1
|
Hong M. Solid-State NMR of Virus Membrane Proteins. Acc Chem Res 2025; 58:847-860. [PMID: 40019485 DOI: 10.1021/acs.accounts.4c00800] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/01/2025]
Abstract
Enveloped viruses encode ion-conducting pores that permeabilize the host cell membranes and mediate the budding of new viruses. These viroporins are some of the essential membrane proteins of viruses, and have high sequence conservation, making them important targets of antiviral drugs. High-resolution structures of viroporins are challenging to determine by X-ray crystallography and cryoelectron microscopy, because these proteins are small, hydrophobic, and prone to induce membrane curvature. Solid-state NMR (ssNMR) spectroscopy is an ideal method for elucidating the structure, dynamics, and mechanism of action of viroporins in phospholipid membranes. This Account describes our investigations of influenza M2 proteins and the SARS-CoV-2 E protein using solid-state NMR.M2 proteins form acid-activated tetrameric proton channels that initiate influenza uncoating in the cell. 15N and 13C exchange NMR revealed that M2 shuttles protons into the virion using a crucial histidine, whose imidazole nitrogens pick up and release protons on the microsecond time scale at acidic pH. This proton exchange is synchronized with and facilitated by imidazole reorientation, which is observed in NMR spectra. Quantitative 15N NMR spectra yielded the populations of neutral and cationic histidines as a function of pH, giving four proton dissociation constants (pKa's). The pKa's of influenza AM2 indicate that the +3 charged channel has the highest time-averaged single-channel conductance; thus the third protonation event defines channel activation. In comparison, influenza BM2 exhibits lower pKa's due to a second, peripheral histidine, which accelerates proton dissociation from the central proton-selective histidine. Amantadine binding to AM2 suppressed proton exchange and imidazole reorientation, indicating that this antiviral drug acts by inhibiting proton shuttling. Solid-state NMR 13C-2H distance measurements revealed that amantadine binds the N-terminal pore of the channel near a crucial Ser31, whose mutation to asparagine causes amantadine resistance in circulating influenza A viruses. A second binding site, on the lipid-facing surface of the protein, only occurs when amantadine is in large excess in lipid bilayers. M2 not only functions as a proton channel but also conducts membrane scission during influenza budding in a cholesterol-dependent manner. Solid-state NMR distance experiments revealed that two cholesterol molecules bind asymmetrically to the surface of the tetrameric channel, thus recruiting the protein to the cholesterol-rich budding region of the cell membrane to cause membrane scission.To accelerate full structure determination of viroporins, we developed a suite of 19F solid-state NMR techniques that measure interatomic distances to 1-2 nm. Using this approach, we determined the atomic structures of influenza BM2, SARS-CoV-2 E, and EmrE, a multidrug-resistance bacterial transporter. pH-induced structural changes of these proteins gave detailed insights into the activation mechanisms of BM2 and E and the proton-coupled substrate transport mechanism of EmrE. The SARS-CoV-2 E protein forms pentameric helical bundles whose structures are distinct between the closed state at neutral pH and the open state at acidic pH. These 19F-enabled distance NMR experiments are also instrumental for identifying the binding mode and binding site of hexamethylene amiloride in E, paving the way for developing new antiviral drugs that target these pathogenic virus ion channels.
Collapse
Affiliation(s)
- Mei Hong
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| |
Collapse
|
2
|
Roeke KC, Howard KP. Conformation and Membrane Topology of the N-Terminal Ectodomain of Influenza A M2 Protein. MEMBRANES 2025; 15:40. [PMID: 39997666 PMCID: PMC11857740 DOI: 10.3390/membranes15020040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/24/2024] [Revised: 01/20/2025] [Accepted: 01/24/2025] [Indexed: 02/26/2025]
Abstract
The N-terminal ectodomain of the influenza A M2 protein is a target for universal influenza vaccine development and novel antiviral strategies. Despite the significance of this domain, it is poorly understood and most structural studies of the M2 protein have disregarded the N-terminal ectodomain in their analyses. Here, we report conformational properties and describe insights into the membrane topology of sites along the N-terminal ectodomain. Full-length M2 protein is embedded in lipid bilayer nanodiscs and studied using site-directed spin labeling electron paramagnetic resonance spectroscopy. Results are consistent with a turn in the middle of the ectodomain that changes in proximity to the membrane surface upon the addition of cholesterol or the antiviral drug rimantadine. Similarly to other domains of M2 protein, lineshape analysis suggests that the N-terminal ectodomain can adopt multiple conformations.
Collapse
Affiliation(s)
| | - Kathleen P. Howard
- Department of Chemistry and Biochemistry, Swarthmore College, Swarthmore, PA 19081, USA
| |
Collapse
|
3
|
Georgiou K, Kolocouris A. Conformational heterogeneity and structural features for function of the prototype viroporin influenza AM2. BIOCHIMICA ET BIOPHYSICA ACTA. BIOMEMBRANES 2025; 1867:184387. [PMID: 39424094 DOI: 10.1016/j.bbamem.2024.184387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Revised: 09/18/2024] [Accepted: 10/01/2024] [Indexed: 10/21/2024]
Abstract
The 97-residue influenza A matrix 2 (ΑM2) protein, a prototype for viroporins, transports protons through water molecules and His37. We discuss structural biology and molecular biophysics experiments and some functional assays that have transformed over 40 years our understanding of the structure and function of AM2. The structural studies on ΑM2 have been performed with different conditions (pH, temperature, lipid, constructs) and using various protein constructs, e.g., AM2 transmembrane (AM2TM) domain, AM2 conductance domain (AM2CD), ectodomain-containing or ectodomain-truncated, AM2 full length (AM2FL) and aimed to describe the different conformations and structural details that are necessary for the stability and function of AM2. However, the conclusions from these experiments appeared sometimes ambiguous and caused exciting debates. This was not due to inaccurate measurements, but instead because of the different membrane mimetic environment used, e.g., detergent, micelles or phospholipid bilayer, the method (e.g., X-ray crystallography, solid state NMR, solution NMR, native mass spectrometry), the used protein construct (e.g., AM2TM or AM2CD), or the amino acids residues to follow observables (e.g., NMR chemical shifts). We present these results according to the different used biophysical methods, the research groups and often by keeping a chronological order for presenting the progress in the research. We discuss ideas for additional research on structural details of AM2 and how the present findings can be useful to explore new routes of influenza A inhibition. The AM2 research can provide inspiration to study other viroporins as drug targets.
Collapse
Affiliation(s)
- Kyriakos Georgiou
- Laboratory of Medicinal Chemistry, Section of Pharmaceutical Chemistry, Department of Pharmacy, National and Kapodistrian University of Athens, Panepistimiopolis-Zografou, Athens 157 71, Greece
| | - Antonios Kolocouris
- Laboratory of Medicinal Chemistry, Section of Pharmaceutical Chemistry, Department of Pharmacy, National and Kapodistrian University of Athens, Panepistimiopolis-Zografou, Athens 157 71, Greece.
| |
Collapse
|
4
|
Gamage YI, Wadumesthri Y, Gutiérrez HR, Voronine DV, Pan J. The impact of transmembrane peptides on lipid bilayer structure and mechanics: A study of the transmembrane domain of the influenza A virus M2 protein. BIOCHIMICA ET BIOPHYSICA ACTA. BIOMEMBRANES 2024; 1866:184373. [PMID: 39047857 DOI: 10.1016/j.bbamem.2024.184373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 05/15/2024] [Accepted: 07/16/2024] [Indexed: 07/27/2024]
Abstract
Transmembrane peptides play important roles in many biological processes by interacting with lipid membranes. This study investigates how the transmembrane domain of the influenza A virus M2 protein, M2TM, affects the structure and mechanics of model lipid bilayers. Atomic force microscopy (AFM) imaging revealed small decreases in bilayer thickness with increasing peptide concentrations. AFM-based force spectroscopy experiments complemented by theoretical model analysis demonstrated significant decreases in bilayer's Young's modulus (E) and lateral area compressibility modulus (KA). This suggests that M2TM disrupts the cohesive interactions between neighboring lipid molecules, leading to a decrease in both the bilayer's resistance to indentation (E) and its ability to resist lateral compression/expansion (KA). The large decreases in bilayer elastic parameters (i.e., E and KA) contrast with small changes in bilayer thickness, implying that bilayer mechanics are not solely dictated by bilayer thickness in the presence of transmembrane peptides. The observed significant reduction in bilayer mechanical properties suggests a softening effect on the bilayer, potentially facilitating membrane curvature generation, a crucial step for M2-mediated viral budding. In parallel, our Raman spectroscopy revealed small but statistically significant changes in hydrocarbon chain vibrational dynamics, indicative of minor disordering in lipid chain conformation. Our findings provide useful insights into the complex interplay between transmembrane peptides and lipid bilayers, highlighting the significance of peptide-lipid interactions in modulating membrane structure, mechanics, and molecular dynamics.
Collapse
Affiliation(s)
| | - Yasinthara Wadumesthri
- Department of Physics, University of South Florida, Tampa, FL 33620, United States of America
| | | | - Dmitri V Voronine
- Department of Physics, University of South Florida, Tampa, FL 33620, United States of America
| | - Jianjun Pan
- Department of Physics, University of South Florida, Tampa, FL 33620, United States of America.
| |
Collapse
|
5
|
Pankratova Y, McKay MJ, Ma C, Tan H, Wang J, Hong M. Structure and dynamics of the proton-selective histidine and the gating tryptophan in an inward rectifying hybrid influenza B and A virus M2 proton channel. Phys Chem Chem Phys 2024; 26:20629-20644. [PMID: 39037444 PMCID: PMC11290064 DOI: 10.1039/d4cp01648c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Accepted: 07/15/2024] [Indexed: 07/23/2024]
Abstract
The M2 proteins of influenza A and B viruses form acid-activated proton channels that are essential for the virus lifecycle. Proton selectivity is achieved by a transmembrane (TM) histidine whereas gating is achieved by a tryptophan residue. Although this functional apparatus is conserved between AM2 and BM2 channels, AM2 conducts protons exclusively inward whereas BM2 conducts protons in either direction depending on the pH gradient. Previous studies showed that in AM2, mutations of D44 abolished inward rectification of AM2, suggesting that the tryptophan gate is destabilized. To elucidate how charged residues C-terminal to the tryptophan regulates channel gating, here we investigate the structure and dynamics of H19 and W23 in a BM2 mutant, GDR-BM2, in which three BM2 residues are mutated to the corresponding AM2 residues, S16G, G26D and H27R. Whole-cell electrophysiological data show that GDR-BM2 conducts protons with inward rectification, identical to wild-type (WT) AM2 but different from WT-BM2. Solid-state NMR 15N and 13C spectra of H19 indicate that the mutant BM2 channel contains higher populations of cationic histidine and neutral τ tautomers compared to WT-BM2 at acidic pH. Moreover, 19F NMR spectra of 5-19F-labeled W23 resolve three peaks at acidic pH, suggesting three tryptophan sidechain conformations. Comparison of these spectra with the tryptophan spectra of other M2 peptides suggests that these indole sidechain conformations arise from interactions with the C-terminal charged residues and with the N-terminal cationic histidine. Taken together, these solid-state NMR data show that inward rectification in M2 proton channels is accomplished by tryptophan interactions with charged residues on both its C-terminal and N-terminal sides. Gating of these M2 proton channels is thus accomplished by a multi-residue complex with finely tuned electrostatic and aromatic interactions.
Collapse
Affiliation(s)
- Yanina Pankratova
- Department of Chemistry, Massachusetts Institute of Technology, 170 Albany Street, Cambridge, MA 02139, USA.
| | - Matthew J McKay
- Department of Chemistry, Massachusetts Institute of Technology, 170 Albany Street, Cambridge, MA 02139, USA.
| | - Chunlong Ma
- Department of Pharmacology and Toxicology, College of Pharmacy, University of Arizona, Tucson, Arizona, 85721, USA
| | - Haozhou Tan
- Department of Medicinal Chemistry, Rutgers University, 160 Frelinghuysen Road, Piscataway, NJ 08854, USA
| | - Jun Wang
- Department of Medicinal Chemistry, Rutgers University, 160 Frelinghuysen Road, Piscataway, NJ 08854, USA
| | - Mei Hong
- Department of Chemistry, Massachusetts Institute of Technology, 170 Albany Street, Cambridge, MA 02139, USA.
| |
Collapse
|
6
|
Tekwani Movellan K, Wegstroth M, Overkamp K, Leonov A, Becker S, Andreas LB. Real-time tracking of drug binding to influenza A M2 reveals a high energy barrier. J Struct Biol X 2023; 8:100090. [PMID: 37363040 PMCID: PMC10285276 DOI: 10.1016/j.yjsbx.2023.100090] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Revised: 05/18/2023] [Accepted: 06/02/2023] [Indexed: 06/28/2023] Open
Abstract
The drug Rimantadine binds to two different sites in the M2 protein from influenza A, a peripheral site and a pore site that is the primary site of efficacy. It remained enigmatic that pore binding did not occur in certain detergent micelles, and in particular incomplete binding was observed in a mixture of lipids selected to match the viral membrane. Here we show that two effects are responsible, namely changes in the protein upon pore binding that prevented detergent solubilization, and slow binding kinetics in the lipid samples. Using 55-100 kHz magic-angle spinning NMR, we characterize kinetics of drug binding in three different lipid environments: DPhPC, DPhPC with cholesterol and viral mimetic membrane lipid bilayers. Slow pharmacological binding kinetics allowed the characterization of spectral changes associated with non-specific binding to the protein periphery in the kinetically trapped pore-apo state. Resonance assignments were determined from a set of proton-detected 3D spectra. Chemical shift changes associated with functional binding in the pore of M2 were tracked in real time in order to estimate the activation energy. The binding kinetics are affected by pH and the lipid environment and in particular cholesterol. We found that the imidazole-imidazole hydrogen bond at residue histidine 37 is a stable feature of the protein across several lipid compositions. Pore binding breaks the imidazole-imidazole hydrogen bond and limits solubilization in DHPC detergent.
