzung B Diep
- Department of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences, P.O. Box 5003, 1432, Ås, Norway.
| |
Collapse
|
12
|
Zuttion F, Colom A, Matile S, Farago D, Pompeo F, Kokavecz J, Galinier A, Sturgis J, Casuso I. High-speed atomic force microscopy highlights new molecular mechanism of daptomycin action. Nat Commun 2020; 11:6312. [PMID: 33298927 PMCID: PMC7725780 DOI: 10.1038/s41467-020-19710-z] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2020] [Accepted: 10/15/2020] [Indexed: 02/08/2023] Open
Abstract
The increase in speed of the high-speed atomic force microscopy (HS-AFM) compared to that of the conventional AFM made possible the first-ever visualisation at the molecular-level of the activity of an antimicrobial peptide on a membrane. We investigated the medically prescribed but poorly understood lipopeptide Daptomycin under infection-like conditions (37 °C, bacterial lipid composition and antibiotic concentrations). We confirmed so far hypothetical models: Dap oligomerization and the existence of half pores. Moreover, we detected unknown molecular mechanisms: new mechanisms to form toroidal pores or to resist Dap action, and to unprecedently quantify the energy profile of interacting oligomers. Finally, the biological and medical relevance of the findings was ensured by a multi-scale multi-nativeness-from the molecule to the cell-correlation of molecular-level information from living bacteria (Bacillus subtilis strains) to liquid-suspended vesicles and supported-membranes using electron and optical microscopies and the lipid tension probe FliptR, where we found that the cells with a healthier state of their cell wall show smaller membrane deformations.
Collapse
Affiliation(s)
| | - Adai Colom
- Biochemistry Department, University of Geneva, Geneva, Switzerland
| | - Stefan Matile
- Organic Chemistry Department, University of Geneva, Geneva, Switzerland
| | - Denes Farago
- Department of Technical Informatics University of Szeged, Szeged, Hungary
| | - Frédérique Pompeo
- Laboratoire de Chimie Bactérienne (LCB), Institut de Microbiologie de la Méditerranée (IMM), CNRS, UMR 7283, Aix Marseille Université, Marseille, France
| | - Janos Kokavecz
- Institute of Environmental Science and Engineering, University of Szeged, Szeged, Hungary
| | - Anne Galinier
- Laboratoire de Chimie Bactérienne (LCB), Institut de Microbiologie de la Méditerranée (IMM), CNRS, UMR 7283, Aix Marseille Université, Marseille, France
| | - James Sturgis
- LISM, UMR 7255, CNRS, Aix Marseille Université, Marseille, France
| | - Ignacio Casuso
- U1067 INSERM, Aix-Marseille Université, Marseille, France.
| |
Collapse
|
13
|
Penkauskas T, Zentelyte A, Ganpule S, Valincius G, Preta G. Pleiotropic effects of statins via interaction with the lipid bilayer: A combined approach. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2020; 1862:183306. [DOI: 10.1016/j.bbamem.2020.183306] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Revised: 03/18/2020] [Accepted: 04/07/2020] [Indexed: 12/25/2022]
|
14
|
Botet-Carreras A, Montero MT, Sot J, Domènech Ò, Borrell JH. Characterization of monolayers and liposomes that mimic lipid composition of HeLa cells. Colloids Surf B Biointerfaces 2020; 196:111288. [PMID: 32759004 DOI: 10.1016/j.colsurfb.2020.111288] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Revised: 07/20/2020] [Accepted: 07/27/2020] [Indexed: 10/23/2022]
Abstract
In this work, based on several studies, we develop an artificial lipid membrane to mimic the HeLa cell membrane using 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphatidylcholine (POPC), 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphoethanolamine (POPE), 1-palmitoyl-2-oleoyl-sn-glycero-3-phospho-l-serine (POPS) and cholesterol (CHOL). This is then a means to further study the fusion process of specific engineered liposomes. To characterize the mimicked HeLa cell membrane, we determined a series of surface pressure-area (π-A) isotherms and the isothermal compression modulus was calculated together with the dipole moment normal to the plane of the monolayer. The existence of laterally segregated domains was assessed using a fluorescence technique (Laurdan) and two microscopy techniques: Brewster angle microscopy (BAM) and atomic force microscopy (AFM) of Langmuir-Blodgett films (LBs) extracted at 30 mN m-1. To examine the nature and composition of the observed domains, force spectroscopy (FS) based on AFM was applied to the LBs. Finally, two engineered liposome formulations were tested in a fusion assay against mimicked HeLa cell membrane LBs, showing good results and thereby opening the door to further assays and uses.
Collapse
Affiliation(s)
- Adrià Botet-Carreras
- Secció de Fisicoquímica, Facultat de Farmàcia i Ciències de l'Alimentació, Spain; Institute of Nanoscience and Nanotechnology (IN(2)UB), Universitat de Barcelona (UB), 08028, Barcelona, Catalonia, Spain
| | - M Teresa Montero
- Secció de Fisicoquímica, Facultat de Farmàcia i Ciències de l'Alimentació, Spain; Institute of Nanoscience and Nanotechnology (IN(2)UB), Universitat de Barcelona (UB), 08028, Barcelona, Catalonia, Spain
| | - Jesús Sot
- Instituto Biofisika (CSIC-UPV/HEU, Campus Universitario, 48940, Leioa, Basque Country, Spain
| | - Òscar Domènech
- Secció de Fisicoquímica, Facultat de Farmàcia i Ciències de l'Alimentació, Spain; Institute of Nanoscience and Nanotechnology (IN(2)UB), Universitat de Barcelona (UB), 08028, Barcelona, Catalonia, Spain
| | - Jordi H Borrell
- Secció de Fisicoquímica, Facultat de Farmàcia i Ciències de l'Alimentació, Spain; Institute of Nanoscience and Nanotechnology (IN(2)UB), Universitat de Barcelona (UB), 08028, Barcelona, Catalonia, Spain.
| |
Collapse
|
15
|
Tang PK, Chakraborty K, Hu W, Kang M, Loverde SM. Interaction of Camptothecin with Model Cellular Membranes. J Chem Theory Comput 2020; 16:3373-3384. [PMID: 32126167 DOI: 10.1021/acs.jctc.9b00541] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Accurate and efficient prediction of drug partitioning in model membranes is of significant interest to the pharmaceutical industry. Herein, we utilize advanced sampling methods, specifically, the adaptive biasing force methodology to calculate the potential of mean force for a model hydrophobic anticancer drug, camptothecin (CPT), across three model interfaces. We consider an octanol bilayer, a thick octanol/water interface, and a model 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC)/water interface. We characterize the enthalpic and entropic contributions of the drug to the potential of mean force. We show that the rotational entropy of the drug is inversely related to the probability of hydrogen bond formation of the drug with the POPC membrane. In addition, in long-time microsecond simulations of a high concentration of CPT above the POPC membrane, we show that strong drug-drug aromatic interactions shift the spatial orientation of the drug with the membrane. Stacks of hydrophobic drugs form, allowing penetration of the drug just under the POPC head groups. These results imply that inhomogeneous membrane models need to take into account the effect of drug aggregation on the membrane environment.
