1
|
Delfinis LJ, Ogilvie LM, Khajehzadehshoushtar S, Gandhi S, Garibotti MC, Thuhan AK, Matuszewska K, Pereira M, Jones RG, Cheng AJ, Hawke TJ, Greene NP, Murach KA, Simpson JA, Petrik J, Perry CGR. Muscle weakness and mitochondrial stress occur before severe metastasis in a novel mouse model of ovarian cancer cachexia. Mol Metab 2024; 86:101976. [PMID: 38925248 PMCID: PMC11278933 DOI: 10.1016/j.molmet.2024.101976] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 06/03/2024] [Accepted: 06/21/2024] [Indexed: 06/28/2024] Open
Abstract
OBJECTIVES A high proportion of women with advanced epithelial ovarian cancer (EOC) experience weakness and cachexia. This relationship is associated with increased morbidity and mortality. EOC is the most lethal gynecological cancer, yet no preclinical cachexia model has demonstrated the combined hallmark features of metastasis, ascites development, muscle loss and weakness in adult immunocompetent mice. METHODS Here, we evaluated a new model of ovarian cancer-induced cachexia with the advantages of inducing cancer in adult immunocompetent C57BL/6J mice through orthotopic injections of EOC cells in the ovarian bursa. We characterized the development of metastasis, ascites, muscle atrophy, muscle weakness, markers of inflammation, and mitochondrial stress in the tibialis anterior (TA) and diaphragm ∼45, ∼75 and ∼90 days after EOC injection. RESULTS Primary ovarian tumour sizes were progressively larger at each time point while severe metastasis, ascites development, and reductions in body, fat and muscle weights occurred by 90 Days. There were no changes in certain inflammatory (TNFα), atrogene (MURF1 and Atrogin) or GDF15 markers within both muscles whereas IL-6 was increased at 45 and 90 Day groups in the diaphragm. TA weakness in 45 Day preceded atrophy and metastasis that were observed later (75 and 90 Day, respectively). The diaphragm demonstrated both weakness and atrophy in 45 Day. In both muscles, this pre-severe-metastatic muscle weakness corresponded with considerable reprogramming of gene pathways related to mitochondrial bioenergetics as well as reduced functional measures of mitochondrial pyruvate oxidation and creatine-dependent ADP/ATP cycling as well as increased reactive oxygen species emission (hydrogen peroxide). Remarkably, muscle force per unit mass at 90 days was partially restored in the TA despite the presence of atrophy and severe metastasis. In contrast, the diaphragm demonstrated progressive weakness. At this advanced stage, mitochondrial pyruvate oxidation in both muscles exceeded control mice suggesting an apparent metabolic super-compensation corresponding with restored indices of creatine-dependent adenylate cycling. CONCLUSIONS This mouse model demonstrates the concurrent development of cachexia and metastasis that occurs in women with EOC. The model provides physiologically relevant advantages of inducing tumour development within the ovarian bursa in immunocompetent adult mice. Moreover, the model reveals that muscle weakness in both TA and diaphragm precedes severe metastasis while weakness also precedes atrophy in the TA. An underlying mitochondrial bioenergetic stress corresponded with this early weakness. Collectively, these discoveries can direct new research towards the development of therapies that target pre-atrophy and pre-severe-metastatic weakness during EOC in addition to therapies targeting cachexia.
Collapse
Affiliation(s)
- Luca J Delfinis
- School of Kinesiology & Health Science, Muscle Health Research Centre, York University, Toronto, ON, Canada.
| | - Leslie M Ogilvie
- Department of Human Health and Nutritional Sciences, University of Guelph, Guelph, ON, Canada.
| | | | - Shivam Gandhi
- School of Kinesiology & Health Science, Muscle Health Research Centre, York University, Toronto, ON, Canada.
| | - Madison C Garibotti
- School of Kinesiology & Health Science, Muscle Health Research Centre, York University, Toronto, ON, Canada.
| | - Arshdeep K Thuhan
- School of Kinesiology & Health Science, Muscle Health Research Centre, York University, Toronto, ON, Canada.
| | - Kathy Matuszewska
- Department of Biomedical Sciences, University of Guelph, Guelph, ON, Canada.
| | - Madison Pereira
- Department of Biomedical Sciences, University of Guelph, Guelph, ON, Canada.
| | - Ronald G Jones
- Exercise Science Research Center, Department of Health, Human Performance, and Recreation, University of Arkansas, Fayetteville, AR, USA.
| | - Arthur J Cheng
- School of Kinesiology & Health Science, Muscle Health Research Centre, York University, Toronto, ON, Canada.
| | - Thomas J Hawke
- Department of Pathology and Molecular Medicine, McMaster University, Hamilton, ON, Canada.
| | - Nicholas P Greene
- Exercise Science Research Center, Department of Health, Human Performance, and Recreation, University of Arkansas, Fayetteville, AR, USA.
| | - Kevin A Murach
- Exercise Science Research Center, Department of Health, Human Performance, and Recreation, University of Arkansas, Fayetteville, AR, USA.
| | - Jeremy A Simpson
- Department of Human Health and Nutritional Sciences, University of Guelph, Guelph, ON, Canada.
| | - Jim Petrik
- Department of Biomedical Sciences, University of Guelph, Guelph, ON, Canada.
| | - Christopher G R Perry
- School of Kinesiology & Health Science, Muscle Health Research Centre, York University, Toronto, ON, Canada.
| |
Collapse
|
2
|
Gandhi S, Sweeney HL, Hart CC, Han R, Perry CGR. Cardiomyopathy in Duchenne Muscular Dystrophy and the Potential for Mitochondrial Therapeutics to Improve Treatment Response. Cells 2024; 13:1168. [PMID: 39056750 PMCID: PMC11274633 DOI: 10.3390/cells13141168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2024] [Revised: 07/05/2024] [Accepted: 07/06/2024] [Indexed: 07/28/2024] Open
Abstract
Duchenne muscular dystrophy (DMD) is a progressive neuromuscular disease caused by mutations to the dystrophin gene, resulting in deficiency of dystrophin protein, loss of myofiber integrity in skeletal and cardiac muscle, and eventual cell death and replacement with fibrotic tissue. Pathologic cardiac manifestations occur in nearly every DMD patient, with the development of cardiomyopathy-the leading cause of death-inevitable by adulthood. As early cardiac abnormalities are difficult to detect, timely diagnosis and appropriate treatment modalities remain a challenge. There is no cure for DMD; treatment is aimed at delaying disease progression and alleviating symptoms. A comprehensive understanding of the pathophysiological mechanisms is crucial to the development of targeted treatments. While established hypotheses of underlying mechanisms include sarcolemmal weakening, upregulation of pro-inflammatory cytokines, and perturbed ion homeostasis, mitochondrial dysfunction is thought to be a potential key contributor. Several experimental compounds targeting the skeletal muscle pathology of DMD are in development, but the effects of such agents on cardiac function remain unclear. The synergistic integration of small molecule- and gene-target-based drugs with metabolic-, immune-, or ion balance-enhancing compounds into a combinatorial therapy offers potential for treating dystrophin deficiency-induced cardiomyopathy, making it crucial to understand the underlying mechanisms driving the disorder.
Collapse
Affiliation(s)
- Shivam Gandhi
- School of Kinesiology and Health Science, Muscle Health Research Centre, York University, Toronto, ON M3J 1P3, Canada
| | - H. Lee Sweeney
- Department of Pharmacology and Therapeutics, University of Florida, Gainesville, FL 32610, USA; (H.L.S.); (C.C.H.)
- Myology Institute, University of Florida, Gainesville, FL 32610, USA
| | - Cora C. Hart
- Department of Pharmacology and Therapeutics, University of Florida, Gainesville, FL 32610, USA; (H.L.S.); (C.C.H.)
