1
|
Schmidt ENC, Evert BO, Pregler BEF, Melhem A, Hsieh M, Raspe M, Strobel H, Roos J, Pietsch T, Schuss P, Fischer‐Posovszky P, Westhoff M, Hölzel M, Herrlinger U, Vatter H, Waha A, Schneider M, Potthoff A. Tonabersat enhances temozolomide-mediated cytotoxicity in glioblastoma by disrupting intercellular connectivity through connexin 43 inhibition. Mol Oncol 2025; 19:878-898. [PMID: 39680504 PMCID: PMC11887680 DOI: 10.1002/1878-0261.13786] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 10/24/2024] [Accepted: 12/04/2024] [Indexed: 12/18/2024] Open
Abstract
Glioblastoma cells rely on connexin 43 (Cx43)-based gap junctions (GJs) for intercellular communication, enabling them to integrate into a widely branched malignant network. Although there are promising prospects for new targeted therapies, the lack of clinically feasible GJ inhibitors has impeded their adoption in clinical practice. In the present study, we investigated tonabersat (TO), a blood-brain-barrier-penetrating drug with GJ-inhibitory properties, in regard to its potential to disassemble intercellular connectivity in glioblastoma networks. Fluorescence-guided measurements of calcein cell-to-cell transfer were used to study functional intercellular connectivity. Specific DNA fragmentation rates of propidium iodide-stained nuclei were measured as a surrogate readout for cell death using flow cytometry. CRISPR/Cas9-mediated gene editing of Cx43 served as a validation tool of cellular effects related to Cx43 GJ inhibition. 3' mRNA sequencing was performed for molecular downstream analysis. We found that TO reduced intercellular GJ-mediated cytosolic traffic and yielded a significant reduction of tumor microtube (TM) length. TO-mediated inhibition of cellular tumor networks was accompanied by a synergistic effect for temozolomide-induced cell death. CRISPR/Cas9 Cx43-knockout revealed similar results, indicating that TO-mediated inhibitory effects rely on the inhibition of Cx43-based GJs. Gene set enrichment analyses found that GJ-mediated synergistic cytotoxic effects were linked to a significant upregulation of cell death signaling pathways. In conclusion, TO disrupts TM-based network connectivity via GJ inhibition and renders glioblastoma cells more susceptible to cytotoxic therapy. Given its previous use in clinical trials for migraine therapy, TO might harbor the potential of bridging the idea of a GJ-targeted therapeutic approach from bench to bedside.
Collapse
Affiliation(s)
- Elena N. C. Schmidt
- Department of NeurosurgeryUniversity Hospital BonnGermany
- Brain Tumor Translational Research GroupUniversity Hospital BonnGermany
| | | | - Barbara E. F. Pregler
- Department of NeurosurgeryUniversity Hospital BonnGermany
- Brain Tumor Translational Research GroupUniversity Hospital BonnGermany
| | - Ahmad Melhem
- Department of NeurosurgeryUniversity Hospital BonnGermany
- Brain Tumor Translational Research GroupUniversity Hospital BonnGermany
| | - Meng‐Chun Hsieh
- Department of NeurosurgeryUniversity Hospital BonnGermany
- Brain Tumor Translational Research GroupUniversity Hospital BonnGermany
| | - Markus Raspe
- Department of NeurosurgeryUniversity Hospital BonnGermany
- Brain Tumor Translational Research GroupUniversity Hospital BonnGermany
| | - Hannah Strobel
- Department of Pediatrics and Adolescent MedicineUniversity Medical Center UlmGermany
| | - Julian Roos
- Department of Pediatrics and Adolescent MedicineUniversity Medical Center UlmGermany
| | | | - Patrick Schuss
- Department of NeurosurgeryUniversity Hospital BonnGermany
- Present address:
Department of NeurosurgeryBG Klinikum Unfallkrankenhaus Berlin BGGermany
| | - Pamela Fischer‐Posovszky
- Department of Pediatrics and Adolescent MedicineUniversity Medical Center UlmGermany
- German Center for Child and Adolescent Health (DZKJ), partner site UlmGermany
| | - Mike‐Andrew Westhoff
- Department of Pediatrics and Adolescent MedicineUniversity Medical Center UlmGermany
| | - Michael Hölzel
- Institute of Experimental OncologyUniversity Hospital BonnGermany
| | - Ulrich Herrlinger
- Department of Neurooncology, Center for Neurology and Center of Integrated Oncology ABCDUniversity Hospital BonnGermany
| | - Hartmut Vatter
- Department of NeurosurgeryUniversity Hospital BonnGermany
| | - Andreas Waha
- Department of NeuropathologyUniversity Hospital BonnGermany
| | - Matthias Schneider
- Department of NeurosurgeryUniversity Hospital BonnGermany
- Brain Tumor Translational Research GroupUniversity Hospital BonnGermany
| | - Anna‐Laura Potthoff
- Department of NeurosurgeryUniversity Hospital BonnGermany
- Brain Tumor Translational Research GroupUniversity Hospital BonnGermany
- Department of NeuropathologyUniversity Hospital BonnGermany
| |
Collapse
|
2
|
Paunikar S, Tamagnone L. Connexin-43 in Cancer: Above and Beyond Gap Junctions! Cancers (Basel) 2024; 16:4191. [PMID: 39766090 PMCID: PMC11674308 DOI: 10.3390/cancers16244191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2024] [Revised: 12/08/2024] [Accepted: 12/10/2024] [Indexed: 01/11/2025] Open
Abstract
Connexin-43 (Cx43) is the most characterized gap junction protein, primarily involved in the Gap Junctional Intercellular Communication (GJIC) between adjacent cells to facilitate molecule exchange and the formation of a signaling network. It is increasingly evident that the importance of Cx43 is not only limited to its GJIC function, but rather includes its role in connecting the intracellular and extracellular environment by forming membrane hemichannels, as well as its intracellular signaling function mediated by its C-terminal tail (Cx43-CT). Notably, Cx43 has been implicated in a variety of cancers, with earlier notions suggesting a tumor-suppressor function, whereas new studies shed light on its pro-tumorigenic role. Moreover, apart from GJIC-based activities, the relevance of the non-canonical functions of Cx43 in tumor progression is being actively studied. This review provides an analysis of the current research on the pro-tumorigenic roles of Cx43, with a focus on Cx43-CT interactions and the function of hemichannels in cancer progression. A better understanding of the multifaceted functions of Cx43 in cancer biology could foster its recognition as a pivotal target for the development of innovative therapeutic strategies.
Collapse
Affiliation(s)
- Shishir Paunikar
- School of Medicine, Università Cattolica del Sacro Cuore, 00168 Rome, Italy;
| | - Luca Tamagnone
- School of Medicine, Università Cattolica del Sacro Cuore, 00168 Rome, Italy;
- Fondazione Policlinico Universitario “A.Gemelli” IRCCS, 00168 Rome, Italy
| |
Collapse
|
3
|
DePalma TJ, Hisey CL, Hughes K, Fraas D, Tawfik M, Scharenberg J, Wiggins S, Nguyen KT, Hansford DJ, Reátegui E, Skardal A. Tuning a bioengineered hydrogel for studying astrocyte reactivity in glioblastoma. Acta Biomater 2024; 189:155-167. [PMID: 39370091 PMCID: PMC11801334 DOI: 10.1016/j.actbio.2024.09.048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 09/18/2024] [Accepted: 09/26/2024] [Indexed: 10/08/2024]
Abstract
Astrocytes play many essential roles in the central nervous system (CNS) and are altered significantly in disease. These reactive astrocytes contribute to neuroinflammation and disease progression in many pathologies, including glioblastoma (GB), an aggressive form of brain cancer. Current in vitro platforms do not allow for accurate modeling of reactive astrocytes. In this study, we sought to engineer a simple bioengineered hydrogel platform that would support the growth of primary human astrocytes and allow for accurate analysis of various reactive states. After validating this platform using morphological analysis and qPCR, we then used the platform to begin investigating how astrocytes respond to GB derived extracellular vesicles (EVs) and soluble factors (SF). These studies reveal that EVs and SFs induce distinct astrocytic states. In future studies, this platform can be used to study how astrocytes transform the tumor microenvironment in GB and other diseases of the CNS. STATEMENT OF SIGNIFICANCE: Recent work has shown that astrocytes help maintain brain homeostasis and may contribute to disease progression in diseases such as glioblastoma (GB), a deadly primary brain cancer. In vitro models allow researchers to study basic mechanisms of astrocyte biology in healthy and diseased conditions, however current in vitro systems do not accurately mimic the native brain microenvironment. In this study, we show that our hydrogel system supports primary human astrocyte culture with an accurate phenotype and allows us to study how astrocytes change in response to a variety of inflammatory signals in GB. This platform could be used further investigate astrocyte behavior and possible therapeutics that target reactive astrocytes in GB and other brain diseases.
Collapse
Affiliation(s)
- Thomas J DePalma
- Department of Biomedical Engineering, The Ohio State University, Columbus, OH 43210, USA
| | - Colin L Hisey
- Department of Biomedical Engineering, The Ohio State University, Columbus, OH 43210, USA; Department of Chemical and Biomolecular Engineering, The Ohio State University, Columbus, OH 43210, USA
| | - Kennedy Hughes
- Department of Biomedical Engineering, The Ohio State University, Columbus, OH 43210, USA
| | - David Fraas
- Department of Biomedical Engineering, The Ohio State University, Columbus, OH 43210, USA
| | - Marie Tawfik
- Department of Biomedical Engineering, The Ohio State University, Columbus, OH 43210, USA
| | - Jason Scharenberg
- Department of Biomedical Engineering, The Ohio State University, Columbus, OH 43210, USA
| | - Sydney Wiggins
- Department of Biomedical Engineering, The Ohio State University, Columbus, OH 43210, USA
| | - Kim Truc Nguyen
- Department of Chemical and Biomolecular Engineering, The Ohio State University, Columbus, OH 43210, USA
| | - Derek J Hansford
- Department of Biomedical Engineering, The Ohio State University, Columbus, OH 43210, USA; Department of Materials Science and Engineering, The Ohio State University, Columbus, OH 43210, USA
| | - Eduardo Reátegui
- Department of Chemical and Biomolecular Engineering, The Ohio State University, Columbus, OH 43210, USA
| | - Aleksander Skardal
- Department of Biomedical Engineering, The Ohio State University, Columbus, OH 43210, USA; James Comprehensive Cancer Center, The Ohio State University, Columbus, OH 43210, USA.
| |
Collapse
|
4
|
Zoteva V, De Meulenaere V, Vanhove C, Leybaert L, Raedt R, Pieters L, Vral A, Boterberg T, Deblaere K. Integrating and optimizing tonabersat in standard glioblastoma therapy: A preclinical study. PLoS One 2024; 19:e0300552. [PMID: 38489314 PMCID: PMC10942024 DOI: 10.1371/journal.pone.0300552] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Accepted: 02/28/2024] [Indexed: 03/17/2024] Open
Abstract
Glioblastoma (GB), a highly aggressive primary brain tumor, presents a poor prognosis despite the current standard therapy, including radiotherapy and temozolomide (TMZ) chemotherapy. Tumor microtubes involving connexin 43 (Cx43) contribute to glioma progression and therapy resistance, suggesting Cx43 inhibition as a potential treatment strategy. This research aims to explore the adjuvant potential of tonabersat, a Cx43 gap junction modulator and blood-brain barrier-penetrating compound, in combination with the standard of care for GB. In addition, different administration schedules and timings to optimize tonabersat's therapeutic window are investigated. The F98 Fischer rat model will be utilized to investigate tonabersat's impact in a clinically relevant setting, by incorporating fractionated radiotherapy (three fractions of 9 Gy) and TMZ chemotherapy (29 mg/kg). This study will evaluate tonabersat's impact on tumor growth, survival, and treatment response through advanced imaging (CE T1-w MRI) and histological analysis. Results show extended survival in rats receiving tonabersat with standard care, highlighting its adjuvant potential. Daily tonabersat administration, both preceding and following radiotherapy, emerges as a promising approach for maximizing survival outcomes. The study suggests tonabersat's potential to reduce tumor invasiveness, providing a new avenue for GB treatment. In conclusion, this preclinical investigation highlights tonabersat's potential as an effective adjuvant treatment for GB, and its established safety profile from clinical trials in migraine treatment presents a promising foundation for further exploration.
Collapse
Affiliation(s)
| | | | | | - Luc Leybaert
- Physiology Group, Department of Basic and Applied Medical Sciences, Ghent University, Ghent, Belgium
| | - Robrecht Raedt
- Department of Head and Skin, Ghent University, Ghent, Belgium
| | - Leen Pieters
- Department of Human Structure and Repair, Ghent University, Ghent, Belgium
| | - Anne Vral
- Department of Human Structure and Repair, Ghent University, Ghent, Belgium
| | - Tom Boterberg
- Department of Radiation Oncology, Ghent University Hospital, Ghent, Belgium
| | - Karel Deblaere
- Department of Radiology, Ghent University, Ghent, Belgium
| |
Collapse
|
5
|
Hosseindoost S, Dehpour AR, Dehghan S, Javadi SAH, Arjmand B, Fallah A, Hadjighassem M. Fluoxetine enhances the antitumor effect of olfactory ensheathing cell-thymidine kinase/ganciclovir gene therapy in human glioblastoma multiforme cells through upregulation of Connexin43 levels. Drug Dev Res 2023; 84:1739-1750. [PMID: 37769152 DOI: 10.1002/ddr.22119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 08/30/2023] [Accepted: 09/11/2023] [Indexed: 09/30/2023]
Abstract
Glioblastoma multiforme (GBM) is the most invasive form of primary brain astrocytoma, resulting in poor clinical outcomes. Herpes simplex virus thymidine kinase/ganciclovir (HSV-TK/GCV) gene therapy is considered a promising strategy for GBM treatment. Since Connexin43 (Cx43) expression is reduced in GBM cells, increasing Cx43 levels could enhance the effectiveness of gene therapy. The present study aims to examine the impact of fluoxetine on HSV-TK/GCV gene therapy in human GBM cells using human olfactory ensheathing cells (OECs) as vectors. The effect of fluoxetine on Cx43 levels was assessed using the western blot technique. GBM-derived astrocytes and OECs-TK were Cocultured, and the effect of fluoxetine on the Antitumor effect of OEC-TK/GCV gene therapy was evaluated using MTT assay and flow cytometry. Our results showed that fluoxetine increased Cx43 levels in OECs and GBM cells and augmented the killing effect of OECs-TK on GBM cells. Western blot data revealed that fluoxetine enhanced the Bax/Bcl2 ratio and the levels of cleaved caspase-3 in the coculture of OECs-TK and GBM cells. Moreover, flow cytometry data indicated that fluoxetine increased the percentage of apoptotic cells in the coculture system. This study suggests that fluoxetine, by upregulating Cx43 levels, could strengthen the Antitumor effect of OEC-TK/GCV gene therapy on GBM cells.
Collapse
Affiliation(s)
- Saereh Hosseindoost
- Pain Research Center, Neuroscience Institute, Imam Khomeini Hospital Complex, Tehran University of Medical Sciences, Tehran, Iran
- Brain and Spinal Cord Injury Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Ahmad R Dehpour
- Experimental Medicine Research Center, Tehran University of Medical Sciences, Tehran, Iran
- Department of Pharmacology, Tehran University of Medical Sciences, Tehran, Iran
| | - Samaneh Dehghan
- Stem Cell and Regenerative Medicine Research Center, Iran University of Medical Sciences, Tehran, Iran
- Eye Research Center, The Five Senses Institute, Rassoul Akram Hospital, Iran University of Medical Sciences, Tehran, Iran
| | - Seyed A H Javadi
- Brain and Spinal Cord Injury Research Center, Tehran University of Medical Sciences, Tehran, Iran
- Neurosurgery Department, Imam Khomeini Hospital Complex, Tehran University of Medical Sciences, Tehran, Iran
| | - Babak Arjmand
- Cell Therapy and Regenerative Medicine Research Center, Endocrinology and Metabolism Molecular-Cellular Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
- Metabolomics and Genomics Research Center, Endocrinology and Metabolism Molecular-Cellular Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Ali Fallah
- Space Medicine B.V., Rotterdam, the Netherlands
- Systems and Synthetic Biology Group, Mede Bioeconomy Company, Tehran, Iran
| | - Mahmoudreza Hadjighassem
- Brain and Spinal Cord Injury Research Center, Tehran University of Medical Sciences, Tehran, Iran
- Department of Neuroscience and Addiction Studies, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
6
|
Zhang S, Guo S, Yu M, Wang Y, Tao L, Zhang X. Analgesics can affect the sensitivity of temozolomide to glioma chemotherapy through gap junction. Med Oncol 2023; 40:162. [PMID: 37100898 DOI: 10.1007/s12032-023-01998-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Accepted: 03/13/2023] [Indexed: 04/28/2023]
Abstract
This study investigated the effect of frequently used analgesics in cancer pain management (flurbiprofen (FLU), tramadol (TRA), and morphine (MOR)) and a novel α2-adrenergic agonist (dexmedetomidine, DEX) on temozolomide (TMZ) sensitivity in glioma cells. Cell counting kit-8 and colony-formation assays were performed to analyze the viability of U87 and SHG-44 cell lines. A high and low cell density of colony method, pharmacological methods, and connexin43 mimetic peptide GAP27 were used to manipulate the function of gap junctions; "Parachute" dye coupling and western blot were employed to determine junctional channel transfer ability and connexin expression. The results showed that DEX (in the concentration range of 0.1 to 5.0 ng/ml) and TRA (in the concentration range of 1.0 to 10.0 µg/ml) reduced the TMZ cytotoxicity in a concentration-dependent manner but was only observed with high cell density (having formed gap junction). The cell viability percentage was 71.3 to 86.8% when DEX was applied at 5.0 ng/ml, while tramadol showed 69.6 to 83.7% viability at 5.0 μg/ml in U87 cells. Similarly, 5.0 ng/ml of DEX resulted in 62.6 to 80.5%, and 5.0 μg/ml TRA showed 63.5 to 77.3% viability in SHG-44 cells. Further investigating the impact of analgesics on gap junctions, only DEX and TRA were found to decrease channel dye transfer through connexin phosphorylation and ERK pathway, while no such effect was observed for FLU and MOR. Analgesics that can affect junctional communication may compromise the effectiveness of TMZ when used simultaneously.