Collapse
Affiliation(s)
- Phu K Tang
- Department of Chemistry, College of Staten Island, City University of New York, 2800 Victory Boulevard, 6S-238, Staten Island, New York 10314, United States.,Ph.D. Program in Chemistry, Biochemistry, and Physics, The Graduate Center of the City University of New York, New York, New York 10016, United States
| | - Kaushik Chakraborty
- Department of Chemistry, College of Staten Island, City University of New York, 2800 Victory Boulevard, 6S-238, Staten Island, New York 10314, United States
| | - William Hu
- Hunter College High School, New York, New York, 10128, United States
| | - Myungshim Kang
- Department of Chemistry, College of Staten Island, City University of New York, 2800 Victory Boulevard, 6S-238, Staten Island, New York 10314, United States
| | - Sharon M Loverde
- Department of Chemistry, College of Staten Island, City University of New York, 2800 Victory Boulevard, 6S-238, Staten Island, New York 10314, United States.,Department of Physics, Graduate Center, City University of New York, 365 Fifth Avenue, New York, New York 10016, United States.,Ph.D. Program in Chemistry, Biochemistry, and Physics, The Graduate Center of the City University of New York, New York, New York 10016, United States
| |
Collapse
|
16
|
Vázquez-González ML, Botet-Carreras A, Domènech Ò, Teresa Montero M, Borrell JH. Planar lipid bilayers formed from thermodynamically-optimized liposomes as new featured carriers for drug delivery systems through human skin. Int J Pharm 2019; 563:1-8. [PMID: 30926525 DOI: 10.1016/j.ijpharm.2019.03.052] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2018] [Revised: 03/09/2019] [Accepted: 03/25/2019] [Indexed: 10/27/2022]
Abstract
The fundamental objective pursued in this work is to investigate how liposomes formed with a thermodynamically optimized molar composition formed by the main components of the stratum corneum matrix behave on the human skin surface when used as drug delivery systems. To this purpose we engineered liposomes using phosphatidylcholines, ceramides and cholesterol. The specific molar ratio of the three components was established after studying the mixing properties of the lipid monolayers of the lipid components formed at the air-water interface. Liposomes loaded and unloaded with ibuprofen and hyaluronic acid were characterized by quasi-elastic light scattering and fluorescence polarization. Optimized liposomes, with and without drugs, were applied onto human skin and the structures formed evaluated using atomic force microscopy. Since penetration enhancers improve the permeation of the drugs encapsulated, we also examined the effects of Tween® 80 on the physical properties of the liposomes and on their extensibility over skin. In the present work we were able to observe the deposition and extension of liposomes in suspension onto human skin demonstrating the potential of liposomes without a secondary vehicle for releasing drugs in transdermal applications.
Collapse
Affiliation(s)
- Martha L Vázquez-González
- Department of Pharmacy, Pharmaceutical Technology and Physical Chemistry, Faculty of Pharmacy and Food Sciences and Institute of Nanoscience and Nanotechnology (IN(2)UB), University of Barcelona (UB), 08028 Barcelona, Catalonia, Spain
| | - Adrià Botet-Carreras
- Department of Pharmacy, Pharmaceutical Technology and Physical Chemistry, Faculty of Pharmacy and Food Sciences and Institute of Nanoscience and Nanotechnology (IN(2)UB), University of Barcelona (UB), 08028 Barcelona, Catalonia, Spain
| | - Òscar Domènech
- Department of Pharmacy, Pharmaceutical Technology and Physical Chemistry, Faculty of Pharmacy and Food Sciences and Institute of Nanoscience and Nanotechnology (IN(2)UB), University of Barcelona (UB), 08028 Barcelona, Catalonia, Spain
| | - M Teresa Montero
- Department of Pharmacy, Pharmaceutical Technology and Physical Chemistry, Faculty of Pharmacy and Food Sciences and Institute of Nanoscience and Nanotechnology (IN(2)UB), University of Barcelona (UB), 08028 Barcelona, Catalonia, Spain
| | - Jordi H Borrell
- Department of Pharmacy, Pharmaceutical Technology and Physical Chemistry, Faculty of Pharmacy and Food Sciences and Institute of Nanoscience and Nanotechnology (IN(2)UB), University of Barcelona (UB), 08028 Barcelona, Catalonia, Spain.
| |
Collapse
|
17
|
Guan D, Chen F, Qiu Y, Jiang B, Gong L, Lan L, Huang W. Sulfonium, an Underestimated Moiety for Structural Modification, Alters the Antibacterial Profile of Vancomycin Against Multidrug‐Resistant Bacteria. Angew Chem Int Ed Engl 2019; 58:6678-6682. [DOI: 10.1002/anie.201902210] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2019] [Indexed: 11/09/2022]
Affiliation(s)
- Dongliang Guan
- CAS Key Laboratory of Receptor ResearchCAS Center for Excellence in Molecular Cell ScienceCenter for Biotherapeutics Discovery ResearchShanghai Institute of Materia MedicaChinese Academy of Sciences 555 Zuchongzhi Road Pudong Shanghai 201203 China
- University of Chinese Academy of Sciences No.19A Yuquan Road Beijing 100049 China
| | - Feifei Chen
- State Key Laboratory of Drug ResearchShanghai Institute of Materia MedicaChinese Academy of Sciences. 555 Zuchongzhi Road, Pudong Shanghai 201203 China
| | - Yunguang Qiu
- CAS Key Laboratory of Receptor ResearchCAS Center for Excellence in Molecular Cell ScienceCenter for Biotherapeutics Discovery ResearchShanghai Institute of Materia MedicaChinese Academy of Sciences 555 Zuchongzhi Road Pudong Shanghai 201203 China
- University of Chinese Academy of Sciences No.19A Yuquan Road Beijing 100049 China
| | - Bofeng Jiang
- CAS Key Laboratory of Receptor ResearchCAS Center for Excellence in Molecular Cell ScienceCenter for Biotherapeutics Discovery ResearchShanghai Institute of Materia MedicaChinese Academy of Sciences 555 Zuchongzhi Road Pudong Shanghai 201203 China
| | - Likun Gong
- University of Chinese Academy of Sciences No.19A Yuquan Road Beijing 100049 China
- State Key Laboratory of Drug ResearchShanghai Institute of Materia MedicaChinese Academy of Sciences. 555 Zuchongzhi Road, Pudong Shanghai 201203 China
| | - Lefu Lan
- University of Chinese Academy of Sciences No.19A Yuquan Road Beijing 100049 China
- State Key Laboratory of Drug ResearchShanghai Institute of Materia MedicaChinese Academy of Sciences. 555 Zuchongzhi Road, Pudong Shanghai 201203 China
| | - Wei Huang
- CAS Key Laboratory of Receptor ResearchCAS Center for Excellence in Molecular Cell ScienceCenter for Biotherapeutics Discovery ResearchShanghai Institute of Materia MedicaChinese Academy of Sciences 555 Zuchongzhi Road Pudong Shanghai 201203 China
- University of Chinese Academy of Sciences No.19A Yuquan Road Beijing 100049 China
| |
Collapse
|
18
|
Guan D, Chen F, Qiu Y, Jiang B, Gong L, Lan L, Huang W. Sulfonium, an Underestimated Moiety for Structural Modification, Alters the Antibacterial Profile of Vancomycin Against Multidrug‐Resistant Bacteria. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201902210] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Dongliang Guan
- CAS Key Laboratory of Receptor ResearchCAS Center for Excellence in Molecular Cell ScienceCenter for Biotherapeutics Discovery ResearchShanghai Institute of Materia MedicaChinese Academy of Sciences 555 Zuchongzhi Road Pudong Shanghai 201203 China
- University of Chinese Academy of Sciences No.19A Yuquan Road Beijing 100049 China
| | - Feifei Chen