- Myology Institute, University of Florida, Gainesville, FL 32610, USA
| | - Renzhi Han
- Department of Pediatrics, Herman B Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN 46202, USA;
| | - Christopher G. R. Perry
- School of Kinesiology and Health Science, Muscle Health Research Centre, York University, Toronto, ON M3J 1P3, Canada
| |
Collapse
|
3
|
Belosludtseva NV, Dubinin MV, Belosludtsev KN. Pore-Forming VDAC Proteins of the Outer Mitochondrial Membrane: Regulation and Pathophysiological Role. BIOCHEMISTRY. BIOKHIMIIA 2024; 89:1061-1078. [PMID: 38981701 DOI: 10.1134/s0006297924060075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 05/12/2024] [Accepted: 05/27/2024] [Indexed: 07/11/2024]
Abstract
Voltage-dependent anion channels (VDAC1-3) of the outer mitochondrial membrane are a family of pore-forming β-barrel proteins that carry out controlled "filtration" of small molecules and ions between the cytoplasm and mitochondria. Due to the conformational transitions between the closed and open states and interaction with cytoplasmic and mitochondrial proteins, VDACs not only regulate the mitochondrial membrane permeability for major metabolites and ions, but also participate in the control of essential intracellular processes and pathological conditions. This review discusses novel data on the molecular structure, regulatory mechanisms, and pathophysiological role of VDAC proteins, as well as future directions in this area of research.
Collapse
Affiliation(s)
- Natalia V Belosludtseva
- Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences, Pushchino, Moscow Region, 142290, Russia
- Mari State University, Yoshkar-Ola, Mari El, 424001, Russia
| | | | | |
Collapse
|
4
|
Delfinis LJ, Ogilvie LM, Khajehzadehshoushtar S, Gandhi S, Garibotti MC, Thuhan AK, Matuszewska K, Pereira M, Jones RG, Cheng AJ, Hawke TJ, Greene NP, Murach KA, Simpson JA, Petrik J, Perry CG. Muscle weakness and mitochondrial stress occur before metastasis in a novel mouse model of ovarian cancer cachexia. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.04.08.588639. [PMID: 38645227 PMCID: PMC11030380 DOI: 10.1101/2024.04.08.588639] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/23/2024]
Abstract
Objectives A high proportion of women with advanced epithelial ovarian cancer (EOC) experience weakness and cachexia. This relationship is associated with increased morbidity and mortality. EOC is the most lethal gynecological cancer, yet no preclinical cachexia model has demonstrated the combined hallmark features of metastasis, ascites development, muscle loss and weakness in adult immunocompetent mice. Methods Here, we evaluated a new model of ovarian cancer-induced cachexia with the advantages of inducing cancer in adult immunocompetent C57BL/6J mice through orthotopic injections of EOC cells in the ovarian bursa. We characterized the development of metastasis, ascites, muscle atrophy, muscle weakness, markers of inflammation, and mitochondrial stress in the tibialis anterior (TA) and diaphragm ~45, ~75 and ~90 days after EOC injection. Results Primary ovarian tumour sizes were progressively larger at each time point while robust metastasis, ascites development, and reductions in body, fat and muscle weights occurred by 90 Days. There were no changes in certain inflammatory (TNFα), atrogene (MURF1 and Atrogin) or GDF15 markers within both muscles whereas IL-6 was increased at 45 and 90 Day groups in the diaphragm. TA weakness in 45 Day preceded atrophy and metastasis that were observed later (75 and 90 Day, respectively). The diaphragm demonstrated both weakness and atrophy in 45 Day. In both muscles, this pre-metastatic muscle weakness corresponded with considerable reprogramming of gene pathways related to mitochondrial bioenergetics as well as reduced functional measures of mitochondrial pyruvate oxidation and creatine-dependent ADP/ATP cycling as well as increased reactive oxygen species emission (hydrogen peroxide). Remarkably, muscle force per unit mass at 90 days was partially restored in the TA despite the presence of atrophy and metastasis. In contrast, the diaphragm demonstrated progressive weakness. At this advanced stage, mitochondrial pyruvate oxidation in both muscles exceeded control mice suggesting an apparent metabolic super-compensation corresponding with restored indices of creatine-dependent adenylate cycling. Conclusion This mouse model demonstrates the concurrent development of cachexia and metastasis that occurs in women with EOC. The model provides physiologically relevant advantages of inducing tumour development within the ovarian bursa in immunocompetent adult mice. Moreover, the model reveals that muscle weakness in both TA and diaphragm precedes metastasis while weakness also precedes atrophy in the TA. An underlying mitochondrial bioenergetic stress corresponded with this early weakness. Collectively, these discoveries can direct new research towards the development of therapies that target pre-atrophy and pre-metastatic weakness during EOC in addition to therapies targeting cachexia.
Collapse
Affiliation(s)
- Luca J. Delfinis
- School of Kinesiology & Health Science, Muscle Health Research Centre, York University, Toronto, ON, Canada
| | - Leslie M. Ogilvie
- Department of Human Health and Nutritional Sciences, University of Guelph, Guelph, ON, Canada
| | | | - Shivam Gandhi
- School of Kinesiology & Health Science, Muscle Health Research Centre, York University, Toronto, ON, Canada
| | - Madison C. Garibotti
- School of Kinesiology & Health Science, Muscle Health Research Centre, York University, Toronto, ON, Canada
| | - Arshdeep K. Thuhan
- School of Kinesiology & Health Science, Muscle Health Research Centre, York University, Toronto, ON, Canada
| | - Kathy Matuszewska
- Department of Biomedical Sciences, University of Guelph, Guelph, ON, Canada
| | - Madison Pereira
- Department of Biomedical Sciences, University of Guelph, Guelph, ON, Canada
| | - Ronald G. Jones
- Exercise Science Research Center, Department of Health, Human Performance, and Recreation, University of Arkansas, Fayetteville, AR, USA
| | - Arthur J. Cheng
- School of Kinesiology & Health Science, Muscle Health Research Centre, York University, Toronto, ON, Canada
| | - Thomas J. Hawke
- Department of Pathology and Molecular Medicine, McMaster University, Hamilton, ON, Canada
| | - Nicholas P. Greene
- Exercise Science Research Center, Department of Health, Human Performance, and Recreation, University of Arkansas, Fayetteville, AR, USA
| | - Kevin A. Murach
- Exercise Science Research Center, Department of Health, Human Performance, and Recreation, University of Arkansas, Fayetteville, AR, USA
| | - Jeremy A. Simpson
- Department of Human Health and Nutritional Sciences, University of Guelph, Guelph, ON, Canada
| | - Jim Petrik
- Department of Biomedical Sciences, University of Guelph, Guelph, ON, Canada
| | - Christopher G.R. Perry
- School of Kinesiology & Health Science, Muscle Health Research Centre, York University, Toronto, ON, Canada
| |
Collapse
|
5
|
Hovhannisyan Y, Li Z, Callon D, Suspène R, Batoumeni V, Canette A, Blanc J, Hocini H, Lefebvre C, El-Jahrani N, Kitsara M, L'honoré A, Kordeli E, Fornes P, Concordet JP, Tachdjian G, Rodriguez AM, Vartanian JP, Béhin A, Wahbi K, Joanne P, Agbulut O. Critical contribution of mitochondria in the development of cardiomyopathy linked to desmin mutation. Stem Cell Res Ther 2024; 15:10. [PMID: 38167524 PMCID: PMC10763022 DOI: 10.1186/s13287-023-03619-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Accepted: 12/18/2023] [Indexed: 01/05/2024] Open
Abstract
BACKGROUND Beyond the observed alterations in cellular structure and mitochondria, the mechanisms linking rare genetic mutations to the development of heart failure in patients affected by desmin mutations remain unclear due in part, to the lack of relevant human cardiomyocyte models. METHODS To shed light on the role of mitochondria in these mechanisms, we investigated cardiomyocytes derived from human induced pluripotent stem cells carrying the heterozygous DESE439K mutation that were either isolated from a patient or generated by gene editing. To increase physiological relevance, cardiomyocytes were either cultured on an anisotropic micropatterned surface to obtain elongated and aligned cardiomyocytes, or as a cardiac spheroid to create a micro-tissue. Moreover, when applicable, results from cardiomyocytes were confirmed with heart biopsies of suddenly died patient of the same family harboring DESE439K mutation, and post-mortem heart samples from five control healthy donors. RESULTS The heterozygous DESE439K mutation leads to dramatic changes in the overall cytoarchitecture of cardiomyocytes, including cell size and morphology. Most importantly, mutant cardiomyocytes display altered mitochondrial architecture, mitochondrial respiratory capacity and metabolic activity reminiscent of defects observed in patient's heart tissue. Finally, to challenge the pathological mechanism, we transferred normal mitochondria inside the mutant cardiomyocytes and demonstrated that this treatment was able to restore mitochondrial and contractile functions of cardiomyocytes. CONCLUSIONS This work highlights the deleterious effects of DESE439K mutation, demonstrates the crucial role of mitochondrial abnormalities in the pathophysiology of desmin-related cardiomyopathy, and opens up new potential therapeutic perspectives for this disease.