Collapse
Affiliation(s)
- Suzhi Zhang
- Department of Pharmacy, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, People's Republic of China
| | - Sanxing Guo
- Department of Oncology, The First Affiliated Hospital of Zhengzhou University, No.1 Jianshe East Road, Erqi District, Zhengzhou, 450052, Henan, People's Republic of China.
| | - Meiling Yu
- Department of Pharmacy, The First Affiliated Hospital of Bengbu Medical College, Bengbu, 233004, Anhui, People's Republic of China
| | - Yu Wang
- Department of Pharmacy, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, People's Republic of China
| | - Liang Tao
- Department of Pharmacology, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, 510080, Guangdong, People's Republic of China
| | - Xiaojian Zhang
- Department of Pharmacy, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, People's Republic of China
| |
Collapse
|
7
|
Sisakht AK, Malekan M, Ghobadinezhad F, Firouzabadi SNM, Jafari A, Mirazimi SMA, Abadi B, Shafabakhsh R, Mirzaei H. Cellular Conversations in Glioblastoma Progression, Diagnosis and Treatment. Cell Mol Neurobiol 2023; 43:585-603. [PMID: 35411434 PMCID: PMC11415179 DOI: 10.1007/s10571-022-01212-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2021] [Accepted: 03/07/2022] [Indexed: 12/22/2022]
Abstract
Glioblastoma (GBM) is the most frequent malignancy among primary brain tumors in adults and one of the worst 5-year survival rates (< 7%) among all human cancers. Till now, treatments that target particular cell or intracellular metabolism have not improved patients' survival. GBM recruits healthy brain cells and subverts their processes to create a microenvironment that contributes to supporting tumor progression. This microenvironment encompasses a complex network in which malignant cells interact with each other and with normal and immune cells to promote tumor proliferation, angiogenesis, metastasis, immune suppression, and treatment resistance. Communication can be direct via cell-to-cell contact, mainly through adhesion molecules, tunneling nanotubes, gap junctions, or indirect by conventional paracrine signaling by cytokine, neurotransmitter, and extracellular vesicles. Understanding these communication routes could open up new avenues for the treatment of this lethal tumor. Hence, therapeutic approaches based on glioma cells` communication have recently drawn attention. This review summarizes recent findings on the crosstalk between glioblastoma cells and their tumor microenvironment, and the impact of this conversation on glioblastoma progression. We also discuss the mechanism of communication of glioma cells and their importance as therapeutic targets and diagnostic and prognostic biomarkers. Overall, understanding the biological mechanism of specific interactions in the tumor microenvironment may help in predicting patient prognosis and developing novel therapeutic strategies to target GBM.
Collapse
Affiliation(s)
- Ali Karimi Sisakht
- Brain Cancer Research Core (BCRC), Universal Scientific Education and Research Network (USERN), Tehran, Iran
- Faculty of Medicine, Kerman University of Medical Sciences, Kerman, Iran
| | - Mohammad Malekan
- Brain Cancer Research Core (BCRC), Universal Scientific Education and Research Network (USERN), Tehran, Iran
- Student Research Committee, School of Medicine, Mazandaran University of Medical Sciences, Sari, Iran
- Network of Immunity in Infection, Malignancy and Autoimmunity (NIIMA), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Farbod Ghobadinezhad
- Brain Cancer Research Core (BCRC), Universal Scientific Education and Research Network (USERN), Tehran, Iran
- Student Research Committee, Pharmaceutical Sciences Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
- USERN Office, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Seyedeh Negar Mousavi Firouzabadi
- Brain Cancer Research Core (BCRC), Universal Scientific Education and Research Network (USERN), Tehran, Iran
- Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
| | - Ameneh Jafari
- Advanced Therapy Medicinal Product (ATMP) Department, Breast Cancer Research Center, Motamed Cancer Institute, ACECR, Tehran, Iran
- Proteomics Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Seyed Mohammad Ali Mirazimi
- School of Medicine, Kashan University of Medical Sciences, Kashan, Iran
- Student Research Committee, Kashan University of Medical Sciences, Kashan, Iran
| | - Banafshe Abadi
- Brain Cancer Research Core (BCRC), Universal Scientific Education and Research Network (USERN), Tehran, Iran
- Pharmaceutics Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran
| | - Rana Shafabakhsh
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Islamic Republic of Iran
| | - Hamed Mirzaei
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Islamic Republic of Iran.
| |
Collapse
|
8
|
Krigers A, Demetz M, Moser P, Kerschbaumer J, Brawanski KR, Fritsch H, Thomé C, Freyschlag CF. Impact of GAP-43, Cx43 and actin expression on the outcome and overall survival in diffuse and anaplastic gliomas. Sci Rep 2023; 13:2024. [PMID: 36739296 PMCID: PMC9899260 DOI: 10.1038/s41598-023-29298-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Accepted: 02/02/2023] [Indexed: 02/05/2023] Open
Abstract
Distant intercellular communication in gliomas is based on the expansion of tumor microtubuli, where actin forms cytoskeleton and GAP-43 mediates the axonal conus growth. We aimed to investigate the impact of GAP-43 and actin expression on overall survival (OS) as well as crucial prognostic factors. FFPE tissue of adult patients with diffuse and anaplastic gliomas, who underwent first surgery in our center between 2010 and 2019, were selected. GAP-43, Cx43 and actin expression was analyzed using immunohistochemistry and semi-quantitatively ranked. 118 patients with a median age of 46 years (IqR: 35-57) were evaluated. 48 (41%) presented with a diffuse glioma and 70 (59%) revealed anaplasia. Tumors with higher expression of GAP-43 (p = 0.024, HR = 1.71/rank) and actin (p < 0.001, HR = 2.28/rank) showed significantly reduced OS. IDH1 wildtype glioma demonstrated significantly more expression of all proteins: GAP-43 (p = 0.009), Cx43 (p = 0.003) and actin (p < 0.001). The same was confirmed for anaplasia (GAP-43 p = 0.028, actin p = 0.029), higher proliferation rate (GAP-43 p = 0.016, actin p = 0.038), contrast-enhancement in MRI (GAP-43 p = 0.023, actin p = 0.037) and age (GAP-43 p = 0.004, actin p < 0.001; Cx43 n.s. in all groups). The intercellular distant communication network in diffuse and anaplastic gliomas formed by actin and GAP-43 is associated with a negative impact on overall survival and with unfavorable prognostic features. Cx43 did not show relevant impact on OS.
Collapse
Affiliation(s)
- Aleksandrs Krigers
- Department of Neurosurgery, Medical University of Innsbruck, Anichstrasse 35, 6020, Innsbruck, Austria
| | - Matthias Demetz
- Department of Neurosurgery, Medical University of Innsbruck, Anichstrasse 35, 6020, Innsbruck, Austria
| | - Patrizia Moser
- Department of Neuropathology, University Hospital of Innsbruck, Tirol Kliniken, Austria
| | - Johannes Kerschbaumer
- Department of Neurosurgery, Medical University of Innsbruck, Anichstrasse 35, 6020, Innsbruck, Austria
| | - Konstantin R Brawanski
- Department of Neurosurgery, Medical University of Innsbruck, Anichstrasse 35, 6020, Innsbruck, Austria
| | - Helga Fritsch
- Department of Anatomy, Histology and Embryology, Medical University of Innsbruck, Innsbruck, Austria
| | - Claudius Thomé
- Department of Neurosurgery, Medical University of Innsbruck, Anichstrasse 35, 6020, Innsbruck, Austria
| | - Christian F Freyschlag
- Department of Neurosurgery, Medical University of Innsbruck, Anichstrasse 35, 6020, Innsbruck, Austria.
| |
Collapse
|
9
|
Krigers A, Moser P, Fritsch H, Demetz M, Kerschbaumer J, Brawanski KR, Thomé C, Freyschlag CF. The relationship between connexin-43 expression and Ki67 in non-glial central nervous system tumors. Int J Biol Markers 2023; 38:46-52. [PMID: 36726335 DOI: 10.1177/03936155221143138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
BACKGROUND Advanced intercellular communication is a known oncogenic factor. In the central nervous system, Connexin-43 (Cx43) forms this junctional networking. Moreover, it correlates with the proliferation rate, and thus behavior, of gliomas. We assessed the expression of Cx43 and its relationship to Ki67 in other common central nervous system tumors. METHODS The expression of Cx43 and Ki67 were assessed in formalin-fixed paraffin embedded samples of human brain metastases, meningiomas, and neurinomas using immunohistochemistry. Neurinomas and meningiomas were jointly evaluated due to similar non-malignant behavior. RESULTS A total of 14 metastases of different extracerebral carcinomas, 6 meningiomas, and 10 neurinomas were evaluated. Five (36%) metastases and 5 (31%) meningiomas/neurinomas showed minor expression, whereas 6 (43%) metastases and 2 (13%) meningiomas/neurinomas showed no Cx43 expression at all. In 3 (21%) metastases and 9 (56%) meningiomas/neurinomas, moderate or strong expression of Cx43 was identified. The higher expression of Cx43 in meningiomas and neurinomas directly correlated with Ki67, r = 0.53 (P = 0.034). For metastases no significant correlation was found. Mitotic index in meningiomas/neurinomas correlated with Ki67 expression, r = 0.74 (P < 0.001), but did not show statistically significant correlation with Cx43 expression in these tumors. CONCLUSIONS The expression of Cx43 as a marker of cell-to-cell networking exposed a significant correlation with the Ki67-defined proliferation index in case of primary central nervous system neuroectodermal neoplasms. However, it does not seem to play a comparable role in metastases with extracerebral origin.
Collapse
Affiliation(s)
- Aleksandrs Krigers
- Department of Neurosurgery, 27280Medical University of Innsbruck, Innsbruck, Austria
| | - Patrizia Moser
- Department of Neuropathology, 31445University Hospital of Innsbruck, Innsbruck, Austria
| | - Helga Fritsch
- Department of Anatomy, Histology and Embryology, 31445Medical University of Innsbruck, Innsbruck, Austria
| | - Matthias Demetz
- Department of Neurosurgery, 27280Medical University of Innsbruck, Innsbruck, Austria
| | - Johannes Kerschbaumer
- Department of Neurosurgery, 27280Medical University of Innsbruck, Innsbruck, Austria
| | | | - Claudius Thomé
- Department of Neurosurgery, 27280Medical University of Innsbruck, Innsbruck, Austria
| | | |
Collapse
|
10
|
Ion Channels in Gliomas-From Molecular Basis to Treatment. Int J Mol Sci 2023; 24:ijms24032530. [PMID: 36768856 PMCID: PMC9916861 DOI: 10.3390/ijms24032530] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 01/11/2023] [Accepted: 01/17/2023] [Indexed: 01/31/2023] Open
Abstract
Ion channels provide the basis for the nervous system's intrinsic electrical activity. Neuronal excitability is a characteristic property of neurons and is critical for all functions of the nervous system. Glia cells fulfill essential supportive roles, but unlike neurons, they also retain the ability to divide. This can lead to uncontrolled growth and the formation of gliomas. Ion channels are involved in the unique biology of gliomas pertaining to peritumoral pathology and seizures, diffuse invasion, and treatment resistance. The emerging picture shows ion channels in the brain at the crossroads of neurophysiology and fundamental pathophysiological processes of specific cancer behaviors as reflected by uncontrolled proliferation, infiltration, resistance to apoptosis, metabolism, and angiogenesis. Ion channels are highly druggable, making them an enticing therapeutic target. Targeting ion channels in difficult-to-treat brain tumors such as gliomas requires an understanding of their extremely heterogenous tumor microenvironment and highly diverse molecular profiles, both representing major causes of recurrence and treatment resistance. In this review, we survey the current knowledge on ion channels with oncogenic behavior within the heterogeneous group of gliomas, review ion channel gene expression as genomic biomarkers for glioma prognosis and provide an update on therapeutic perspectives for repurposed and novel ion channel inhibitors and electrotherapy.
Collapse
|
11
|
Hosseindoost S, Mousavi SM, Dehpour AR, Javadi SA, Arjmand B, Fallah A, Hadjighassem M. β2-Adrenergic receptor agonist enhances the bystander effect of HSV-TK/GCV gene therapy in glioblastoma multiforme via upregulation of connexin 43 expression. Mol Ther Oncolytics 2022; 26:76-87. [PMID: 35795095 PMCID: PMC9233183 DOI: 10.1016/j.omto.2022.05.010] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Accepted: 05/27/2022] [Indexed: 12/03/2022] Open
Abstract
Glioblastoma multiforme (GBM) is the most invasive form of primary brain astrocytoma. Gene therapy using the herpes simplex virus thymidine kinase/ganciclovir (HSV-TK/GCV) is a new strategy for GBM treatment. As the connexin 43 (Cx43) levels are downregulated in GBM cells, it seems that the upregulation of Cx43 could improve the efficacy of the gene therapy. This study aims to evaluate the effect of clenbuterol hydrochloride (Cln) as a β2-adrenergic receptor agonist on HSV-TK/GCV gene therapy efficacy in human GBM cells using olfactory ensheathing cells (OECs) as vectors. The lentivirus containing the thymidine kinase gene was transduced to OECs and the effective dose of GCV on cells was measured by MTT assay. We found that Cln upregulated Cx43 expression in human GBM cells and OECs and promoted the cytotoxic effect of GCV on the co-culture cells. Western blot results showed that Cln increased the cleaved caspase-3 expression and the Bax/Bcl2 ratio in the co-culture of GBM cells and OEC-TK. Also, the flow cytometry results revealed that Cln increased apoptosis in the co-culture of GBM cells and OEC-TK cells. This study showed that Cln via upregulation of Cx43 expression could enhance the bystander effect of HSVTK-GCV gene therapy in human GBM cells.