- State Key Laboratory of Drug ResearchShanghai Institute of Materia MedicaChinese Academy of Sciences. 555 Zuchongzhi Road Pudong Shanghai 201203 China
| | - Yunguang Qiu
- CAS Key Laboratory of Receptor ResearchCAS Center for Excellence in Molecular Cell ScienceCenter for Biotherapeutics Discovery ResearchShanghai Institute of Materia MedicaChinese Academy of Sciences 555 Zuchongzhi Road Pudong Shanghai 201203 China
- University of Chinese Academy of Sciences No.19A Yuquan Road Beijing 100049 China
| | - Bofeng Jiang
- CAS Key Laboratory of Receptor ResearchCAS Center for Excellence in Molecular Cell ScienceCenter for Biotherapeutics Discovery ResearchShanghai Institute of Materia MedicaChinese Academy of Sciences 555 Zuchongzhi Road Pudong Shanghai 201203 China
| | - Likun Gong
- University of Chinese Academy of Sciences No.19A Yuquan Road Beijing 100049 China
- State Key Laboratory of Drug ResearchShanghai Institute of Materia MedicaChinese Academy of Sciences. 555 Zuchongzhi Road Pudong Shanghai 201203 China
| | - Lefu Lan
- University of Chinese Academy of Sciences No.19A Yuquan Road Beijing 100049 China
- State Key Laboratory of Drug ResearchShanghai Institute of Materia MedicaChinese Academy of Sciences. 555 Zuchongzhi Road Pudong Shanghai 201203 China
| | - Wei Huang
- CAS Key Laboratory of Receptor ResearchCAS Center for Excellence in Molecular Cell ScienceCenter for Biotherapeutics Discovery ResearchShanghai Institute of Materia MedicaChinese Academy of Sciences 555 Zuchongzhi Road Pudong Shanghai 201203 China
- University of Chinese Academy of Sciences No.19A Yuquan Road Beijing 100049 China
| |
Collapse
|
19
|
Bailey CM, Tripathi A, Shukla A. Effects of Flow and Bulk Vesicle Concentration on Supported Lipid Bilayer Formation. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2017; 33:11986-11997. [PMID: 28949544 DOI: 10.1021/acs.langmuir.7b02764] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Supported lipid bilayers (SLBs) have been used extensively in a variety of biotechnology applications and fundamental studies exploring lipid behavior. Despite their widespread use, various physicochemical parameters have yet to be thoroughly investigated for their impact on SLB formation. In this work, we have studied the importance of flow in inducing the rupture of surface adsorbed chicken egg-derived l-α-phosphatidylcholine (egg PC) vesicles on silica and gold surfaces via quartz crystal microbalance with dissipation monitoring (QCM-D). On silica at 25 °C, egg PC vesicles were found to adsorb in a flattened configuration (∼13 nm thick, compared to bulk vesicle diameters of ∼165 nm) but only undergo a transition to a stable SLB under flow conditions. In the absence of flow, an increase in system temperature to 37 °C was able to promote vesicle rupture and SLB formation on silica with a 10 times lower rupture time, compared to rupture under continuous flow (175 μL/min flow rate). Gold surfaces, with their increased hydrophobicity, led to less vesicle flattening once adsorbed (structures ∼60 nm thick), and did not support vesicle rupture or SLB formation, even at flow rates of up to 650 μL/min. We also showed that, under continuous flow conditions, vesicle adsorption rates on silica surfaces follow Langmuir kinetics, with an inverse dependence on bulk vesicle concentration, while an empirical power law dependence of vesicle rupture time on bulk vesicle concentration was observed. Ultimately, this work elicits fundamental insight into the importance of flow and bulk vesicle concentration in the adsorbed vesicle rupture process during SLB formation using QCM-D.
Collapse
Affiliation(s)
- Christina M Bailey
- School of Engineering, Center for Biomedical Engineering, Institute for Molecular and Nanoscale Innovation, Brown University , Providence, Rhode Island 02912, United States
| | - Anubhav Tripathi
- School of Engineering, Center for Biomedical Engineering, Institute for Molecular and Nanoscale Innovation, Brown University , Providence, Rhode Island 02912, United States
| | - Anita Shukla
- School of Engineering, Center for Biomedical Engineering, Institute for Molecular and Nanoscale Innovation, Brown University , Providence, Rhode Island 02912, United States
| |
Collapse
|
20
|
Comparing the action of HT61 and chlorhexidine on natural and model Staphylococcus aureus membranes. J Antibiot (Tokyo) 2017; 70:1020-1025. [DOI: 10.1038/ja.2017.90] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2017] [Revised: 06/14/2017] [Accepted: 07/02/2017] [Indexed: 11/09/2022]
|
21
|
Effect of Statins on the Nanomechanical Properties of Supported Lipid Bilayers. Biophys J 2017; 111:363-372. [PMID: 27463138 DOI: 10.1016/j.bpj.2016.06.016] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2016] [Revised: 05/25/2016] [Accepted: 06/15/2016] [Indexed: 11/23/2022] Open
Abstract
Many drugs and other xenobiotics may reach systemic concentrations where they interact not only with the proteins that are their therapeutic targets but also modify the physicochemical properties of the cell membrane, which may lead to altered function of many transmembrane proteins beyond the intended targets. These changes in bilayer properties may contribute to nonspecific, promiscuous changes in membrane protein and cell function because membrane proteins are energetically coupled to their host lipid bilayer. It is thus important, for both pharmaceutical and biophysical reasons, to understand the bilayer-modifying effect of amphiphiles (including therapeutic agents). Here we use atomic force microscopy topography imaging and nanomechanical mapping to monitor the effect of statins, a family of hypolipidemic drugs, on synthetic lipid membranes. Our results reveal that statins alter the nanomechanical stability of the bilayers and increase their elastic moduli depending on the lipid bilayer order. Our results also suggest that statins increase bilayer heterogeneity, which may indicate that statins form nanometer-sized aggregates in the membrane. This is further evidence that changes in bilayer nanoscale mechanical properties may be a signature of lipid bilayer-mediated effects of amphiphilic drugs.
Collapse
|
22
|
Agrawal S, Adholeya A, Deshmukh SK. The Pharmacological Potential of Non-ribosomal Peptides from Marine Sponge and Tunicates. Front Pharmacol 2016; 7:333. [PMID: 27826240 PMCID: PMC5078478 DOI: 10.3389/fphar.2016.00333] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2016] [Accepted: 09/07/2016] [Indexed: 12/18/2022] Open
Abstract
Marine biodiversity is recognized by a wide and unique array of fascinating structures. The complex associations of marine microorganisms, especially with sponges, bryozoans, and tunicates, make it extremely difficult to define the biosynthetic source of marine natural products or to deduce their ecological significance. Marine sponges and tunicates are important source of novel compounds for drug discovery and development. Majority of these compounds are nitrogen containing and belong to non-ribosomal peptide (NRPs) or mixed polyketide-NRP natural products. Several of these peptides are currently under trial for developing new drugs against various disease areas, including inflammatory, cancer, neurodegenerative disorders, and infectious disease. This review features pharmacologically active NRPs from marine sponge and tunicates based on their biological activities.