Collapse
Affiliation(s)
- Yeranuhi Hovhannisyan
- UMR CNRS 8256, INSERM U1164, Biological Adaptation and Ageing, Institut de Biologie Paris-Seine (IBPS), Sorbonne Université, 7, Quai St Bernard (case 256), 75005, Paris, France
| | - Zhenlin Li
- UMR CNRS 8256, INSERM U1164, Biological Adaptation and Ageing, Institut de Biologie Paris-Seine (IBPS), Sorbonne Université, 7, Quai St Bernard (case 256), 75005, Paris, France
| | - Domitille Callon
- UMR CNRS 8256, INSERM U1164, Biological Adaptation and Ageing, Institut de Biologie Paris-Seine (IBPS), Sorbonne Université, 7, Quai St Bernard (case 256), 75005, Paris, France
- Department of Pathology, Academic Hospital of Reims, Reims, France
| | - Rodolphe Suspène
- Virus and Cellular Stress Unit, Department of Virology, Institut Pasteur, Université Paris Cité, Paris, France
| | - Vivien Batoumeni
- UMR CNRS 8256, INSERM U1164, Biological Adaptation and Ageing, Institut de Biologie Paris-Seine (IBPS), Sorbonne Université, 7, Quai St Bernard (case 256), 75005, Paris, France
- Ksilink, Strasbourg, France
| | - Alexis Canette
- Service de Microscopie Électronique (IBPS-SME), Institut de Biologie Paris-Seine (IBPS), CNRS, Sorbonne Université, Paris, France
| | - Jocelyne Blanc
- UMR CNRS 8256, INSERM U1164, Biological Adaptation and Ageing, Institut de Biologie Paris-Seine (IBPS), Sorbonne Université, 7, Quai St Bernard (case 256), 75005, Paris, France
| | - Hakim Hocini
- INSERM U955, Equipe 16, Université Paris-Est Créteil, Créteil, France
| | - Cécile Lefebvre
- INSERM U955, Equipe 16, Université Paris-Est Créteil, Créteil, France
| | - Nora El-Jahrani
- INSERM U955, Equipe 16, Université Paris-Est Créteil, Créteil, France
| | - Maria Kitsara
- UMR CNRS 8256, INSERM U1164, Biological Adaptation and Ageing, Institut de Biologie Paris-Seine (IBPS), Sorbonne Université, 7, Quai St Bernard (case 256), 75005, Paris, France
| | - Aurore L'honoré
- UMR CNRS 8256, INSERM U1164, Biological Adaptation and Ageing, Institut de Biologie Paris-Seine (IBPS), Sorbonne Université, 7, Quai St Bernard (case 256), 75005, Paris, France
| | - Ekaterini Kordeli
- UMR CNRS 8256, INSERM U1164, Biological Adaptation and Ageing, Institut de Biologie Paris-Seine (IBPS), Sorbonne Université, 7, Quai St Bernard (case 256), 75005, Paris, France
| | - Paul Fornes
- Department of Pathology, Academic Hospital of Reims, Reims, France
| | - Jean-Paul Concordet
- INSERM U1154, CNRS UMR7196, Museum National d'Histoire Naturelle, Paris, France
| | - Gérard Tachdjian
- Laboratoire de Cytogénétique, Service d'Histologie-Embryologie-Cytogénétique, AP-HP, Hôpital Antoine Béclère, Université Paris Saclay, Clamart, France
| | - Anne-Marie Rodriguez
- UMR CNRS 8256, INSERM U1164, Biological Adaptation and Ageing, Institut de Biologie Paris-Seine (IBPS), Sorbonne Université, 7, Quai St Bernard (case 256), 75005, Paris, France
| | - Jean-Pierre Vartanian
- Virus and Cellular Stress Unit, Department of Virology, Institut Pasteur, Université Paris Cité, Paris, France
| | - Anthony Béhin
- Reference Center for Muscle Diseases Paris-Est, Myology Institute, AP-HP, Pitié-Salpêtrière Hospital, Sorbonne Université, Paris, France
| | - Karim Wahbi
- Cardiology Department, AP-HP, Cochin Hospital, Université Paris Cité, Paris, France
| | - Pierre Joanne
- UMR CNRS 8256, INSERM U1164, Biological Adaptation and Ageing, Institut de Biologie Paris-Seine (IBPS), Sorbonne Université, 7, Quai St Bernard (case 256), 75005, Paris, France.
| | - Onnik Agbulut
- UMR CNRS 8256, INSERM U1164, Biological Adaptation and Ageing, Institut de Biologie Paris-Seine (IBPS), Sorbonne Université, 7, Quai St Bernard (case 256), 75005, Paris, France.
| |
Collapse
|
6
|
Decker ST, Alexandrou-Majaj N, Layec G. Effects of acute cigarette smoke concentrate exposure on mitochondrial energy transfer in fast- and slow-twitch skeletal muscle. BIOCHIMICA ET BIOPHYSICA ACTA. BIOENERGETICS 2023; 1864:148973. [PMID: 36972770 DOI: 10.1016/j.bbabio.2023.148973] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 02/26/2023] [Accepted: 03/21/2023] [Indexed: 03/29/2023]
Abstract
The mechanisms underlying cigarette smoke-induced mitochondrial dysfunction in skeletal muscle are still poorly understood. Accordingly, this study aimed to examine the effects of cigarette smoke on mitochondrial energy transfer in permeabilized muscle fibers from skeletal muscles with differing metabolic characteristics. The electron transport chain (ETC) capacity, ADP transport, and respiratory control by ADP were assessed in fast- and slow-twitch muscle fibers from C57BL/6 mice (n = 11) acutely exposed to cigarette smoke concentrate (CSC) using high-resolution respirometry. CSC decreased complex I-driven respiration in the white gastrocnemius (CONTROL:45.4 ± 11.2 pmolO2.s-1.mg-1 and CSC:27.5 ± 12.0 pmolO2.s-1.mg-1; p = 0.01) and soleus (CONTROL:63.0 ± 23.8 pmolO2.s-1.mg-1 and CSC:44.6 ± 11.1 pmolO2.s-1.mg-1; p = 0.04). In contrast, the effect of CSC on Complex II-linked respiration increased its relative contribution to muscle respiratory capacity in the white gastrocnemius muscle. The maximal respiratory activity of the ETC was significantly inhibited by CSC in both muscles. Furthermore, the respiration rate dependent on the ADP/ATP transport across the mitochondrial membrane was significantly impaired by CSC in the white gastrocnemius (CONTROL:-70 ± 18 %; CSC:-28 ± 10 %; p < 0.001), but not the soleus (CONTROL:47 ± 16 %; CSC:31 ± 7 %; p = 0.08). CSC also significantly impaired mitochondrial thermodynamic coupling in both muscles. Our findings underscore that acute CSC exposure directly inhibits oxidative phosphorylation in permeabilized muscle fibers. This effect was mediated by significant perturbations of the electron transfer in the respiratory complexes, especially at complex I, in both fast and slow twitch muscles. In contrast, CSC-induced inhibition of the exchange of ADP/ATP across the mitochondrial membrane was fiber-type specific, with a large effect on fast-twitch muscles.