Collapse
Affiliation(s)
- Saereh Hosseindoost
- Pain Research Center, Neuroscience Institute, Tehran University of Medical Sciences, Tehran, Iran
- Department of Neuroscience and Addiction Studies, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Italia St, Tehran, Iran
| | - Seyed Mojtaba Mousavi
- Department of Neuroscience and Addiction Studies, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Italia St, Tehran, Iran
| | - Ahmad Reza Dehpour
- Department of Pharmacology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
- Experimental Medicine Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Seyed Amirhossein Javadi
- Brain and Spinal Cord Injury Research Center, Neuroscience Institute, Tehran University of Medical Sciences, Keshavarz Blvd, Dr. Gharib St, Tehran, Iran
- Neurosurgery Department, Imam Khomeini Hospital Complex, TUMS, Tehran, Iran
| | - Babak Arjmand
- Cell Therapy and Regenerative Medicine Research Center, Endocrinology and Metabolism Molecular-Cellular Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
- Metabolomics and Genomics Research Center, Endocrinology and Metabolism Molecular-Cellular Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Ali Fallah
- Systems and Synthetic Biology Group, Mede Bioeconomy Company, Tehran, Iran
- Space Medicine B.V., Rotterdam, the Netherlands
| | - Mahmoudreza Hadjighassem
- Department of Neuroscience and Addiction Studies, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Italia St, Tehran, Iran
- Brain and Spinal Cord Injury Research Center, Neuroscience Institute, Tehran University of Medical Sciences, Keshavarz Blvd, Dr. Gharib St, Tehran, Iran
| |
Collapse
|
12
|
Wang X, Liang J, Sun H. The Network of Tumor Microtubes: An Improperly Reactivated Neural Cell Network With Stemness Feature for Resistance and Recurrence in Gliomas. Front Oncol 2022; 12:921975. [PMID: 35847909 PMCID: PMC9277150 DOI: 10.3389/fonc.2022.921975] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2022] [Accepted: 05/18/2022] [Indexed: 11/13/2022] Open
Abstract
Gliomas are known as an incurable brain tumor for the poor prognosis and robust recurrence. In recent years, a cellular subpopulation with tumor microtubes (TMs) was identified in brain tumors, which may provide a new angle to explain the invasion, resistance, recurrence, and heterogeneity of gliomas. Recently, it was demonstrated that the cell subpopulation also expresses neural stem cell markers and shares a lot of features with both immature neurons and cancer stem cells and may be seen as an improperly reactivated neural cell network with a stemness feature at later time points of life. TMs may also provide a new angle to understand the resistance and recurrence mechanisms of glioma stem cells. In this review, we innovatively focus on the common features between TMs and sprouting axons in morphology, formation, and function. Additionally, we summarized the recent progress in the resistance and recurrence mechanisms of gliomas with TMs and explained the incurability and heterogeneity in gliomas with TMs. Moreover, we discussed the recently discovered overlap between cancer stem cells and TM-positive glioma cells, which may contribute to the understanding of resistant glioma cell subpopulation and the exploration of the new potential therapeutic target for gliomas.
Collapse
Affiliation(s)
- Xinyue Wang
- Clinical Biobank Center, Microbiome Medicine Center, Department of Laboratory Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, China.,Neurosurgery Center, The National Key Clinical Specialty, The Engineering Technology Research Center of Education Ministry of China on Diagnosis and Treatment of Cerebrovascular Disease, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, The Neurosurgery Institute of Guangdong Province, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Jianhao Liang
- Neurosurgery Center, The National Key Clinical Specialty, The Engineering Technology Research Center of Education Ministry of China on Diagnosis and Treatment of Cerebrovascular Disease, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, The Neurosurgery Institute of Guangdong Province, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Haitao Sun
- Clinical Biobank Center, Microbiome Medicine Center, Department of Laboratory Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, China.,Neurosurgery Center, The National Key Clinical Specialty, The Engineering Technology Research Center of Education Ministry of China on Diagnosis and Treatment of Cerebrovascular Disease, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, The Neurosurgery Institute of Guangdong Province, Zhujiang Hospital, Southern Medical University, Guangzhou, China.,Key Laboratory of Mental Health of the Ministry of Education, Guangdong-Hong Kong-Macao Greater Bay Area Center for Brain Science and Brain-Inspired Intelligence, Southern Medical University, Guangzhou, China
| |
Collapse
|
13
|
Bielecka-Wajdman AM, Ludyga T, Smyk D, Smyk W, Mularska M, Świderek P, Majewski W, Mullins CS, Linnebacher M, Obuchowicz E. Glucose Influences the Response of Glioblastoma Cells to Temozolomide and Dexamethasone. Cancer Control 2022; 29:10732748221075468. [PMID: 35225010 PMCID: PMC8891890 DOI: 10.1177/10732748221075468] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Objective Current research indicates that weakness of glucose metabolism plays an important role in silencing of invasiveness and growth of hypoxic tumors such as GBM. Moreover, there are indications that DXM, frequently used in treatment, may support GBM energy metabolism and provoke its recurrence. Methods We carried out in vitro experiments on the commercial T98G cell line and two primary GBM lines (HROG02, HROG17) treated with TMZ and/or DXM in physiological oxygen conditions for GBM (2.5% oxygen) and for comparison, in standard laboratory conditions (20% oxygen). The influence of different glucose levels on selected malignancy features of GBM cells-cellular viability and division, dynamic of cell culture changes, colony formation and concentration of InsR have been elevated. Results Under 2.5% oxygen and high glucose concentration, an attenuated cytotoxic effect of TMZ and intensification of malignancy features in all glioblastoma cell lines exposed to DXM was seen. Furthermore, preliminary retrospective analysis to assess the correlation between serum glucose levels and Ki-67 expression in surgical specimens derived from patients with GBM (IV) treated with radio-chemotherapy and prophylactic DXM therapy was performed. Conclusion The data suggest a link between the in vitro study results and clinical data. High glucose can influence on GBM progression through the promotion of the following parameters: cell viability, dispersal, InsR expression and cell proliferation (Ki-67). However, this problem needs more studies and explain the mechanism of action studied drugs.
Collapse
Affiliation(s)
- Anna M Bielecka-Wajdman
- Department of Pharmacology, School of Medicine in Katowice, Medical University of Silesia, Katowice, Poland
- Anna Bielecka-Wajdman, Department of Pharmacology, Medical University of Silesia, Medyków 18, Katowice 40-055, Poland.
| | - Tomasz Ludyga
- Department of Pharmacology, School of Medicine in Katowice, Medical University of Silesia, Katowice, Poland
| | - Daria Smyk
- Student Research Circle at the Department of Pharmacology, School of Medicine in Katowice, Medical University of Silesia, Katowice, Poland
| | - Wojciech Smyk
- Student Research Circle at the Department of Pharmacology, School of Medicine in Katowice, Medical University of Silesia, Katowice, Poland
| | - Magdalena Mularska
- Student Research Circle at the Department of Pharmacology, School of Medicine in Katowice, Medical University of Silesia, Katowice, Poland
| | - Patrycja Świderek
- Student Research Circle at the Department of Pharmacology, School of Medicine in Katowice, Medical University of Silesia, Katowice, Poland
| | - Wojciech Majewski
- Department of Radiotherapy, Maria Sklodowska-Curie Institute Oncology Center, Branch in Gliwice, Gliwice, Poland
| | | | - Michael Linnebacher
- Department of General Surgery, Molecular Oncology and Immunotherapy, Rostock University Medical Center, Rostock, Germany
| | - Ewa Obuchowicz
- Department of Pharmacology, School of Medicine in Katowice, Medical University of Silesia, Katowice, Poland
| |
Collapse
|
14
|
McCutcheon S, Spray DC. Glioblastoma-Astrocyte Connexin 43 Gap Junctions Promote Tumor Invasion. Mol Cancer Res 2022; 20:319-331. [PMID: 34654721 PMCID: PMC8816813 DOI: 10.1158/1541-7786.mcr-21-0199] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Revised: 09/07/2021] [Accepted: 10/11/2021] [Indexed: 11/16/2022]
Abstract
Glioblastoma multiforme (GBM), classified as World Health Organization grade IV astrocytoma, is the deadliest adult cancer of the central nervous system. An important contributing factor to poor survival rates in GBM is extensive invasion, which decreases the efficacy of resection and subsequent adjuvant therapies. These treatments could be markedly improved with increased resolution of the genetic and molecular initiators and effectors of invasion. Connexin 43 (Cx43) is the principal astrocytic gap junction (GJ) protein. Despite the heterogeneity of GBM, a subpopulation of cells in almost all GBM tumors express Cx43. Functional GJs between GBM cells and astrocytes at the tumor edge are of critical interest for understanding invasion. In this study, we find that both in vitro and in ex vivo slice cultures, GBM is substantially less invasive when placed in a Cx43-deficient astrocyte environment. Furthermore, when Cx43 is deleted in GBM, the invasive phenotype is recovered. These data strongly suggest that there are opposing roles for Cx43 in GBM migration. We find that Cx43 is localized to the tumor edge in our ex vivo model, suggesting that GBM-astrocyte GJ communication at the tumor border is a driving force for invasion. Finally, we find that by a Cx43-dependent mechanism, but likely not direct channel-mediated diffusion, miRNAs associated with cell-matrix adhesion are transferred from GBM to astrocytes and miR-19b promotes invasion, revealing a role for post-transcriptional manipulation of astrocytes in fostering an invasion-permissive peritumoral niche. IMPLICATIONS: Cx43-mediated communication, specifically miRNA transfer, profoundly impacts glioblastoma invasion and may enable further therapeutic insight.
Collapse
Affiliation(s)
- Sean McCutcheon
- Dominick P. Purpura Department of Neuroscience, Albert Einstein College of Medicine, Bronx, New York.
| | - David C Spray
- Dominick P. Purpura Department of Neuroscience, Albert Einstein College of Medicine, Bronx, New York
- Department of Medicine (Cardiology), Albert Einstein College of Medicine, Bronx, New York
| |
Collapse
|
15
|
Connexin 43 confers chemoresistance through activating PI3K. Oncogenesis 2022; 11:2. [PMID: 35022385 PMCID: PMC8755794 DOI: 10.1038/s41389-022-00378-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Revised: 12/08/2021] [Accepted: 12/30/2021] [Indexed: 12/13/2022] Open
Abstract
Circumventing chemoresistance is crucial for effectively treating cancer including glioblastoma, a lethal brain cancer. The gap junction protein connexin 43 (Cx43) renders glioblastoma resistant to chemotherapy; however, targeting Cx43 is difficult because mechanisms underlying Cx43-mediated chemoresistance remain elusive. Here we report that Cx43, but not other connexins, is highly expressed in a subpopulation of glioblastoma and Cx43 mRNA levels strongly correlate with poor prognosis and chemoresistance in this population, making Cx43 the prime therapeutic target among all connexins. Depleting Cx43 or treating cells with αCT1–a Cx43 peptide inhibitor that sensitizes glioblastoma to the chemotherapy temozolomide–inactivates phosphatidylinositol-3 kinase (PI3K), whereas overexpression of Cx43 activates this signaling. Moreover, αCT1-induced chemo-sensitization is counteracted by a PI3K active mutant. Further research reveals that αCT1 inactivates PI3K without blocking the release of PI3K-activating molecules from membrane channels and that Cx43 selectively binds to the PI3K catalytic subunit β (PIK3CB, also called PI3Kβ or p110β), suggesting that Cx43 activates PIK3CB/p110β independent of its channel functions. To explore the therapeutic potential of simultaneously targeting Cx43 and PIK3CB/p110β, αCT1 is combined with TGX-221 or GSK2636771, two PIK3CB/p110β-selective inhibitors. These two different treatments synergistically inactivate PI3K and sensitize glioblastoma cells to temozolomide in vitro and in vivo. Our study has revealed novel mechanistic insights into Cx43/PI3K-mediated temozolomide resistance in glioblastoma and demonstrated that targeting Cx43 and PIK3CB/p110β together is an effective therapeutic approach for overcoming chemoresistance.
Collapse
|
16
|
Interaction of Glia Cells with Glioblastoma and Melanoma Cells under the Influence of Phytocannabinoids. Cells 2022; 11:cells11010147. [PMID: 35011711 PMCID: PMC8750637 DOI: 10.3390/cells11010147] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Revised: 12/10/2021] [Accepted: 12/31/2021] [Indexed: 01/27/2023] Open
Abstract
Brain tumor heterogeneity and progression are subject to complex interactions between tumor cells and their microenvironment. Glioblastoma and brain metastasis can contain 30–40% of tumor-associated macrophages, microglia, and astrocytes, affecting migration, proliferation, and apoptosis. Here, we analyzed interactions between glial cells and LN229 glioblastoma or A375 melanoma cells in the context of motility and cell–cell interactions in a 3D model. Furthermore, the effects of phytocannabinoids, cannabidiol (CBD), tetrahydrocannabidiol (THC), or their co-application were analyzed. Co-culture of tumor cells with glial cells had little effect on 3D spheroid formation, while treatment with cannabinoids led to significantly larger spheroids. The addition of astrocytes blocked cannabinoid-induced effects. None of the interventions affected cell death. Furthermore, glial cell-conditioned media led to a significant slowdown in collective, but not single-cell migration speed. Taken together, glial cells in glioblastoma and brain metastasis micromilieu impact the tumor spheroid formation, cell spreading, and motility. Since the size of spheroid remained unaffected in glial cell tumor co-cultures, phytocannabinoids increased the size of spheroids without any effects on migration. This aspect might be of relevance since phytocannabinoids are frequently used in tumor therapy for side effects.
Collapse
|
17
|
Connexin 43 and Sonic Hedgehog Pathway Interplay in Glioblastoma Cell Proliferation and Migration. BIOLOGY 2021; 10:biology10080767. [PMID: 34439999 PMCID: PMC8389699 DOI: 10.3390/biology10080767] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Revised: 08/06/2021] [Accepted: 08/06/2021] [Indexed: 12/13/2022]
Abstract
Simple Summary Glioblastoma is the product of accumulated genetic and epigenetic alteration where tumor cells support each other through cellular communication mechanisms and deregulated signalling processes. The autocrine and paracrine pathways between the intracellular and extracellular milieu is mediated by connexin 43, the main gap junction-forming protein driving glioblastoma progression. In this scenario, sonic hedgehog pathway, a key deregulated pathway involved in cell network signalling may affect connexin 43 expression, promoting glioblastoma pathobiology. In this study, we sought to explore how the modulation of the sonic hedgehog affects connexin 43 inducing glioblastoma hallmarks. To do this we evaluated biological effects of sonic hedgehog pathway modulation by purmorphamine and cyclopamine, a smoothened agonist and antagonist, respectively. We revealed that cell migration and proliferation are associated with connexin 43 expression upon sonic hedgehog modulation. Our study suggests that sonic hedgehog and connexin 43 axis may represent a potential therapeutic strategy for glioblastoma. Abstract Glioblastoma (GBM) represents the most common primary brain tumor within the adult population. Current therapeutic options are still limited by high rate of recurrences and signalling axes that promote GBM aggressiveness. The contribution of gap junctions (GJs) to tumor growth and progression has been proven by experimental evidence. Concomitantly, tumor microenvironment has received increasing interest as a critical process in dysregulation and homeostatic escape, finding a close link between molecular mechanisms involved in connexin 43 (CX43)-based intercellular communication and tumorigenesis. Moreover, evidence has come to suggest a crucial role of sonic hedgehog (SHH) signalling pathway in GBM proliferation, cell fate and differentiation. Herein, we used two human GBM cell lines, modulating SHH signalling and CX43-based intercellular communication in in vitro models using proliferation and migration assays. Our evidence suggests that modulation of the SHH effector smoothened (SMO), by using a known agonist (i.e., purmorphamine) and a known antagonist (i.e., cyclopamine), affects the CX43 expression levels and therefore the related functions. Moreover, SMO activation also increased cell proliferation and migration. Importantly, inhibition of CX43 channels was able to prevent SMO-induced effects. SHH pathway and CX43 interplay acts inducing tumorigenic program and supporting cell migration, likely representing druggable targets to develop new therapeutic strategies for GBM.
Collapse
|
18
|
The advanced development of Cx43 and GAP-43 mediated intercellular networking in IDH1 wildtype diffuse and anaplastic gliomas with lower mitotic rate. J Cancer Res Clin Oncol 2021; 147:3003-3009. [PMID: 34173871 DOI: 10.1007/s00432-021-03711-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2021] [Accepted: 06/23/2021] [Indexed: 10/21/2022]
Abstract
PURPOSE The biologic behavior and the therapeutic resistance of diffuse and anaplastic gliomas varies greatly. This may be explained by differences in cell-to-cell communication, determined by the Cx43-associated junctional activity and the microtubules-defined network, in which GAP-43 is the dominant structural component. We assessed the expression of these crucial communication proteins in samples of patients harboring WHO°II and III gliomas, graded according to the current 4th revised WHO classification. METHODS Tissue of adult patients with WHO°II and III gliomas, who underwent surgery between 2014 and 2018, were selected from our institutional biobank. GAP-43 and Cx43 expression was analyzed using IHC. Routine clinical and neuropathological findings were additionally retrieved from our institutional prospective database. RESULTS 43 (57%) males and 33 (43%) females with a median age of 47 (IqR: 35-61) years were selected. IDH1 wildtype tumors showed a significantly higher expression of Cx43 (p = 0.014) and a tendency for increased GAP-43 production. Advanced Cx43 expression significantly correlated with lower mitosis rate (p = 0.014): more in IDH1 wildtype (r = - 0.57, p = 0.003) than in mutated gliomas (r = - 0.37, p = 0.019). There was no difference in Cx43 or GAP-43 expression in relation to anaplastic phenotype, Gadolinum-contrasted enhancement (CE) on MRI and advanced EGFR or p53 expression. CONCLUSIONS Intercellular communication tends to be more relevant in slower proliferating, e.g. lower malignant tumors. They could have more time to establish this network, providing longitudinally acquired resistance against specific oncological therapy. This feature matches the unfavorable IDH1 wildtype status of glioma and supports the noted malignant behavior of these tumors in the upcoming 5th WHO classification of gliomas.