Collapse
Affiliation(s)
| | | | - Sunil K. Deshmukh
- TERI–Deakin Nano Biotechnology Centre, The Energy and Resources InstituteNew Delhi, India
| |
Collapse
|
23
|
Malanovic N, Lohner K. Antimicrobial Peptides Targeting Gram-Positive Bacteria. Pharmaceuticals (Basel) 2016; 9:E59. [PMID: 27657092 PMCID: PMC5039512 DOI: 10.3390/ph9030059] [Citation(s) in RCA: 239] [Impact Index Per Article: 26.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2016] [Revised: 09/07/2016] [Accepted: 09/13/2016] [Indexed: 01/01/2023] Open
Abstract
Antimicrobial peptides (AMPs) have remarkably different structures as well as biological activity profiles, whereupon most of these peptides are supposed to kill bacteria via membrane damage. In order to understand their molecular mechanism and target cell specificity for Gram-positive bacteria, it is essential to consider the architecture of their cell envelopes. Before AMPs can interact with the cytoplasmic membrane of Gram-positive bacteria, they have to traverse the cell wall composed of wall- and lipoteichoic acids and peptidoglycan. While interaction of AMPs with peptidoglycan might rather facilitate penetration, interaction with anionic teichoic acids may act as either a trap for AMPs or a ladder for a route to the cytoplasmic membrane. Interaction with the cytoplasmic membrane frequently leads to lipid segregation affecting membrane domain organization, which affects membrane permeability, inhibits cell division processes or leads to delocalization of essential peripheral membrane proteins. Further, precursors of cell wall components, especially the highly conserved lipid II, are directly targeted by AMPs. Thereby, the peptides do not inhibit peptidoglycan synthesis via binding to proteins like common antibiotics, but form a complex with the precursor molecule, which in addition can promote pore formation and membrane disruption. Thus, the multifaceted mode of actions will make AMPs superior to antibiotics that act only on one specific target.
Collapse
Affiliation(s)
- Nermina Malanovic
- Institute of Molecular Biosciences, Biophysics Division, University of Graz, NAWI Graz, Austria.
| | - Karl Lohner
- Institute of Molecular Biosciences, Biophysics Division, University of Graz, NAWI Graz, Austria.
- BioTechMed Graz, Humboldtstrasse 50/III, 8010 Graz, Austria.
| |
Collapse
|
24
|
Imran M, Revol-Junelles AM, Francius G, Desobry S. Diffusion of Fluorescently Labeled Bacteriocin from Edible Nanomaterials and Embedded Nano-Bioactive Coatings. ACS APPLIED MATERIALS & INTERFACES 2016; 8:21618-21631. [PMID: 27468125 DOI: 10.1021/acsami.6b04621] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Application of nano-biotechnology to improve the controlled release of drugs or functional agents is widely anticipated to transform the biomedical, pharmaceutical, and food safety trends. The purpose of the current study was to assess and compare the release rates of fluorescently labeled antimicrobial peptide nisin (lantibiotic/biopreservative) from liposomal nanocarriers. The elevated temperature, high electrostatic attraction between anionic bilayers and cationic nisin, larger size, and higher encapsulation efficiency resulted in rapid and elevated release through pore formation. However, acidic pH and optimal ethanol concentration in food simulating liquid (FSL) improved the stability and retention capacity of loaded drug. Thus, controlling various factors had provided partition coefficient K values from 0.23 to 8.78 indicating variation in nisin affinity toward encapsulating macromolecule or FSL. Interaction between nisin and nanoscale bilayer systems by atomic force (AFM) and transmission electron microscopy demonstrated membrane activity of nisin from adsorption and aggregation to pore formation. Novel nanoactive films with preloaded nanoliposomes embedded in biodegradable polymer revealed improved morphological, topographic, and roughness parameters studied by confocal microscopy and AFM. Pre-encapsulated nanoactive biopolymer demonstrated excellent retention capacity as drug carriers by decreasing the partition coefficient value from 1.8 to 0.66 (∼30%) due to improved stability of nanoliposomes embedded in biopolymer network.
Collapse
Affiliation(s)
- Muhammad Imran
- Laboratoire d'Ingénierie des Biomolécules, ENSAIA-INPL, Université de Lorraine , 2 Avenue de la Forêt de Haye, 54505 Vandoeuvre-lès-Nancy Cedex, France
- Department of Biosciences, COMSATS Institute of Information Technology , Park Road, Islamabad, Pakistan
| | - Anne-Marie Revol-Junelles
- Laboratoire d'Ingénierie des Biomolécules, ENSAIA-INPL, Université de Lorraine , 2 Avenue de la Forêt de Haye, 54505 Vandoeuvre-lès-Nancy Cedex, France
| | - Grégory Francius
- Laboratoire de Chimie Physique et Microbiologie pour l'Environnement , 405 Rue de Vandoeuvre, F-54600 Villers-lès-Nancy, France
| | - Stéphane Desobry
- Laboratoire d'Ingénierie des Biomolécules, ENSAIA-INPL, Université de Lorraine , 2 Avenue de la Forêt de Haye, 54505 Vandoeuvre-lès-Nancy Cedex, France
| |
Collapse
|
25
|
Ulm H, Schneider T. Targeting bactoprenol-coupled cell envelope precursors. Appl Microbiol Biotechnol 2016; 100:7815-25. [PMID: 27495122 DOI: 10.1007/s00253-016-7732-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2016] [Revised: 07/04/2016] [Accepted: 07/07/2016] [Indexed: 12/28/2022]
Abstract
Targeting the bactoprenol-coupled cell wall precursor lipid II is a validated antibacterial strategy. In this review, selected prototype lipid II-binding antibiotics of different chemical classes are discussed. Although these compounds attack the same molecular target, they trigger nuanced and diverse cellular effects. Consequently, the mechanisms of antibacterial resistance and the likelihood of resistance development may vary substantially.
Collapse
Affiliation(s)
- Hannah Ulm
- Pharmaceutical Microbiology, University of Bonn, Meckenheimer Allee 168, 53105, Bonn, Germany
| | - Tanja Schneider
- Pharmaceutical Microbiology, University of Bonn, Meckenheimer Allee 168, 53105, Bonn, Germany. .,German Centre for Infection Research (DZIF), Partner Site Bonn-Cologne, Bonn, Germany.