Collapse
Affiliation(s)
- Stephen T Decker
- Department of Kinesiology, University of Massachusetts Amherst, USA
| | | | - Gwenael Layec
- Department of Kinesiology, University of Massachusetts Amherst, USA; Institute for Applied Life Science, University of Massachusetts Amherst, USA.
| |
Collapse
|
7
|
Zeng LF, Lee J, Lim G, Yang YF, Lin RL, Yin SJ, Wang W, Park YD. Characterization and tissue expression analysis of mitochondrial creatine kinases (types I and II) from Pelodiscus sinensis. J Biomol Struct Dyn 2023; 41:1388-1402. [PMID: 34939522 DOI: 10.1080/07391102.2021.2020168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
The aim of this study was to characterize the functions of the mitochondrial creatine kinases in the Chinese soft-shelled turtle Pelodiscus sinensis (PSCK-MT1 and PSCK-MT2) to characterize function in relation to hibernation. Computational prediction via molecular dynamics simulations showed that PSCK-MT1 had stronger kinase- and creatine-binding affinity than PSCK-MT2. We measured PSCK-MT1 and PSCK-MT2 levels in the myocardium, liver, spleen, lung, kidney, and ovary of P. sinensis before and after hibernation and found that the expression of these enzymes was the most significantly upregulated in the ovary. We enumerated the ovarian follicles and evaluated the physiological indices of P. sinensis and discovered that fat was the main form of energy storage in P. sinensis. Moreover, both PSCK-MTs promoted follicular development during hibernation. Immunohistochemistry was used to study follicular development and revealed that both PSCK-MTs were expressed primarily in the follicular fluid and granulosa layer before and after hibernation. We found that PSCK-MT1 and PSCK-MT2 could play important roles in ovarian follicular development under hibernation. Hence, both PSCK-MTs probably function effectively under the conditions of low temperature and oxygen during hibernation. Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Li-Fang Zeng
- College of Biological and Environmental Sciences, Zhejiang Wanli University, Ningbo, PR China
| | - Jinhyuk Lee
- Genome Editing Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, Korea.,Department of Bioinformatics, KRIBB School of Bioscience, University of Science and Technology (UST), Daejeon, Korea
| | - Gyutae Lim
- Genome Editing Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, Korea.,Department of Bioinformatics, KRIBB School of Bioscience, University of Science and Technology (UST), Daejeon, Korea
| | - Yu-Fei Yang
- College of Biological and Environmental Sciences, Zhejiang Wanli University, Ningbo, PR China
| | - Run-Lan Lin
- College of Biological and Environmental Sciences, Zhejiang Wanli University, Ningbo, PR China
| | - Shang-Jun Yin
- College of Biological and Environmental Sciences, Zhejiang Wanli University, Ningbo, PR China
| | - Wei Wang
- College of Biological and Environmental Sciences, Zhejiang Wanli University, Ningbo, PR China
| | - Yong-Doo Park
- College of Biological and Environmental Sciences, Zhejiang Wanli University, Ningbo, PR China.,Skin Diseases Research Center, Yangtze Delta Region Institute of Tsinghua University, Jiaxing, PR China.,Zhejiang Provincial Key Laboratory of Applied Enzymology, Yangtze Delta Region Institute of Tsinghua University, Jiaxing, PR China
| |
Collapse
|
8
|
Delfinis LJ, Bellissimo CA, Gandhi S, DiBenedetto SN, Garibotti MC, Thuhan AK, Tsitkanou S, Rosa-Caldwell ME, Rahman FA, Cheng AJ, Wiggs MP, Schlattner U, Quadrilatero J, Greene NP, Perry CG. Muscle weakness precedes atrophy during cancer cachexia and is linked to muscle-specific mitochondrial stress. JCI Insight 2022; 7:155147. [PMID: 36346680 PMCID: PMC9869968 DOI: 10.1172/jci.insight.155147] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Accepted: 11/04/2022] [Indexed: 11/09/2022] Open
Abstract
Muscle weakness and wasting are defining features of cancer-induced cachexia. Mitochondrial stress occurs before atrophy in certain muscles, but the possibility of heterogeneous responses between muscles and across time remains unclear. Using mice inoculated with Colon-26 cancer, we demonstrate that specific force production was reduced in quadriceps and diaphragm at 2 weeks in the absence of atrophy. At this time, pyruvate-supported mitochondrial respiration was lower in quadriceps while mitochondrial H2O2 emission was elevated in diaphragm. By 4 weeks, atrophy occurred in both muscles, but specific force production increased to control levels in quadriceps such that reductions in absolute force were due entirely to atrophy. Specific force production remained reduced in diaphragm. Mitochondrial respiration increased and H2O2 emission was unchanged in both muscles versus control while mitochondrial creatine sensitivity was reduced in quadriceps. These findings indicate muscle weakness precedes atrophy and is linked to heterogeneous mitochondrial alterations that could involve adaptive responses to metabolic stress. Eventual muscle-specific restorations in specific force and bioenergetics highlight how the effects of cancer on one muscle do not predict the response in another muscle. Exploring heterogeneous responses of muscle to cancer may reveal new mechanisms underlying distinct sensitivities, or resistance, to cancer cachexia.
Collapse
Affiliation(s)
- Luca J. Delfinis
- Muscle Health Research Centre, School of Kinesiology, Faculty of Health, York University, Toronto, Ontario, Canada
| | - Catherine A. Bellissimo
- Muscle Health Research Centre, School of Kinesiology, Faculty of Health, York University, Toronto, Ontario, Canada
| | - Shivam Gandhi
- Muscle Health Research Centre, School of Kinesiology, Faculty of Health, York University, Toronto, Ontario, Canada
| | - Sara N. DiBenedetto
- Muscle Health Research Centre, School of Kinesiology, Faculty of Health, York University, Toronto, Ontario, Canada
| | - Madison C. Garibotti
- Muscle Health Research Centre, School of Kinesiology, Faculty of Health, York University, Toronto, Ontario, Canada
| | - Arshdeep K. Thuhan
- Muscle Health Research Centre, School of Kinesiology, Faculty of Health, York University, Toronto, Ontario, Canada
| | - Stavroula Tsitkanou
- Cachexia Research Laboratory, Department of Health, Human Performance and Recreation, College of Education and Health Professions, University of Arkansas, Fayetteville, Arkansas, USA
| | - Megan E. Rosa-Caldwell
- Cachexia Research Laboratory, Department of Health, Human Performance and Recreation, College of Education and Health Professions, University of Arkansas, Fayetteville, Arkansas, USA
| | - Fasih A. Rahman
- Department of Kinesiology and Health Sciences, Faculty of Health, University of Waterloo, Waterloo, Ontario, Canada
| | - Arthur J. Cheng
- Muscle Health Research Centre, School of Kinesiology, Faculty of Health, York University, Toronto, Ontario, Canada
| | - Michael P. Wiggs
- Mooney Lab for Exercise, Nutrition, and Biochemistry, Department of Health, Human Performance, and Recreation, Baylor University, Waco, Texas, USA
| | - Uwe Schlattner
- Laboratory of Fundamental and Applied Bioenergetics, University Grenoble Alpes and INSERM U1055, Grenoble, France, and Institut Universitaire de France, Paris, France
| | - Joe Quadrilatero
- Department of Kinesiology and Health Sciences, Faculty of Health, University of Waterloo, Waterloo, Ontario, Canada
| | - Nicholas P. Greene
- Cachexia Research Laboratory, Department of Health, Human Performance and Recreation, College of Education and Health Professions, University of Arkansas, Fayetteville, Arkansas, USA
| | - Christopher G.R. Perry
- Muscle Health Research Centre, School of Kinesiology, Faculty of Health, York University, Toronto, Ontario, Canada
| |
Collapse
|
9
|
Solomon T, Rajendran M, Rostovtseva T, Hool L. How cytoskeletal proteins regulate mitochondrial energetics in cell physiology and diseases. Philos Trans R Soc Lond B Biol Sci 2022; 377:20210324. [PMID: 36189806 PMCID: PMC9527905 DOI: 10.1098/rstb.2021.0324] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Mitochondria are ubiquitous organelles that play a pivotal role in the supply of energy through the production of adenosine triphosphate in all eukaryotic cells. The importance of mitochondria in cells is demonstrated in the poor survival outcomes observed in patients with defects in mitochondrial gene or RNA expression. Studies have identified that mitochondria are influenced by the cell's cytoskeletal environment. This is evident in pathological conditions such as cardiomyopathy where the cytoskeleton is in disarray and leads to alterations in mitochondrial oxygen consumption and electron transport. In cancer, reorganization of the actin cytoskeleton is critical for trans-differentiation of epithelial-like cells into motile mesenchymal-like cells that promotes cancer progression. The cytoskeleton is critical to the shape and elongation of neurons, facilitating communication during development and nerve signalling. Although it is recognized that cytoskeletal proteins physically tether mitochondria, it is not well understood how cytoskeletal proteins alter mitochondrial function. Since end-stage disease frequently involves poor energy production, understanding the role of the cytoskeleton in the progression of chronic pathology may enable the development of therapeutics to improve energy production and consumption and slow disease progression. This article is part of the theme issue ‘The cardiomyocyte: new revelations on the interplay between architecture and function in growth, health, and disease’.