Collapse
|
7
|
Kyaw A, Roepke K, Arthur T, Howard KP. Conformation of influenza AM2 membrane protein in nanodiscs and liposomes. BIOCHIMICA ET BIOPHYSICA ACTA. BIOMEMBRANES 2023; 1865:184152. [PMID: 36948480 PMCID: PMC10175228 DOI: 10.1016/j.bbamem.2023.184152] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 02/15/2023] [Accepted: 03/14/2023] [Indexed: 03/24/2023]
Abstract
The influenza A M2 protein (AM2) is a multifunctional membrane-associated homotetramer that orchestrates several essential events in the viral infection cycle including viral assembly and budding. An atomic-level conformational understanding of this key player in the influenza life cycle could inform new antiviral strategies. For conformational studies of complex systems like the AM2 membrane protein, a multipronged approach using different biophysical methods and different model membranes is a powerful way to incorporate complementary data and achieve a fuller, more robust understanding of the system. However, one must be aware of how the sample composition required for a particular method impacts the data collected and how conclusions are drawn. In that spirit, we systematically compared the properties of AM2 in two different model membranes: nanodiscs and liposomes. Electron paramagnetic spectroscopy of spin-labeled AM2 showed that the conformation and dynamics were strikingly similar in both AM2-nanodiscs and AM2-liposomes consistent with similar conformations in both model membranes. Analysis of spin labeled lipids embedded in both model membranes revealed that the bilayer in AM2-liposomes was more fluid and permeable to oxygen than AM2-nanodiscs with the same lipid composition. Once the difference in the partitioning of the paramagnetic oxygen relaxation agent was taken into account, the membrane topology of AM2 appeared to be the same in both liposomes and nanodiscs. Finally, functionally relevant AM2 conformational shifts previously seen in liposomes due to the addition of cholesterol were also observed in nanodiscs.
Collapse
Affiliation(s)
- Aye Kyaw
- Department of Chemistry and Biochemistry, Swarthmore College, Swarthmore, PA 19081, United States of America
| | - Kyra Roepke
- Department of Chemistry and Biochemistry, Swarthmore College, Swarthmore, PA 19081, United States of America
| | - Tyrique Arthur
- Department of Chemistry and Biochemistry, Swarthmore College, Swarthmore, PA 19081, United States of America
| | - Kathleen P Howard
- Department of Chemistry and Biochemistry, Swarthmore College, Swarthmore, PA 19081, United States of America.
| |
Collapse
|
8
|
Kumari R, Sharma SD, Kumar A, Ende Z, Mishina M, Wang Y, Falls Z, Samudrala R, Pohl J, Knight PR, Sambhara S. Antiviral Approaches against Influenza Virus. Clin Microbiol Rev 2023; 36:e0004022. [PMID: 36645300 PMCID: PMC10035319 DOI: 10.1128/cmr.00040-22] [Citation(s) in RCA: 59] [Impact Index Per Article: 29.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
Preventing and controlling influenza virus infection remains a global public health challenge, as it causes seasonal epidemics to unexpected pandemics. These infections are responsible for high morbidity, mortality, and substantial economic impact. Vaccines are the prophylaxis mainstay in the fight against influenza. However, vaccination fails to confer complete protection due to inadequate vaccination coverages, vaccine shortages, and mismatches with circulating strains. Antivirals represent an important prophylactic and therapeutic measure to reduce influenza-associated morbidity and mortality, particularly in high-risk populations. Here, we review current FDA-approved influenza antivirals with their mechanisms of action, and different viral- and host-directed influenza antiviral approaches, including immunomodulatory interventions in clinical development. Furthermore, we also illustrate the potential utility of machine learning in developing next-generation antivirals against influenza.
Collapse
Affiliation(s)
- Rashmi Kumari
- Immunology and Pathogenesis Branch, Influenza Division, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
- Department of Anesthesiology, Jacobs School of Medicine and Biomedical Sciences, State University of New York at Buffalo, Buffalo, New York, USA
| | - Suresh D. Sharma
- Immunology and Pathogenesis Branch, Influenza Division, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - Amrita Kumar
- Immunology and Pathogenesis Branch, Influenza Division, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - Zachary Ende
- Immunology and Pathogenesis Branch, Influenza Division, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
- Oak Ridge Institute for Science and Education (ORISE), CDC Fellowship Program, Oak Ridge, Tennessee, USA
| | - Margarita Mishina
- Immunology and Pathogenesis Branch, Influenza Division, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - Yuanyuan Wang
- Biotechnology Core Facility Branch, Division of Scientific Resources, National Center for Emerging and Zoonotic Infectious Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
- Association of Public Health Laboratories, Silver Spring, Maryland, USA
| | - Zackary Falls
- Department of Biomedical Informatics, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, New York, USA
| | - Ram Samudrala
- Department of Biomedical Informatics, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, New York, USA
| | - Jan Pohl
- Biotechnology Core Facility Branch, Division of Scientific Resources, National Center for Emerging and Zoonotic Infectious Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - Paul R. Knight
- Department of Anesthesiology, Jacobs School of Medicine and Biomedical Sciences, State University of New York at Buffalo, Buffalo, New York, USA
| | - Suryaprakash Sambhara
- Immunology and Pathogenesis Branch, Influenza Division, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| |
Collapse
|
9
|
Kolocouris A, Arkin I, Glykos NM. A proof-of-concept study of the secondary structure of influenza A, B M2 and MERS- and SARS-CoV E transmembrane peptides using folding molecular dynamics simulations in a membrane mimetic solvent. Phys Chem Chem Phys 2022; 24:25391-25402. [PMID: 36239696 DOI: 10.1039/d2cp02881f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Here, we have carried out a proof-of-concept molecular dynamics (MD) simulation with adaptive tempering in a membrane mimetic environment to study the folding of single-pass membrane peptides. We tested the influenza A M2 viroporin, influenza B M2 viroporin, and protein E from coronaviruses MERS-Cov-2 and SARS-CoV-2 peptides with known experimental secondary structures in membrane bilayers. The two influenza-derived peptides are significantly different in the peptide sequence and secondary structure and more polar than the two coronavirus-derived peptides. Through a total of more than 50 μs of simulation time that could be accomplished in trifluoroethanol (TFE), as a membrane model, we characterized comparatively the folding behavior, helical stability, and helical propensity of these transmembrane peptides that match perfectly their experimental secondary structures, and we identified common motifs that reflect their quaternary organization and known (or not) biochemical function. We showed that BM2 is organized into two structurally distinct parts: a significantly more stable N-terminal half, and a fast-converting C-terminal half that continuously folds and unfolds between α-helical structures and non-canonical structures, which are mostly turns. In AM2, both the N-terminal half and C-terminal half are very flexible. In contrast, the two coronavirus-derived transmembrane peptides are much more stable and fast helix-formers when compared with the influenza ones. In particular, the SARS-derived peptide E appears to be the fastest and most stable helix-former of all the four viral peptides studied, with a helical structure that persists almost without disruption for the whole of its 10 μs simulation. By comparing the results with experimental observations, we benchmarked TFE in studying the conformation of membrane and hydrophobic peptides. This work provided accurate results suggesting a methodology to run long MD simulations and predict structural properties of biologically important membrane peptides.
Collapse
Affiliation(s)
- Antonios Kolocouris
- Laboratory of Medicinal Chemistry, Section of Pharmaceutical Chemistry, Department of Pharmacy, National and Kapodistrian University of Athens, Panepistimiopolis, 15771, Greece.
| | - Isaiah Arkin
- Department of Biological Chemistry, The Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Edmond J. Safra Campus Givat-Ram, Jerusalem, 91904, Israel
| | - Nicholas M Glykos
- Department of Molecular Biology and Genetics, Democritus University of Thrace, University Campus, Alexandroupolis, 68100, Greece.
| |
Collapse
|
10
|
Watkins LC, DeGrado WF, Voth GA. Multiscale Simulation of an Influenza A M2 Channel Mutant Reveals Key Features of Its Markedly Different Proton Transport Behavior. J Am Chem Soc 2022; 144:769-776. [PMID: 34985907 PMCID: PMC8834648 DOI: 10.1021/jacs.1c09281] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
The influenza A M2 channel, a prototype for viroporins, is an acid-activated viroporin that conducts protons across the viral membrane, a critical step in the viral life cycle. Four central His37 residues control channel activation by binding subsequent protons from the viral exterior, which opens the Trp41 gate and allows proton flux to the interior. Asp44 is essential for maintaining the Trp41 gate in a closed state at high pH, resulting in asymmetric conduction. The prevalent D44N mutant disrupts this gate and opens the C-terminal end of the channel, resulting in increased conduction and a loss of this asymmetric conduction. Here, we use extensive Multiscale Reactive Molecular Dynamics (MS-RMD) and quantum mechanics/molecular mechanics (QM/MM) molecular dynamics simulations with an explicit, reactive excess proton to calculate the free energy of proton transport in this M2 mutant and to study the dynamic molecular-level behavior of D44N M2. We find that this mutation significantly lowers the barrier of His37 deprotonation in the activated state and shifts the barrier for entry to the Val27 tetrad. These free energy changes are reflected in structural shifts. Additionally, we show that the increased hydration around the His37 tetrad diminishes the effect of the His37 charge on the channel's water structure, facilitating proton transport and enabling activation from the viral interior. Altogether, this work provides key insight into the fundamental characteristics of PT in WT M2 and how the D44N mutation alters this PT mechanism, and it expands understanding of the role of emergent mutations in viroporins.
Collapse
Affiliation(s)
- Laura C. Watkins
- Department of Chemistry, Chicago Center for Theoretical Chemistry, Institute for Biophysical Dynamics and James Franck Institute, The University of Chicago, Chicago, Illinois 60637, United States
| | - William F. DeGrado
- Department of Pharmaceutical Chemistry, University of California, San Francisco, San Francisco, California, 94158, United States
| | - Gregory A. Voth
- Department of Chemistry, Chicago Center for Theoretical Chemistry, Institute for Biophysical Dynamics and James Franck Institute, The University of Chicago, Chicago, Illinois 60637, United States,Corresponding Author
| |
Collapse
|
11
|
Do HQ, Jansen M. Cell-Free Expression of Proton-Coupled Folate Transporter in the Presence of Nanodiscs. Methods Mol Biol 2022; 2507:425-444. [PMID: 35773596 DOI: 10.1007/978-1-0716-2368-8_23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Proton coupled folate transporter (PCFT) is an integral membrane protein with 12 transmembrane segments localized to the plasma membrane. PCFT is the main route by which folate, vitamin B9, from dietary sources enters mammalian cells in the small intestine. Loss-of-function mutations in this membrane transport protein cause hereditary folate malabsorption, and upregulation of PCFT has been reported in cancer cells. Currently, a complete translocation mechanism of folate via PCFT is still missing. To reveal this mechanism via studies of structural architecture and structure-function relationships, soluble and stable PCFT in a phospholipid bilayer environment is needed. We therefore develop an approach to screen lipid environments in which PCFT is most soluble. Traditional in vitro expression and reconstitution into lipid bilayers of integral membrane proteins requires separate steps, which are costly and time-consuming. In this chapter, we describe a protocol for in vitro translation of PCFT into preformed lipid nanodiscs using a cell-free expression system, which helps to accelerate and reduce the cost of the sample preparation.
Collapse
Affiliation(s)
- Hoa Quynh Do
- Department of Cell Physiology and Molecular Biophysics and Center for Membrane Protein Research, School of Medicine, Texas Tech University Health Sciences Center, Lubbock, TX, USA
| | - Michaela Jansen
- Department of Cell Physiology and Molecular Biophysics and Center for Membrane Protein Research, School of Medicine, Texas Tech University Health Sciences Center, Lubbock, TX, USA.
| |
Collapse
|
12
|
Townsend JA, Sanders HM, Rolland AD, Park CK, Horton NC, Prell JS, Wang J, Marty MT. Influenza AM2 Channel Oligomerization Is Sensitive to Its Chemical Environment. Anal Chem 2021; 93:16273-16281. [PMID: 34813702 DOI: 10.1021/acs.analchem.1c04660] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Viroporins are small viral ion channels that play important roles in the viral infection cycle and are proven antiviral drug targets. Matrix protein 2 from influenza A (AM2) is the best-characterized viroporin, and the current paradigm is that AM2 forms monodisperse tetramers. Here, we used native mass spectrometry and other techniques to characterize the oligomeric state of both the full-length and transmembrane (TM) domain of AM2 in a variety of different pH and detergent conditions. Unexpectedly, we discovered that AM2 formed a range of different oligomeric complexes that were strongly influenced by the local chemical environment. Native mass spectrometry of AM2 in nanodiscs with different lipids showed that lipids also affected the oligomeric states of AM2. Finally, nanodiscs uniquely enabled the measurement of amantadine binding stoichiometries to AM2 in the intact lipid bilayer. These unexpected results reveal that AM2 can form a wider range of oligomeric states than previously thought possible, which may provide new potential mechanisms of influenza pathology and pharmacology.