Collapse
|
19
|
Yang ZJ, Zhang LL, Bi QC, Gan LJ, Wei MJ, Hong T, Tan RJ, Lan XM, Liu LH, Han XJ, Jiang LP. Exosomal connexin 43 regulates the resistance of glioma cells to temozolomide. Oncol Rep 2021; 45:44. [PMID: 33649836 PMCID: PMC7934218 DOI: 10.3892/or.2021.7995] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Accepted: 01/25/2021] [Indexed: 12/21/2022] Open
Abstract
Glioblastoma is the most common and aggressive brain tumor and it is characterized by a high mortality rate. Temozolomide (TMZ) is an effective chemotherapy drug for glioblastoma, but the resistance to TMZ has come to represent a major clinical problem, and its underlying mechanism has yet to be elucidated. In the present study, the role of exosomal connexin 43 (Cx43) in the resistance of glioma cells to TMZ and cell migration was investigated. First, higher expression levels of Cx43 were detected in TMZ‑resistant U251 (U251r) cells compared with those in TMZ‑sensitive (U251s) cells. Exosomes from U251s or U251r cells (sExo and rExo, respectively) were isolated. It was found that the expression of Cx43 in rExo was notably higher compared with that in sExo, whereas treatment with rExo increased the expression of Cx43 in U251s cells. Additionally, exosomes stained with dioctadecyloxacarbocyanine (Dio) were used to visualized exosome uptake by glioma cells. It was observed that the uptake of Dio‑stained rExo in U251s cells was more prominent compared with that of Dio‑stained sExo, while 37,43Gap27, a gap junction mimetic peptide directed against Cx43, alleviated the rExo uptake by cells. Moreover, rExo increased the IC50 of U251s to TMZ, colony formation and Bcl‑2 expression, but decreased Bax and cleaved caspase‑3 expression in U251s cells. 37,43Gap27 efficiently inhibited these effects of rExo on U251s cells. Finally, the results of the wound healing and Transwell assays revealed that rExo significantly enhanced the migration of U251s cells, whereas 37,43Gap27 significantly attenuated rExo‑induced cell migration. Taken together, these results indicate the crucial role of exosomal Cx43 in chemotherapy resistance and migration of glioma cells, and suggest that Cx43 may hold promise as a therapeutic target for glioblastoma in the future.
Collapse
Affiliation(s)
- Zhang-Jian Yang
- Department of Pharmacology, School of Pharmaceutical Science, Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Le-Ling Zhang
- Department of Pharmacology, School of Pharmaceutical Science, Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Qiu-Chen Bi
- Department of Pharmacology, School of Pharmaceutical Science, Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Li-Jun Gan
- Department of Pharmacology, School of Pharmaceutical Science, Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Min-Jun Wei
- Department of Neurosurgery, First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Tao Hong
- Department of Neurosurgery, First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Ren-Jie Tan
- Department of Pharmacology, School of Pharmaceutical Science, Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Xue-Mei Lan
- Department of Pharmacology, School of Pharmaceutical Science, Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Li-Hua Liu
- Department of Pharmacology, School of Pharmaceutical Science, Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Xiao-Jian Han
- Key Laboratory of Drug Targets and Drug Screening of Jiangxi Province, Nanchang, Jiangxi 330006, P.R. China
| | - Li-Ping Jiang
- Department of Pharmacology, School of Pharmaceutical Science, Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| |
Collapse
|
20
|
Zhang S, Gong Y, Wang H, Li Z, Huang Y, Fu X, Xiang P, Fan T. AS602801 sensitizes glioma cells to temozolomide and vincristine by blocking gap junction communication between glioma cells and astrocytes. J Cell Mol Med 2021; 25:4062-4072. [PMID: 33609076 PMCID: PMC8051707 DOI: 10.1111/jcmm.16375] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Revised: 01/27/2021] [Accepted: 02/02/2021] [Indexed: 12/28/2022] Open
Abstract
Previous studies showed that the chemotherapeutic effect of temozolomide (TMZ) and vincristine (VCR) against glioma might be blunted by the co‐culture with astrocytes, and connexin‐43 (CX43) was thought to play a vital role in the communication between glioma cells and astrocytes. In this study, we aimed to investigate the combined chemotherapeutic effect of AS602801 and TMZ/ VCR in glioma cells both. Dye transfer assay was used to evaluate the gap junction activity between U251 cells and astrocytes. Western blot and immunohistochemistry were carried out to analyse the expression of p‐JNK, CX43 and CASP‐3 proteins treated under different conditions. AS602801 significantly suppressed the gap junction activity between U251 cells and astrocytes. The expression of p‐JNK and CX43 was remarkably inhibited by AS602801. TMZ/VCR‐induced apoptosis of glioma cells was effectively enhanced by AS602801 treatment. Accordingly, the inhibitory role of TMZ/VCR in the expression of p‐JNK, CX43 and CASP‐3 in glioma cells was notably restored by AS602801. Furthermore, in a glioma cell xenograft, AS602801 showed an apparent capability to enhance TMZ/VCR‐induced tumour cell apoptosis through altering the expression of p‐JNK, CX43 and CASP‐3. The findings of this study demonstrated that the co‐culture of glioma cells with astrocytes blunted the tumour killing effect of TMZ and VCR. AS602801 down‐regulated CX43 expression by inhibiting JNK. And AS602801 also sensitized glioma cells to TMZ/VCR by blocking the gap junction communication between glioma cells and astrocytes via down‐regulating CX43, indicating its potential role as a novel adjuvant chemotherapeutic agent in the treatment of glioma.
Collapse
Affiliation(s)
- Shuai Zhang
- Department of Neurosurgery, ChangSha Central Hospital, Changsha, China
| | - Yong Gong
- Department of Neurosurgery, ChangSha Central Hospital, Changsha, China
| | - Hongxin Wang
- Department of Neurosurgery, ChangSha Central Hospital, Changsha, China
| | - Zhongfan Li
- Department of Neurosurgery, ChangSha Central Hospital, Changsha, China
| | - Yunfeng Huang
- Department of Neurosurgery, ChangSha Central Hospital, Changsha, China
| | - Xing Fu
- Department of Neurosurgery, ChangSha Central Hospital, Changsha, China
| | - Peng Xiang
- Department of Neurosurgery, ChangSha Central Hospital, Changsha, China
| | - TianYu Fan
- Department of Neurosurgery, ChangSha Central Hospital, Changsha, China
| |
Collapse
|
21
|
Mesnil M, Defamie N, Naus C, Sarrouilhe D. Brain Disorders and Chemical Pollutants: A Gap Junction Link? Biomolecules 2020; 11:51. [PMID: 33396565 PMCID: PMC7824109 DOI: 10.3390/biom11010051] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Revised: 12/22/2020] [Accepted: 12/23/2020] [Indexed: 02/07/2023] Open
Abstract
The incidence of brain pathologies has increased during last decades. Better diagnosis (autism spectrum disorders) and longer life expectancy (Parkinson's disease, Alzheimer's disease) partly explain this increase, while emerging data suggest pollutant exposures as a possible but still underestimated cause of major brain disorders. Taking into account that the brain parenchyma is rich in gap junctions and that most pollutants inhibit their function; brain disorders might be the consequence of gap-junctional alterations due to long-term exposures to pollutants. In this article, this hypothesis is addressed through three complementary aspects: (1) the gap-junctional organization and connexin expression in brain parenchyma and their function; (2) the effect of major pollutants (pesticides, bisphenol A, phthalates, heavy metals, airborne particles, etc.) on gap-junctional and connexin functions; (3) a description of the major brain disorders categorized as neurodevelopmental (autism spectrum disorders, attention deficit hyperactivity disorders, epilepsy), neurobehavioral (migraines, major depressive disorders), neurodegenerative (Parkinson's and Alzheimer's diseases) and cancers (glioma), in which both connexin dysfunction and pollutant involvement have been described. Based on these different aspects, the possible involvement of pollutant-inhibited gap junctions in brain disorders is discussed for prenatal and postnatal exposures.
Collapse
Affiliation(s)
- Marc Mesnil
- Laboratoire STIM, ERL7003 CNRS-Université de Poitiers, 1 rue G. Bonnet–TSA 51 106, 86073 Poitiers, France; (M.M.); (N.D.)
| | - Norah Defamie
- Laboratoire STIM, ERL7003 CNRS-Université de Poitiers, 1 rue G. Bonnet–TSA 51 106, 86073 Poitiers, France; (M.M.); (N.D.)
| | - Christian Naus
- Faculty of Medicine, Department of Cellular & Physiological Sciences, Life Sciences Institute, University of British Columbia, 2350 Health Sciences Mall, Vancouver, BC V6T1Z3, Canada;
| | - Denis Sarrouilhe
- Laboratoire de Physiologie Humaine, Faculté de Médecine et Pharmacie, 6 rue de La Milétrie, bât D1, TSA 51115, 86073 Poitiers, France
| |
Collapse
|
22
|
Mulkearns-Hubert EE, Reizes O, Lathia JD. Connexins in Cancer: Jekyll or Hyde? Biomolecules 2020; 10:E1654. [PMID: 33321749 PMCID: PMC7764653 DOI: 10.3390/biom10121654] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Revised: 12/07/2020] [Accepted: 12/08/2020] [Indexed: 12/16/2022] Open
Abstract
The expression, localization, and function of connexins, the protein subunits that comprise gap junctions, are often altered in cancer. In addition to cell-cell coupling through gap junction channels, connexins also form hemichannels that allow communication between the cell and the extracellular space and perform non-junctional intracellular activities. Historically, connexins have been considered tumor suppressors; however, they can also serve tumor-promoting functions in some contexts. Here, we review the literature surrounding connexins in cancer cells in terms of specific connexin functions and propose that connexins function upstream of most, if not all, of the hallmarks of cancer. The development of advanced connexin targeting approaches remains an opportunity for the field to further interrogate the role of connexins in cancer phenotypes, particularly through the use of in vivo models. More specific modulators of connexin function will both help elucidate the functions of connexins in cancer and advance connexin-specific therapies in the clinic.
Collapse
Affiliation(s)
- Erin E. Mulkearns-Hubert
- Department of Cardiovascular and Metabolic Sciences, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA; (O.R.); (J.D.L.)
| | - Ofer Reizes
- Department of Cardiovascular and Metabolic Sciences, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA; (O.R.); (J.D.L.)
- Case Comprehensive Cancer Center, Case Western Reserve University, Cleveland, OH 44106, USA
- Department of Molecular Medicine, Cleveland Clinic Lerner College, Medicine of Case Western Reserve University, Cleveland, OH 44195, USA
| | - Justin D. Lathia
- Department of Cardiovascular and Metabolic Sciences, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA; (O.R.); (J.D.L.)
- Case Comprehensive Cancer Center, Case Western Reserve University, Cleveland, OH 44106, USA
- Department of Molecular Medicine, Cleveland Clinic Lerner College, Medicine of Case Western Reserve University, Cleveland, OH 44195, USA
- Rose Ella Burkhardt Brain Tumor and Neuro-Oncology Center, Cleveland Clinic, Cleveland, OH, 44195, USA
| |
Collapse
|
23
|
Tunneling Nanotubes: The Fuel of Tumor Progression? Trends Cancer 2020; 6:874-888. [DOI: 10.1016/j.trecan.2020.04.012] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Revised: 04/29/2020] [Accepted: 04/30/2020] [Indexed: 12/26/2022]
|
24
|
Hosseindoost S, Hashemizadeh S, Gharaylou Z, Dehpour AR, Javadi SAH, Arjmand B, Hadjighassem M. β2-Adrenergic Receptor Stimulation Upregulates Cx43 Expression on Glioblastoma Multiforme and Olfactory Ensheathing Cells. J Mol Neurosci 2020; 70:1451-1460. [PMID: 32506304 DOI: 10.1007/s12031-020-01542-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2020] [Accepted: 04/13/2020] [Indexed: 12/13/2022]
Abstract
Glioblastoma multiforme (GBM) is described as an invasive astrocytic tumor in adults. Despite current standard treatment approaches, the outcome of GBM remains unfavorable. The downregulation of connexin 43 (Cx43) expression is one of the molecular transformations in GBM cells. The Cx43 levels and subsequently gap junctional intercellular communication (GJIC) have an important role in the efficient transfer of cytotoxic drugs to whole tumor cells. As shown in our previous study, the stimulation of the β2-adrenergic receptor (β2-AR) leads to the modulation of Cx43 expression level in the GBM cell line. Here we further examine the effect of clenbuterol hydrochloride as a selective β2-AR agonist on the Cx43 expression in human GBM-derived astrocyte cells and human olfactory ensheathing cells (OECs) as a potent vector for future gene therapy. In this experiment, first we established a primary culture of astrocytes from GBM samples and verified the purity using immunocytofluorescent staining. Western blot analysis was performed to evaluate the Cx43 protein level. Our western blot findings reveal that clenbuterol hydrochloride upregulates the Cx43 protein level in both primary human astrocyte cells and human OECs. Conversely, ICI 118551 as a β2-AR antagonist inhibits these effects. Moreover, clenbuterol hydrochloride increases the Cx43 expression in primary human astrocyte cells and OECs co-culture systems, and ICI 118551 reverses these effects. To confirm the western blot results, immunocytofluorescent staining was performed to evaluate the β2-AR agonist effect on Cx43 expression. Our immunocytofluorescent results supported western blot analysis in primary human astrocyte cells and the OECs co-culture system. The results of this study suggest that the activation of β2-AR with regard to Cx43 protein levels enhancement in GBM cells and OECs might be a promising approach for GBM treatment in the future.
Collapse
Affiliation(s)
- Saereh Hosseindoost
- Department of Neuroscience and Addiction Studies, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Shiva Hashemizadeh
- Department of Neuroscience and Addiction Studies, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Zeinab Gharaylou
- Department of Neuroscience and Addiction Studies, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Ahmad Reza Dehpour
- Department of Pharmacology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
- Experimental Medicine Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Seyed Amir Hossein Javadi
- Brain and Spinal Cord Injury Research Center, Neuroscience Institute, Tehran University of Medical Sciences, Tehran, Iran
- Neurosurgery department, Imam Khomeini hospital complex, TUMS, Tehran, Iran
| | - Babak Arjmand
- Cell Therapy and Regenerative Medicine Research Center, Endocrinology and Metabolism Molecular- Cellular Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
- Metabolomics and Genomics Research Center, Endocrinology and Metabolism Molecular-Cellular Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Mahmoudreza Hadjighassem
- Department of Neuroscience and Addiction Studies, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran.
- Brain and Spinal Cord Injury Research Center, Neuroscience Institute, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
25
|
Fumagalli A, Heuninck J, Pizzoccaro A, Moutin E, Koenen J, Séveno M, Durroux T, Junier MP, Schlecht-Louf G, Bachelerie F, Schütz D, Stumm R, Smit MJ, Guérineau NC, Chaumont-Dubel S, Marin P. The atypical chemokine receptor 3 interacts with Connexin 43 inhibiting astrocytic gap junctional intercellular communication. Nat Commun 2020; 11:4855. [PMID: 32978390 PMCID: PMC7519114 DOI: 10.1038/s41467-020-18634-y] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Accepted: 09/02/2020] [Indexed: 12/12/2022] Open
Abstract
The atypical chemokine receptor 3 (ACKR3) plays a pivotal role in directing the migration of various cellular populations and its over-expression in tumors promotes cell proliferation and invasiveness. The intracellular signaling pathways transducing ACKR3-dependent effects remain poorly characterized, an issue we addressed by identifying the interactome of ACKR3. Here, we report that recombinant ACKR3 expressed in HEK293T cells recruits the gap junction protein Connexin 43 (Cx43). Cx43 and ACKR3 are co-expressed in mouse brain astrocytes and human glioblastoma cells and form a complex in embryonic mouse brain. Functional in vitro studies show enhanced ACKR3 interaction with Cx43 upon ACKR3 agonist stimulation. Furthermore, ACKR3 activation promotes β-arrestin2- and dynamin-dependent Cx43 internalization to inhibit gap junctional intercellular communication in primary astrocytes. These results demonstrate a functional link between ACKR3 and gap junctions that might be of pathophysiological relevance. The atypical chemokine receptor 3 (ACKR3) is known to regulate cell migration, but the underlying mechanisms are unclear. Here, the authors show, from an interactome analysis, ACKR3 association with the gap junction protein Connexin 43 in vivo and ACKR3-mediated inhibition of astrocyte gap junctional communication.