| |
Collapse
|
26
|
Malanovic N, Lohner K. Gram-positive bacterial cell envelopes: The impact on the activity of antimicrobial peptides. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2016; 1858:936-46. [DOI: 10.1016/j.bbamem.2015.11.004] [Citation(s) in RCA: 249] [Impact Index Per Article: 27.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2015] [Revised: 11/05/2015] [Accepted: 11/06/2015] [Indexed: 12/21/2022]
|
27
|
Yarlagadda V, Sarkar P, Samaddar S, Haldar J. A Vancomycin Derivative with a Pyrophosphate-Binding Group: A Strategy to Combat Vancomycin-Resistant Bacteria. Angew Chem Int Ed Engl 2016. [DOI: 10.1002/ange.201601621] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Affiliation(s)
- Venkateswarlu Yarlagadda
- Chemical Biology and Medicinal Chemistry Laboratory; New Chemistry Unit; Jawaharlal Nehru Centre for Advanced Scientific Research (JNCASR); Jakkur, Bengaluru 560064 Karnataka India
| | - Paramita Sarkar
- Chemical Biology and Medicinal Chemistry Laboratory; New Chemistry Unit; Jawaharlal Nehru Centre for Advanced Scientific Research (JNCASR); Jakkur, Bengaluru 560064 Karnataka India
| | - Sandip Samaddar
- Chemical Biology and Medicinal Chemistry Laboratory; New Chemistry Unit; Jawaharlal Nehru Centre for Advanced Scientific Research (JNCASR); Jakkur, Bengaluru 560064 Karnataka India
| | - Jayanta Haldar
- Chemical Biology and Medicinal Chemistry Laboratory; New Chemistry Unit; Jawaharlal Nehru Centre for Advanced Scientific Research (JNCASR); Jakkur, Bengaluru 560064 Karnataka India
| |
Collapse
|
28
|
Yarlagadda V, Sarkar P, Samaddar S, Haldar J. A Vancomycin Derivative with a Pyrophosphate-Binding Group: A Strategy to Combat Vancomycin-Resistant Bacteria. Angew Chem Int Ed Engl 2016; 55:7836-40. [DOI: 10.1002/anie.201601621] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2016] [Revised: 03/07/2016] [Indexed: 11/06/2022]
Affiliation(s)
- Venkateswarlu Yarlagadda
- Chemical Biology and Medicinal Chemistry Laboratory; New Chemistry Unit; Jawaharlal Nehru Centre for Advanced Scientific Research (JNCASR); Jakkur, Bengaluru 560064 Karnataka India
| | - Paramita Sarkar
- Chemical Biology and Medicinal Chemistry Laboratory; New Chemistry Unit; Jawaharlal Nehru Centre for Advanced Scientific Research (JNCASR); Jakkur, Bengaluru 560064 Karnataka India
| | - Sandip Samaddar
- Chemical Biology and Medicinal Chemistry Laboratory; New Chemistry Unit; Jawaharlal Nehru Centre for Advanced Scientific Research (JNCASR); Jakkur, Bengaluru 560064 Karnataka India
| | - Jayanta Haldar
- Chemical Biology and Medicinal Chemistry Laboratory; New Chemistry Unit; Jawaharlal Nehru Centre for Advanced Scientific Research (JNCASR); Jakkur, Bengaluru 560064 Karnataka India
| |
Collapse
|
29
|
Aw YK, Ong KS, Lee LH, Cheow YL, Yule CM, Lee SM. Newly Isolated Paenibacillus tyrfis sp. nov., from Malaysian Tropical Peat Swamp Soil with Broad Spectrum Antimicrobial Activity. Front Microbiol 2016; 7:219. [PMID: 26973605 PMCID: PMC4771734 DOI: 10.3389/fmicb.2016.00219] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2015] [Accepted: 02/10/2016] [Indexed: 12/21/2022] Open
Abstract
Emergence of antimicrobial resistance coupled with the slowdown in discovery of new antimicrobial compounds points to serious consequences for human health. Therefore, scientists are looking for new antimicrobial compounds from unique and understudied ecosystems such as tropical peat swamp forests. Over the course of isolating antimicrobial producing bacteria from North Selangor tropical peat swamp forest, Malaysia, a Gram variable, rod shaped, endospore forming, facultative anaerobic novel strain MSt1T that exerts potent and broad spectrum antimicrobial activity was isolated. Phylogenetic analysis using 16S rRNA gene sequences showed that strain MSt1T belonged to the genus Paenibacillus with the highest similarity to Paenibacillus elgii SD17T (99.5%). Whole genome comparison between strain MSt1T with its closely related species using average nucleotide identity (ANI) revealed that similarity between strain MSt1T with P. elgii B69 (93.45%) and Paenibacillus ehimensis A2 (90.42%) was below the recommended threshold of 95%. Further analysis using in silico pairwise DDH also showed that similarity between strain MSt1T with P. elgii B69 (55.4%) and P. ehimensis A2 (43.7%) was below the recommended threshold of 70%. Strain MSt1T contained meso-diaminopilemic acid in the cell wall and MK-7 as the major menaquinone. The major fatty acids of strain MSt1T were anteiso-C15:0 (48.2%) and C16:0 (29.0%) whereas the polar lipid profile consisted of phosphatidylglycerol, phosphatidylethanolamine, diphosphatidylglycerol, one unknown lipid, two unknown glycolipids, and one unknown phospholipid. Total DNA G+C content of strain MSt1T was 51.5 mol%. The extract from strain MSt1T exerted strong antimicrobial activity against Escherichia coli ATCC 25922 (MIC = 1.5 μg/mL), MRSA ATCC 700699 (MIC = 25 μg/mL) and Candida albicans IMR (MIC = 12.5 μg/mL). Partially purified active fraction exerted a strong effect against E. coli ATCC 25922 resulting in cell rupture when viewed with SEM. Based on distinctive taxonomic differences between strain MSt1T when compared to its closely related type species, we propose that strain MSt1T represents a novel species within the genus of Paenibacillus, for which the name Paenibacillus tyrfis sp. nov. (= DSM 100708T = MCCC 1K01247T) is proposed.
Collapse
Affiliation(s)
- Yoong-Kit Aw
- Tropical Biology Multidisciplinary Platform, School of Science, Monash University MalaysiaBandar Sunway, Malaysia; School of Science, Monash University MalaysiaBandar Sunway, Malaysia
| | - Kuan-Shion Ong
- Tropical Biology Multidisciplinary Platform, School of Science, Monash University MalaysiaBandar Sunway, Malaysia; School of Science, Monash University MalaysiaBandar Sunway, Malaysia
| | - Learn-Han Lee
- Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia Bandar Sunway, Malaysia
| | - Yuen-Lin Cheow
- School of Science, Monash University Malaysia Bandar Sunway, Malaysia
| | - Catherine M Yule
- Tropical Biology Multidisciplinary Platform, School of Science, Monash University MalaysiaBandar Sunway, Malaysia; School of Science, Monash University MalaysiaBandar Sunway, Malaysia
| | - Sui-Mae Lee
- Tropical Biology Multidisciplinary Platform, School of Science, Monash University MalaysiaBandar Sunway, Malaysia; School of Science, Monash University MalaysiaBandar Sunway, Malaysia
| |
Collapse
|
30
|
The influence of rough lipopolysaccharide structure on molecular interactions with mammalian antimicrobial peptides. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2016; 1858:197-209. [DOI: 10.1016/j.bbamem.2015.11.007] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2015] [Revised: 11/03/2015] [Accepted: 11/12/2015] [Indexed: 11/21/2022]
|
31
|
Knobloch J, Suhendro DK, Zieleniecki JL, Shapter JG, Köper I. Membrane-drug interactions studied using model membrane systems. Saudi J Biol Sci 2015; 22:714-8. [PMID: 26586998 PMCID: PMC4625119 DOI: 10.1016/j.sjbs.2015.03.007] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2014] [Revised: 03/17/2015] [Accepted: 03/19/2015] [Indexed: 11/04/2022] Open
Abstract
The direct interaction of drugs with the cell membrane is often neglected when drug effects are studied. Systematic investigations are hindered by the complexity of the natural membrane and model membrane systems can offer a useful alternative. Here some examples are reviewed of how model membrane architectures including vesicles, Langmuir monolayers and solid supported membranes can be used to investigate the effects of drug molecules on the membrane structure, and how these interactions can translate into effects on embedded membrane proteins.