Collapse
Affiliation(s)
- Julia A Townsend
- Department of Chemistry and Biochemistry, The University of Arizona, Tucson, Arizona 85721, United States
| | - Henry M Sanders
- Department of Chemistry and Biochemistry, The University of Arizona, Tucson, Arizona 85721, United States
| | - Amber D Rolland
- Department of Chemistry and Biochemistry, University of Oregon, Eugene, Oregon 97403, United States.,Institute of Molecular Biology, University of Oregon, Eugene, Oregon 97403, United States
| | - Chad K Park
- Department of Molecular and Cellular Biology, University of Arizona, Tucson, Arizona 85721, United States
| | - Nancy C Horton
- Department of Molecular and Cellular Biology, University of Arizona, Tucson, Arizona 85721, United States
| | - James S Prell
- Department of Chemistry and Biochemistry, University of Oregon, Eugene, Oregon 97403, United States.,Materials Science Institute, University of Oregon, Eugene, Oregon 97403, United States
| | - Jun Wang
- Department of Pharmacology and Toxicology, The University of Arizona, Tucson, Arizona 85721, United States.,Bio5 Institute, The University of Arizona, Tucson, Arizona 85721, United States
| | - Michael T Marty
- Department of Chemistry and Biochemistry, The University of Arizona, Tucson, Arizona 85721, United States.,Bio5 Institute, The University of Arizona, Tucson, Arizona 85721, United States
| |
Collapse
|
13
|
Kolokouris D, Kalenderoglou IE, Kolocouris A. Inside and Out of the Pore: Comparing Interactions and Molecular Dynamics of Influenza A M2 Viroporin Complexes in Standard Lipid Bilayers. J Chem Inf Model 2021; 61:5550-5568. [PMID: 34714655 DOI: 10.1021/acs.jcim.1c00264] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Ion channels located at viral envelopes (viroporins) have a critical function for the replication of infectious viruses and are important drug targets. Over the last decade, the number and duration of molecular dynamics (MD) simulations of the influenza A M2 ion channel owing to the increased computational efficiency. Here, we aimed to define the system setup and simulation conditions for the correct description of the protein-pore and the protein-lipid interactions for influenza A M2 in comparison with experimental data. We performed numerous MD simulations of the influenza A M2 protein in complex with adamantane blockers in standard lipid bilayers using OPLS2005 and CHARMM36 (C36) force fields. We explored the effect of varying the M2 construct (M2(22-46) and M2(22-62)), the lipid buffer size and type (stiffer DMPC or softer POPC with or without 20% cholesterol), the simulation time, the H37 protonation site (Nδ or Νε), the conformational state of the W41 channel gate, and M2's cholesterol binding sites (BSs). We report that the 200 ns MD with M2(22-62) (having Nε Η37) in the 20 Å lipid buffer with the C36 force field accurately describe: (a) the M2 pore structure and interactions inside the pore, that is, adamantane channel blocker location, water clathrate structure, and water or chloride anion blockage/passage from the M2 pore in the presence of a channel blocker and (b) interactions between M2 and the membrane environment as reflected by the calculation of the M2 bundle tilt, folding of amphipathic helices, and cholesterol BSs. Strikingly, we also observed that the C36 1 μs MD simulations using M2(22-62) embedded in a 20 Å POPC:cholesterol (5:1) scrambled membrane produced frequent interactions with cholesterol, which when combined with computational kinetic analysis, revealed the experimentally observed BSs of cholesterol and suggested three similarly long-interacting positions in the top leaflet that have previously not been observed experimentally. These findings promise to be useful for other viroporin systems.
Collapse
Affiliation(s)
- Dimitrios Kolokouris
- Laboratory of Medicinal Chemistry, Section of Pharmaceutical Chemistry, Department of Pharmacy, School of Health Sciences, National and Kapodistrian University of Athens, Panepistimiopolis-Zografou, Athens 15771, Greece
| | - Iris E Kalenderoglou
- Laboratory of Medicinal Chemistry, Section of Pharmaceutical Chemistry, Department of Pharmacy, School of Health Sciences, National and Kapodistrian University of Athens, Panepistimiopolis-Zografou, Athens 15771, Greece
| | - Antonios Kolocouris
- Laboratory of Medicinal Chemistry, Section of Pharmaceutical Chemistry, Department of Pharmacy, School of Health Sciences, National and Kapodistrian University of Athens, Panepistimiopolis-Zografou, Athens 15771, Greece
| |
Collapse
|
14
|
Do HQ, Bassil CM, Andersen EI, Jansen M. Impact of nanodisc lipid composition on cell-free expression of proton-coupled folate transporter. PLoS One 2021; 16:e0253184. [PMID: 34793461 PMCID: PMC8601550 DOI: 10.1371/journal.pone.0253184] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Accepted: 10/31/2021] [Indexed: 01/19/2023] Open
Abstract
The Proton-Coupled Folate Transporter (PCFT) is a transmembrane transport protein that controls the absorption of dietary folates in the small intestine. PCFT also mediates uptake of chemotherapeutically used antifolates into tumor cells. PCFT has been identified within lipid rafts observed in phospholipid bilayers of plasma membranes, a micro environment that is altered in tumor cells. The present study aimed at investigating the impact of different lipids within Lipid-protein nanodiscs (LPNs), discoidal lipid structures stabilized by membrane scaffold proteins, to yield soluble PCFT expression in an E. coli lysate-based cell-free transcription/translation system. In the absence of detergents or lipids, we observed PCFT quantitatively as precipitate in this system. We then explored the ability of LPNs to support solubilized PCFT expression when present during in-vitro translation. LPNs consisted of either dimyristoyl phosphatidylcholine (DMPC), palmitoyl-oleoyl phosphatidylcholine (POPC), or dimyristoyl phosphatidylglycerol (DMPG). While POPC did not lead to soluble PCFT expression, both DMPG and DMPC supported PCFT translation directly into LPNs, the latter in a concentration dependent manner. The results obtained through this study provide insights into the lipid preferences of PCFT. Membrane-embedded or solubilized PCFT will enable further studies with diverse biophysical approaches to enhance the understanding of the structure and molecular mechanism of folate transport through PCFT.
Collapse
Affiliation(s)
- Hoa Quynh Do
- Department of Cell Physiology and Molecular Biophysics and Center for Membrane Protein Research, School of Medicine, Texas Tech University Health Sciences Center, Lubbock, Texas, United States of America
| | - Carla M. Bassil
- Department of Cell Physiology and Molecular Biophysics and Center for Membrane Protein Research, School of Medicine, Texas Tech University Health Sciences Center, Lubbock, Texas, United States of America
- The Clark Scholar Program, Texas Tech University, Lubbock, TX, United States of America
| | - Elizabeth I. Andersen
- Department of Cell Physiology and Molecular Biophysics and Center for Membrane Protein Research, School of Medicine, Texas Tech University Health Sciences Center, Lubbock, Texas, United States of America
| | - Michaela Jansen
- Department of Cell Physiology and Molecular Biophysics and Center for Membrane Protein Research, School of Medicine, Texas Tech University Health Sciences Center, Lubbock, Texas, United States of America
| |
Collapse
|
15
|
Lamb RA. The Structure, Function, and Pathobiology of the Influenza A and B Virus Ion Channels. Cold Spring Harb Perspect Med 2020; 10:cshperspect.a038505. [PMID: 31988204 DOI: 10.1101/cshperspect.a038505] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Influenza A virus AM2 protein is an integral membrane protein that is an ion channel (also known as a viroporin). The channel has 24 extracellular residues, 19 residues that span the membrane once and acts as both the channel pore and also the membrane anchoring domain, and a 54-residue cytoplasmic tail. The M2 protein has four identical chains linked via two disulfide bonds that form a four-helix bundle that is 107-108 more permeable to protons than Na+ ions. The M2 channel is activated by low pH, His residue 37 is the pH sensor, and Trp residue 41 is the channel gate. The channel is blocked by the antiviral drug amantadine hydrochloride. The influenza B virus BM2 protein does not have homology with the AM2 channel, but BM2 does have the His proton sensor, Trp gate, and is activated by low pH. It is thought that the AM2 and BM2 proteins have common functions in the influenza A and B virus life cycles. Both BM2 and AM2 also facilitate virus budding. The amphipathic helix in the AM2 cytoplasmic tail has an important role in the assembly of the virus, and functional AM2 protein makes the virus independent of the "endosomal sorting complex required for transport" (ESCRT) complex scission.
Collapse
Affiliation(s)
- Robert A Lamb
- Department of Molecular Biosciences, Howard Hughes Medical Institute, Northwestern University, Evanston, Illinois 60208-3500, USA
| |
Collapse
|
16
|
Watkins LC, DeGrado WF, Voth GA. Influenza A M2 Inhibitor Binding Understood through Mechanisms of Excess Proton Stabilization and Channel Dynamics. J Am Chem Soc 2020; 142:17425-17433. [PMID: 32933245 PMCID: PMC7564090 DOI: 10.1021/jacs.0c06419] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
![]()
Prevalent resistance to inhibitors
that target the influenza A
M2 proton channel has necessitated a continued drug design effort,
supported by a sustained study of the mechanism of channel function
and inhibition. Recent high-resolution X-ray crystal structures present
the first opportunity to see how the adamantyl amine class of inhibitors
bind to M2 and disrupt and interact with the channel’s water
network, providing insight into the critical properties that enable
their effective inhibition in wild-type M2. In this work, we examine
the hypothesis that these drugs act primarily as mechanism-based inhibitors
by comparing hydrated excess proton stabilization during proton transport
in M2 with the interactions revealed in the crystal structures, using
the Multiscale Reactive Molecular Dynamics (MS-RMD) methodology. MS-RMD,
unlike classical molecular dynamics, models the hydrated proton (hydronium-like
cation) as a dynamic excess charge defect and allows bonds to break
and form, capturing the intricate interactions between the hydrated
excess proton, protein atoms, and water. Through this, we show that
the ammonium group of the inhibitors is effectively positioned to
take advantage of the channel’s natural ability to stabilize
an excess protonic charge and act as a hydronium mimic. Additionally,
we show that the channel is especially stable in the drug binding
region, highlighting the importance of this property for binding the
adamantane group. Finally, we characterize an additional hinge point
near Val27, which dynamically responds to charge and inhibitor binding.
Altogether, this work further illuminates a dynamic understanding
of the mechanism of drug inhibition in M2, grounded in the fundamental
properties that enable the channel to transport and stabilize excess
protons, with critical implications for future drug design efforts.
Collapse
Affiliation(s)
- Laura C Watkins
- Department of Chemistry, Chicago Center for Theoretical Chemistry, Institute for Biophysical Dynamics and James Franck Institute, The University of Chicago, Chicago, Illinois 60637, United States
| | - William F DeGrado
- Department of Pharmaceutical Chemistry, University of California, San Francisco, San Francisco, California 94158, United States
| | - Gregory A Voth
- Department of Chemistry, Chicago Center for Theoretical Chemistry, Institute for Biophysical Dynamics and James Franck Institute, The University of Chicago, Chicago, Illinois 60637, United States
| |
Collapse
|
17
|
Stylianakis I, Shalev A, Scheiner S, Sigalas MP, Arkin IT, Glykos N, Kolocouris A. The balance between side-chain and backbone-driven association in folding of the α-helical influenza A transmembrane peptide. J Comput Chem 2020; 41:2177-2188. [PMID: 32735736 DOI: 10.1002/jcc.26381] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2020] [Revised: 06/17/2020] [Accepted: 06/18/2020] [Indexed: 11/07/2022]
Abstract
The correct balance between attractive, repulsive and peptide hydrogen bonding interactions must be attained for proteins to fold correctly. To investigate these important contributors, we sought a comparison of the folding between two 25-residues peptides, the influenza A M2 protein transmembrane domain (M2TM) and the 25-Ala (Ala25 ). M2TM forms a stable α-helix as is shown by circular dichroism (CD) experiments. Molecular dynamics (MD) simulations with adaptive tempering show that M2TM monomer is more dynamic in nature and quickly interconverts between an ensemble of various α-helical structures, and less frequently turns and coils, compared to one α-helix for Ala25 . DFT calculations suggest that folding from the extended structure to the α-helical structure is favored for M2TM compared with Ala25 . This is due to CH⋯O attractive interactions which favor folding to the M2TM α-helix, and cannot be described accurately with a force field. Using natural bond orbital (NBO) analysis and quantum theory atoms in molecules (QTAIM) calculations, 26 CH⋯O interactions and 22 NH⋯O hydrogen bonds are calculated for M2TM. The calculations show that CH⋯O hydrogen bonds, although individually weaker, have a cumulative effect that cannot be ignored and may contribute as much as half of the total hydrogen bonding energy, when compared to NH⋯O, to the stabilization of the α-helix in M2TM. Further, a strengthening of NH⋯O hydrogen bonding interactions is calculated for M2TM compared to Ala25 . Additionally, these weak CH⋯O interactions can dissociate and associate easily leading to the ensemble of folded structures for M2TM observed in folding MD simulations.
Collapse
Affiliation(s)
- Ioannis Stylianakis
- Section of Pharmaceutical Chemistry, Department of Pharmacy, National and Kapodistrian University of Athens, Athens, Greece
| | - Ariella Shalev
- Department of Biological Chemistry, The Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Edmond J. Safra Campus Givat-Ram, Jerusalem, Israel
| | - Steve Scheiner
- Department of Chemistry and Biochemistry, Utah State University, Logan, Utah, USA
| | - Michael P Sigalas
- Department of Chemistry, Laboratory of Applied Quantum Chemistry, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Isaiah T Arkin
- Department of Biological Chemistry, The Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Edmond J. Safra Campus Givat-Ram, Jerusalem, Israel
| | - Nikolas Glykos
- Department of Molecular Biology and Genetics, Democritus University of Thrace, Alexandroupolis, Greece
| | - Antonios Kolocouris
- Section of Pharmaceutical Chemistry, Department of Pharmacy, National and Kapodistrian University of Athens, Athens, Greece
| |
Collapse
|
18
|
Site-directed M2 proton channel inhibitors enable synergistic combination therapy for rimantadine-resistant pandemic influenza. PLoS Pathog 2020; 16:e1008716. [PMID: 32780760 PMCID: PMC7418971 DOI: 10.1371/journal.ppat.1008716] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2019] [Accepted: 06/19/2020] [Indexed: 12/05/2022] Open
Abstract
Pandemic influenza A virus (IAV) remains a significant threat to global health. Preparedness relies primarily upon a single class of neuraminidase (NA) targeted antivirals, against which resistance is steadily growing. The M2 proton channel is an alternative clinically proven antiviral target, yet a near-ubiquitous S31N polymorphism in M2 evokes resistance to licensed adamantane drugs. Hence, inhibitors capable of targeting N31 containing M2 (M2-N31) are highly desirable. Rational in silico design and in vitro screens delineated compounds favouring either lumenal or peripheral M2 binding, yielding effective M2-N31 inhibitors in both cases. Hits included adamantanes as well as novel compounds, with some showing low micromolar potency versus pandemic “swine” H1N1 influenza (Eng195) in culture. Interestingly, a published adamantane-based M2-N31 inhibitor rapidly selected a resistant V27A polymorphism (M2-A27/N31), whereas this was not the case for non-adamantane compounds. Nevertheless, combinations of adamantanes and novel compounds achieved synergistic antiviral effects, and the latter synergised with the neuraminidase inhibitor (NAi), Zanamivir. Thus, site-directed drug combinations show potential to rejuvenate M2 as an antiviral target whilst reducing the risk of drug resistance. "Swine flu" illustrated that the spread of influenza pandemics in the modern era is rapid, making antiviral drugs the best way of limiting disease. One proven influenza drug target is the M2 proton channel, which plays an essential role during virus entry. However, resistance against licensed drugs targeting this protein is now ubiquitous, largely due to an S31N change in the M2 sequence. Understandably, considerable effort has focused on developing M2-N31 inhibitors, yet this has been hampered by controversy surrounding two potential drug binding sites. Here, we show that both sites can in fact be targeted by new M2-N31 inhibitors, generating synergistic antiviral effects. Developing such drug combinations should improve patient outcomes and minimise the emergence of future drug resistance.