Collapse
Affiliation(s)
- Amos Fumagalli
- Institut de Génomique Fonctionnelle, Université de Montpellier, CNRS, INSERM, Montpellier, France
| | - Joyce Heuninck
- Institut de Génomique Fonctionnelle, Université de Montpellier, CNRS, INSERM, Montpellier, France
| | - Anne Pizzoccaro
- Institut de Génomique Fonctionnelle, Université de Montpellier, CNRS, INSERM, Montpellier, France
| | - Enora Moutin
- Institut de Génomique Fonctionnelle, Université de Montpellier, CNRS, INSERM, Montpellier, France
| | - Joyce Koenen
- Université Paris-Saclay, Inserm, Inflammation, Microbiome and Immunosurveillance, 92140, Clamart, France.,Amsterdam Institute for Molecules Medicines and Systems, Division of Medicinal Chemistry, Faculty of Sciences, VU University Amsterdam, 1081, HV, Amsterdam, The Netherlands
| | - Martial Séveno
- Biocampus Montpellier, Université de Montpellier, CNRS, INSERM, Montpellier, France
| | - Thierry Durroux
- Institut de Génomique Fonctionnelle, Université de Montpellier, CNRS, INSERM, Montpellier, France
| | - Marie-Pierre Junier
- CNRS UMR8246, Inserm U1130, Neuroscience Paris Seine-IBPS, Sorbonne Universités, Paris, France
| | - Géraldine Schlecht-Louf
- Université Paris-Saclay, Inserm, Inflammation, Microbiome and Immunosurveillance, 92140, Clamart, France
| | - Francoise Bachelerie
- Université Paris-Saclay, Inserm, Inflammation, Microbiome and Immunosurveillance, 92140, Clamart, France
| | - Dagmar Schütz
- Institute of Pharmacology and Toxicology, Jena University Hospital, 07747, Jena, Germany
| | - Ralf Stumm
- Institute of Pharmacology and Toxicology, Jena University Hospital, 07747, Jena, Germany
| | - Martine J Smit
- Amsterdam Institute for Molecules Medicines and Systems, Division of Medicinal Chemistry, Faculty of Sciences, VU University Amsterdam, 1081, HV, Amsterdam, The Netherlands
| | - Nathalie C Guérineau
- Institut de Génomique Fonctionnelle, Université de Montpellier, CNRS, INSERM, Montpellier, France
| | - Séverine Chaumont-Dubel
- Institut de Génomique Fonctionnelle, Université de Montpellier, CNRS, INSERM, Montpellier, France
| | - Philippe Marin
- Institut de Génomique Fonctionnelle, Université de Montpellier, CNRS, INSERM, Montpellier, France.
| |
Collapse
|
26
|
Antagonistic Functions of Connexin 43 during the Development of Primary or Secondary Bone Tumors. Biomolecules 2020; 10:biom10091240. [PMID: 32859065 PMCID: PMC7565206 DOI: 10.3390/biom10091240] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Revised: 08/20/2020] [Accepted: 08/25/2020] [Indexed: 12/14/2022] Open
Abstract
Despite research and clinical advances during recent decades, bone cancers remain a leading cause of death worldwide. There is a low survival rate for patients with primary bone tumors such as osteosarcoma and Ewing’s sarcoma or secondary bone tumors such as bone metastases from prostate carcinoma. Gap junctions are specialized plasma membrane structures consisting of transmembrane channels that directly link the cytoplasm of adjacent cells, thereby enabling the direct exchange of small signaling molecules between cells. Discoveries of human genetic disorders due to genetic mutations in gap junction proteins (connexins) and experimental data using connexin knockout mice have provided significant evidence that gap-junctional intercellular communication (Gj) is crucial for tissue function. Thus, the dysfunction of Gj may be responsible for the development of some diseases. Gj is thus a main mechanism for tumor cells to communicate with other tumor cells and their surrounding microenvironment to survive and proliferate. If it is well accepted that a low level of connexin expression favors cancer cell proliferation and therefore primary tumor development, more evidence is suggesting that a high level of connexin expression stimulates various cellular process such as intravasation, extravasation, or migration of metastatic cells. If so, connexin expression would facilitate secondary tumor dissemination. This paper discusses evidence that suggests that connexin 43 plays an antagonistic role in the development of primary bone tumors as a tumor suppressor and secondary bone tumors as a tumor promoter.
Collapse
|
27
|
Khosla K, Naus CC, Sin WC. Cx43 in Neural Progenitors Promotes Glioma Invasion in a 3D Culture System. Int J Mol Sci 2020; 21:ijms21155216. [PMID: 32717889 PMCID: PMC7432065 DOI: 10.3390/ijms21155216] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Revised: 07/12/2020] [Accepted: 07/20/2020] [Indexed: 12/21/2022] Open
Abstract
The environment that envelops the cancer cells intimately affects the malignancy of human cancers. In the case of glioma, an aggressive adult brain cancer, its high rate of recurrence after total resection is responsible for a poor prognosis. Connexin43 (Cx43) is a gap junction protein with a prominent presence in glioma-associated normal brain cells, specifically in the reactive astrocytes. We previously demonstrated that elimination of Cx43 in these astrocytes reduces glioma invasion in a syngeneic mouse model. To further our investigation in human glioma cells, we developed a scaffold-free 3D platform that takes into account both the tumor and its interaction with the surrounding tissue. Using cell-tracking dyes and 3D laser scanning confocal microscopy, we now report that the elimination of Cx43 protein in neural progenitor spheroids reduced the invasiveness of human brain tumor-initiating cells, confirming our earlier observation in an intact mouse brain. By investigating the glioma invasion in a defined multicellular system with a tumor boundary that mimics the intact brain environment, our findings strengthen Cx43 as a candidate target for glioma control.
Collapse
|
28
|
Dominiak A, Chełstowska B, Olejarz W, Nowicka G. Communication in the Cancer Microenvironment as a Target for Therapeutic Interventions. Cancers (Basel) 2020; 12:E1232. [PMID: 32422889 PMCID: PMC7281160 DOI: 10.3390/cancers12051232] [Citation(s) in RCA: 67] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Revised: 05/05/2020] [Accepted: 05/11/2020] [Indexed: 02/06/2023] Open
Abstract
The tumor microenvironment (TME) is a complex system composed of multiple cells, such as non-cancerous fibroblasts, adipocytes, immune and vascular cells, as well as signal molecules and mediators. Tumor cells recruit and reprogram other cells to produce factors that maintain tumor growth. Communication between cancerous and surrounding cells is a two-way process and engages a diverse range of mechanisms that, in consequence, can lead to rapid proliferation, metastasis, and drug resistance, or can serve as a tumors-suppressor, e.g., through tumor-immune cell interaction. Cross-talk within the cancer microenvironment can be direct by cell-to-cell contact via adhesion molecules, electrical coupling, and passage through gap junctions, or indirect through classical paracrine signaling by cytokines, growth factors, and extracellular vesicles. Therapeutic approaches for modulation of cell-cell communication may be a promising strategy to combat tumors. In particular, integrative approaches targeting tumor communication in combination with conventional chemotherapy seem reasonable. Currently, special attention is paid to suppressing the formation of open-ended channels as well as blocking exosome production or ablating their cargos. However, many aspects of cell-to-cell communication have yet to be clarified, and, in particular, more work is needed in regard to mechanisms of bidirectional signal transfer. Finally, it seems that some interactions in TEM can be not only cancer-specific, but also patient-specific, and their recognition would help to predict patient response to therapy.
Collapse
Affiliation(s)
- Agnieszka Dominiak
- Department of Biochemistry and Pharmacogenomics, Faculty of Pharmacy, Medical University of Warsaw, 02-097 Warsaw, Poland; (W.O.); (G.N.)
- Center for Preclinical Research, Medical University of Warsaw, 02-097 Warsaw, Poland
| | - Beata Chełstowska
- Department of Internal Medicine and Hematology, Laboratory of Hematology and Flow Cytometry, Military Institute of Medicine, 04-140 Warsaw, Poland;
| | - Wioletta Olejarz
- Department of Biochemistry and Pharmacogenomics, Faculty of Pharmacy, Medical University of Warsaw, 02-097 Warsaw, Poland; (W.O.); (G.N.)
- Center for Preclinical Research, Medical University of Warsaw, 02-097 Warsaw, Poland
| | - Grażyna Nowicka
- Department of Biochemistry and Pharmacogenomics, Faculty of Pharmacy, Medical University of Warsaw, 02-097 Warsaw, Poland; (W.O.); (G.N.)
- Center for Preclinical Research, Medical University of Warsaw, 02-097 Warsaw, Poland
| |
Collapse
|
29
|
Giaume C, Naus CC, Sáez JC, Leybaert L. Glial Connexins and Pannexins in the Healthy and Diseased Brain. Physiol Rev 2020; 101:93-145. [PMID: 32326824 DOI: 10.1152/physrev.00043.2018] [Citation(s) in RCA: 96] [Impact Index Per Article: 19.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Over the past several decades a large amount of data have established that glial cells, the main cell population in the brain, dynamically interact with neurons and thus impact their activity and survival. One typical feature of glia is their marked expression of several connexins, the membrane proteins forming intercellular gap junction channels and hemichannels. Pannexins, which have a tetraspan membrane topology as connexins, are also detected in glial cells. Here, we review the evidence that connexin and pannexin channels are actively involved in dynamic and metabolic neuroglial interactions in physiological as well as in pathological situations. These features of neuroglial interactions open the way to identify novel non-neuronal aspects that allow for a better understanding of behavior and information processing performed by neurons. This will also complement the "neurocentric" view by facilitating the development of glia-targeted therapeutic strategies in brain disease.
Collapse
Affiliation(s)
- Christian Giaume
- Collège de France, Center for Interdisciplinary Research in Biology (CIRB)/Centre National de la Recherche Scientifique, Unité Mixte de Recherche 7241/Institut National de la Santé et de la Recherche Médicale U1050, Paris, France; University Pierre et Marie Curie, Paris, France; MEMOLIFE Laboratory of Excellence and Paris Science Lettre Research University, Paris, France; Department of Cellular & Physiological Sciences, Life Sciences Institute, Faculty of Medicine, University of British Columbia, Vancouver, British Columbia, Canada; Departamento de Fisiología, Pontificia Universidad Católica de Chile, Santiago, Chile; Instituo de Neurociencias, Centro Interdisciplinario de Neurociencias, Universidad de Valparaíso, Valparaíso, Chile; Physiology Group, Department of Basic and Applied Medical Sciences, Faculty of Medicine and Health Sciences, Ghent University, Ghent, Belgium
| | - Christian C Naus
- Collège de France, Center for Interdisciplinary Research in Biology (CIRB)/Centre National de la Recherche Scientifique, Unité Mixte de Recherche 7241/Institut National de la Santé et de la Recherche Médicale U1050, Paris, France; University Pierre et Marie Curie, Paris, France; MEMOLIFE Laboratory of Excellence and Paris Science Lettre Research University, Paris, France; Department of Cellular & Physiological Sciences, Life Sciences Institute, Faculty of Medicine, University of British Columbia, Vancouver, British Columbia, Canada; Departamento de Fisiología, Pontificia Universidad Católica de Chile, Santiago, Chile; Instituo de Neurociencias, Centro Interdisciplinario de Neurociencias, Universidad de Valparaíso, Valparaíso, Chile; Physiology Group, Department of Basic and Applied Medical Sciences, Faculty of Medicine and Health Sciences, Ghent University, Ghent, Belgium
| | - Juan C Sáez
- Collège de France, Center for Interdisciplinary Research in Biology (CIRB)/Centre National de la Recherche Scientifique, Unité Mixte de Recherche 7241/Institut National de la Santé et de la Recherche Médicale U1050, Paris, France; University Pierre et Marie Curie, Paris, France; MEMOLIFE Laboratory of Excellence and Paris Science Lettre Research University, Paris, France; Department of Cellular & Physiological Sciences, Life Sciences Institute, Faculty of Medicine, University of British Columbia, Vancouver, British Columbia, Canada; Departamento de Fisiología, Pontificia Universidad Católica de Chile, Santiago, Chile; Instituo de Neurociencias, Centro Interdisciplinario de Neurociencias, Universidad de Valparaíso, Valparaíso, Chile; Physiology Group, Department of Basic and Applied Medical Sciences, Faculty of Medicine and Health Sciences, Ghent University, Ghent, Belgium
| | - Luc Leybaert
- Collège de France, Center for Interdisciplinary Research in Biology (CIRB)/Centre National de la Recherche Scientifique, Unité Mixte de Recherche 7241/Institut National de la Santé et de la Recherche Médicale U1050, Paris, France; University Pierre et Marie Curie, Paris, France; MEMOLIFE Laboratory of Excellence and Paris Science Lettre Research University, Paris, France; Department of Cellular & Physiological Sciences, Life Sciences Institute, Faculty of Medicine, University of British Columbia, Vancouver, British Columbia, Canada; Departamento de Fisiología, Pontificia Universidad Católica de Chile, Santiago, Chile; Instituo de Neurociencias, Centro Interdisciplinario de Neurociencias, Universidad de Valparaíso, Valparaíso, Chile; Physiology Group, Department of Basic and Applied Medical Sciences, Faculty of Medicine and Health Sciences, Ghent University, Ghent, Belgium
| |
Collapse
|
30
|
Sánchez OF, Rodríguez AV, Velasco-España JM, Murillo LC, Sutachan JJ, Albarracin SL. Role of Connexins 30, 36, and 43 in Brain Tumors, Neurodegenerative Diseases, and Neuroprotection. Cells 2020; 9:E846. [PMID: 32244528 PMCID: PMC7226843 DOI: 10.3390/cells9040846] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2019] [Revised: 02/15/2020] [Accepted: 02/24/2020] [Indexed: 02/07/2023] Open
Abstract
Gap junction (GJ) channels and their connexins (Cxs) are complex proteins that have essential functions in cell communication processes in the central nervous system (CNS). Neurons, astrocytes, oligodendrocytes, and microglial cells express an extraordinary repertory of Cxs that are important for cell to cell communication and diffusion of metabolites, ions, neurotransmitters, and gliotransmitters. GJs and Cxs not only contribute to the normal function of the CNS but also the pathological progress of several diseases, such as cancer and neurodegenerative diseases. Besides, they have important roles in mediating neuroprotection by internal or external molecules. However, regulation of Cx expression by epigenetic mechanisms has not been fully elucidated. In this review, we provide an overview of the known mechanisms that regulate the expression of the most abundant Cxs in the central nervous system, Cx30, Cx36, and Cx43, and their role in brain cancer, CNS disorders, and neuroprotection. Initially, we focus on describing the Cx gene structure and how this is regulated by epigenetic mechanisms. Then, the posttranslational modifications that mediate the activity and stability of Cxs are reviewed. Finally, the role of GJs and Cxs in glioblastoma, Alzheimer's, Parkinson's, and Huntington's diseases, and neuroprotection are analyzed with the aim of shedding light in the possibility of using Cx regulators as potential therapeutic molecules.
Collapse
Affiliation(s)
- Oscar F. Sánchez
- Department of Nutrition and Biochemistry, Pontificia Universidad Javeriana, 110911 Bogota, Colombia; (A.V.R.); (J.M.V.-E.); (L.C.M.); (J.-J.S.)
| | | | | | | | | | - Sonia-Luz Albarracin
- Department of Nutrition and Biochemistry, Pontificia Universidad Javeriana, 110911 Bogota, Colombia; (A.V.R.); (J.M.V.-E.); (L.C.M.); (J.-J.S.)
| |
Collapse
|
31
|
Epifantseva I, Xiao S, Baum RE, Kléber AG, Hong T, Shaw RM. An Alternatively Translated Connexin 43 Isoform, GJA1-11k, Localizes to the Nucleus and Can Inhibit Cell Cycle Progression. Biomolecules 2020; 10:biom10030473. [PMID: 32244859 PMCID: PMC7175147 DOI: 10.3390/biom10030473] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2020] [Revised: 03/10/2020] [Accepted: 03/15/2020] [Indexed: 12/14/2022] Open
Abstract
Connexin 43 (Cx43) is a gap junction protein that assembles at the cell border to form intercellular gap junction (GJ) channels which allow for cell-cell communication by facilitating the rapid transmission of ions and other small molecules between adjacent cells. Non-canonical roles of Cx43, and specifically its C-terminal domain, have been identified in the regulation of Cx43 trafficking, mitochondrial preconditioning, cell proliferation, and tumor formation, yet the mechanisms are still being explored. It was recently identified that up to six truncated isoforms of Cx43 are endogenously produced via alternative translation from internal start codons in addition to full length Cx43, all from the same mRNA produced by the gene GJA1. GJA1-11k, the 11kDa alternatively translated isoform of Cx43, does not have a known role in the formation of gap junction channels, and little is known about its function. Here, we report that over expressed GJA1-11k, unlike the other five truncated isoforms, preferentially localizes to the nucleus in HEK293FT cells and suppresses cell growth by limiting cell cycle progression from the G0/G1 phase to the S phase. Furthermore, these functions are independent of the channel-forming full-length Cx43 isoform. Understanding the apparently unique role of GJA1-11k and its generation in cell cycle regulation may uncover a new target for affecting cell growth in multiple disease models.