Collapse
Affiliation(s)
- Tanya Solomon
- School of Human Sciences, The University of Western Australia, Crawley, Western Australia, Australia
| | - Megha Rajendran
- Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, USA
| | - Tatiana Rostovtseva
- Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, USA
| | - Livia Hool
- School of Human Sciences, The University of Western Australia, Crawley, Western Australia, Australia.,Victor Chang Cardiac Research Institute, Darlinghurst, Sydney, New South Wales, Australia
| |
Collapse
|
10
|
Wasserman DH. Insulin, Muscle Glucose Uptake, and Hexokinase: Revisiting the Road Not Taken. Physiology (Bethesda) 2022; 37:115-127. [PMID: 34779282 PMCID: PMC8977147 DOI: 10.1152/physiol.00034.2021] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Revised: 11/05/2021] [Accepted: 11/07/2021] [Indexed: 12/25/2022] Open
Abstract
Research conducted over the last 50 yr has provided insight into the mechanisms by which insulin stimulates glucose transport across the skeletal muscle cell membrane Transport alone, however, does not result in net glucose uptake as free glucose equilibrates across the cell membrane and is not metabolized. Glucose uptake requires that glucose is phosphorylated by hexokinases. Phosphorylated glucose cannot leave the cell and is the substrate for metabolism. It is indisputable that glucose phosphorylation is essential for glucose uptake. Major advances have been made in defining the regulation of the insulin-stimulated glucose transporter (GLUT4) in skeletal muscle. By contrast, the insulin-regulated hexokinase (hexokinase II) parallels Robert Frost's "The Road Not Taken." Here the case is made that an understanding of glucose phosphorylation by hexokinase II is necessary to define the regulation of skeletal muscle glucose uptake in health and insulin resistance. Results of studies from different physiological disciplines that have elegantly described how hexokinase II can be regulated are summarized to provide a framework for potential application to skeletal muscle. Mechanisms by which hexokinase II is regulated in skeletal muscle await rigorous examination.
Collapse
Affiliation(s)
- David H Wasserman
- Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, Nashville, Tennessee
| |
Collapse
|
11
|
Chemotherapy Resistance: Role of Mitochondrial and Autophagic Components. Cancers (Basel) 2022; 14:cancers14061462. [PMID: 35326612 PMCID: PMC8945922 DOI: 10.3390/cancers14061462] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Revised: 03/10/2022] [Accepted: 03/10/2022] [Indexed: 11/16/2022] Open
Abstract
Simple Summary Chemotherapy resistance is a common occurrence during cancer treatment that cancer researchers are attempting to understand and overcome. Mitochondria are a crucial intracellular signaling core that are becoming important determinants of numerous aspects of cancer genesis and progression, such as metabolic reprogramming, metastatic capability, and chemotherapeutic resistance. Mitophagy, or selective autophagy of mitochondria, can influence both the efficacy of tumor chemotherapy and the degree of drug resistance. Regardless of the fact that mitochondria are well-known for coordinating ATP synthesis from cellular respiration in cellular bioenergetics, little is known its mitophagy regulation in chemoresistance. Recent advancements in mitochondrial research, mitophagy regulatory mechanisms, and their implications for our understanding of chemotherapy resistance are discussed in this review. Abstract Cancer chemotherapy resistance is one of the most critical obstacles in cancer therapy. One of the well-known mechanisms of chemotherapy resistance is the change in the mitochondrial death pathways which occur when cells are under stressful situations, such as chemotherapy. Mitophagy, or mitochondrial selective autophagy, is critical for cell quality control because it can efficiently break down, remove, and recycle defective or damaged mitochondria. As cancer cells use mitophagy to rapidly sweep away damaged mitochondria in order to mediate their own drug resistance, it influences the efficacy of tumor chemotherapy as well as the degree of drug resistance. Yet despite the importance of mitochondria and mitophagy in chemotherapy resistance, little is known about the precise mechanisms involved. As a consequence, identifying potential therapeutic targets by analyzing the signal pathways that govern mitophagy has become a vital research goal. In this paper, we review recent advances in mitochondrial research, mitophagy control mechanisms, and their implications for our understanding of chemotherapy resistance.
Collapse
|
12
|
VDAC2 as a novel target for heart failure: Ca2+ at the sarcomere, mitochondria and SR. Cell Calcium 2022; 104:102586. [DOI: 10.1016/j.ceca.2022.102586] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 03/25/2022] [Accepted: 03/26/2022] [Indexed: 11/22/2022]
|
13
|
Analysis of Mitochondrial Function, Structure, and Intracellular Organization In Situ in Cardiomyocytes and Skeletal Muscles. Int J Mol Sci 2022; 23:ijms23042252. [PMID: 35216368 PMCID: PMC8876605 DOI: 10.3390/ijms23042252] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Revised: 01/31/2022] [Accepted: 02/07/2022] [Indexed: 01/27/2023] Open
Abstract
Analysis of the function, structure, and intracellular organization of mitochondria is important for elucidating energy metabolism and intracellular energy transfer. In addition, basic and clinically oriented studies that investigate organ/tissue/cell dysfunction in various human diseases, including myopathies, cardiac/brain ischemia-reperfusion injuries, neurodegenerative diseases, cancer, and aging, require precise estimation of mitochondrial function. It should be noted that the main metabolic and functional characteristics of mitochondria obtained in situ (in permeabilized cells and tissue samples) and in vitro (in isolated organelles) are quite different, thereby compromising interpretations of experimental and clinical data. These differences are explained by the existence of the mitochondrial network, which possesses multiple interactions between the cytoplasm and other subcellular organelles. Metabolic and functional crosstalk between mitochondria and extra-mitochondrial cellular environments plays a crucial role in the regulation of mitochondrial metabolism and physiology. Therefore, it is important to analyze mitochondria in vivo or in situ without their isolation from the natural cellular environment. This review summarizes previous studies and discusses existing approaches and methods for the analysis of mitochondrial function, structure, and intracellular organization in situ.