Collapse
|
19
|
Mandala VS, Loftis AR, Shcherbakov AA, Pentelute BL, Hong M. Atomic structures of closed and open influenza B M2 proton channel reveal the conduction mechanism. Nat Struct Mol Biol 2020; 27:160-167. [PMID: 32015551 PMCID: PMC7641042 DOI: 10.1038/s41594-019-0371-2] [Citation(s) in RCA: 58] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2019] [Accepted: 12/30/2019] [Indexed: 12/13/2022]
Abstract
The influenza B M2 (BM2) proton channel is activated by acidic pH to mediate virus uncoating. Unlike influenza A M2 (AM2), which conducts protons with strong inward rectification, BM2 conducts protons both inward and outward. Here we report 1.4- and 1.5-Å solid-state NMR structures of the transmembrane domain of the closed and open BM2 channels in a phospholipid environment. Upon activation, the transmembrane helices increase the tilt angle by 6° and the average pore diameter enlarges by 2.1 Å. BM2 thus undergoes a scissor motion for activation, which differs from the alternating-access motion of AM2. These results indicate that asymmetric proton conduction requires a backbone hinge motion, whereas bidirectional conduction is achieved by a symmetric scissor motion. The proton-selective histidine and gating tryptophan in the open BM2 reorient on the microsecond timescale, similar to AM2, indicating that side chain dynamics are the essential driver of proton shuttling.
Collapse
Affiliation(s)
- Venkata S Mandala
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Alexander R Loftis
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA, USA
| | | | - Bradley L Pentelute
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Mei Hong
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA, USA.
| |
Collapse
|
20
|
Konstantinidi A, Chountoulesi M, Naziris N, Sartori B, Amenitsch H, Mali G, Čendak T, Plakantonaki M, Triantafyllakou I, Tselios T, Demetzos C, Busath DD, Mavromoustakos T, Kolocouris A. The boundary lipid around DMPC-spanning influenza A M2 transmembrane domain channels: Its structure and potential for drug accommodation. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2019; 1862:183156. [PMID: 31846647 DOI: 10.1016/j.bbamem.2019.183156] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2019] [Revised: 12/11/2019] [Accepted: 12/12/2019] [Indexed: 10/25/2022]
Abstract
We have investigated the perturbation of influenza A M2TM in DMPC bilayers. We have shown that (a) DSC and SAXS detect changes in membrane organization caused by small changes (micromolar) in M2TM or aminoadamantane concentration and aminoadamantane structure, by comparison of amantadine and spiro[pyrrolidine-2,2'-adamantane] (AK13), (b) that WAXS and MD can suggest details of ligand topology. DSC and SAXS show that at a low M2TM micromolar concentration in DPMC bilayers, two lipid domains are observed, which likely correspond to M2TM boundary lipids and bulk-like lipids. At higher M2TM concentrations, one domain only is identified, which constitutes essentially all of the lipid molecules behaving as boundary lipids. According to SAXS, WAXS, and DSC in the absence of M2TM, both aminoadamantane drugs exert a similar perturbing effect on the bilayer at low concentrations. At the same concentrations of the drug when M2TM is present, amantadine and, to a lesser extent, AK13 cause, according to WAXS, a significant disordering of chain-stacking, which also leads to the formation of two lipid domains. This effect is likely due, according to MD simulations, to the preference of the more lipophilic AK13 to locate closer to the lateral surfaces of M2TM when compared to amantadine, which forms stronger ionic interactions with phosphate groups. The preference of AK13 to concentrate inside the lipid bilayer close to the exterior of the hydrophobic M2TM helices may contribute to its higher binding affinity compared to amantadine.
Collapse
Affiliation(s)
- Athina Konstantinidi
- Section of Pharmaceutical Chemistry, Department of Pharmacy, School of Health Sciences, National and Kapodistrian University of Athens, Athens 15771, Greece
| | - Maria Chountoulesi
- Section of Pharmaceutical Technology, Department of Pharmacy, School of Health Sciences, National and Kapodistrian University of Athens, Athens 15771, Greece
| | - Nikolaos Naziris
- Section of Pharmaceutical Technology, Department of Pharmacy, School of Health Sciences, National and Kapodistrian University of Athens, Athens 15771, Greece
| | - Barbara Sartori
- Institute of Inorganic Chemistry, Graz University of Technology, Stremayrgasse 9/IV, A-8010 Graz, Austria
| | - Heinz Amenitsch
- Institute of Inorganic Chemistry, Graz University of Technology, Stremayrgasse 9/IV, A-8010 Graz, Austria
| | - Gregor Mali
- Department of Inorganic Chemistry and Technology, National Institute of Chemistry, Ljubljana SI-1001, Slovenia
| | - Tomaž Čendak
- Department of Inorganic Chemistry and Technology, National Institute of Chemistry, Ljubljana SI-1001, Slovenia
| | - Maria Plakantonaki
- Department of Chemistry, School of Natural Sciences, University of Patras, Rion, Patras 26500, Greece
| | - Iro Triantafyllakou
- Department of Chemistry, School of Natural Sciences, University of Patras, Rion, Patras 26500, Greece
| | - Theodore Tselios
- Department of Chemistry, School of Natural Sciences, University of Patras, Rion, Patras 26500, Greece
| | - Costas Demetzos
- Section of Pharmaceutical Technology, Department of Pharmacy, School of Health Sciences, National and Kapodistrian University of Athens, Athens 15771, Greece
| | - David D Busath
- Department of Physiology and Developmental Biology, Brigham Young University, Provo, UT 84602, USA
| | - Thomas Mavromoustakos
- Section of Organic Chemistry, Department of Chemistry, National and Kapodistrian University of Athens, Athens 15771, Greece.
| | - Antonios Kolocouris
- Section of Pharmaceutical Chemistry, Department of Pharmacy, School of Health Sciences, National and Kapodistrian University of Athens, Athens 15771, Greece.
| |
Collapse
|
21
|
Kim G, Raymond HE, Herneisen AL, Wong-Rolle A, Howard KP. The distal cytoplasmic tail of the influenza A M2 protein dynamically extends from the membrane. BIOCHIMICA ET BIOPHYSICA ACTA. BIOMEMBRANES 2019; 1861:1421-1427. [PMID: 31153909 PMCID: PMC6625909 DOI: 10.1016/j.bbamem.2019.05.021] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2019] [Revised: 05/24/2019] [Accepted: 05/28/2019] [Indexed: 12/19/2022]
Abstract
The influenza A M2 protein is a multifunctional membrane-associated homotetramer that orchestrates several essential events in the viral infection cycle. The monomeric subunits of the M2 homotetramer consist of an N-terminal ectodomain, a transmembrane domain, and a C-terminal cytoplasmic domain. The transmembrane domain forms a four-helix proton channel that promotes uncoating of virions upon host cell entry. The membrane-proximal region of the C-terminal domain forms a surface-associated amphipathic helix necessary for viral budding. The structure of the remaining ~34 residues of the distal cytoplasmic tail has yet to be fully characterized despite the functional significance of this region for influenza infectivity. Here, we extend structural and dynamic studies of the poorly characterized M2 cytoplasmic tail. We used SDSL-EPR to collect site-specific information on the mobility, solvent accessibility, and conformational properties of residues 61-70 of the full-length, cell-expressed M2 protein reconstituted into liposomes. Our analysis is consistent with the predominant population of the C-terminal tail dynamically extending away from the membranes surface into the aqueous medium. These findings provide insight into the hypothesis that the C-terminal domain serves as a sensor that regulates how M2 protein participates in critical events in the viral infection cycle.
Collapse
Affiliation(s)
- Grace Kim
- Department of Chemistry and Biochemistry, Swarthmore College, Swarthmore, PA 19081, United States of America
| | - Hayley E Raymond
- Department of Chemistry and Biochemistry, Swarthmore College, Swarthmore, PA 19081, United States of America
| | - Alice L Herneisen
- Department of Chemistry and Biochemistry, Swarthmore College, Swarthmore, PA 19081, United States of America
| | - Abigail Wong-Rolle
- Department of Chemistry and Biochemistry, Swarthmore College, Swarthmore, PA 19081, United States of America
| | - Kathleen P Howard
- Department of Chemistry and Biochemistry, Swarthmore College, Swarthmore, PA 19081, United States of America.
| |
Collapse
|
22
|
Watkins LC, Liang R, Swanson JMJ, DeGrado WF, Voth GA. Proton-Induced Conformational and Hydration Dynamics in the Influenza A M2 Channel. J Am Chem Soc 2019; 141:11667-11676. [PMID: 31264413 DOI: 10.1021/jacs.9b05136] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
The influenza A M2 protein is an acid-activated proton channel responsible for acidification of the inside of the virus, a critical step in the viral life cycle. This channel has four central histidine residues that form an acid-activated gate, binding protons from the outside until an activated state allows proton transport to the inside. While previous work has focused on proton transport through the channel, the structural and dynamic changes that accompany proton flux and enable activation have yet to be resolved. In this study, extensive Multiscale Reactive Molecular Dynamics simulations with explicit Grotthuss-shuttling hydrated excess protons are used to explore detailed molecular-level interactions that accompany proton transport in the +0, + 1, and +2 histidine charge states. The results demonstrate how the hydrated excess proton strongly influences both the protein and water hydrogen-bonding network throughout the channel, providing further insight into the channel's acid-activation mechanism and rectification behavior. We find that the excess proton dynamically, as a function of location, shifts the protein structure away from its equilibrium distributions uniquely for different pH conditions consistent with acid-activation. The proton distribution in the xy-plane is also shown to be asymmetric about the channel's main axis, which has potentially important implications for the mechanism of proton conduction and future drug design efforts.
Collapse
Affiliation(s)
- Laura C Watkins
- Department of Chemistry, Institute for Biophysical Dynamics and James Franck Institute , The University of Chicago , Chicago , Illinois 60637 , United States
| | - Ruibin Liang
- Department of Chemistry, Institute for Biophysical Dynamics and James Franck Institute , The University of Chicago , Chicago , Illinois 60637 , United States
| | - Jessica M J Swanson
- Department of Chemistry, Institute for Biophysical Dynamics and James Franck Institute , The University of Chicago , Chicago , Illinois 60637 , United States
| | - William F DeGrado
- Department of Pharmaceutical Chemistry , University of California , San Francisco , California 94158 , United States
| | - Gregory A Voth
- Department of Chemistry, Institute for Biophysical Dynamics and James Franck Institute , The University of Chicago , Chicago , Illinois 60637 , United States
| |
Collapse
|
23
|
Thomaston JL, Wu Y, Polizzi N, Liu L, Wang J, DeGrado WF. X-ray Crystal Structure of the Influenza A M2 Proton Channel S31N Mutant in Two Conformational States: An Open and Shut Case. J Am Chem Soc 2019; 141:11481-11488. [PMID: 31184871 DOI: 10.1021/jacs.9b02196] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The amantadine-resistant S31N mutant of the influenza A M2 proton channel has become prevalent in currently circulating viruses. Here, we have solved an X-ray crystal structure of M2(22-46) S31N that contains two distinct conformational states within its asymmetric unit. This structure reveals the mechanism of adamantane resistance in both conformational states of the M2 channel. In the Inwardopen conformation, the mutant Asn31 side chain faces the channel pore and sterically blocks the adamantane binding site. In the Inwardclosed conformation, Asn31 forms hydrogen bonds with carbonyls at the monomer-monomer interface, which twists the monomer helices and constricts the channel pore at the drug binding site. We also examine M2(19-49) WT and S31N using solution NMR spectroscopy and show that distribution of the two conformational states is dependent on both detergent choice and experimental pH.
Collapse
Affiliation(s)
- Jessica L Thomaston
- Department of Pharmaceutical Chemistry , University of California , San Francisco , California 94158 , United States
| | - Yibing Wu
- Department of Pharmaceutical Chemistry , University of California , San Francisco , California 94158 , United States
| | - Nicholas Polizzi
- Department of Pharmaceutical Chemistry , University of California , San Francisco , California 94158 , United States
| | - Lijun Liu
- State Key Laboratory of Chemical Oncogenomics , Peking University Shenzhen Graduate School , Shenzhen 518055 , China.,DLX Scientific , Lawrence , Kansas 66049 , United States
| | - Jun Wang
- Department of Pharmacology and Toxicology, College of Pharmacy , University of Arizona , Tucson , Arizona 85721 , United States
| | - William F DeGrado
- Department of Pharmaceutical Chemistry , University of California , San Francisco , California 94158 , United States
| |
Collapse
|
24
|
Mandala VS, Liao SY, Gelenter MD, Hong M. The Transmembrane Conformation of the Influenza B Virus M2 Protein in Lipid Bilayers. Sci Rep 2019; 9:3725. [PMID: 30842530 PMCID: PMC6403292 DOI: 10.1038/s41598-019-40217-1] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2018] [Accepted: 01/30/2019] [Indexed: 11/13/2022] Open
Abstract
Influenza A and B viruses cause seasonal flu epidemics. The M2 protein of influenza B (BM2) is a membrane-embedded tetrameric proton channel that is essential for the viral lifecycle. BM2 is a functional analog of AM2 but shares only 24% sequence identity for the transmembrane (TM) domain. The structure and function of AM2, which is targeted by two antiviral drugs, have been well characterized. In comparison, much less is known about the structure of BM2 and no drug is so far available to inhibit this protein. Here we use solid-state NMR spectroscopy to investigate the conformation of BM2(1-51) in phospholipid bilayers at high pH, which corresponds to the closed state of the channel. Using 2D and 3D correlation NMR experiments, we resolved and assigned the 13C and 15N chemical shifts of 29 residues of the TM domain, which yielded backbone (φ, ψ) torsion angles. Residues 6-28 form a well-ordered α-helix, whereas residues 1-5 and 29-35 display chemical shifts that are indicative of random coil or β-sheet conformations. The length of the BM2-TM helix resembles that of AM2-TM, despite their markedly different amino acid sequences. In comparison, large 15N chemical shift differences are observed between bilayer-bound BM2 and micelle-bound BM2, indicating that the TM helix conformation and the backbone hydrogen bonding in lipid bilayers differ from the micelle-bound conformation. Moreover, HN chemical shifts of micelle-bound BM2 lack the periodic trend expected for coiled coil helices, which disagree with the presence of a coiled coil structure in micelles. These results establish the basis for determining the full three-dimensional structure of the tetrameric BM2 to elucidate its proton-conduction mechanism.