Collapse
Affiliation(s)
| | | | | | | | - Ingo Köper
- Flinders Centre for Nanoscale Science and Technology, School of Chemical and Physical Sciences, Flinders University, Adelaide, Australia
| |
Collapse
|
32
|
Yarlagadda V, Samaddar S, Paramanandham K, Shome BR, Haldar J. Membrane Disruption and Enhanced Inhibition of Cell-Wall Biosynthesis: A Synergistic Approach to Tackle Vancomycin-Resistant Bacteria. Angew Chem Int Ed Engl 2015; 54:13644-9. [DOI: 10.1002/anie.201507567] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2015] [Revised: 09/11/2015] [Indexed: 11/09/2022]
|
33
|
Yarlagadda V, Samaddar S, Paramanandham K, Shome BR, Haldar J. Membrane Disruption and Enhanced Inhibition of Cell-Wall Biosynthesis: A Synergistic Approach to Tackle Vancomycin-Resistant Bacteria. Angew Chem Int Ed Engl 2015. [DOI: 10.1002/ange.201507567] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
34
|
Ferreira IS, Bettencourt AF, Gonçalves LMD, Kasper S, Bétrisey B, Kikhney J, Moter A, Trampuz A, Almeida AJ. Activity of daptomycin- and vancomycin-loaded poly-epsilon-caprolactone microparticles against mature staphylococcal biofilms. Int J Nanomedicine 2015; 10:4351-66. [PMID: 26185439 PMCID: PMC4500610 DOI: 10.2147/ijn.s84108] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
The aim of the present study was to develop novel daptomycin-loaded poly-epsilon-caprolactone (PCL) microparticles with enhanced antibiofilm activity against mature biofilms of clinically relevant bacteria, methicillin-resistant Staphylococcus aureus (MRSA) and polysaccharide intercellular adhesin-positive Staphylococcus epidermidis. Daptomycin was encapsulated into PCL microparticles by a double emulsion-solvent evaporation method. For comparison purposes, formulations containing vancomycin were also prepared. Particle morphology, size distribution, encapsulation efficiency, surface charge, thermal behavior, and in vitro release were assessed. All formulations exhibited a spherical morphology, micrometer size, and negative surface charge. From a very early time stage, the released concentrations of daptomycin and vancomycin were higher than the minimal inhibitory concentration and continued so up to 72 hours. Daptomycin presented a sustained release profile with increasing concentrations of the drug being released up to 72 hours, whereas the release of vancomycin stabilized at 24 hours. The antibacterial activity of the microparticles was assessed by isothermal microcalorimetry against planktonic and sessile MRSA and S. epidermidis. Regarding planktonic bacteria, daptomycin-loaded PCL microparticles presented the highest antibacterial activity against both strains. Isothermal microcalorimetry also revealed that lower concentrations of daptomycin-loaded microparticles were required to completely inhibit the recovery of mature MRSA and S. epidermidis biofilms. Further characterization of the effect of daptomycin-loaded PCL microparticles on mature biofilms was performed by fluorescence in situ hybridization. Fluorescence in situ hybridization showed an important reduction in MRSA biofilm, whereas S. epidermidis biofilms, although inhibited, were not eradicated. In addition, an important attachment of the microparticles to MRSA and S. epidermidis biofilms was observed. Finally, all formulations proved to be biocompatible with both ISO compliant L929 fibroblasts and human MG63 osteoblast-like cells.
Collapse
Affiliation(s)
- Inês Santos Ferreira
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, University of Lisbon, Lisbon, Portugal
| | - Ana F Bettencourt
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, University of Lisbon, Lisbon, Portugal
| | - Lídia M D Gonçalves
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, University of Lisbon, Lisbon, Portugal
| | - Stefanie Kasper
- Biofilmcenter, German Heart Institute Berlin, Berlin, Germany
| | - Bertrand Bétrisey
- Infectious Diseases Service, Department of Medicine, Centre Hospitalier Universitaire Vaudois, Lausanne, Switzerland
| | - Judith Kikhney
- Biofilmcenter, German Heart Institute Berlin, Berlin, Germany
| | - Annette Moter
- Biofilmcenter, German Heart Institute Berlin, Berlin, Germany
| | - Andrej Trampuz
- Center for Musculoskeletal Surgery, Charité - University Medicine Berlin, Berlin, Germany
| | - António J Almeida
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, University of Lisbon, Lisbon, Portugal
| |
Collapse
|
35
|
Chen YF, Tsang KY, Chang WF, Fan ZA. Differential dependencies on [Ca2+] and temperature of the monolayer spontaneous curvatures of DOPE, DOPA and cardiolipin: effects of modulating the strength of the inter-headgroup repulsion. SOFT MATTER 2015; 11:4041-4053. [PMID: 25907686 DOI: 10.1039/c5sm00577a] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Biomembranes assume nonlamellar structures in many cellular events, with the tendency of forming a nonlamellar structure quantified by the monolayer spontaneous curvature, C(0), and with many of these events involving the acts of Ca(2+). Despite this biologically important intimacy, how C(0) is affected by [Ca(2+)] is unknown. In this study, we use the X-ray diffraction technique and the reconstruction of electron density profiles to measure the C(0)s of a zwitterionic phospholipid, DOPE, and two anionic phospholipids, DOPA and 18 : 1 (9Z) cardiolipin, at temperatures from 20 °C to 40 °C and [Ca(2+)]s from 0 mM to 100 mM; these phospholipids are chosen to examine the contributions of the electric charge density per molecule. While showing a strong dependence on temperature, C(0,DOPE) is nearly independent of [Ca(2+)]. In contrast, C(0,DOPA) and C(0),cardiolipin are almost unresponsive to the temperature change but affected by the [Ca(2+)] variation; and C(0,DOPA) varies with [Ca(2+)] ∼1.5 times more strongly than C(0,cardiolipin), with the phase preferences of DOPA and cardiolipin shifting to the H(II) phase and remaining on the Lα phase, respectively, at [Ca(2+)] = 100 mM. From these observations, we reveal the effects of modulating the strength of the inter-headgroup repulsion and discuss the mechanisms underlying the phase behaviour and cellular functions of the investigated phospholipids. Most importantly, this study recognizes that the headgroup charge density is dominant in dictating the phase behaviour of the anionic phospholipids, and that the unique molecular characteristics of cardiolipin are critically needed both for maintaining the structural integrity of cardiolipin-rich biomembranes and for fulfilling the biological roles of the phospholipid.
Collapse
Affiliation(s)
- Y-F Chen
- Department of Chemical and Materials Engineering, National Central University, Taoyuan 32001, Taiwan.
| | | | | | | |
Collapse
|
36
|
Yarlagadda V, Konai MM, Manjunath GB, Ghosh C, Haldar J. Tackling vancomycin-resistant bacteria with ‘lipophilic–vancomycin–carbohydrate conjugates’. J Antibiot (Tokyo) 2014; 68:302-12. [DOI: 10.1038/ja.2014.144] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2014] [Revised: 09/15/2014] [Accepted: 09/25/2014] [Indexed: 12/24/2022]
|
37
|
Koller D, Lohner K. The role of spontaneous lipid curvature in the interaction of interfacially active peptides with membranes. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2014; 1838:2250-9. [PMID: 24853655 DOI: 10.1016/j.bbamem.2014.05.013] [Citation(s) in RCA: 96] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2014] [Revised: 05/07/2014] [Accepted: 05/08/2014] [Indexed: 01/28/2023]
Abstract
Research on antimicrobial peptides is in part driven by urgent medical needs such as the steady increase in pathogens being resistant to antibiotics. Despite the wealth of information compelling structure-function relationships are still scarce and thus the interfacial activity model has been proposed to bridge this gap. This model also applies to other interfacially active (membrane active) peptides such as cytolytic, cell penetrating or antitumor peptides. One parameter that is strongly linked to interfacial activity is the spontaneous lipid curvature, which is experimentally directly accessible. We discuss different parameters such as H-bonding, electrostatic repulsion, changes in monolayer surface area and lateral pressure that affect induction of membrane curvature, but also vice versa how membrane curvature triggers peptide response. In addition, the impact of membrane lipid composition on the formation of curved membrane structures and its relevance for diverse mode of action of interfacially active peptides and in turn biological activity are described. This article is part of a Special Issue entitled: Interfacially Active Peptides and Proteins. Guest Editors: William C. Wimley and Kalina Hristova.