Collapse
|
14
|
Zuccarelli L, Baldassarre G, Magnesa B, Degano C, Comelli M, Gasparini M, Manferdelli G, Marzorati M, Mavelli I, Pilotto A, Porcelli S, Rasica L, Šimunič B, Pišot R, Narici M, Grassi B. Peripheral impairments of oxidative metabolism after a 10-day bed rest are upstream of mitochondrial respiration. J Physiol 2021; 599:4813-4829. [PMID: 34505290 PMCID: PMC9293208 DOI: 10.1113/jp281800] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Accepted: 09/08/2021] [Indexed: 11/20/2022] Open
Abstract
Abstract In order to identify peripheral biomarkers of impaired oxidative metabolism during exercise following a 10‐day bed rest, 10 males performed an incremental exercise (to determine peak pulmonary V̇O2 (V̇O2p)) and moderate‐intensity exercises, before (PRE) and after (POST) bed rest. Blood flow response was evaluated in the common femoral artery by Eco‐Doppler during 1 min of passive leg movements (PLM). The intramuscular matching between O2 delivery and O2 utilization was evaluated by near‐infrared spectroscopy (NIRS). Mitochondrial respiration was evaluated ex vivo by high‐resolution respirometry in isolated muscle fibres, and in vivo by NIRS by the evaluation of skeletal muscle V̇O2 (V̇O2m) recovery kinetics. Resting V̇O2m was estimated by NIRS. Peak V̇O2p was lower in POST vs. PRE. The area under the blood flow vs. time curve during PLM was smaller (P = 0.03) in POST (274 ± 233 mL) vs. PRE (427 ± 291). An increased (P = 0.03) overshoot of muscle deoxygenation during a metabolic transition was identified in POST. Skeletal muscle citrate synthase activity was not different (P = 0.11) in POST (131 ± 16 nmol min–1 mg–1) vs. PRE (138 ± 19). Maximal ADP‐stimulated mitochondrial respiration (66 ± 18 pmol s–1 mg–1 (POST) vs. 72 ± 14 (PRE), P = 0.41) was not affected by bed rest. Apparent Km for ADP sensitivity of mitochondrial respiration was reduced in POST vs. PRE (P = 0.04). The V̇O2m recovery time constant was not different (P = 0.79) in POST (22 ± 6 s) vs. PRE (22 ± 6). Resting V̇O2m was reduced by 25% in POST vs. PRE (P = 0.006). Microvascular‐endothelial function was impaired following a 10‐day bed rest, whereas mitochondrial mass and function (both in vivo and ex vivo) were unaffected or slightly enhanced. Key points Ten days of horizontal bed rest impaired in vivo oxidative function during exercise. Microvascular impairments were identified by different methods. Mitochondrial mass and mitochondrial function (evaluated both in vivo and ex vivo) were unchanged or even improved (i.e. enhanced mitochondrial sensitivity to submaximal [ADP]). Resting muscle oxygen uptake was significantly lower following bed rest, suggesting that muscle catabolic processes induced by bed rest/inactivity are less energy‐consuming than anabolic ones.
Collapse
Affiliation(s)
| | | | | | | | - Marina Comelli
- Department of Medicine, University of Udine, Udine, Italy
| | | | - Giorgio Manferdelli
- Institute of Biomedical Technologies, National Research Council, Milan, Italy
| | - Mauro Marzorati
- Institute of Biomedical Technologies, National Research Council, Milan, Italy
| | - Irene Mavelli
- Department of Medicine, University of Udine, Udine, Italy
| | - Andrea Pilotto
- Department of Medicine, University of Udine, Udine, Italy.,Institute of Biomedical Technologies, National Research Council, Milan, Italy
| | - Simone Porcelli
- Institute of Biomedical Technologies, National Research Council, Milan, Italy.,Department of Molecular Medicine, University of Pavia, Pavia, Italy
| | - Letizia Rasica
- Institute of Biomedical Technologies, National Research Council, Milan, Italy
| | - Boštjan Šimunič
- Institute of Kinesiology Research, Science and Research Centre, Koper, Slovenia
| | - Rado Pišot
- Institute of Kinesiology Research, Science and Research Centre, Koper, Slovenia
| | - Marco Narici
- Department of Biomedical Sciences, University of Padova, Padova, Italy
| | - Bruno Grassi
- Department of Medicine, University of Udine, Udine, Italy
| |
Collapse
|
15
|
Bonilla DA, Kreider RB, Stout JR, Forero DA, Kerksick CM, Roberts MD, Rawson ES. Metabolic Basis of Creatine in Health and Disease: A Bioinformatics-Assisted Review. Nutrients 2021; 13:nu13041238. [PMID: 33918657 PMCID: PMC8070484 DOI: 10.3390/nu13041238] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Revised: 04/01/2021] [Accepted: 04/07/2021] [Indexed: 02/06/2023] Open
Abstract
Creatine (Cr) is a ubiquitous molecule that is synthesized mainly in the liver, kidneys, and pancreas. Most of the Cr pool is found in tissues with high-energy demands. Cr enters target cells through a specific symporter called Na+/Cl−-dependent Cr transporter (CRT). Once within cells, creatine kinase (CK) catalyzes the reversible transphosphorylation reaction between [Mg2+:ATP4−]2− and Cr to produce phosphocreatine (PCr) and [Mg2+:ADP3−]−. We aimed to perform a comprehensive and bioinformatics-assisted review of the most recent research findings regarding Cr metabolism. Specifically, several public databases, repositories, and bioinformatics tools were utilized for this endeavor. Topics of biological complexity ranging from structural biology to cellular dynamics were addressed herein. In this sense, we sought to address certain pre-specified questions including: (i) What happens when creatine is transported into cells? (ii) How is the CK/PCr system involved in cellular bioenergetics? (iii) How is the CK/PCr system compartmentalized throughout the cell? (iv) What is the role of creatine amongst different tissues? and (v) What is the basis of creatine transport? Under the cellular allostasis paradigm, the CK/PCr system is physiologically essential for life (cell survival, growth, proliferation, differentiation, and migration/motility) by providing an evolutionary advantage for rapid, local, and temporal support of energy- and mechanical-dependent processes. Thus, we suggest the CK/PCr system acts as a dynamic biosensor based on chemo-mechanical energy transduction, which might explain why dysregulation in Cr metabolism contributes to a wide range of diseases besides the mitigating effect that Cr supplementation may have in some of these disease states.
Collapse
Affiliation(s)
- Diego A. Bonilla
- Research Division, Dynamical Business & Science Society–DBSS International SAS, Bogotá 110861, Colombia
- Research Group in Biochemistry and Molecular Biology, Universidad Distrital Francisco José de Caldas, Bogotá 110311, Colombia
- Research Group in Physical Activity, Sports and Health Sciences (GICAFS), Universidad de Córdoba, Montería 230002, Colombia
- kDNA Genomics, Joxe Mari Korta Research Center, University of the Basque Country UPV/EHU, 20018 Donostia-San Sebastián, Spain
- Correspondence: ; Tel.: +57-320-335-2050
| | - Richard B. Kreider
- Exercise & Sport Nutrition Laboratory, Human Clinical Research Facility, Texas A&M University, College Station, TX 77843, USA;
| | - Jeffrey R. Stout
- Physiology of Work and Exercise Response (POWER) Laboratory, Institute of Exercise Physiology and Rehabilitation Science, University of Central Florida, Orlando, FL 32816, USA;
| | - Diego A. Forero
- Professional Program in Sport Training, School of Health and Sport Sciences, Fundación Universitaria del Área Andina, Bogotá 111221, Colombia;
| | - Chad M. Kerksick
- Exercise and Performance Nutrition Laboratory, School of Health Sciences, Lindenwood University, Saint Charles, MO 63301, USA;
| | - Michael D. Roberts
- School of Kinesiology, Auburn University, Auburn, AL 36849, USA;
- Edward via College of Osteopathic Medicine, Auburn, AL 36849, USA
| | - Eric S. Rawson
- Department of Health, Nutrition and Exercise Science, Messiah University, Mechanicsburg, PA 17055, USA;
| |
Collapse
|
16
|
Kuznetsov AV, Javadov S, Margreiter R, Grimm M, Hagenbuchner J, Ausserlechner MJ. Structural and functional remodeling of mitochondria as an adaptive response to energy deprivation. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2021; 1862:148393. [PMID: 33549532 DOI: 10.1016/j.bbabio.2021.148393] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Subscribe] [Scholar Register] [Received: 10/18/2020] [Revised: 01/21/2021] [Accepted: 01/31/2021] [Indexed: 01/23/2023]
Abstract
Cancer cells bioenergetics is more dependent on glycolysis than mitochondrial oxidative phosphorylation, a phenomenon known as the Warburg Effect. It has been proposed that inhibition of glycolysis may selectively affect cancer cells. However, the effects of glycolysis inhibition on mitochondrial function and structure in cancer cells are not completely understood. Here, we investigated the comparative effects of 2-deoxy-d-glucose (2-DG, a glucose analogue, which suppresses cellular glycolysis) on cellular bioenergetics in human colon cancer DLD-1 cells, smooth muscle cells, human umbilical vein endothelial cells and HL-1 cardiomyocytes. In all cells, 2-DG treatment resulted in significant ATP depletion, however, the cell viability remained unchanged. Also, we did not observe the synergistic effects of 2-DG with anticancer drugs doxorubicin and 5-fluorouracil. Instead, after 2-DG treatment and ATP depletion, mitochondrial respiration and membrane potential were significantly enhanced and mitochondrial morphology changed in the direction of more network organization. Analysis of protein expression demonstrated that 2-DG treatment induced an activation of AMPK (elevated pAMPK/AMPK ratio), increased mitochondrial fusion (mitofusins 1 and 2) and decreased fission (Drp1) proteins. In conclusion, this study suggests a strong link between respiratory function and structural organization of mitochondria in the cell. We propose that the functionality of the mitochondrial network is enhanced compared to disconnected mitochondria.