Collapse
Affiliation(s)
- Venkata S Mandala
- Department of Chemistry, Massachusetts Institute of Technology, 170 Albany Street, Cambridge, MA, 02139, USA
| | - Shu-Yu Liao
- Department of Chemistry, Massachusetts Institute of Technology, 170 Albany Street, Cambridge, MA, 02139, USA
| | - Martin D Gelenter
- Department of Chemistry, Massachusetts Institute of Technology, 170 Albany Street, Cambridge, MA, 02139, USA
| | - Mei Hong
- Department of Chemistry, Massachusetts Institute of Technology, 170 Albany Street, Cambridge, MA, 02139, USA.
| |
Collapse
|
25
|
Musharrafieh R, Ma C, Wang J. Profiling the in vitro drug-resistance mechanism of influenza A viruses towards the AM2-S31N proton channel blockers. Antiviral Res 2018. [PMID: 29518414 DOI: 10.1016/j.antiviral.2018.03.002] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The majority of human influenza A viruses currently in circulation carry the amantadine-resistant AM2-S31N channel mutation. We previously discovered a series of AM2-S31N inhibitors with potent antiviral activity against both oseltamivir-sensitive and -resistant influenza A viruses. To understand the drug-resistance mechanism of AM2-S31N inhibitors, we performed serial viral passage experiments using the influenza virus A/California/07/2009 (H1N1) to select drug-resistant AM2 mutations against two representative AM2-S31N channel blockers (1 and 2). Unlike amantadine, which gives rise to resistance after a single passage, compounds 1 and 2 selected for partially resistant viruses at passages 05 and 04 with a V27I and L26I mutation, respectively. This appears to suggest compounds 1 and 2 have a higher genetic barrier to resistance than amantadine at least in cell culture. Passage with a higher drug concentration of compound 2 selected higher level resistant viruses with a double mutant L26I + A30T. The mechanism of resistance and replication fitness for mutant viruses were evaluated by electrophysiology, reverse genetics, growth kinetics, and competition assays. AM2-S31N/V27I and AM2-S31N/L26I channels achieved similar specific proton conductance as AM2-S31N, but the AM2-S31N/L26I/A30T triple mutant had drastically reduced specific proton conductance. Viral replication fitness of AM2-S31N/V27I and AM2-S31N/L26I double mutant viruses were similar to AM2-S31N containing viruses in cell culture. However, AM2-S31N/L26I/A30T viruses displayed attenuated growth as well as inability to compete with AM2-S31N viruses. The results herein offer insight regarding the resistance mechanism of AM2-S31N inhibitors, and may help guide the design of the next-generation of AM2-S31N inhibitors with a higher genetic barrier to drug resistance.
Collapse
Affiliation(s)
- Rami Musharrafieh
- Department of Chemistry and Biochemistry, The University of Arizona, Tucson, AZ 85721, United States
| | - Chunlong Ma
- BIO5 Institute, The University of Arizona, Tucson, AZ 85721, United States
| | - Jun Wang
- BIO5 Institute, The University of Arizona, Tucson, AZ 85721, United States; Department of Pharmacology and Toxicology, College of Pharmacy, The University of Arizona, Tucson, AZ 85721, United States.
| |
Collapse
|
26
|
Abstract
Solid-state nuclear magnetic resonance (SSNMR) spectroscopy elucidates membrane protein structures and dynamics in atomic detail to yield mechanistic insights. By interrogating membrane proteins in phospholipid bilayers that closely resemble biological membranes, SSNMR spectroscopists have revealed ion conduction mechanisms, substrate transport dynamics, and oligomeric interfaces of seven-transmembrane helix proteins. Research has also identified conformational plasticity underlying virus-cell membrane fusions by complex protein machineries, and β-sheet folding and assembly by amyloidogenic proteins bound to lipid membranes. These studies collectively show that membrane proteins exhibit extensive structural plasticity to carry out their functions. Because of the inherent dependence of NMR frequencies on molecular orientations and the sensitivity of NMR frequencies to dynamical processes on timescales from nanoseconds to seconds, SSNMR spectroscopy is ideally suited to elucidate such structural plasticity, local and global conformational dynamics, protein-lipid and protein-ligand interactions, and protonation states of polar residues. New sensitivity-enhancement techniques, resolution enhancement by ultrahigh magnetic fields, and the advent of 3D and 4D correlation NMR techniques are increasingly aiding these mechanistically important structural studies.
Collapse
Affiliation(s)
- Venkata S Mandala
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA;
| | - Jonathan K Williams
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA;
| | - Mei Hong
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA;
| |
Collapse
|
27
|
Mandala VS, Gelenter MD, Hong M. Transport-Relevant Protein Conformational Dynamics and Water Dynamics on Multiple Time Scales in an Archetypal Proton Channel: Insights from Solid-State NMR. J Am Chem Soc 2018; 140:1514-1524. [PMID: 29303574 DOI: 10.1021/jacs.7b12464] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The influenza M2 protein forms a tetrameric proton channel that conducts protons from the acidic endosome into the virion by shuttling protons between water and a transmembrane histidine. Previous NMR studies have shown that this histidine protonates and deprotonates on the microsecond time scale. However, M2's proton conduction rate is 10-1000 s-1, more than 2 orders of magnitude slower than the histidine-water proton-exchange rate. M2 is also known to be conformationally plastic. To address the disparity between the functional time scale and the time scales of protein conformational dynamics and water dynamics, we have now investigated a W41F mutant of the M2 transmembrane domain using solid-state NMR. 13C chemical shifts of the membrane-bound peptide indicate the presence of two distinct tetramer conformations, whose concentrations depend exclusively on pH and hence the charge-state distribution of the tetramers. High-temperature 2D correlation spectra indicate that these two conformations interconvert at a rate of ∼400 s-1 when the +2 and +3 charge states dominate, which gives the first experimental evidence of protein conformational motion on the transport time scale. Protein 13C-detected water 1H T2 relaxation measurements show that channel water relaxes an order of magnitude faster than bulk water and membrane-associated water, indicating that channel water undergoes nanosecond motion in a pH-independent fashion. These results connect motions on three time scales to explain M2's proton-conduction mechanism: picosecond-to-nanosecond motions of water molecules facilitate proton Grotthuss hopping, microsecond motions of the histidine side chain allow water-histidine proton transfer, while millisecond motions of the entire four-helix bundle constitute the rate-limiting step, dictating the number of protons released into the virion.
Collapse
Affiliation(s)
- Venkata S Mandala
- Department of Chemistry, Massachusetts Institute of Technology , 170 Albany Street, Cambridge, Massachusetts 02139, United States
| | - Martin D Gelenter
- Department of Chemistry, Massachusetts Institute of Technology , 170 Albany Street, Cambridge, Massachusetts 02139, United States
| | - Mei Hong
- Department of Chemistry, Massachusetts Institute of Technology , 170 Albany Street, Cambridge, Massachusetts 02139, United States
| |
Collapse
|
28
|
Influenza A Virus M2 Protein: Roles from Ingress to Egress. Int J Mol Sci 2017; 18:ijms18122649. [PMID: 29215568 PMCID: PMC5751251 DOI: 10.3390/ijms18122649] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2017] [Revised: 12/04/2017] [Accepted: 12/05/2017] [Indexed: 11/17/2022] Open
Abstract
Influenza A virus (IAV) matrix protein 2 (M2) is among the smallest bona fide, hence extensively studied, ion channel proteins. The M2 ion channel activity is not only essential for virus replication, but also involved in modulation of cellular homeostasis in a variety of ways. It is also the target for ion channel inhibitors, i.e., anti-influenza drugs. Thus far, several studies have been conducted to elucidate its biophysical characteristics, structure-function relationships of the ion channel, and the M2-host interactome. In this review, we discuss M2 protein synthesis and assembly into an ion channel, its roles in IAV replication, and the pathophysiological impact on the host cell.
Collapse
|
29
|
Herneisen AL, Sahu ID, McCarrick RM, Feix JB, Lorigan GA, Howard KP. A Budding-Defective M2 Mutant Exhibits Reduced Membrane Interaction, Insensitivity to Cholesterol, and Perturbed Interdomain Coupling. Biochemistry 2017; 56:5955-5963. [PMID: 29034683 PMCID: PMC6112238 DOI: 10.1021/acs.biochem.7b00924] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Influenza A M2 is a membrane-associated protein with a C-terminal amphipathic helix that plays a cholesterol-dependent role in viral budding. An M2 mutant with alanine substitutions in the C-terminal amphipathic helix is deficient in viral scission. With the goal of providing atomic-level understanding of how the wild-type protein functions, we used a multipronged site-directed spin labeling electron paramagnetic resonance spectroscopy (SDSL-EPR) approach to characterize the conformational properties of the alanine mutant. We spin-labeled sites in the transmembrane (TM) domain and the C-terminal amphipathic helix (AH) of wild-type (WT) and mutant M2, and collected information on line shapes, relaxation rates, membrane topology, and distances within the homotetramer in membranes with and without cholesterol. Our results identify marked differences in the conformation and dynamics between the WT and the alanine mutant. Compared to WT, the dominant population of the mutant AH is more dynamic, shallower in the membrane, and has altered quaternary arrangement of the C-terminal domain. While the AH becomes more dynamic, the dominant population of the TM domain of the mutant is immobilized. The presence of cholesterol changes the conformation and dynamics of the WT protein, while the alanine mutant is insensitive to cholesterol. These findings provide new insight into how M2 may facilitate budding. We propose the AH-membrane interaction modulates the arrangement of the TM helices, effectively stabilizing a conformational state that enables M2 to facilitate viral budding. Antagonizing the properties of the AH that enable interdomain coupling within M2 may therefore present a novel strategy for anti-influenza drug design.
Collapse
Affiliation(s)
- Alice L. Herneisen
- Department of Chemistry and Biochemistry, Swarthmore College, Swarthmore, Pennsylvania 19081, United States
| | - Indra D. Sahu
- Department of Chemistry and Biochemistry, Miami University, Oxford, Ohio 45056, United States
| | - Robert M. McCarrick
- Department of Chemistry and Biochemistry, Miami University, Oxford, Ohio 45056, United States
| | - Jimmy B. Feix
- Department of Biophysics, National Biomedical EPR Center, Medical College of Wisconsin, Milwaukee, Wisconsin 53226, United States
| | - Gary A. Lorigan
- Department of Chemistry and Biochemistry, Miami University, Oxford, Ohio 45056, United States
| | - Kathleen P. Howard
- Department of Chemistry and Biochemistry, Swarthmore College, Swarthmore, Pennsylvania 19081, United States
| |
Collapse
|
30
|
XFEL structures of the influenza M2 proton channel: Room temperature water networks and insights into proton conduction. Proc Natl Acad Sci U S A 2017; 114:13357-13362. [PMID: 28835537 DOI: 10.1073/pnas.1705624114] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The M2 proton channel of influenza A is a drug target that is essential for the reproduction of the flu virus. It is also a model system for the study of selective, unidirectional proton transport across a membrane. Ordered water molecules arranged in "wires" inside the channel pore have been proposed to play a role in both the conduction of protons to the four gating His37 residues and the stabilization of multiple positive charges within the channel. To visualize the solvent in the pore of the channel at room temperature while minimizing the effects of radiation damage, data were collected to a resolution of 1.4 Å using an X-ray free-electron laser (XFEL) at three different pH conditions: pH 5.5, pH 6.5, and pH 8.0. Data were collected on the Inwardopen state, which is an intermediate that accumulates at high protonation of the His37 tetrad. At pH 5.5, a continuous hydrogen-bonded network of water molecules spans the vertical length of the channel, consistent with a Grotthuss mechanism model for proton transport to the His37 tetrad. This ordered solvent at pH 5.5 could act to stabilize the positive charges that build up on the gating His37 tetrad during the proton conduction cycle. The number of ordered pore waters decreases at pH 6.5 and 8.0, where the Inwardopen state is less stable. These studies provide a graphical view of the response of water to a change in charge within a restricted channel environment.
Collapse
|
31
|
Structural Basis for Asymmetric Conductance of the Influenza M2 Proton Channel Investigated by Solid-State NMR Spectroscopy. J Mol Biol 2017; 429:2192-2210. [PMID: 28535993 DOI: 10.1016/j.jmb.2017.05.015] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2017] [Revised: 04/21/2017] [Accepted: 05/16/2017] [Indexed: 12/25/2022]
Abstract
The influenza M2 protein forms an acid-activated proton channel that is essential for virus replication. The transmembrane H37 selects for protons under low external pH while W41 ensures proton conduction only from the N terminus to the C terminus and prevents reverse current under low internal pH. Here, we address the molecular basis for this asymmetric conduction by investigating the structure and dynamics of a mutant channel, W41F, which permits reverse current under low internal pH. Solid-state NMR experiments show that W41F M2 retains the pH-dependent α-helical conformations and tetrameric structure of the wild-type (WT) channel but has significantly altered protonation and tautomeric equilibria at H37. At high pH, the H37 structure is shifted toward the π tautomer and less cationic tetrads, consistent with faster forward deprotonation to the C terminus. At low pH, the mutant channel contains more cationic tetrads than the WT channel, consistent with faster reverse protonation from the C terminus. 15N NMR spectra allow the extraction of four H37 pKas and show that the pKas are more clustered in the mutant channel compared to WT M2. Moreover, binding of the antiviral drug, amantadine, at the N-terminal pore at low pH did not convert all histidines to the neutral state, as seen in WT M2, but left half of all histidines cationic, unambiguously demonstrating C-terminal protonation of H37 in the mutant. These results indicate that asymmetric conduction in WT M2 is due to W41 inhibition of C-terminal acid activation by H37. When Trp is replaced by Phe, protons can be transferred to H37 bidirectionally with distinct rate constants.