Collapse
Affiliation(s)
- Irina Epifantseva
- Smidt Heart Institute, Graduate Program in Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA; (I.E.); (S.X.); (R.E.B.); (T.H.)
| | - Shaohua Xiao
- Smidt Heart Institute, Graduate Program in Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA; (I.E.); (S.X.); (R.E.B.); (T.H.)
| | - Rachel E. Baum
- Smidt Heart Institute, Graduate Program in Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA; (I.E.); (S.X.); (R.E.B.); (T.H.)
- Nora Eccles Harrison Cardiovascular Research and Training Institute, University of Utah, Salt Lake City, UT 84112, USA
| | - André G. Kléber
- Department of Pathology, Beth Israel & Deaconess Medical Center, Harvard Medical School, Boston, MA 02115, USA;
| | - TingTing Hong
- Smidt Heart Institute, Graduate Program in Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA; (I.E.); (S.X.); (R.E.B.); (T.H.)
- Department of Medicine, University of California Los Angeles, Los Angeles, CA 90048, USA
| | - Robin M. Shaw
- Nora Eccles Harrison Cardiovascular Research and Training Institute, University of Utah, Salt Lake City, UT 84112, USA
- Correspondence: ; Tel.: +(801)-587-5845
| |
Collapse
|
32
|
Loss of Cx43 in Murine Sertoli Cells Leads to Altered Prepubertal Sertoli Cell Maturation and Impairment of the Mitosis-Meiosis Switch. Cells 2020; 9:cells9030676. [PMID: 32164318 PMCID: PMC7140672 DOI: 10.3390/cells9030676] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Revised: 03/04/2020] [Accepted: 03/05/2020] [Indexed: 12/12/2022] Open
Abstract
Male factor infertility is a problem in today’s society but many underlying causes are still unknown. The generation of a conditional Sertoli cell (SC)-specific connexin 43 (Cx43) knockout mouse line (SCCx43KO) has provided a translational model. Expression of the gap junction protein Cx43 between adjacent SCs as well as between SCs and germ cells (GCs) is known to be essential for the initiation and maintenance of spermatogenesis in different species and men. Adult SCCx43KO males show altered spermatogenesis and are infertile. Thus, the present study aims to identify molecular mechanisms leading to testicular alterations in prepubertal SCCx43KO mice. Transcriptome analysis of 8-, 10- and 12-day-old mice was performed by next-generation sequencing (NGS). Additionally, candidate genes were examined by qRT-PCR and immunohistochemistry. NGS revealed many significantly differentially expressed genes in the SCCx43KO mice. For example, GC-specific genes were mostly downregulated and found to be involved in meiosis and spermatogonial differentiation (e.g., Dmrtb1, Sohlh1). In contrast, SC-specific genes implicated in SC maturation and proliferation were mostly upregulated (e.g., Amh, Fshr). In conclusion, Cx43 in SCs appears to be required for normal progression of the first wave of spermatogenesis, especially for the mitosis-meiosis switch, and also for the regulation of prepubertal SC maturation.
Collapse
|
33
|
Kirichenko EY, Salah M M S, Goncharova ZA, Nikitin AG, Filippova SY, Todorov SS, Akimenko MA, Logvinov AK. Ultrastructural evidence for presenсe of gap junctions in rare case of pleomorphic xanthoastrocytoma. Ultrastruct Pathol 2020; 44:227-236. [PMID: 32148147 DOI: 10.1080/01913123.2020.1737609] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
The phenomenon of unstable expression of gap junction's proteins connexins remains a "visiting card" of astrocytic tumors with various degrees of malignancy. At the same time, it stays unclear what is detected by the positive expression of connexins in astrocytic tumors: gap junctions, hemi-channels, or connexin proteins in cytosol. In the present work, for the first time, we demonstrate an ultrastructural evidence of gap junctions in pleomorphic xanthoastrocytoma, a rare primary brain tumor, the intercellular characteristics of which are poorly studied and remain very discursive and controversial. The primary tumor mass was resected during craniotomy from a 57-old patient diagnosed with pleomorphic xanthoastrocytoma Grade II based on the histopathological analysis. The immunohistochemical study was conducted with primary antibodies: Neurofilament, Myelin basic protein, Glial fibrillary acidic protein, and Synaptophysin. For electron microscopic examination fragments of tumor tissue were fixed in a glutaraldehyde, postfixed in a 1% OsO4, dehydrated and embedded into resin. After the detailed clinical, histological, and immunohistochemical study we revealed some ultrastructural characteristics of the tumor, as well as the first evidence of direct intercellular connection between the tumor cells via gap junctions. Regularly arranged gap junctions connected the somas of xanthastrocytes with dark cytoplasm containing lipid drops. Besides the localization between the cell bodies, from one to several gap junctions were found between the branches of xanthoastrocytoma in tumor intercellular space in close proximity to tumor cell. Our results may indicate gap junctions as a possible structure for intercellular communication between pleomorphic xanthoastrocytoma cells.
Collapse
Affiliation(s)
| | | | | | - Aleksei G Nikitin
- Federal Scientific and Clinical Center for Specialized Types of Medical Care and Medical Technologies FMBA of Russia, Moscow, Russian Federation
| | | | | | | | | |
Collapse
|
34
|
Chepied A, Daoud-Omar Z, Meunier-Balandre AC, Laird DW, Mesnil M, Defamie N. Involvement of the Gap Junction Protein, Connexin43, in the Formation and Function of Invadopodia in the Human U251 Glioblastoma Cell Line. Cells 2020; 9:cells9010117. [PMID: 31947771 PMCID: PMC7017254 DOI: 10.3390/cells9010117] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2019] [Revised: 12/02/2019] [Accepted: 12/31/2019] [Indexed: 12/18/2022] Open
Abstract
The resistance of glioblastomas to treatments is mainly the consequence of their invasive capacities. Therefore, in order to better treat these tumors, it is important to understand the molecular mechanisms which are responsible for this behavior. Previous work suggested that gap junction proteins, the connexins, facilitate the aggressive nature of glioma cells. Here, we show that one of them—connexin43 (Cx43)—is implicated in the formation and function of invadopodia responsible for invasion capacity of U251 human glioblastoma cells. Immunofluorescent approaches—combined with confocal analyses—revealed that Cx43 was detected in all the formation stages of invadopodia exhibiting proteolytic activity. Clearly, Cx43 appeared to be localized in invadopodia at low cell density and less associated with the establishment of gap junctions. Accordingly, lower extracellular matrix degradation correlated with less mature invadopodia and MMP2 activity when Cx43 expression was decreased by shRNA strategies. Moreover, the kinetics of invadopodia formation could be dependent on Cx43 dynamic interactions with partners including Src and cortactin. Interestingly, it also appeared that invadopodia formation and MMP2 activity are dependent on Cx43 hemichannel activity. In conclusion, these results reveal that Cx43 might be involved in the formation and function of the invadopodia of U251 glioblastoma cells.
Collapse
Affiliation(s)
- Amandine Chepied
- Equipe 4CS, Laboratoire Signalisation et Transports Ioniques Membranaires (STIM), CNRS ERL 7003, Pôle Biologie Santé, University of Poitiers, 86073 Poitiers, France; (A.C.); (Z.D.-O.); (A.-C.M.-B.); (M.M.)
| | - Zeinaba Daoud-Omar
- Equipe 4CS, Laboratoire Signalisation et Transports Ioniques Membranaires (STIM), CNRS ERL 7003, Pôle Biologie Santé, University of Poitiers, 86073 Poitiers, France; (A.C.); (Z.D.-O.); (A.-C.M.-B.); (M.M.)
| | - Annie-Claire Meunier-Balandre
- Equipe 4CS, Laboratoire Signalisation et Transports Ioniques Membranaires (STIM), CNRS ERL 7003, Pôle Biologie Santé, University of Poitiers, 86073 Poitiers, France; (A.C.); (Z.D.-O.); (A.-C.M.-B.); (M.M.)
| | - Dale W. Laird
- Department of Anatomy and Cell Biology, Schulich School of Medicine and Dentistry, The University of Western Ontario, London, ON N6A 3K7, Canada;
| | - Marc Mesnil
- Equipe 4CS, Laboratoire Signalisation et Transports Ioniques Membranaires (STIM), CNRS ERL 7003, Pôle Biologie Santé, University of Poitiers, 86073 Poitiers, France; (A.C.); (Z.D.-O.); (A.-C.M.-B.); (M.M.)
| | - Norah Defamie
- Equipe 4CS, Laboratoire Signalisation et Transports Ioniques Membranaires (STIM), CNRS ERL 7003, Pôle Biologie Santé, University of Poitiers, 86073 Poitiers, France; (A.C.); (Z.D.-O.); (A.-C.M.-B.); (M.M.)
- Correspondence:
| |
Collapse
|
35
|
Li CH, Hao ML, Sun Y, Wang ZJ, Li JL. Ultrastructure of gap junction and Cx43 expression in gastric cancer tissues of the patients. Arch Med Sci 2020; 16:352-358. [PMID: 32190146 PMCID: PMC7069450 DOI: 10.5114/aoms.2020.92859] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/28/2017] [Accepted: 08/21/2017] [Indexed: 11/26/2022] Open
Abstract
INTRODUCTION Gap junctions are intercellular channels formed by connexin facilitating communication between cells by allowing transfer of ions and small signaling molecules. Connexin 43 (Cx43) is the most ubiquitous connexin in human tissues. Ample evidence suggests the role of gap junction and its connexins such as connexin 43 in human cancers including gastric cancer, which has an important place in the worldwide incidence of cancer and cancer-related deaths. Due to a number of contradictory studies and insufficient detailed examination in specific cancers, such as gastric cancer, more data on the role of gap junctions and their connexins such as Cx43 involved in gastric cancer remain necessary. MATERIAL AND METHODS Transmission electron microscopy, Western blotting and RT-PCR were used to show the ultrastructure damage of the gap junction in the gastric carcinoma tissue as well as the expression of Cx43 protein and mRNA, respectively. RESULTS Ultrastructure damage of the gap junction in gastric carcinoma tissue was shown while poorly differentiated tissue experienced greater damage. The expression of Cx43 protein and mRNA was higher in healthy gastric tissue than in carcinomatous gastric tissue (p < 0.05). There was higher expression of Cx43 protein and mRNA in high-medium differentiation than in poor differentiation (p < 0.05). Cx43 protein and mRNA expression is not statistically significant for different ages and sex (such as for > 56 and ≤ 56 years) (p > 0.05). CONCLUSIONS Ultrastructural changes of gap junctions with abnormal Cx43 expression are associated with occurrence and development of gastric cancer, which provides a new research direction for gastric cancer pathogenesis and targeted therapy.
Collapse
Affiliation(s)
- Chun-Hui Li
- Department of Pathology, The Affiliated Hospital of Chengde Medical College, Chengde, Hebei, China
| | - Mei-Ling Hao
- Department of Pathology, The Affiliated Hospital of Chengde Medical College, Chengde, Hebei, China
| | - Yu Sun
- Department of Pathology, The Affiliated Hospital of Chengde Medical College, Chengde, Hebei, China
| | - Zhu-Jun Wang
- Department of Pathology, The Affiliated Hospital of Chengde Medical College, Chengde, Hebei, China
| | - Jian-Ling Li
- Department of Pathology, The Affiliated Hospital of Chengde Medical College, Chengde, Hebei, China
| |
Collapse
|
36
|
Venkatesh VS, Lou E. Tunneling nanotubes: A bridge for heterogeneity in glioblastoma and a new therapeutic target? Cancer Rep (Hoboken) 2019; 2:e1185. [PMID: 32729189 PMCID: PMC7941610 DOI: 10.1002/cnr2.1185] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2018] [Revised: 03/10/2019] [Accepted: 04/10/2019] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND The concept of tumour heterogeneity is not novel but is fast becoming a paradigm by which to explain part of the highly recalcitrant nature of aggressive malignant tumours. Glioblastoma is a prime example of such difficult-to-treat, invasive, and incurable malignancies. With the advent of the post-genomic age and increased access to next-generation sequencing technologies, numerous publications have described the presence and extent of intratumoural and intertumoural heterogeneity present in glioblastoma. Moreover, there have been numerous reports more directly correlating the heterogeneity of glioblastoma to its refractory, reoccurring, and inevitably terminal nature. It is therefore prudent to consider the different forms of heterogeneity seen in glioblastoma and how to harness this understanding to better strategize novel therapeutic approaches. One of the most central questions of tumour heterogeneity is how these numerous different cell types (both tumour and non-tumour) in the tumour mass communicate. RECENT FINDINGS This chapter provides a brief review on the variable heterogeneity of glioblastoma, with a focus on cellular heterogeneity and on modalities of communication that can induce further molecular diversity within the complex and ever-evolving tumour microenvironment. We provide particular emphasis on the emerging role of actin-based cellular conduits called tunnelling nanotubes (TNTs) and tumour microtubes (TMs) and outline the perceived current problems in the field that need to be resolved before pharmacological targeting of TNTs can become a reality. CONCLUSIONS We conclude that TNTs and TMs provide a new and exciting avenue for the therapeutic targeting of glioblastoma and that numerous inroads have already made into TNT and TM biology. However, to target TMs and TNTs, several advances must be made before this aim can become a reality.
Collapse
Affiliation(s)
| | - Emil Lou
- Division of Hematology, Oncology and TransplantationUniversity of MinnesotaMinneapolisMinnesota
| |
Collapse
|
37
|
De Meulenaere V, Bonte E, Verhoeven J, Kalala Okito JP, Pieters L, Vral A, De Wever O, Leybaert L, Goethals I, Vanhove C, Descamps B, Deblaere K. Adjuvant therapeutic potential of tonabersat in the standard treatment of glioblastoma: A preclinical F98 glioblastoma rat model study. PLoS One 2019; 14:e0224130. [PMID: 31634381 PMCID: PMC6802836 DOI: 10.1371/journal.pone.0224130] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Accepted: 10/07/2019] [Indexed: 12/21/2022] Open
Abstract
Purpose Even with an optimal treatment protocol, the median survival of glioblastoma (GB) patients is only 12–15 months. Hence, there is need for novel effective therapies that improve survival outcomes. Recent evidence suggests an important role for connexin (Cx) proteins (especially Cx43) in the microenvironment of malignant glioma. Cx43-mediated gap junctional communication has been observed between tumor cells, between astrocytes and between tumor cells and astrocytes. Therefore, gap junction directed therapy using a pharmacological suppressor or modulator, such as tonabersat, could be a promising target in the treatment of GB. In this preclinical study, we evaluated the possible therapeutic potential of tonabersat in the F98 model. Procedures Female Fischer rats were inoculated with ± 25.000 F98 tumor cells in the right frontal lobe. Eight days post-inoculation contrast-enhanced T1-weighted (CE-T1w) magnetic resonance (MR) images were acquired to confirm tumor growth in the brain. After tumor confirmation, rats were randomized into a Control Group, a Connexin Modulation Group (CM), a Standard Medical Treatment Group (ST), and a Standard Medical Treatment with adjuvant Connexin Modulation Group (STCM). To evaluate therapy response, T2-weighted (T2w) and CE-T1w sequences were acquired at several time points. Tumor volume analysis was performed on CE-T1w images and statistical analysis was performed using a linear mixed model. Results Significant differences in estimated geometric mean tumor volumes were found between the ST Group and the Control Group and also between the STCM Group and the Control Group. In addition, significant differences in estimated geometric mean tumor volumes between the ST Group and the STCM Group were demonstrated. No significant differences in estimated geometric mean tumor volumes were found between the Control Group and the CM Group. Conclusion Our results demonstrate a therapeutic potential of tonabersat for the treatment of GB when used in combination with radiotherapy and temozolomide chemotherapy.