Collapse
Affiliation(s)
- Andrey V Kuznetsov
- Cardiac Surgery Research Laboratory, Department of Cardiac Surgery, Innsbruck Medical University, Innsbruck, Austria; Department of Pediatrics I, Medical University of Innsbruck, Innsbruck, Austria.
| | - Sabzali Javadov
- Department of Physiology, School of Medicine, University of Puerto Rico, San Juan, PR, USA.
| | - Raimund Margreiter
- Department of Visceral, Transplant and Thoracic Surgery, Medical University of Innsbruck, Innsbruck, Austria.
| | - Michael Grimm
- Cardiac Surgery Research Laboratory, Department of Cardiac Surgery, Innsbruck Medical University, Innsbruck, Austria.
| | - Judith Hagenbuchner
- Department of Pediatrics II, Medical University of Innsbruck, Innsbruck, Austria.
| | | |
Collapse
|
17
|
Ramos SV, Hughes MC, Delfinis LJ, Bellissimo CA, Perry CGR. Mitochondrial bioenergetic dysfunction in the D2.mdx model of Duchenne muscular dystrophy is associated with microtubule disorganization in skeletal muscle. PLoS One 2020; 15:e0237138. [PMID: 33002037 PMCID: PMC7529311 DOI: 10.1371/journal.pone.0237138] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2019] [Accepted: 07/21/2020] [Indexed: 11/25/2022] Open
Abstract
In Duchenne muscular dystrophy, a lack of dystrophin leads to extensive muscle weakness and atrophy that is linked to cellular metabolic dysfunction and oxidative stress. This dystrophinopathy results in a loss of tethering between microtubules and the sarcolemma. Microtubules are also believed to regulate mitochondrial bioenergetics potentially by binding the outer mitochondrial membrane voltage dependent anion channel (VDAC) and influencing permeability to ADP/ATP cycling. The objective of this investigation was to determine if a lack of dystrophin causes microtubule disorganization concurrent with mitochondrial dysfunction in skeletal muscle, and whether this relationship is linked to altered binding of tubulin to VDAC. In extensor digitorum longus (EDL) muscle from 4-week old D2.mdx mice, microtubule disorganization was observed when probing for α-tubulin. This cytoskeletal disorder was associated with a reduced ability of ADP to stimulate respiration and attenuate H2O2 emission relative to wildtype controls. However, this was not associated with altered α-tubulin-VDAC2 interactions. These findings reveal that microtubule disorganization in dystrophin-deficient EDL is associated with impaired ADP control of mitochondrial bioenergetics, and suggests that mechanisms alternative to α-tubulin’s regulation of VDAC2 should be examined to understand how cytoskeletal disruption in the absence of dystrophin may cause metabolic dysfunctions in skeletal muscle.
Collapse
Affiliation(s)
- Sofhia V. Ramos
- School of Kinesiology and Health Sciences, Muscle Health Research Centre, York University, Toronto, Ontario, Canada
| | - Meghan C. Hughes
- School of Kinesiology and Health Sciences, Muscle Health Research Centre, York University, Toronto, Ontario, Canada
| | - Luca J. Delfinis
- School of Kinesiology and Health Sciences, Muscle Health Research Centre, York University, Toronto, Ontario, Canada
| | - Catherine A. Bellissimo
- School of Kinesiology and Health Sciences, Muscle Health Research Centre, York University, Toronto, Ontario, Canada
| | - Christopher G. R. Perry
- School of Kinesiology and Health Sciences, Muscle Health Research Centre, York University, Toronto, Ontario, Canada
- * E-mail:
| |
Collapse
|
18
|
Miotto PM, Petrick HL, Holloway GP. Acute insulin deprivation results in altered mitochondrial substrate sensitivity conducive to greater fatty acid transport. Am J Physiol Endocrinol Metab 2020; 319:E345-E353. [PMID: 32543943 PMCID: PMC7473910 DOI: 10.1152/ajpendo.00495.2019] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Type 1 and type 2 diabetes are both tightly associated with impaired glucose control. Although both pathologies stem from different mechanisms, a reduction in insulin action coincides with drastic metabolic dysfunction in skeletal muscle and metabolic inflexibility. However, the underlying explanation for this response remains poorly understood, particularly since it is difficult to distinguish the role of attenuated insulin action from the detrimental effects of reactive lipid accumulation, which impairs mitochondrial function and promotes reactive oxygen species (ROS) emission. We therefore utilized streptozotocin to examine the effects of acute insulin deprivation, in the absence of a high-lipid/nutrient excess environment, on the regulation of mitochondrial substrate sensitivity and ROS emission. The ablation of insulin resulted in reductions in absolute mitochondrial oxidative capacity and ADP-supported respiration and reduced the ability for malonyl-CoA to inhibit carnitine palmitoyltransferase I (CPT-I) and suppress fatty acid-supported respiration. These bioenergetic responses coincided with increased mitochondrial-derived H2O2 emission and lipid transporter content, independent of major mitochondrial substrate transporter proteins and enzymes involved in fatty acid oxidation. Together, these data suggest that attenuated/ablated insulin signaling does not affect mitochondrial ADP sensitivity, whereas the increased reliance on fatty acid oxidation in situations where insulin action is reduced may occur as a result of altered regulation of mitochondrial fatty acid transport through CPT-I.
Collapse
Affiliation(s)
- Paula M Miotto
- Department of Human Health & Nutritional Sciences, University of Guelph, Guelph, Ontario, Canada
| | - Heather L Petrick
- Department of Human Health & Nutritional Sciences, University of Guelph, Guelph, Ontario, Canada
| | - Graham P Holloway
- Department of Human Health & Nutritional Sciences, University of Guelph, Guelph, Ontario, Canada
| |
Collapse
|
19
|
Zuurbier CJ, Bertrand L, Beauloye CR, Andreadou I, Ruiz‐Meana M, Jespersen NR, Kula‐Alwar D, Prag HA, Eric Botker H, Dambrova M, Montessuit C, Kaambre T, Liepinsh E, Brookes PS, Krieg T. Cardiac metabolism as a driver and therapeutic target of myocardial infarction. J Cell Mol Med 2020; 24:5937-5954. [PMID: 32384583 PMCID: PMC7294140 DOI: 10.1111/jcmm.15180] [Citation(s) in RCA: 121] [Impact Index Per Article: 24.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2020] [Revised: 02/13/2020] [Accepted: 03/08/2020] [Indexed: 12/11/2022] Open
Abstract
Reducing infarct size during a cardiac ischaemic-reperfusion episode is still of paramount importance, because the extension of myocardial necrosis is an important risk factor for developing heart failure. Cardiac ischaemia-reperfusion injury (IRI) is in principle a metabolic pathology as it is caused by abruptly halted metabolism during the ischaemic episode and exacerbated by sudden restart of specific metabolic pathways at reperfusion. It should therefore not come as a surprise that therapy directed at metabolic pathways can modulate IRI. Here, we summarize the current knowledge of important metabolic pathways as therapeutic targets to combat cardiac IRI. Activating metabolic pathways such as glycolysis (eg AMPK activators), glucose oxidation (activating pyruvate dehydrogenase complex), ketone oxidation (increasing ketone plasma levels), hexosamine biosynthesis pathway (O-GlcNAcylation; administration of glucosamine/glutamine) and deacetylation (activating sirtuins 1 or 3; administration of NAD+ -boosting compounds) all seem to hold promise to reduce acute IRI. In contrast, some metabolic pathways may offer protection through diminished activity. These pathways comprise the malate-aspartate shuttle (in need of novel specific reversible inhibitors), mitochondrial oxygen consumption, fatty acid oxidation (CD36 inhibitors, malonyl-CoA decarboxylase inhibitors) and mitochondrial succinate metabolism (malonate). Additionally, protecting the cristae structure of the mitochondria during IR, by maintaining the association of hexokinase II or creatine kinase with mitochondria, or inhibiting destabilization of FO F1 -ATPase dimers, prevents mitochondrial damage and thereby reduces cardiac IRI. Currently, the most promising and druggable metabolic therapy against cardiac IRI seems to be the singular or combined targeting of glycolysis, O-GlcNAcylation and metabolism of ketones, fatty acids and succinate.