Collapse
|
32
|
Jeong BS, Dyer RB. Proton Transport Mechanism of M2 Proton Channel Studied by Laser-Induced pH Jump. J Am Chem Soc 2017; 139:6621-6628. [PMID: 28467842 DOI: 10.1021/jacs.7b00617] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The M2 proton transport channel of the influenza virus A is an important model system because it conducts protons with high selectivity and unidirectionally when activated at low pH, despite the relative simplicity of its structure. Although it has been studied extensively, the molecular details of the pH-dependent gating and proton conductance mechanisms are incompletely understood. We report direct observation of the M2 proton channel activation process using a laser-induced pH jump coupled with tryptophan fluorescence as a probe. Biphasic kinetics is observed, with the fast phase corresponding to the His37 protonation, and the slow phase associated with the subsequent conformation change. Unusually fast His37 protonation was observed (2.0 × 1010 M-1 s-1), implying the existence of proton collecting antennae for expedited proton transport. The conformation change (4 × 103 s-1) was about 2 orders of magnitude slower than protonation at endosomal pH, suggesting that a transporter model is likely not feasible.
Collapse
Affiliation(s)
- Ban-Seok Jeong
- Department of Chemistry, Emory University , Atlanta, Georgia 30322, United States
| | - R Brian Dyer
- Department of Chemistry, Emory University , Atlanta, Georgia 30322, United States
| |
Collapse
|
33
|
Tzitzoglaki C, Wright A, Freudenberger K, Hoffmann A, Tietjen I, Stylianakis I, Kolarov F, Fedida D, Schmidtke M, Gauglitz G, Cross TA, Kolocouris A. Binding and Proton Blockage by Amantadine Variants of the Influenza M2WT and M2S31N Explained. J Med Chem 2017; 60:1716-1733. [DOI: 10.1021/acs.jmedchem.6b01115] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Affiliation(s)
- Christina Tzitzoglaki
- Section
of Pharmaceutical Chemistry, Department of Pharmacy, National and Kapodistrian University of Athens, Athens 157 71, Greece
| | - Anna Wright
- Institute
of Molecular Biophysics and National High Magnetic Field Laboratory, Florida State University, Tallahassee, Florida 32306, United States
| | - Kathrin Freudenberger
- Institut
für Physikalische und Theoretische Chemie, Eberhard-Karls Universität, Auf der Morgenstelle 18, D-72076 Tübingen, Germany
| | - Anja Hoffmann
- Department
of Virology and Antiviral Therapy, Jena University Hospital, Hans Knoell Strasse 2, D-07745 Jena, Germany
| | - Ian Tietjen
- Department
of Anesthesiology, Pharmacology and Therapeutics, University of British Columbia, Vancouver, British Columbia V6T 1Z3, Canada
| | - Ioannis Stylianakis
- Section
of Pharmaceutical Chemistry, Department of Pharmacy, National and Kapodistrian University of Athens, Athens 157 71, Greece
| | - Felix Kolarov
- Institut
für Physikalische und Theoretische Chemie, Eberhard-Karls Universität, Auf der Morgenstelle 18, D-72076 Tübingen, Germany
| | - David Fedida
- Department
of Anesthesiology, Pharmacology and Therapeutics, University of British Columbia, Vancouver, British Columbia V6T 1Z3, Canada
| | - Michaela Schmidtke
- Department
of Virology and Antiviral Therapy, Jena University Hospital, Hans Knoell Strasse 2, D-07745 Jena, Germany
| | - Günter Gauglitz
- Institut
für Physikalische und Theoretische Chemie, Eberhard-Karls Universität, Auf der Morgenstelle 18, D-72076 Tübingen, Germany
| | - Timothy A. Cross
- Institute
of Molecular Biophysics and National High Magnetic Field Laboratory, Florida State University, Tallahassee, Florida 32306, United States
- Department
of Chemistry and Biochemistry, Florida State University, Tallahassee, Florida 32306, United States
| | - Antonios Kolocouris
- Section
of Pharmaceutical Chemistry, Department of Pharmacy, National and Kapodistrian University of Athens, Athens 157 71, Greece
| |
Collapse
|
34
|
Ekanayake EV, Fu R, Cross TA. Structural Influences: Cholesterol, Drug, and Proton Binding to Full-Length Influenza A M2 Protein. Biophys J 2016; 110:1391-9. [PMID: 27028648 DOI: 10.1016/j.bpj.2015.11.3529] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2015] [Revised: 11/23/2015] [Accepted: 11/25/2015] [Indexed: 12/25/2022] Open
Abstract
The structure and functions of the M2 protein from Influenza A are sensitive to pH, cholesterol, and the antiinfluenza drug Amantadine. This is a tetrameric membrane protein of 97 amino-acid residues that has multiple functions, among them as a proton-selective channel and facilitator of viral budding, replacing the need for the ESCRT proteins that other viruses utilize. Here, various amino-acid-specific-labeled samples of the full-length protein were prepared and mixed, so that only interresidue (13)C-(13)C cross peaks between two differently labeled proteins representing interhelical interactions are observed. This channel is activated at slightly acidic pH values in the endosome when the His(37) residues in the middle of the transmembrane domain take on a +2 or +3 charged state. Changes observed here in interhelical distances in the N-terminus can be accounted for by modest structural changes, and no significant changes in structure were detected in the C-terminal portion of the channel upon activation of the channel. Amantadine, which blocks proton conductance by binding in the aqueous pore near the N-terminus, however, significantly modifies the tetrameric structure on the opposite side of the membrane. The interactions between the juxtamembrane amphipathic helix of one monomer and its neighboring monomer observed in the absence of drug are disrupted in its presence. However, the addition of cholesterol prevents this structural disruption. In fact, strong interactions are observed between cholesterol and residues in the amphipathic helix, accounting for cholesterol binding adjacent to a native palmitoylation site and near to an interhelix crevice that is typical of cholesterol binding sites. The resultant stabilization of the amphipathic helix deep in the bilayer interface facilitates the bilayer curvature that is essential for viral budding.
Collapse
Affiliation(s)
- E Vindana Ekanayake
- Department of Chemistry and Biochemistry, Florida State University, Tallahassee, Florida; National High Magnetic Field Lab, Florida State University, Tallahassee, Florida
| | - Riqiang Fu
- National High Magnetic Field Lab, Florida State University, Tallahassee, Florida
| | - Timothy A Cross
- Department of Chemistry and Biochemistry, Florida State University, Tallahassee, Florida; National High Magnetic Field Lab, Florida State University, Tallahassee, Florida; Institute of Molecular Biophysics, Florida State University, Tallahassee, Florida.
| |
Collapse
|
35
|
Liang R, Swanson JMJ, Madsen JJ, Hong M, DeGrado WF, Voth GA. Acid activation mechanism of the influenza A M2 proton channel. Proc Natl Acad Sci U S A 2016; 113:E6955-E6964. [PMID: 27791184 PMCID: PMC5111692 DOI: 10.1073/pnas.1615471113] [Citation(s) in RCA: 74] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
The homotetrameric influenza A M2 channel (AM2) is an acid-activated proton channel responsible for the acidification of the influenza virus interior, an important step in the viral lifecycle. Four histidine residues (His37) in the center of the channel act as a pH sensor and proton selectivity filter. Despite intense study, the pH-dependent activation mechanism of the AM2 channel has to date not been completely understood at a molecular level. Herein we have used multiscale computer simulations to characterize (with explicit proton transport free energy profiles and their associated calculated conductances) the activation mechanism of AM2. All proton transfer steps involved in proton diffusion through the channel, including the protonation/deprotonation of His37, are explicitly considered using classical, quantum, and reactive molecular dynamics methods. The asymmetry of the proton transport free energy profile under high-pH conditions qualitatively explains the rectification behavior of AM2 (i.e., why the inward proton flux is allowed when the pH is low in viral exterior and high in viral interior, but outward proton flux is prohibited when the pH gradient is reversed). Also, in agreement with electrophysiological results, our simulations indicate that the C-terminal amphipathic helix does not significantly change the proton conduction mechanism in the AM2 transmembrane domain; the four transmembrane helices flanking the channel lumen alone seem to determine the proton conduction mechanism.
Collapse
Affiliation(s)
- Ruibin Liang
- Department of Chemistry, The University of Chicago, Chicago, IL 60637
- Institute for Biophysical Dynamics, The University of Chicago, Chicago, IL 60637
- James Franck Institute, The University of Chicago, Chicago, IL 60637
| | - Jessica M J Swanson
- Department of Chemistry, The University of Chicago, Chicago, IL 60637
- Institute for Biophysical Dynamics, The University of Chicago, Chicago, IL 60637
- James Franck Institute, The University of Chicago, Chicago, IL 60637
| | - Jesper J Madsen
- Department of Chemistry, The University of Chicago, Chicago, IL 60637
- Institute for Biophysical Dynamics, The University of Chicago, Chicago, IL 60637
- James Franck Institute, The University of Chicago, Chicago, IL 60637
| | - Mei Hong
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA 02139
| | - William F DeGrado
- Department of Pharmaceutical Chemistry, University of San Francisco, San Francisco, CA 94158
| | - Gregory A Voth
- Department of Chemistry, The University of Chicago, Chicago, IL 60637;
- Institute for Biophysical Dynamics, The University of Chicago, Chicago, IL 60637
- James Franck Institute, The University of Chicago, Chicago, IL 60637
| |
Collapse
|
36
|
Kwon B, Hong M. The Influenza M2 Ectodomain Regulates the Conformational Equilibria of the Transmembrane Proton Channel: Insights from Solid-State Nuclear Magnetic Resonance. Biochemistry 2016; 55:5387-97. [PMID: 27571210 PMCID: PMC5257201 DOI: 10.1021/acs.biochem.6b00727] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
The influenza M2 protein is the target of the amantadine family of antiviral drugs, and its transmembrane (TM) domain structure and dynamics have been extensively studied. However, little is known about the structure of the highly conserved N-terminal ectodomain, which contains epitopes targeted by influenza vaccines. In this study, we synthesized an M2 construct containing the N-terminal ectodomain and the TM domain, to understand the site-specific conformation and dynamics of the ectodomain and to investigate the effect of the ectodomain on the TM structure. We incorporated (13)C- and (15)N-labeled residues into both domains and measured their chemical shifts and line widths using solid-state nuclear magnetic resonance. The data indicate that the entire ectodomain is unstructured and dynamic, but the motion is slower for residues closer to the TM domain. (13)C line shapes indicate that this ecto-TM construct undergoes fast uniaxial rotational diffusion, like the isolated TM peptide, but drug binding increases the motional rates of the TM helix while slowing the local motion of the ectodomain residues that are close to the TM domain. Moreover, (13)C and (15)N chemical shifts indicate that the ectodomain shifts the conformational equilibria of the TM residues toward the drug-bound state even in the absence of amantadine, thus providing a molecular structural basis for the lower inhibitory concentration of full-length M2 compared to that of the ectodomain-truncated M2. We propose that this conformational selection may result from electrostatic repulsion between negatively charged ectodomain residues in the tetrameric protein. Together with the recent study of the M2 cytoplasmic domain, these results show that intrinsically disordered extramembrane domains in membrane proteins can regulate the functionally relevant conformation and dynamics of the structurally ordered TM domains.
Collapse
Affiliation(s)
- Byungsu Kwon
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139 United States
| | - Mei Hong
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139 United States
| |
Collapse
|
37
|
Georgieva ER, Borbat PP, Grushin K, Stoilova-McPhie S, Kulkarni NJ, Liang Z, Freed JH. Conformational Response of Influenza A M2 Transmembrane Domain to Amantadine Drug Binding at Low pH (pH 5.5). Front Physiol 2016; 7:317. [PMID: 27524969 PMCID: PMC4965473 DOI: 10.3389/fphys.2016.00317] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2016] [Accepted: 07/13/2016] [Indexed: 12/27/2022] Open
Abstract
The M2 protein from influenza A plays important roles in its viral cycle. It contains a single transmembrane helix, which oligomerizes into a homotetrameric proton channel that conducts in the low-pH environment of the host-cell endosome and Golgi apparatus, leading to virion uncoating at an early stage of infection. We studied conformational rearrangements that occur in the M2 core transmembrane domain residing on the lipid bilayer, flanked by juxtamembrane residues (M2TMD21-49 fragment), upon its interaction with amantadine drug at pH 5.5 when M2 is conductive. We also tested the role of specific mutation and lipid chain length. Electron spin resonance (ESR) spectroscopy and electron microscopy were applied to M2TMD21-49, labeled at the residue L46C with either nitroxide spin-label or Nanogold® reagent, respectively. Electron microscopy confirmed that M2TMD21-49 reconstituted into DOPC/POPS at 1:10,000 peptide-to-lipid molar ratio (P/L) either with or without amantadine, is an admixture of monomers, dimers, and tetramers, confirming our model based on a dimer intermediate in the assembly of M2TMD21-49. As reported by double electron-electron resonance (DEER), in DOPC/POPS membranes amantadine shifts oligomer equilibrium to favor tetramers, as evidenced by an increase in DEER modulation depth for P/L's ranging from 1:18,000 to 1:160. Furthermore, amantadine binding shortens the inter-spin distances (for nitroxide labels) by 5-8 Å, indicating drug induced channel closure on the C-terminal side. No such effect was observed for the thinner membrane of DLPC/DLPS, emphasizing the role of bilayer thickness. The analysis of continuous wave (cw) ESR spectra of spin-labeled L46C residue provides additional support to a more compact helix bundle in amantadine-bound M2TMD 21-49 through increased motional ordering. In contrast to wild-type M2TMD21-49, the amantadine-bound form does not exhibit noticeable conformational changes in the case of G34A mutation found in certain drug-resistant influenza strains. Thus, the inhibited M2TMD21-49 channel is a stable tetramer with a closed C-terminal exit pore. This work is aimed at contributing to the development of structure-based anti-influenza pharmaceuticals.