Collapse
Affiliation(s)
| | - Ellen Bonte
- Department of Radiology, Ghent University Hospital, Ghent, Belgium
| | - Jeroen Verhoeven
- Department of Pharmaceutical analysis, Ghent University, Ghent, Belgium
| | | | - Leen Pieters
- Department of Human Structure and Repair, Ghent University, Ghent, Belgium
| | - Anne Vral
- Department of Human Structure and Repair, Ghent University, Ghent, Belgium
| | - Olivier De Wever
- Department of Experimental Cancer Research, Ghent University, Ghent, Belgium
| | - Luc Leybaert
- Department of Basic Medical Sciences, Ghent University, Ghent, Belgium
| | - Ingeborg Goethals
- Department of Nuclear Medicine, Ghent University Hospital, Ghent, Belgium
| | | | | | - Karel Deblaere
- Department of Radiology, Ghent University Hospital, Ghent, Belgium
| |
Collapse
|
38
|
Wang J, Yang ZY, Guo YF, Kuang JY, Bian XW, Yu SC. Targeting different domains of gap junction protein to control malignant glioma. Neuro Oncol 2019; 20:885-896. [PMID: 29106645 DOI: 10.1093/neuonc/nox207] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
A rational treatment strategy for glioma, the most common primary central nervous system tumor, should focus on early invasive growth and resistance to current therapeutics. Connexin 43 (Cx43), a gap junction protein, plays important roles not only in the development of the central nervous system and but also in the progression of glioma. The different structural domains of Cx43, including extracellular loops, transmembrane domains, and an intracellular carboxyl terminal, have distinct functions in the invasion and proliferation of gliomas. Targeting these domains of Cx43, which is expressed in distinct patterns in the heterogeneous glioma cell population, can inhibit tumor cell invasion and new tumor formation. Thus, this review summarizes the structural characteristics of Cx43, the effects of regulating different Cx43 domains on the biological characteristics of glioma cells, intervention strategies targeting different domains of Cx43, and future research directions.
Collapse
Affiliation(s)
- Jun Wang
- Institute of Pathology and Southwest Cancer Center, Southwest Hospital, The Third Military Medical University, Chongqing, China.,Key Laboratory of Tumor Immunology and Pathology of the Ministry of Education, Chongqing, China
| | - Ze-Yu Yang
- Institute of Pathology and Southwest Cancer Center, Southwest Hospital, The Third Military Medical University, Chongqing, China.,Key Laboratory of Tumor Immunology and Pathology of the Ministry of Education, Chongqing, China
| | - Yu-Feng Guo
- Institute of Pathology and Southwest Cancer Center, Southwest Hospital, The Third Military Medical University, Chongqing, China.,Key Laboratory of Tumor Immunology and Pathology of the Ministry of Education, Chongqing, China
| | - Jing-Ya Kuang
- Institute of Pathology and Southwest Cancer Center, Southwest Hospital, The Third Military Medical University, Chongqing, China.,Key Laboratory of Tumor Immunology and Pathology of the Ministry of Education, Chongqing, China
| | - Xiu-Wu Bian
- Institute of Pathology and Southwest Cancer Center, Southwest Hospital, The Third Military Medical University, Chongqing, China.,Key Laboratory of Tumor Immunology and Pathology of the Ministry of Education, Chongqing, China
| | - Shi-Cang Yu
- Institute of Pathology and Southwest Cancer Center, Southwest Hospital, The Third Military Medical University, Chongqing, China.,Key Laboratory of Tumor Immunology and Pathology of the Ministry of Education, Chongqing, China
| |
Collapse
|
39
|
Direct Intercellular Communications and Cancer: A Snapshot of the Biological Roles of Connexins in Prostate Cancer. Cancers (Basel) 2019; 11:cancers11091370. [PMID: 31540089 PMCID: PMC6770088 DOI: 10.3390/cancers11091370] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2019] [Revised: 08/04/2019] [Accepted: 08/08/2019] [Indexed: 02/07/2023] Open
Abstract
Tissue homeostasis is the result of a complex intercellular network controlling the behavior of every cell for the survival of the whole organism. In mammalian tissues, cells do communicate via diverse long- and short-range communication mechanisms. While long-range communication involves hormones through blood circulation and neural transmission, short-range communication mechanisms include either paracrine diffusible factors or direct interactions (e.g., gap junctions, intercellular bridges and tunneling nanotubes) or a mixture of both (e.g., exosomes). Tumor growth represents an alteration of tissue homeostasis and could be the consequence of intercellular network disruption. In this network, direct short-range intercellular communication seems to be particularly involved. The first type of these intercellular communications thought to be involved in cancer progression were gap junctions and their protein subunits, the connexins. From these studies came the general assumption that global decreased connexin expression is correlated to tumor progression and increased cell proliferation. However, this assumption appeared more complicated by the fact that connexins may act also as pro-tumorigenic. Then, the concept that direct intercellular communication could be involved in cancer has been expanded to include new forms of intercellular communication such as tunneling nanotubes (TNTs) and exosomes. TNTs are intercellular bridges that allow free exchange of small molecules or even mitochondria depending on the presence of gap junctions. The majority of current research shows that such exchanges promote cancer progression by increasing resistance to hypoxia and chemotherapy. If exosomes are also involved in these mechanisms, more studies are needed to understand their precise role. Prostate cancer (PCa) represents a type of malignancy with one of the highest incidence rates worldwide. The precise role of these types of direct short-range intercellular communication has been considered in the progression of PCa. However, even though data are in favor of connexins playing a key role in PCa progression, a clear understanding of the role of TNTs and exosomes is needed to define their precise role in this malignancy. This review article summarizes the current view of the main mechanisms involved in short-range intercellular communication and their implications in cancer and delves into the biological, predictive and therapeutic role of connexins in PCa.
Collapse
|
40
|
Gap Junction Intercellular Communication in the Carcinogenesis Hallmarks: Is This a Phenomenon or Epiphenomenon? Cells 2019; 8:cells8080896. [PMID: 31416286 PMCID: PMC6721698 DOI: 10.3390/cells8080896] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2019] [Revised: 08/03/2019] [Accepted: 08/12/2019] [Indexed: 12/24/2022] Open
Abstract
If occupational tumors are excluded, cancer causes are largely unknown. Therefore, it appeared useful to work out a theory explaining the complexity of this disease. More than fifty years ago the first demonstration that cells communicate with each other by exchanging ions or small molecules through the participation of connexins (Cxs) forming Gap Junctions (GJs) occurred. Then the involvement of GJ Intercellular Communication (GJIC) in numerous physiological cellular functions, especially in proliferation control, was proven and accounts for the growing attention elicited in the field of carcinogenesis. The aim of the present paper is to verify and discuss the role of Cxs, GJs, and GJIC in cancer hallmarks, pointing on the different involved mechanisms in the context of the multi-step theory of carcinogenesis. Functional GJIC acts both as a tumor suppressor and as a tumor enhancer in the metastatic stage. On the contrary, lost or non-functional GJs allow the uncontrolled proliferation of stem/progenitor initiated cells. Thus, GJIC plays a key role in many biological phenomena or epiphenomena related to cancer. Depending on this complexity, GJIC can be considered a tumor suppressor in controlling cell proliferation or a cancer ally, with possible preventive or therapeutic implications in both cases.
Collapse
|
41
|
Cervera J, Pai VP, Levin M, Mafe S. From non-excitable single-cell to multicellular bioelectrical states supported by ion channels and gap junction proteins: Electrical potentials as distributed controllers. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2019; 149:39-53. [PMID: 31255702 DOI: 10.1016/j.pbiomolbio.2019.06.004] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2019] [Accepted: 06/26/2019] [Indexed: 12/18/2022]
Abstract
Endogenous bioelectric patterns within tissues are an important driver of morphogenesis and a tractable component of a number of disease states. Developing system-level understanding of the dynamics by which non-neural bioelectric circuits regulate complex downstream cascades is a key step towards both, an evolutionary understanding of ion channel genes, and novel strategies in regenerative medicine. An important capability gap is deriving rational modulation strategies targeting individual cells' bioelectric states to achieve global (tissue- or organ-level) outcomes. Here, we develop an ion channel-based model that describes multicellular states on the basis of spatio-temporal patterns of electrical potentials in aggregates of non-excitable cells. The model is of biological interest because modern techniques allow to associate bioelectrical signals with specific ion channel proteins in the cell membrane that are central to embryogenesis, regeneration, and tumorigenesis. As a complementary approach to the usual biochemical description, we have studied four biophysical questions: (i) how can single-cell bioelectrical states be established; (ii) how can a change in the cell potential caused by a transient perturbation of the cell state be maintained after the stimulus is gone (bioelectrical memory); (iii) how can a single-cell contribute to the control of multicellular ensembles based on the spatio-temporal pattern of electrical potentials; and (iv) how can oscillatory patterns arise from the single-cell bioelectrical dynamics. Experimentally, endogenous bioelectric gradients have emerged as instructive agents for morphogenetic processes. In this context, the simulations can guide new procedures that may allow a distributed control of the multicellular ensemble.
Collapse
Affiliation(s)
- Javier Cervera
- Dept. Termodinàmica, Universitat de València, E-46100, Burjassot, Spain.
| | - Vaibhav P Pai
- Dept. of Biology and Allen Discovery Center at Tufts University, Medford, MA, 02155-4243, USA
| | - Michael Levin
- Dept. of Biology and Allen Discovery Center at Tufts University, Medford, MA, 02155-4243, USA
| | - Salvador Mafe
- Dept. Termodinàmica, Universitat de València, E-46100, Burjassot, Spain
| |
Collapse
|
42
|
Inhibition of Gap Junctions Sensitizes Primary Glioblastoma Cells for Temozolomide. Cancers (Basel) 2019; 11:cancers11060858. [PMID: 31226836 PMCID: PMC6628126 DOI: 10.3390/cancers11060858] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2019] [Revised: 06/15/2019] [Accepted: 06/18/2019] [Indexed: 12/22/2022] Open
Abstract
Gap junctions have recently been shown to interconnect glioblastoma cells to a multicellular syncytial network, thereby allowing intercellular communication over long distances as well as enabling glioblastoma cells to form routes for brain microinvasion. Against this backdrop gap junction-targeted therapies might provide for an essential contribution to isolate cancer cells within the brain, thus increasing the tumor cells’ vulnerability to the standard chemotherapeutic agent temozolomide. By utilizing INI-0602—a novel gap junction inhibitor optimized for crossing the blood brain barrier—in an oncological setting, the present study was aimed at evaluating the potential of gap junction-targeted therapy on primary human glioblastoma cell populations. Pharmacological inhibition of gap junctions profoundly sensitized primary glioblastoma cells to temozolomide-mediated cell death. On the molecular level, gap junction inhibition was associated with elevated activity of the JNK signaling pathway. With the use of a novel gap junction inhibitor capable of crossing the blood–brain barrier—thus constituting an auspicious drug for clinical applicability—these results may constitute a promising new therapeutic strategy in the field of current translational glioblastoma research.
Collapse
|
43
|
Aftab Q, Mesnil M, Ojefua E, Poole A, Noordenbos J, Strale PO, Sitko C, Le C, Stoynov N, Foster LJ, Sin WC, Naus CC, Chen VC. Cx43-Associated Secretome and Interactome Reveal Synergistic Mechanisms for Glioma Migration and MMP3 Activation. Front Neurosci 2019; 13:143. [PMID: 30941001 PMCID: PMC6433981 DOI: 10.3389/fnins.2019.00143] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2017] [Accepted: 02/07/2019] [Indexed: 12/23/2022] Open
Abstract
Extracellular matrix (ECM) remodeling, degradation and glioma cell motility are critical aspects of glioblastoma multiforme (GBM). Despite being a rich source of potential biomarkers and targets for therapeutic advance, the dynamic changes occurring within the extracellular environment that are specific to GBM motility have yet to be fully resolved. The gap junction protein connexin43 (Cx43) increases glioma migration and invasion in a variety of in vitro and in vivo models. In this study, the upregulation of Cx43 in C6 glioma cells induced morphological changes and the secretion of proteins associated with cell motility. Demonstrating the selective engagement of ECM remodeling networks, secretome analysis revealed the near-binary increase of osteopontin and matrix metalloproteinase-3 (MMP3), with gelatinase and NFF-3 assays confirming the proteolytic activities. Informatic analysis of interactome and secretome downstream of Cx43 identifies networks of glioma motility that appear to be synergistically engaged. The data presented here implicate ECM remodeling and matrikine signals downstream of Cx43/MMP3/osteopontin and ARK1B10 inhibition as possible avenues to inhibit GBM.
Collapse
Affiliation(s)
- Qurratulain Aftab
- Department of Cellular and Physiological Sciences, Life Sciences Institute, University of British Columbia, Vancouver, BC, Canada
| | - Marc Mesnil
- Signalisation et Transports Ioniques Membranaires (STIM), CNRS ERL 7003, University of Poitiers, Poitiers, France
| | - Emmanuel Ojefua
- Department of Chemistry, Brandon University, Brandon, MB, Canada
| | - Alisha Poole
- Department of Chemistry, Brandon University, Brandon, MB, Canada
| | - Jenna Noordenbos
- Department of Chemistry, Brandon University, Brandon, MB, Canada
| | - Pierre-Olivier Strale
- Department of Cellular and Physiological Sciences, Life Sciences Institute, University of British Columbia, Vancouver, BC, Canada
| | - Chris Sitko
- Department of Chemistry, Brandon University, Brandon, MB, Canada
| | - Caitlin Le
- Department of Chemistry, Brandon University, Brandon, MB, Canada
| | - Nikolay Stoynov
- Department of Biochemistry and Molecular Biology, Centre for High-Throughput Biology, University of British Columbia, Vancouver, BC, Canada
| | - Leonard J Foster
- Department of Biochemistry and Molecular Biology, Centre for High-Throughput Biology, University of British Columbia, Vancouver, BC, Canada
| | - Wun-Chey Sin
- Signalisation et Transports Ioniques Membranaires (STIM), CNRS ERL 7003, University of Poitiers, Poitiers, France
| | - Christian C Naus
- Signalisation et Transports Ioniques Membranaires (STIM), CNRS ERL 7003, University of Poitiers, Poitiers, France
| | - Vincent C Chen
- Department of Chemistry, Brandon University, Brandon, MB, Canada
| |
Collapse
|
44
|
Xing L, Yang T, Cui S, Chen G. Connexin Hemichannels in Astrocytes: Role in CNS Disorders. Front Mol Neurosci 2019; 12:23. [PMID: 30787868 PMCID: PMC6372977 DOI: 10.3389/fnmol.2019.00023] [Citation(s) in RCA: 131] [Impact Index Per Article: 21.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2018] [Accepted: 01/21/2019] [Indexed: 12/19/2022] Open
Abstract
In the central nervous system (CNS), astrocytes form networks interconnected by gap junctions made from connexins of the subtypes Cx30 and Cx43. When unopposed by an adjoining hemichannel, astrocytic connexins can act as hemichannels to control the release of small molecules such as ATP and glutamate into the extracellular space. Accruing evidence indicates that astrocytic connexins are crucial for the coordination and maintenance of physiologic CNS activity. Here we provide an update on the role of astrocytic connexins in neurodegenerative disorders, glioma, and ischemia. In addition, we address the regulation of Cx43 in chronic pain.
Collapse
Affiliation(s)
- LingYan Xing
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neuroregeneration, Nantong University, Nantong, China
| | - Tuo Yang
- Department of Hand Surgery, China-Japan Union Hospital of Jilin University, Changchun, China
| | - ShuSen Cui
- Department of Hand Surgery, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Gang Chen
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neuroregeneration, Nantong University, Nantong, China.,Department of Anesthesiology, Affiliated Hospital of Nantong University, Nantong, China
| |
Collapse
|
45
|
Wu DP, Bai LR, Lv YF, Zhou Y, Ding CH, Yang SM, Zhang F, Huang JL. A novel role of Cx43-composed GJIC in PDT phototoxicity: an implication of Cx43 for the enhancement of PDT efficacy. Int J Biol Sci 2019; 15:598-609. [PMID: 30745846 PMCID: PMC6367575 DOI: 10.7150/ijbs.29582] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2018] [Accepted: 11/28/2018] [Indexed: 11/07/2022] Open
Abstract
In spite of initially promising responses, 5-year recurrence after photodynamic therapy (PDT) sustains high level and an increase in PDT effectiveness is needed. It has been demonstrated that gap junctional intercellular communication (GJIC) formed by Connexin (Cx)43 could improve the transfer of "death signal" between cells, thereby causing the enhancement of cytotoxicity of chemotherapeutics and suicide gene therapy. Nevertheless, whether Cx43-composed GJIC has an effect on PDT phototoxicity remains unknown. This study showed that Cx43-formed GJIC could improve PDT phototoxicity to tumor cells in vitro and in vivo. Specifically, Cx43-formed GJIC under the condition of high cellular density could improve PDT phototoxicity in Cx43-transfected HeLa cells and Cx43-expressing U87 glioma cells. This effect was remarkably inhibited when Cx43 was not expressed or Cx43-formed GJ channels were prohibited. Additionally, the presence of Cx43-mediated GJIC could decrease the mean RTV and tumor weights of xenografts after Photofrin-PDT. The improved PDT efficacy by Cx43-composed GJIC was correlated with stress signaling pathways mediated by ROS, calcium and lipid peroxide. The present study demonstrates the presence of Cx43-composed GJIC improves PDT phototoxicity and suggests that therapeutic strategies designed to upregulate the expression of Cx43 or enhance Cx43-mediated GJIC function may increase the sensitivity of malignant cell to PDT, leading to the increment of PDT efficacy. Oppositely, factors that retard Cx43 expression or prohibit the function of Cx43-mediated GJIC may cause insensitivity of malignant cells to PDT, leading to PDT resistance.