Collapse
Affiliation(s)
- Daniel Koller
- Institute of Molecular Biosciences, Biophysics Division, University of Graz, Schmiedlstraße 6, A-8042 Graz, Austria.
| | - Karl Lohner
- Institute of Molecular Biosciences, Biophysics Division, University of Graz, Schmiedlstraße 6, A-8042 Graz, Austria.
| |
Collapse
|
38
|
Yarlagadda V, Akkapeddi P, Manjunath GB, Haldar J. Membrane active vancomycin analogues: a strategy to combat bacterial resistance. J Med Chem 2014; 57:4558-68. [PMID: 24846441 DOI: 10.1021/jm500270w] [Citation(s) in RCA: 138] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The alarming growth of antibiotic resistant superbugs such as vancomycin-resistant Enterococci and Staphylococci has become a major global health hazard. To address this issue, we report the development of lipophilic cationic vancomycin analogues possessing excellent antibacterial activity against several drug-resistant strains. Compared to vancomycin, efficacy greater than 1000-fold was demonstrated against vancomycin-resistant Enterococci (VRE). Significantly, unlike vancomycin, these compounds were shown to be bactericidal at low concentrations and did not induce bacterial resistance. An optimized compound in the series, compared to vancomycin, showed higher activity in methicillin-resistant Staphylococcus aureus (MRSA) infected mouse model and exhibited superior antibacterial activity in whole blood with no observed toxicity. The remarkable activity of these compounds is attributed to the incorporation of a new membrane disruption mechanism into vancomycin and opens up a great opportunity for the development of novel antibiotics.
Collapse
Affiliation(s)
- Venkateswarlu Yarlagadda
- Chemical Biology and Medicinal Chemistry Laboratory, New Chemistry Unit, Jawaharlal Nehru Centre for Advanced Scientific Research , Jakkur, Bengaluru 560064, Karnataka India
| | | | | | | |
Collapse
|
39
|
Lorent J, Lins L, Domenech Ò, Quetin-Leclercq J, Brasseur R, Mingeot-Leclercq MP. Domain formation and permeabilization induced by the saponin α-hederin and its aglycone hederagenin in a cholesterol-containing bilayer. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2014; 30:4556-4569. [PMID: 24690040 DOI: 10.1021/la4049902] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Saponins and triterpenic acids have been shown to be able to interact with lipid membranes and domains enriched with cholesterol (rafts). How saponins are able to modulate lipid phase separation in membranes and the role of the sugar chains for this activity is unknown. We demonstrate in a binary membrane model composed of DMPC/Chol (3:1 mol/mol) that the saponin α-hederin and its aglycone presenting no sugar chain, the triterpenic acid hederagenin, are able to induce the formation of lipid domains. We show on multilamellar vesicles (MLV), giant unilamellar vesicles (GUV), and supported planar bilayers (SPB) that the presence of sugar units on the sapogenin accelerates domain formation and increases the proportion of sterols within these domains. The domain shape is also influenced by the presence of sugars because α-hederin and hederagenin induce the formation of tubular and spherical domains, respectively. These highly curved structures should result from the induction of membrane curvature by both compounds. In addition to the formation of domains, α-hederin and hederagenin permeabilize GUV. The formation of membrane holes by α-hederin comes along with the accumulation of lipids into nonbilayer structures in SPB. This process might be responsible for the permeabilizing activity of both compounds. In LUV, permeabilization by α-hederin was sterol-dependent. The biological implications of our results and the mechanisms involved are discussed in relation to the activity of saponins and triterpenic acids on membrane rafts, cancer cells, and hemolysis.
Collapse
Affiliation(s)
- Joseph Lorent
- Université Catholique de Louvain , Louvain Drug Research Institute, Cellular and Molecular Pharmacology, B1.73.05, Avenue E. Mounier 73, B-1200 Brussels, Belgium
| | | | | | | | | | | |
Collapse
|
40
|
Li Z, Tang Y, Zhang L, Wu J. Label-free study of the function of ion channel protein on a microfluidic optical sensor integrated with artificial cell membrane. LAB ON A CHIP 2014; 14:333-41. [PMID: 24232219 DOI: 10.1039/c3lc50937k] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
A label-free optical sensor was constructed by integrating pH sensing material and supported phospholipid bilayers (SPBs) in a microfluidic chip. The pH sensing material was composed of a double layer structure consisting of chitosan hydrogel and electrochemically etched porous silicon. The pH change in the microchip could induce a reversible swelling of the chitosan hydrogel layer and consequently caused a shift in effective optical thickness (EOT) of the double layer, which could be observed by Fourier transformed reflectometric interference spectroscopy (FT-RIS). After phospholipid bilayers (PLBs) were self-assembled on the sensing layer, the EOT almost remained constant during the cycling of pH from 7.4 to 6.2, indicating the blockage of H(+) translocation by the PLBs. For studying the behavior of ion channel protein, gramicidin A, a typical ion channel protein, was inserted in the SPBs for mimicking the ion transportation function of cell membrane. Due to the H(+) transportation capability of gramicidin A, the optical response to pH change could partially recover. In the presence of Ca(2+), the pore of the ion channel protein was blocked, causing a significant decrease in the EOT response upon pH change. The bio-functionalized microfluidic sensor fabricated in this work will provide a reliable platform for studying the function of ion channel protein, which is an important class of drug targets.
Collapse
Affiliation(s)
- Zhen Li
- Institute of Microanalytical System, Department of Chemistry, Zhejiang University, Hangzhou, 310058, China.
| | | | | | | |
Collapse
|
41
|
Abstract
This article reviews 101 patent applications published in 2011 that disclosed small-molecule antibacterials and reported bacterial growth inhibition, in which the compounds were not similarly disclosed to be toxic to fungal or mammalian cells. The patent applications were analyzed according to their biological target and/or antibacterial class. Protein synthesis inhibitors included ligands of the 50S ribosome subunit (oxazolidinones, macrolides/ketolides and pleuromutilins), the 30S ribosome subunit (aminoglycosides and tetracyclines) and nonribosomal targets. DNA synthesis inhibitors included ligands of topoisomerase type II and type IV. Inhibitors directed at the bacterial cell envelope included those that act on cell envelope synthesis (LpxC inhibitors, penicillin-binding protein inhibitors and glycopeptides) as well as membrane disruptors (lantibiotics). Other antibacterial targets included cell division (FtsZ and WalR) and fatty acid biosynthesis (FabH/I). Compounds for which the targets are unknown or undisclosed are also covered, as are compounds aimed at overcoming resistance mechanisms (efflux inhibitors, β-lactamase inhibitors).
Collapse
|
42
|
Abstract
Staphylococcus aureus is an important pathogen linked to serious infections both in the hospital and the community settings. The challenge to treat infections caused by S. aureus has increased because of the emergence of multidrug-resistant strains such as methicillin-resistant S. aureus (MRSA). A limited spectrum of antibiotics is available to treat MRSA infections. This chapter reviews antimicrobial agents currently in use for the treatment of MRSA infections as well as agents that are in various stages of development. This chapter also reviews the alternate approaches that are being explored for the treatment of staphylococcal infections.
Collapse
Affiliation(s)
- Anu Daniel
- Cubist Pharmaceuticals, Lexington, MA, USA
| |
Collapse
|
43
|
Monincová L, Buděšínský M, Čujová S, Čeřovský V, Veverka V. Structural basis for antimicrobial activity of lasiocepsin. Chembiochem 2013; 15:301-8. [PMID: 24339323 DOI: 10.1002/cbic.201300509] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2013] [Indexed: 11/06/2022]
Abstract
Lasiocepsin is a unique 27-residue antimicrobial peptide, isolated from Lasioglossum laticeps (wild bee) venom, with substantial antibacterial and antifungal activity. It adopts a well-defined structure consisting of two α-helices linked by a structured loop. Its basic residues form two distinct positively charged regions on the surface whereas aliphatic side chains contribute to solvent-accessible hydrophobic areas, thus emphasising the amphipathic character of the molecule. Lasiocepsin structurally belongs to the ShK family and shows a strong preference for anionic phospholipids; this is further augmented by increasing concentrations of cardiolipin, such as those found at the poles of bacterial cells. The membrane-permeabilising activity of the peptide is not limited to outer membranes of Gram-negative bacteria. The peptide interacts with phospholipids initially through its N terminus, and its degree of penetration is strongly dependent on the presence of cardiolipin.