Collapse
Affiliation(s)
- Elka R Georgieva
- Department of Chemistry and Chemical Biology, Cornell UniversityIthaca, NY, USA; National Biomedical Center for Advanced ESR TechnologyIthaca, NY, USA
| | - Peter P Borbat
- Department of Chemistry and Chemical Biology, Cornell UniversityIthaca, NY, USA; National Biomedical Center for Advanced ESR TechnologyIthaca, NY, USA
| | - Kirill Grushin
- Department of Neuroscience and Cell Biology, Sealy Center for Structural Biology and Molecular Biophysics, University of Texas Medical Branch at Galveston Galveston, TX, USA
| | - Svetla Stoilova-McPhie
- Department of Neuroscience and Cell Biology, Sealy Center for Structural Biology and Molecular Biophysics, University of Texas Medical Branch at Galveston Galveston, TX, USA
| | | | - Zhichun Liang
- Department of Chemistry and Chemical Biology, Cornell UniversityIthaca, NY, USA; National Biomedical Center for Advanced ESR TechnologyIthaca, NY, USA
| | - Jack H Freed
- Department of Chemistry and Chemical Biology, Cornell UniversityIthaca, NY, USA; National Biomedical Center for Advanced ESR TechnologyIthaca, NY, USA
| |
Collapse
|
38
|
Ho CS, Khadka NK, She F, Cai J, Pan J. Influenza M2 Transmembrane Domain Senses Membrane Heterogeneity and Enhances Membrane Curvature. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2016; 32:6730-6738. [PMID: 27285399 PMCID: PMC5131574 DOI: 10.1021/acs.langmuir.6b00150] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
Targeting host cell membranes by M2 of influenza A virus is important for virus invasion and replication. We study the transmembrane domain of M2 (M2TM) interacting with mica-supported planar bilayers and free-standing giant unilamellar vesicles (GUVs). Using solution atomic force microscopy (AFM), we show that the size of M2TM oligomers is dependent on lipid composition. The addition of M2TM to lipid bilayers containing liquid-ordered (Lo) and liquid-disordered (Ld) phases reveals that M2TM preferentially partitions into the Ld phase; phase-dependent partitioning results in a larger rigidity of the Ld phase. We next use fluorescence microscopy to study the effects of M2TM on phase-coexisting GUVs. In particular, M2TM is found to increase GUVs' miscibility transition temperature Tmix. The augmented thermodynamic stability can be accounted for by considering an enhanced energy barrier of lipid mixing between coexisting phases. Our GUV study also shows that M2TM can elicit an array of vesicle shapes mimicking virus budding. M2TM enhanced membrane curvature is consistent with our AFM data, which show altered membrane rigidity and consequently line tension at domain edges. Together, our results highlight that in addition to conducting protons, M2TM can actively regulate membrane heterogeneity and augment membrane curvature.
Collapse
Affiliation(s)
- Chian Sing Ho
- Department of Physics, University of South Florida, Tampa, FL 33620, United States
| | - Nawal K. Khadka
- Department of Physics, University of South Florida, Tampa, FL 33620, United States
| | - Fengyu She
- Department of Chemistry, University of South Florida, Tampa, FL 33620, United States
| | - Jianfeng Cai
- Department of Chemistry, University of South Florida, Tampa, FL 33620, United States
| | - Jianjun Pan
- Department of Physics, University of South Florida, Tampa, FL 33620, United States
| |
Collapse
|
39
|
Williams JK, Tietze D, Lee M, Wang J, Hong M. Solid-State NMR Investigation of the Conformation, Proton Conduction, and Hydration of the Influenza B Virus M2 Transmembrane Proton Channel. J Am Chem Soc 2016; 138:8143-55. [PMID: 27286559 DOI: 10.1021/jacs.6b03142] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Together with the influenza A virus, influenza B virus causes seasonal flu epidemics. The M2 protein of influenza B (BM2) forms a tetrameric proton-conducting channel that is important for the virus lifecycle. BM2 shares little sequence homology with AM2, except for a conserved HxxxW motif in the transmembrane (TM) domain. Unlike AM2, no antiviral drugs have been developed to block the BM2 channel. To elucidate the proton-conduction mechanism of BM2 and to facilitate the development of BM2 inhibitors, we have employed solid-state NMR spectroscopy to investigate the conformation, dynamics, and hydration of the BM2 TM domain in lipid bilayers. BM2 adopts an α-helical conformation in lipid membranes. At physiological temperature and low pH, the proton-selective residue, His19, shows relatively narrow (15)N chemical exchange peaks for the imidazole nitrogens, indicating fast proton shuttling that interconverts cationic and neutral histidines. Importantly, pH-dependent (15)N chemical shifts indicate that His19 retains the neutral population to much lower pH than His37 in AM2, indicating larger acid-dissociation constants or lower pKa's. We attribute these dynamical and equilibrium differences to the presence of a second titratable histidine, His27, which may increase the proton-dissociation rate of His19. Two-dimensional (1)H-(13)C correlation spectra probing water (1)H polarization transfer to the peptide indicates that the BM2 channel becomes much more hydrated at low pH than at high pH, particularly at Ser12, indicating that the pore-facing serine residues in BM2 mediate proton relay to the proton-selective histidine.
Collapse
Affiliation(s)
- Jonathan K Williams
- Department of Chemistry, Massachusetts Institute of Technology , Cambridge, Massachusetts 02139, United States
| | - Daniel Tietze
- Department of Chemistry, Massachusetts Institute of Technology , Cambridge, Massachusetts 02139, United States
| | - Myungwoon Lee
- Department of Chemistry, Massachusetts Institute of Technology , Cambridge, Massachusetts 02139, United States
| | - Jun Wang
- Department of Pharmacology and Toxicology, The University of Arizona , Tucson, Arizona 85721, United States
| | - Mei Hong
- Department of Chemistry, Massachusetts Institute of Technology , Cambridge, Massachusetts 02139, United States
| |
Collapse
|
40
|
Liao SY, Lee M, Wang T, Sergeyev IV, Hong M. Efficient DNP NMR of membrane proteins: sample preparation protocols, sensitivity, and radical location. JOURNAL OF BIOMOLECULAR NMR 2016; 64:223-37. [PMID: 26873390 PMCID: PMC4826309 DOI: 10.1007/s10858-016-0023-3] [Citation(s) in RCA: 56] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2015] [Accepted: 02/07/2016] [Indexed: 05/04/2023]
Abstract
Although dynamic nuclear polarization (DNP) has dramatically enhanced solid-state NMR spectral sensitivities of many synthetic materials and some biological macromolecules, recent studies of membrane-protein DNP using exogenously doped paramagnetic radicals as polarizing agents have reported varied and sometimes surprisingly limited enhancement factors. This motivated us to carry out a systematic evaluation of sample preparation protocols for optimizing the sensitivity of DNP NMR spectra of membrane-bound peptides and proteins at cryogenic temperatures of ~110 K. We show that mixing the radical with the membrane by direct titration instead of centrifugation gives a significant boost to DNP enhancement. We quantify the relative sensitivity enhancement between AMUPol and TOTAPOL, two commonly used radicals, and between deuterated and protonated lipid membranes. AMUPol shows ~fourfold higher sensitivity enhancement than TOTAPOL, while deuterated lipid membrane does not give net higher sensitivity for the membrane peptides than protonated membrane. Overall, a ~100 fold enhancement between the microwave-on and microwave-off spectra can be achieved on lipid-rich membranes containing conformationally disordered peptides, and absolute sensitivity gains of 105-160 can be obtained between low-temperature DNP spectra and high-temperature non-DNP spectra. We also measured the paramagnetic relaxation enhancement of lipid signals by TOTAPOL and AMUPol, to determine the depths of these two radicals in the lipid bilayer. Our data indicate a bimodal distribution of both radicals, a surface-bound fraction and a membrane-bound fraction where the nitroxides lie at ~10 Å from the membrane surface. TOTAPOL appears to have a higher membrane-embedded fraction than AMUPol. These results should be useful for membrane-protein solid-state NMR studies under DNP conditions and provide insights into how biradicals interact with phospholipid membranes.
Collapse
Affiliation(s)
- Shu Y Liao
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Myungwoon Lee
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Tuo Wang
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | | | - Mei Hong
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA.
| |
Collapse
|
41
|
Kim SS, Upshur MA, Saotome K, Sahu ID, McCarrick RM, Feix JB, Lorigan GA, Howard KP. Cholesterol-Dependent Conformational Exchange of the C-Terminal Domain of the Influenza A M2 Protein. Biochemistry 2015; 54:7157-67. [PMID: 26569023 PMCID: PMC4734095 DOI: 10.1021/acs.biochem.5b01065] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The C-terminal amphipathic helix of the influenza A M2 protein plays a critical cholesterol-dependent role in viral budding. To provide atomic-level detail on the impact cholesterol has on the conformation of M2 protein, we spin-labeled sites right before and within the C-terminal amphipathic helix of the M2 protein. We studied the spin-labeled M2 proteins in membranes both with and without cholesterol. We used a multipronged site-directed spin-label electron paramagnetic resonance (SDSL-EPR) approach and collected data on line shapes, relaxation rates, accessibility of sites to the membrane, and distances between symmetry-related sites within the tetrameric protein. We demonstrate that the C-terminal amphipathic helix of M2 populates at least two conformations in POPC/POPG 4:1 bilayers. Furthermore, we show that the conformational state that becomes more populated in the presence of cholesterol is less dynamic, less membrane buried, and more tightly packed than the other state. Cholesterol-dependent changes in M2 could be attributed to the changes cholesterol induces in bilayer properties and/or direct binding of cholesterol to the protein. We propose a model consistent with all of our experimental data that suggests that the predominant conformation we observe in the presence of cholesterol is relevant for the understanding of viral budding.
Collapse
Affiliation(s)
- Sangwoo S. Kim
- Department of Chemistry and Biochemistry, Swarthmore College, Swarthmore, PA 19081
| | - Mary Alice Upshur
- Department of Chemistry and Biochemistry, Swarthmore College, Swarthmore, PA 19081
| | - Kei Saotome
- Department of Chemistry and Biochemistry, Swarthmore College, Swarthmore, PA 19081
| | - Indra D. Sahu
- Department of Chemistry and Biochemistry, Miami University, Oxford, OH 45056
| | - Robert M. McCarrick
- Department of Chemistry and Biochemistry, Miami University, Oxford, OH 45056
| | - Jimmy B. Feix
- Department of Biophysics, National Biomedical EPR Center, Medical College of Wisconsin, Milwaukee, WI 53226
| | - Gary A. Lorigan
- Department of Chemistry and Biochemistry, Miami University, Oxford, OH 45056
| | - Kathleen P. Howard
- Department of Chemistry and Biochemistry, Swarthmore College, Swarthmore, PA 19081
| |
Collapse
|
42
|
Fernandez MV, Miller E, Krammer F, Gopal R, Greenbaum BD, Bhardwaj N. Ion efflux and influenza infection trigger NLRP3 inflammasome signaling in human dendritic cells. J Leukoc Biol 2015; 99:723-34. [PMID: 26574023 DOI: 10.1189/jlb.3a0614-313rrr] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2014] [Accepted: 10/28/2015] [Indexed: 12/20/2022] Open
Abstract
The nucleotide-binding oligomerization domain-like receptor protein 3 inflammasome, a multiprotein complex, is an essential intracellular mediator of antiviral immunity. In murine dendritic cells, this complex responds to a wide array of signals, including ion efflux and influenza A virus infection, to activate caspase-1-mediated proteolysis of IL-1β and IL-18 into biologically active cytokines. However, the presence and function of the nucleotide-binding oligomerization domain-like receptor protein 3 inflammasome in human dendritic cells, in response to various triggers, including viral infection, has not been defined clearly. Here, we delineate the contribution of the nucleotide-binding oligomerization domain-like receptor protein 3 inflammasome to the secretion of IL-1β, IL-18, and IL-1α by human dendritic cells (monocyte-derived and primary conventional dendritic cells). Activation of the nucleotide-binding oligomerization domain-like receptor protein 3 inflammasome in human dendritic cells by various synthetic activators resulted in the secretion of bioactive IL-1β, IL-18, and IL-1α and induction of pyroptotic cell death. Cellular IL-1β release depended on potassium efflux and the activity of proteins nucleotide-binding oligomerization domain-like receptor protein 3 and caspase-1. Likewise, influenza A virus infection of dendritic cells resulted in priming and activation of the nucleotide-binding oligomerization domain-like receptor protein 3 inflammasome and secretion of IL-1β and IL-18 in an M2- and nucleotide-binding oligomerization domain-like receptor protein 3-dependent manner. The magnitude of priming by influenza A virus varied among different strains and inversely corresponded to type I IFN production. To our knowledge, this is the first report describing the existence and function of the nucleotide-binding oligomerization domain-like receptor protein 3 inflammasome in human dendritic cells and the ability of influenza A virus to prime and activate this pathway in human dendritic cells, with important implications for antiviral immunity and pathogenesis.
Collapse
Affiliation(s)
| | - Elizabeth Miller
- Division of Infectious Diseases, Department of Medicine, Hess Center for Science and Medicine, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Florian Krammer
- Department of Microbiology, Hess Center for Science and Medicine, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Ramya Gopal
- Division of Hematology and Oncology, Hess Center for Science and Medicine, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Benjamin D Greenbaum
- Division of Hematology and Oncology, Hess Center for Science and Medicine, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Nina Bhardwaj
- Division of Hematology and Oncology, Hess Center for Science and Medicine, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| |
Collapse
|
43
|
Gleed ML, Ioannidis H, Kolocouris A, Busath DD. Resistance-Mutation (N31) Effects on Drug Orientation and Channel Hydration in Amantadine-Bound Influenza A M2. J Phys Chem B 2015; 119:11548-59. [PMID: 26268449 DOI: 10.1021/acs.jpcb.5b05808] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
The mechanism of amantadine binding to the S31 variant of the M2 protein of Influenza A is well understood, but the reasons behind N31 M2 amantadine insensitivity remain under investigation. Many molecular dynamics studies have evaluated the influence of amantadine position within the channel pore on its ability to inhibit proton conductance in M2, but little is known about the influence of amantadine rotational orientation. Replica-exchange umbrella sampling, steered, and classic molecular dynamics simulations were performed on amantadine in the solid-state NMR structure of S31 M2 and an N31 M2 homologue, both in the homotetramer configuration, to explore the effects of the position and tilt angle of amantadine on inhibition of the M2 channel. Steered simulations show that amantadine rotates with the amine toward the bulk water as it passes into the hydrophobic entryway lined by Val27 side chains. Results from all simulation types performed indicate that amantadine has a strong, specific orientation with the amine turned inward toward the central cavity in the S31 M2 pore but has variable orientation and a strong propensity to remain outward pointing in N31 M2. Free energy profiles from umbrella sampling, measured relative to bulk water, show amantadine binds more strongly to the S31 M2 pore by 8 kcal/mol in comparison to amantadine in the N31 pore, suggesting that it can escape more readily from the N31 channel through the Val27 secondary gate, whereas it is captured by the S31 channel in the same region. Lower water density and distribution near amantadine in S31 M2 reveal that the drug inhibits proton conductance in S31 M2 because of its inward-pointing configuration, whereas in N31 M2, amantadine forms hydrogen bonds with an N31 side chain and does not widely occlude water occupancy in any configuration. Both amantadine's weaker binding to and weaker water occlusion in N31 M2 might contribute to its inefficacy as an inhibitor of the mutant protein.