Collapse
Affiliation(s)
- Deng-Pan Wu
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Pharmacy School of Xuzhou Medical University, Xuzhou City, Jiangsu Province, 221004, P.R. China
- Department of Pharmacology, Pharmacy School of Xuzhou Medical University, 221004, Xuzhou City, Jiangsu Province, P.R. China
| | - Li-Ru Bai
- Department of Pharmacy,Wuxi Ninth Affiliated Hospital of Suzhou University, 214062, Wuxi City, Jiangsu Province, P.R. China
| | - Yan-Fang Lv
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Pharmacy School of Xuzhou Medical University, Xuzhou City, Jiangsu Province, 221004, P.R. China
| | - Yan Zhou
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Pharmacy School of Xuzhou Medical University, Xuzhou City, Jiangsu Province, 221004, P.R. China
| | - Chun-Hui Ding
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Pharmacy School of Xuzhou Medical University, Xuzhou City, Jiangsu Province, 221004, P.R. China
| | - Si-Man Yang
- Scientific research center of traditional Chinese medicine, Guangxi University of Chinese Medicine, Nanning, Guangxi 530200, China
| | - Fan Zhang
- Scientific research center of traditional Chinese medicine, Guangxi University of Chinese Medicine, Nanning, Guangxi 530200, China
| | - Jin-Lan Huang
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Pharmacy School of Xuzhou Medical University, Xuzhou City, Jiangsu Province, 221004, P.R. China
- Department of Pharmacology, Pharmacy School of Xuzhou Medical University, 221004, Xuzhou City, Jiangsu Province, P.R. China
| |
Collapse
|
46
|
Zhang X, Ding K, Wang J, Li X, Zhao P. Chemoresistance caused by the microenvironment of glioblastoma and the corresponding solutions. Biomed Pharmacother 2018; 109:39-46. [PMID: 30391707 DOI: 10.1016/j.biopha.2018.10.063] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2018] [Revised: 10/03/2018] [Accepted: 10/12/2018] [Indexed: 12/30/2022] Open
Abstract
Glioblastoma multiforme (GBM) is the most common and aggressive primary human brain tumor. Although comprehensive therapies combining radiotherapy and chemotherapy after surgery can prolong survival, the prognosis is still poor with a median survival of only 14.6 months. Chemoresistance is one of the major causes of relapse as well as poor survival in glioma patients. Therefore, novel strategies to overcome chemoresistance are desperately needed for improved treatment of human GBM. Recent studies have demonstrated that the tumor microenvironment plays a critical role in the chemoresistance of various tumor types, which makes it a suitable target in anti-cancer therapies, as well as a valuable biomarker for prognostic purposes. This review focuses on chemoresistance in GBM induced by stromal cells, including the endothelium of blood vessels, astrocytes, and myeloid cells, as well as non-cellular factors in the tumor microenvironment. Corresponding therapies are discussed, including progressive strategies involving 3-dimensional models integrating engineering as well as biological advances.
Collapse
Affiliation(s)
- Xin Zhang
- Department of Neurosurgery, Qilu Hospital of Shandong University, Institute of Brain and Brain-Inspired Science, Shandong University, PR China; Shandong Key Laboratory of Brain Function Remodeling, PR China
| | - Kaikai Ding
- Shandong Key Laboratory of Brain Function Remodeling, PR China; Department of Radiation Oncology, Qilu Hospital of Shandong University, Jinan, 250012, PR China
| | - Jian Wang
- Department of Neurosurgery, Qilu Hospital of Shandong University, Institute of Brain and Brain-Inspired Science, Shandong University, PR China; Shandong Key Laboratory of Brain Function Remodeling, PR China; Department of Biomedicine, University of Bergen, 5009, Bergen, Norway
| | - Xingang Li
- Department of Neurosurgery, Qilu Hospital of Shandong University, Institute of Brain and Brain-Inspired Science, Shandong University, PR China; Shandong Key Laboratory of Brain Function Remodeling, PR China
| | - Peng Zhao
- Department of Neurosurgery, Qilu Hospital of Shandong University, Institute of Brain and Brain-Inspired Science, Shandong University, PR China; Shandong Key Laboratory of Brain Function Remodeling, PR China.
| |
Collapse
|
47
|
Weil S, Osswald M, Solecki G, Grosch J, Jung E, Lemke D, Ratliff M, Hänggi D, Wick W, Winkler F. Tumor microtubes convey resistance to surgical lesions and chemotherapy in gliomas. Neuro Oncol 2018; 19:1316-1326. [PMID: 28419303 DOI: 10.1093/neuonc/nox070] [Citation(s) in RCA: 195] [Impact Index Per Article: 27.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Background Primary and adaptive resistance against chemo- and radiotherapy and local recurrence after surgery limit the benefits from these standard treatments in glioma patients. Recently we found that glioma cells can extend ultra-long membrane protrusions, "tumor microtubes" (TMs), for brain invasion, proliferation, and interconnection of single cells to a syncytium that is resistant to radiotherapy. We wondered whether TMs also convey resistance to the other 2 standard treatment modalities. Methods Patient-derived glioblastoma stemlike cell (GBMSC) lines were implanted under a cranial window in mice. Longitudinal in vivo two-photon laser scanning microscopy was used to follow tumor growth, including the fate of single glioma cells over months. Results After a cylindrical surgical lesion, GBMSCs increasingly extended TMs toward the lesion area, which contributed to the repopulation of this area over many weeks. In fact, an excessive "healing response" was observed in which tumor cell densities significantly exceeded those of unlesioned brain regions over time. Inhibition of TM formation and function by genetic targeting of growth associated protein-43 robustly suppressed this surgery-induced tumor growth reaction, in contrast to standard postsurgical anti-inflammatory treatment with dexamethasone. After one cycle of temozolomide chemotherapy, intra- and intertumoral heterogeneity of TM formation and interconnection was strongly associated with therapy response: when tumor cells were integrated in TM networks, they were more likely to resist chemotherapy. Conclusion TMs can contribute to the resistance against standard treatment modalities in gliomas. Specific inhibition of TMs is a promising approach to reduce local recurrence after surgery and lower resistance to chemotherapy.
Collapse
Affiliation(s)
- Sophie Weil
- Neurology Clinic and National Center for Tumor Diseases, University Hospital Heidelberg, Heidelberg, Germany; Clinical Cooperation Unit Neurooncology, German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), Heidelberg, Germany; Department of Neurosurgery, University Hospital Mannheim, University Heidelberg, Mannheim, Germany
| | - Matthias Osswald
- Neurology Clinic and National Center for Tumor Diseases, University Hospital Heidelberg, Heidelberg, Germany; Clinical Cooperation Unit Neurooncology, German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), Heidelberg, Germany; Department of Neurosurgery, University Hospital Mannheim, University Heidelberg, Mannheim, Germany
| | - Gergely Solecki
- Neurology Clinic and National Center for Tumor Diseases, University Hospital Heidelberg, Heidelberg, Germany; Clinical Cooperation Unit Neurooncology, German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), Heidelberg, Germany; Department of Neurosurgery, University Hospital Mannheim, University Heidelberg, Mannheim, Germany
| | - Julia Grosch
- Neurology Clinic and National Center for Tumor Diseases, University Hospital Heidelberg, Heidelberg, Germany; Clinical Cooperation Unit Neurooncology, German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), Heidelberg, Germany; Department of Neurosurgery, University Hospital Mannheim, University Heidelberg, Mannheim, Germany
| | - Erik Jung
- Neurology Clinic and National Center for Tumor Diseases, University Hospital Heidelberg, Heidelberg, Germany; Clinical Cooperation Unit Neurooncology, German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), Heidelberg, Germany; Department of Neurosurgery, University Hospital Mannheim, University Heidelberg, Mannheim, Germany
| | - Dieter Lemke
- Neurology Clinic and National Center for Tumor Diseases, University Hospital Heidelberg, Heidelberg, Germany; Clinical Cooperation Unit Neurooncology, German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), Heidelberg, Germany; Department of Neurosurgery, University Hospital Mannheim, University Heidelberg, Mannheim, Germany
| | - Miriam Ratliff
- Neurology Clinic and National Center for Tumor Diseases, University Hospital Heidelberg, Heidelberg, Germany; Clinical Cooperation Unit Neurooncology, German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), Heidelberg, Germany; Department of Neurosurgery, University Hospital Mannheim, University Heidelberg, Mannheim, Germany
| | - Daniel Hänggi
- Neurology Clinic and National Center for Tumor Diseases, University Hospital Heidelberg, Heidelberg, Germany; Clinical Cooperation Unit Neurooncology, German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), Heidelberg, Germany; Department of Neurosurgery, University Hospital Mannheim, University Heidelberg, Mannheim, Germany
| | - Wolfgang Wick
- Neurology Clinic and National Center for Tumor Diseases, University Hospital Heidelberg, Heidelberg, Germany; Clinical Cooperation Unit Neurooncology, German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), Heidelberg, Germany; Department of Neurosurgery, University Hospital Mannheim, University Heidelberg, Mannheim, Germany
| | - Frank Winkler
- Neurology Clinic and National Center for Tumor Diseases, University Hospital Heidelberg, Heidelberg, Germany; Clinical Cooperation Unit Neurooncology, German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), Heidelberg, Germany; Department of Neurosurgery, University Hospital Mannheim, University Heidelberg, Mannheim, Germany
| |
Collapse
|
48
|
Connexins and Pannexins: Important Players in Tumorigenesis, Metastasis and Potential Therapeutics. Int J Mol Sci 2018; 19:ijms19061645. [PMID: 29865195 PMCID: PMC6032133 DOI: 10.3390/ijms19061645] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2018] [Revised: 05/25/2018] [Accepted: 05/28/2018] [Indexed: 12/15/2022] Open
Abstract
Since their characterization more than five decades ago, gap junctions and their structural proteins-the connexins-have been associated with cancer cell growth. During that period, the accumulation of data and molecular knowledge about this association revealed an apparent contradictory relationship between them and cancer. It appeared that if gap junctions or connexins can down regulate cancer cell growth they can be also implied in the migration, invasion and metastatic dissemination of cancer cells. Interestingly, in all these situations, connexins seem to be involved through various mechanisms in which they can act either as gap-junctional intercellular communication mediators, modulators of signalling pathways through their interactome, or as hemichannels, which mediate autocrine/paracrine communication. This complex involvement of connexins in cancer progression is even more complicated by the fact that their hemichannel function may overlap with other gap junction-related proteins, the pannexins. Despite this complexity, the possible involvements of connexins and pannexins in cancer progression and the elucidation of the mechanisms they control may lead to use them as new targets to control cancer progression. In this review, the involvements of connexins and pannexins in these different topics (cancer cell growth, invasion/metastasis process, possible cancer therapeutic targets) are discussed.
Collapse
|
49
|
Grek CL, Sheng Z, Naus CC, Sin WC, Gourdie RG, Ghatnekar GG. Novel approach to temozolomide resistance in malignant glioma: connexin43-directed therapeutics. Curr Opin Pharmacol 2018; 41:79-88. [PMID: 29803991 DOI: 10.1016/j.coph.2018.05.002] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2018] [Revised: 04/30/2018] [Accepted: 05/03/2018] [Indexed: 01/03/2023]
Abstract
Resistance of malignant glioma, including glioblastoma (GBM), to the chemotherapeutic temozolomide (TMZ) remains a key obstacle in treatment strategies. The gap junction protein connexin43 (Cx43) has complex roles in the establishment, progression, and persistence of malignant glioma. Recent findings demonstrate that connexins play an important role in the microenvironment of malignant glioma and that Cx43 is capable of conferring chemotherapeutic resistance to GBM cells. Carboxyl-terminal Cx43 peptidomimetics show therapeutic promise in overcoming TMZ resistance via mechanisms that may include modulating junctional activity between tumor cells and peritumoral cells and/or downstream molecular signaling events mediated by Cx43 protein binding. High levels of intra-tumor and inter-tumor heterogeneity make it difficult to clearly define specific populations for Cx43-targeted therapy; hence, development of in vitro models that better mimic the microenvironment of malignant glioma, and the incorporation of patient-derived stem cells, could provide opportunities for patient-specific drug screening. This review summarizes recent advances in understanding the roles of Cx43 in malignant glioma, with a special focus on tumor microenvironment, TMZ resistance, and therapeutic opportunity offered by Cx43 peptidomimetics.
Collapse
Affiliation(s)
| | - Zhi Sheng
- Virginia Tech Carilion Research Institute, Roanoke, VA, USA; Faculty of Health Science, Virginia Tech, Blacksburg, VA, USA; Department of Biological Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, VA, USA; Department of Internal Medicine, Virginia Tech Carilion School of Medicine, Roanoke, VA, USA
| | - Christian C Naus
- Department of Cellular and Physiological Science, Life Sciences Institute, University of British Columbia, Vancouver, Canada
| | - Wun Chey Sin
- Department of Cellular and Physiological Science, Life Sciences Institute, University of British Columbia, Vancouver, Canada
| | - Robert G Gourdie
- Virginia Tech Carilion Research Institute, Roanoke, VA, USA; Faculty of Health Science, Virginia Tech, Blacksburg, VA, USA; Virginia Tech-Wake Forest University School of Biomedical Engineering and Sciences, Blacksburg, VA, USA; Department of Emergency Medicine, Virginia Tech Carilion School of Medicine, Roanoke, VA, USA
| | | |
Collapse
|
50
|
Valdebenito S, Lou E, Baldoni J, Okafo G, Eugenin E. The Novel Roles of Connexin Channels and Tunneling Nanotubes in Cancer Pathogenesis. Int J Mol Sci 2018; 19:E1270. [PMID: 29695070 PMCID: PMC5983846 DOI: 10.3390/ijms19051270] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2018] [Revised: 04/13/2018] [Accepted: 04/18/2018] [Indexed: 12/28/2022] Open
Abstract
Neoplastic growth and cellular differentiation are critical hallmarks of tumor development. It is well established that cell-to-cell communication between tumor cells and "normal" surrounding cells regulates tumor differentiation and proliferation, aggressiveness, and resistance to treatment. Nevertheless, the mechanisms that result in tumor growth and spread as well as the adaptation of healthy surrounding cells to the tumor environment are poorly understood. A major component of these communication systems is composed of connexin (Cx)-containing channels including gap junctions (GJs), tunneling nanotubes (TNTs), and hemichannels (HCs). There are hundreds of reports about the role of Cx-containing channels in the pathogenesis of cancer, and most of them demonstrate a downregulation of these proteins. Nonetheless, new data demonstrate that a localized communication via Cx-containing GJs, HCs, and TNTs plays a key role in tumor growth, differentiation, and resistance to therapies. Moreover, the type and downstream effects of signals communicated between the different populations of tumor cells are still unknown. However, new approaches such as artificial intelligence (AI) and machine learning (ML) could provide new insights into these signals communicated between connected cells. We propose that the identification and characterization of these new communication systems and their associated signaling could provide new targets to prevent or reduce the devastating consequences of cancer.
Collapse
Affiliation(s)
- Silvana Valdebenito
- Public Health Research Institute (PHRI), Newark, NJ 07103, USA.
- Department of Microbiology, Biochemistry and Molecular Genetics, Rutgers New Jersey Medical School, Rutgers the State University of NJ, Newark, NJ 07103, USA.
| | - Emil Lou
- Department of Medicine, Division of Hematology, Oncology and Transplantation, University of Minnesota, Minneapolis, MN 55455, USA.
| | - John Baldoni
- GlaxoSmithKline, In-Silico Drug Discovery Unit, 1250 South Collegeville Road, Collegeville, PA 19426, USA.
| | - George Okafo
- GlaxoSmithKline, In-Silico Drug Discovery Unit, Stevenage SG1 2NY, UK.
| | - Eliseo Eugenin
- Public Health Research Institute (PHRI), Newark, NJ 07103, USA.
- Department of Microbiology, Biochemistry and Molecular Genetics, Rutgers New Jersey Medical School, Rutgers the State University of NJ, Newark, NJ 07103, USA.
| |
Collapse
|