Collapse
Affiliation(s)
- Lenka Monincová
- Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic, Flemingovo nam. 2, 16610 Prague 6 (Czech Republic)
| | | | | | | | | |
Collapse
|
44
|
Wu X, Hurdle JG. The Membrane as a Novel Target Site for Antibiotics to Kill Persisting Bacterial Pathogens. Antibiotics (Basel) 2013. [DOI: 10.1002/9783527659685.ch8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
|
45
|
Wydro P. The influence of cardiolipin on phosphatidylglycerol/phosphatidylethanolamine monolayers—Studies on ternary films imitating bacterial membranes. Colloids Surf B Biointerfaces 2013; 106:217-23. [DOI: 10.1016/j.colsurfb.2013.01.053] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2012] [Revised: 01/02/2013] [Accepted: 01/17/2013] [Indexed: 11/17/2022]
|
46
|
Kim SJ, Tanaka KSE, Dietrich E, Rafai Far A, Schaefer J. Locations of the hydrophobic side chains of lipoglycopeptides bound to the peptidoglycan of Staphylococcus aureus. Biochemistry 2013; 52:3405-14. [PMID: 23607653 DOI: 10.1021/bi400054p] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Glycopeptides whose aminosugars have been modified by attachment of hydrophobic side chains are frequently active against vancomycin-resistant microorganisms. We have compared the conformations of six such fluorinated glycopeptides (with side chains of varying length) complexed to cell walls labeled with d-[1-(13)C]alanine, [1-(13)C]glycine, and l-[ε-(15)N]lysine in whole cells of Staphylococcus aureus. The internuclear distances from (19)F of the bound drug to the (13)C and (15)N labels of the peptidoglycan, and to the natural abundance (31)P of lipid membranes and teichoic acids, were determined by rotational-echo double resonance NMR. The drugs did not dimerize, and their side chains did not form membrane anchors but instead became essential parts of secondary binding to pentaglycyl bridge segments of the cell-wall peptidoglycan.
Collapse
Affiliation(s)
- Sung Joon Kim
- Department of Chemistry and Biochemistry, Baylor University , Waco, Texas 76798, United States
| | | | | | | | | |
Collapse
|
47
|
Habib L, Khreich N, Jraij A, Abbas S, Magdalou J, Charcosset C, Greige-Gerges H. Preparation and characterization of liposomes incorporating cucurbitacin E, a natural cytotoxic triterpene. Int J Pharm 2013; 448:313-9. [DOI: 10.1016/j.ijpharm.2013.03.027] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2013] [Revised: 03/12/2013] [Accepted: 03/13/2013] [Indexed: 11/27/2022]
|
48
|
Lorent J, Le Duff CS, Quetin-Leclercq J, Mingeot-Leclercq MP. Induction of highly curved structures in relation to membrane permeabilization and budding by the triterpenoid saponins, α- and δ-Hederin. J Biol Chem 2013; 288:14000-14017. [PMID: 23530040 DOI: 10.1074/jbc.m112.407635] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The interactions of triterpenoid monodesmosidic saponins, α-hederin and δ-hederin, with lipid membranes are involved in their permeabilizing effect. Unfortunately, the interactions of these saponins with lipid membranes are largely unknown, as are the roles of cholesterol or the branched sugar moieties (two for α-hederin and one for δ-hederin) on the aglycone backbone, hederagenin. The differences in sugar moieties are responsible for differences in the molecular shape of the saponins and the effects on membrane curvature that should be the most positive for α-hederin in a transbilayer direction. In large unilamellar vesicles and monocyte cells, we showed that membrane permeabilization was dependent on the presence of membrane cholesterol and saponin sugar chains, being largest for α-hederin and smallest for hederagenin. In the presence of cholesterol, α-hederin induced the formation of nonbilayer phases with a higher rate of Brownian tumbling or lateral diffusion. A reduction of Laurdan's generalized polarization in relation to change in order of the polar heads of phospholipids was observed. Using giant unilamellar vesicles, we visualized the formation of wrinkled borders, the decrease in liposome size, budding, and the formation of macroscopic pores. All these processes are highly dependent on the sugars linked to the aglycone, with α-hederin showing a greater ability to induce pore formation and δ-hederin being more efficient in inducing budding. Hederagenin induced intravesicular budding but no pore formation. Based on these results, a curvature-driven permeabilization mechanism dependent on the interaction between saponin and sterols and on the molecular shape of the saponin and its ability to induce local spontaneous curvature is proposed.
Collapse
Affiliation(s)
- Joseph Lorent
- Cellular and Molecular Pharmacology, Université Catholique de Louvain, B-1200 Bruxelles; Pharmacognosy, Louvain Drug Research Institute, Université Catholique de Louvain, B-1200 Bruxelles
| | - Cécile S Le Duff
- Molecules, Solids and Reactivity, Institute of Condensed Matter and Nanosciences, Université Catholique de Louvain, B-1348 Louvain-la-Neuve, Belgium
| | - Joelle Quetin-Leclercq
- Pharmacognosy, Louvain Drug Research Institute, Université Catholique de Louvain, B-1200 Bruxelles
| | | |
Collapse
|
49
|
Antimicrobial properties of 8-hydroxyserrulat-14-en-19-oic acid for treatment of implant-associated infections. Antimicrob Agents Chemother 2012; 57:333-42. [PMID: 23114780 DOI: 10.1128/aac.01735-12] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Treatment options are limited for implant-associated infections (IAI) that are mainly caused by biofilm-forming staphylococci. We report here on the activity of the serrulatane compound 8-hydroxyserrulat-14-en-19-oic acid (EN4), a diterpene isolated from the Australian plant Eremophila neglecta. EN4 elicited antimicrobial activity toward various Gram-positive bacteria but not to Gram-negative bacteria. It showed a similar bactericidal effect against logarithmic-phase, stationary-phase, and adherent Staphylococcus epidermidis, as well as against methicillin-susceptible and methicillin-resistant S. aureus with MICs of 25 to 50 μg/ml and MBCs of 50 to 100 μg/ml. The bactericidal activity of EN4 was similar against S. epidermidis and its Δica mutant, which is unable to produce polysaccharide intercellular adhesin-mediated biofilm. In time-kill studies, EN4 exhibited a rapid and concentration-dependent killing of staphylococci, reducing bacterial counts by >3 log(10) CFU/ml within 5 min at concentrations of >50 μg/ml. Investigation of the mode of action of EN4 revealed membranolytic properties and a general inhibition of macromolecular biosynthesis, suggesting a multitarget activity. In vitro-tested cytotoxicity on eukaryotic cells was time and concentration dependent in the range of the MBCs. EN4 was then tested in a mouse tissue cage model, where it showed neither bactericidal nor cytotoxic effects, indicating an inhibition of its activity. Inhibition assays revealed that this was caused by interactions with albumin. Overall, these findings suggest that, upon structural changes, EN4 might be a promising pharmacophore for the development of new antimicrobials to treat IAI.
Collapse
|
50
|
Morandat S, Azouzi S, Beauvais E, Mastouri A, El Kirat K. Atomic force microscopy of model lipid membranes. Anal Bioanal Chem 2012; 405:1445-61. [DOI: 10.1007/s00216-012-6383-y] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2012] [Revised: 08/02/2012] [Accepted: 08/24/2012] [Indexed: 10/27/2022]
|