Collapse
Affiliation(s)
- Mitchell L Gleed
- Department of Physiology and Developmental Biology, Brigham Young University , Provo, Utah 84602, United States
| | - Harris Ioannidis
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, National and Kapodistrian University of Athens , Athens, Greece
| | - Antonios Kolocouris
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, National and Kapodistrian University of Athens , Athens, Greece
| | - David D Busath
- Department of Physiology and Developmental Biology, Brigham Young University , Provo, Utah 84602, United States
| |
Collapse
|
44
|
Mechanism of influenza A M2 transmembrane domain assembly in lipid membranes. Sci Rep 2015; 5:11757. [PMID: 26190831 PMCID: PMC4507135 DOI: 10.1038/srep11757] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2015] [Accepted: 06/04/2015] [Indexed: 12/20/2022] Open
Abstract
M2 from influenza A virus functions as an oligomeric proton channel essential for the viral cycle, hence it is a high-priority pharmacological target whose structure and functions require better understanding. We studied the mechanism of M2 transmembrane domain (M2TMD) assembly in lipid membranes by the powerful biophysical technique of double electron-electron resonance (DEER) spectroscopy. By varying the M2TMD-to-lipid molar ratio over a wide range from 1:18,800 to 1:160, we found that M2TMD exists as monomers, dimers, and tetramers whose relative populations shift to tetramers with the increase of peptide-to-lipid (P/L) molar ratio. Our results strongly support the tandem mechanism of M2 assembly that is monomers-to-dimer then dimers-to-tetramer, since tight dimers are abundant at small P/L’s, and thereafter they assemble as dimers of dimers in weaker tetramers. The stepwise mechanism found for a single-pass membrane protein oligomeric assembly should contribute to the knowledge of the association steps in membrane protein folding.
Collapse
|
45
|
Wang T, Hong M. Investigation of the curvature induction and membrane localization of the influenza virus M2 protein using static and off-magic-angle spinning solid-state nuclear magnetic resonance of oriented bicelles. Biochemistry 2015; 54:2214-26. [PMID: 25774685 DOI: 10.1021/acs.biochem.5b00127] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
A wide variety of membrane proteins induce membrane curvature for function; thus, it is important to develop new methods to simultaneously determine membrane curvature and protein binding sites in membranes with multiple curvatures. We introduce solid-state nuclear magnetic resonance (NMR) methods based on magnetically oriented bicelles and off-magic-angle spinning (OMAS) to measure membrane curvature and the binding site of proteins in mixed-curvature membranes. We demonstrate these methods on the influenza virus M2 protein, which not only acts as a proton channel but also mediates virus assembly and membrane scission. An M2 peptide encompassing the transmembrane (TM) domain and an amphipathic helix, M2(21-61), was studied and compared with the TM peptide (M2TM). Static (31)P NMR spectra of magnetically oriented 1,2-dimyristoyl-sn-glycero-3-phosphocholine (DMPC)/1,2-dihexanoyl-sn-glycero-3-phosphocholine (DHPC) bicelles exhibit a temperature-independent isotropic chemical shift in the presence of M2(21-61) but not M2TM, indicating that the amphipathic helix confers the ability to generate a high-curvature phase. Two-dimensional (2D) (31)P spectra indicate that this high-curvature phase is associated with the DHPC bicelle edges, suggestive of the structure of budding viruses from the host cell. (31)P- and (13)C-detected (1)H relaxation times of the lipids indicate that the majority of M2(21-61) is bound to the high-curvature phase. Using OMAS experiments, we resolved the (31)P signals of lipids with identical headgroups based on their distinct chemical shift anisotropies. On the basis of this resolution, 2D (1)H-(31)P correlation spectra show that the amide protons in M2(21-61) correlate with the DMPC but not DHPC (31)P signal of the bicelle, indicating that a small percentage of M2(21-61) partitions into the planar region of the bicelles. These results show that the amphipathic helix induces high membrane curvature and localizes the protein to this phase, in good agreement with the membrane scission function of the protein. These bicelle-based relaxation and OMAS solid-state NMR techniques are generally applicable to curvature-inducing membrane proteins such as those involved in membrane trafficking, membrane fusion, and cell division.
Collapse
Affiliation(s)
- Tuo Wang
- Department of Chemistry, Massachusetts Institute of Technology, 170 Albany Street, Cambridge, Massachusetts 02139, United States
| | - Mei Hong
- Department of Chemistry, Massachusetts Institute of Technology, 170 Albany Street, Cambridge, Massachusetts 02139, United States
| |
Collapse
|
46
|
Gu R, Liu LA, Wei D. Drug inhibition and proton conduction mechanisms of the influenza a M2 proton channel. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2015; 827:205-26. [PMID: 25387967 DOI: 10.1007/978-94-017-9245-5_13] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The influenza A virus matrix protein 2 (M2 protein) is a pH-regulated proton channel embedded in the viral membrane. Inhibition of the M2 proton channel has been used to treat influenza infections for decades due to the crucial role of this protein in viral infection and replication. However, the widely-used M2 inhibitors, amantadine and rimantadine, have gradually lost their efficiencies because of naturally-occurring drug resistant mutations. Therefore, investigation of the structure and function of the M2 proton channel will not only increase our understanding of this important biological system, but also lead to the design of novel and effective anti-influenza drugs. Despite the simplicity of the M2 molecular structure, the M2 channel is highly flexible and there have been controversies and arguments regarding the channel inhibition mechanism and the proton conduction mechanism. In this book chapter, we will first carefully review the experimental and computational studies of the two possible drug binding sites on the M2 protein and explain the mechanisms regarding how inhibitors prevent proton conduction. Then, we will summarize our recent molecular dynamics simulations of the drug-resistant mutant channels and propose mechanisms for drug resistance. Finally, we will discuss two existing proton conduction mechanisms and talk about the remaining questions regarding the proton-relay process through the channel. The studies reviewed here demonstrate how molecular modeling and simulations have complemented experimental work and helped us understand the M2 channel structure and function.
Collapse
Affiliation(s)
- Ruoxu Gu
- State Key Laboratory of Microbial Metabolism, College of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | | | | |
Collapse
|
47
|
Colvin MT, Andreas LB, Chou JJ, Griffin RG. Proton association constants of His 37 in the Influenza-A M218-60 dimer-of-dimers. Biochemistry 2014; 53:5987-94. [PMID: 25184631 PMCID: PMC4179598 DOI: 10.1021/bi5005393] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
![]()
The membrane protein M2 from influenza-A
forms a single-pass transmembrane
helix that assembles in lipid membrane as homotetramers whose primary
function is to act as a proton transporter for viral acidification.
A single residue, histidine 37 (His 37), is known to be responsible
for selectivity and plays an integral role in the protein’s
function. We report pH-dependent 15N MAS NMR spectra of
His 37 within the influenza-A proton conduction domain of M2, M218–60, which has been previously shown to be a fully
functional construct and was recently determined to adopt a dimer-of-dimers
structure in lipids. By extracting the ratio of [His]/[HisH+] as a function of pH, we obtained two doubly degenerate proton disassociation
constants, 7.63 ± 0.15 and 4.52 ± 0.15, despite a possible
maximum of four. We also report the 1HNε chemical shifts at pH 6.5 recorded at 60 kHz MAS in a CP-based 1H–15N spectrum. We were unable to detect
resonances indicative of direct proton sharing among His 37 side chains
when the tetramer is in the +2 state. In the neutral state, His 37
is exclusively in the τ tautomer, indicating that the δ
nitrogen is protonated solely as a function of pH. We also found that
the plot of [HisH+]/[His] as a function of pH is qualitatively
similar to previously reported proton conduction rates, indicating
that proton conduction rate is proportional to the level of histidine
protonation within the channel. Two-dimensional 13C–13C and 13C–15N correlations suggest
that at low pH multiple conformations are populated as the spectra
broaden and eventually disappear as the acidity is increased. A second
highly resolved state at low pH was not observed.
Collapse
Affiliation(s)
- Michael T Colvin
- Department of Chemistry and Francis Bitter Magnet Laboratory, Massachusetts Institute of Technology , Cambridge, Massachusetts 02139, United States
| | | | | | | |
Collapse
|
48
|
Lee M, Hong M. Cryoprotection of lipid membranes for high-resolution solid-state NMR studies of membrane peptides and proteins at low temperature. JOURNAL OF BIOMOLECULAR NMR 2014; 59:263-77. [PMID: 25015530 PMCID: PMC4160392 DOI: 10.1007/s10858-014-9845-z] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2014] [Accepted: 07/03/2014] [Indexed: 05/09/2023]
Abstract
Solid-state NMR spectra of membrane proteins often show significant line broadening at cryogenic temperatures. Here we investigate the effects of several cryoprotectants to preserve the spectral resolution of lipid membranes and membrane peptides at temperatures down to ~200 K. Trehalose, glycerol, dimethylsulfoxide (DMSO), dimethylformamide (DMF), and polyethylene glycol (PEG), were chosen. These compounds are commonly used in protein crystallography and cryobiology. 13C and 1H magic-angle-spinning spectra of several types of lipid membranes show that DMSO provides the best resolution enhancement over unprotected membranes and also best retards ice formation at low temperature. DMF and PEG-400 show slightly weaker cryoprotection, while glycerol and trehalose neither prevent membrane line broadening nor prevent ice formation under the conditions of our study. Neutral saturated-chain phospholipids are the most amenable to cryoprotection, whereas negatively charged and unsaturated lipids attenuate cryoprotection. 13C-1H dipolar couplings and 31P chemical shift anisotropies indicate that high spectral resolution at low temperature is correlated with stronger immobilization of the lipids at high temperature, indicating that line narrowing results from reduction of the conformational space sampled by the lipid molecules at high temperature. DMSO selectively narrowed the linewidths of the most disordered residues in the influenza M2 transmembrane peptide, while residues that exhibit narrow linewidths in the unprotected membrane are less impacted. A relatively rigid β-hairpin antimicrobial peptide, PG-1, showed a linewidth increase of ~0.5 ppm over a ~70 K temperature drop both with and without cryoprotection. Finally, a short-chain saturated lipid, DLPE, exhibits excellent linewidths, suggesting that it may be a good medium for membrane protein structure determination. The three best cryoprotectants found in this work-DMSO, PEG, and DMF-should be useful for low-temperature membrane-protein structural studies by SSNMR without compromising spectral resolution.
Collapse
Affiliation(s)
| | - Mei Hong
- Corresponding author: Mei Hong, Tel: 515-294-3521, Fax: 515-294-0105,
| |
Collapse
|
49
|
Eddy MT, Yu TY. Membranes, peptides, and disease: unraveling the mechanisms of viral proteins with solid state nuclear magnetic resonance spectroscopy. SOLID STATE NUCLEAR MAGNETIC RESONANCE 2014; 61-62:1-7. [PMID: 24837131 DOI: 10.1016/j.ssnmr.2014.04.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2014] [Revised: 04/22/2014] [Accepted: 04/22/2014] [Indexed: 06/03/2023]
Abstract
The interplay between peptides and lipid bilayers drives crucial biological processes. For example, a critical step in the replication cycle of enveloped viruses is the fusion of the viral membrane and host cell endosomal membrane, and these fusion events are controlled by viral fusion peptides. Thus such membrane-interacting peptides are of considerable interest as potential pharmacological targets. Deeper insight is needed into the mechanisms by which fusion peptides and other viral peptides modulate their surrounding membrane environment, and also how the particular membrane environment modulates the structure and activity of these peptides. An important step toward understanding these processes is to characterize the structure of viral peptides in environments that are as biologically relevant as possible. Solid state nuclear magnetic resonance (ssNMR) is uniquely well suited to provide atomic level information on the structure and dynamics of both membrane-associated peptides as well as the lipid bilayer itself; further ssNMR can delineate the contribution of specific membrane components, such as cholesterol, or changing cellular conditions, such as a decrease in pH on membrane-associating peptides. This paper highlights recent advances in the study of three types of membrane associated viral peptides by ssNMR to illustrate the more general power of ssNMR in addressing important biological questions involving membrane proteins.
Collapse
Affiliation(s)
- Matthew T Eddy
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA 92037 USA
| | - Tsyr-Yan Yu
- Institute of Atomic and Molecular Sciences, Academia Sinica, No. 1 Sec. 4. Rooservelt Rd., Taipei, 10617, Taiwan.
| |
Collapse
|
50
|
Abstract
Many viruses encode short transmembrane proteins that play vital roles in virus replication or virulence. Because many of these proteins are less than 50 amino acids long and not homologous to cellular proteins, their open reading frames were often overlooked during the initial annotation of viral genomes. Some of these proteins oligomerize in membranes and form ion channels. Other miniproteins bind to cellular transmembrane proteins and modulate their activity, whereas still others have an unknown mechanism of action. Based on the underlying principles of transmembrane miniprotein structure, it is possible to build artificial small transmembrane proteins that modulate a variety of biological processes. These findings suggest that short transmembrane proteins provide a versatile mechanism to regulate a wide range of cellular activities, and we speculate that cells also express many similar proteins that have not yet been discovered.
Collapse
Affiliation(s)
- Daniel DiMaio
- Department of Genetics, Yale School of Medicine, New Haven, Connecticut 06520;
| |
Collapse
|