Collapse
Affiliation(s)
- Coert J. Zuurbier
- Department of AnesthesiologyLaboratory of Experimental Intensive Care and AnesthesiologyAmsterdam Infection & ImmunityAmsterdam Cardiovascular SciencesAmsterdam UMCUniversity of AmsterdamAmsterdamThe Netherlands
| | - Luc Bertrand
- Institut de Recherche Expérimentale et CliniquePole of Cardiovascular ResearchUniversité catholique de LouvainBrusselsBelgium
| | - Christoph R. Beauloye
- Institut de Recherche Expérimentale et CliniquePole of Cardiovascular ResearchUniversité catholique de LouvainBrusselsBelgium
- Cliniques Universitaires Saint‐LucBrusselsBelgium
| | - Ioanna Andreadou
- Laboratory of PharmacologyFaculty of PharmacyNational and Kapodistrian University of AthensAthensGreece
| | - Marisol Ruiz‐Meana
- Department of CardiologyHospital Universitari Vall d’HebronVall d’Hebron Institut de Recerca (VHIR)CIBER‐CVUniversitat Autonoma de Barcelona and Centro de Investigación Biomédica en Red‐CVMadridSpain
| | | | | | - Hiran A. Prag
- Department of MedicineUniversity of CambridgeCambridgeUK
| | - Hans Eric Botker
- Department of CardiologyAarhus University HospitalAarhus NDenmark
| | - Maija Dambrova
- Pharmaceutical PharmacologyLatvian Institute of Organic SynthesisRigaLatvia
| | - Christophe Montessuit
- Department of Pathology and ImmunologyUniversity of Geneva School of MedicineGenevaSwitzerland
| | - Tuuli Kaambre
- Laboratory of Chemical BiologyNational Institute of Chemical Physics and BiophysicsTallinnEstonia
| | - Edgars Liepinsh
- Pharmaceutical PharmacologyLatvian Institute of Organic SynthesisRigaLatvia
| | - Paul S. Brookes
- Department of AnesthesiologyUniversity of Rochester Medical CenterRochesterNYUSA
| | - Thomas Krieg
- Department of MedicineUniversity of CambridgeCambridgeUK
| |
Collapse
|
20
|
Deletion of VDAC1 Hinders Recovery of Mitochondrial and Renal Functions After Acute Kidney Injury. Biomolecules 2020; 10:biom10040585. [PMID: 32290153 PMCID: PMC7226369 DOI: 10.3390/biom10040585] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Revised: 04/06/2020] [Accepted: 04/07/2020] [Indexed: 12/31/2022] Open
Abstract
Voltage-dependent anion channels (VDACs) constitute major transporters mediating bidirectional movement of solutes between cytoplasm and mitochondria. We aimed to determine if VDAC1 plays a role in recovery of mitochondrial and kidney functions after ischemia-induced acute kidney injury (AKI). Kidney function decreased after ischemia and recovered in wild-type (WT), but not in VDAC1-deficient mice. Mitochondrial maximum respiration, activities of respiratory complexes and FoF1-ATPase, and ATP content in renal cortex decreased after ischemia and recovered in WT mice. VDAC1 deletion reduced respiration and ATP content in non-injured kidneys. Further, VDAC1 deletion blocked return of activities of respiratory complexes and FoF1-ATPase, and recovery of respiration and ATP content after ischemia. Deletion of VDAC1 exacerbated ischemia-induced mitochondrial fission, but did not aggravate morphological damage to proximal tubules after ischemia. However, VDAC1 deficiency impaired recovery of kidney morphology and increased renal interstitial collagen accumulation. Thus, our data show a novel role for VDAC1 in regulating renal mitochondrial dynamics and recovery of mitochondrial function and ATP levels after AKI. We conclude that the presence of VDAC1 (1) stimulates capacity of renal mitochondria for respiration and ATP production, (2) reduces mitochondrial fission, (3) promotes recovery of mitochondrial function and dynamics, renal morphology, and kidney functions, and (4) increases survival after AKI.
Collapse
|
21
|
Calbet JAL, Martín-Rodríguez S, Martin-Rincon M, Morales-Alamo D. An integrative approach to the regulation of mitochondrial respiration during exercise: Focus on high-intensity exercise. Redox Biol 2020; 35:101478. [PMID: 32156501 PMCID: PMC7284910 DOI: 10.1016/j.redox.2020.101478] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2020] [Revised: 02/20/2020] [Accepted: 02/23/2020] [Indexed: 12/14/2022] Open
Abstract
During exercise, muscle ATP demand increases with intensity, and at the highest power output, ATP consumption may increase more than 100-fold above the resting level. The rate of mitochondrial ATP production during exercise depends on the availability of O2, carbon substrates, reducing equivalents, ADP, Pi, free creatine, and Ca2+. It may also be modulated by acidosis, nitric oxide and reactive oxygen and nitrogen species (RONS). During fatiguing and repeated sprint exercise, RONS production may cause oxidative stress and damage to cellular structures and may reduce mitochondrial efficiency. Human studies indicate that the relatively low mitochondrial respiratory rates observed during sprint exercise are not due to lack of O2, or insufficient provision of Ca2+, reduced equivalents or carbon substrates, being a suboptimal stimulation by ADP the most plausible explanation. Recent in vitro studies with isolated skeletal muscle mitochondria, studied in conditions mimicking different exercise intensities, indicate that ROS production during aerobic exercise amounts to 1-2 orders of magnitude lower than previously thought. In this review, we will focus on the mechanisms regulating mitochondrial respiration, particularly during high-intensity exercise. We will analyze the factors that limit mitochondrial respiration and those that determine mitochondrial efficiency during exercise. Lastly, the differences in mitochondrial respiration between men and women will be addressed.
Collapse
Affiliation(s)
- Jose A L Calbet
- Department of Physical Education, University of Las Palmas de Gran Canaria, Campus Universitario de Tafira s/n, 35017, Las Palmas de Gran Canaria, Spain; Research Institute of Biomedical and Health Sciences (IUIBS), University of Las Palmas de Gran Canaria, Paseo Blas Cabrera Felipe "Físico" (s/n), 35017, Las Palmas de Gran Canaria, Canary Islands, Spain; Department of Physical Performance, The Norwegian School of Sport Sciences, Postboks, 4014 Ulleval Stadion, 0806 Oslo, Norway.
| | - Saúl Martín-Rodríguez
- Department of Physical Education, University of Las Palmas de Gran Canaria, Campus Universitario de Tafira s/n, 35017, Las Palmas de Gran Canaria, Spain; Research Institute of Biomedical and Health Sciences (IUIBS), University of Las Palmas de Gran Canaria, Paseo Blas Cabrera Felipe "Físico" (s/n), 35017, Las Palmas de Gran Canaria, Canary Islands, Spain
| | - Marcos Martin-Rincon
- Department of Physical Education, University of Las Palmas de Gran Canaria, Campus Universitario de Tafira s/n, 35017, Las Palmas de Gran Canaria, Spain; Research Institute of Biomedical and Health Sciences (IUIBS), University of Las Palmas de Gran Canaria, Paseo Blas Cabrera Felipe "Físico" (s/n), 35017, Las Palmas de Gran Canaria, Canary Islands, Spain
| | - David Morales-Alamo
- Department of Physical Education, University of Las Palmas de Gran Canaria, Campus Universitario de Tafira s/n, 35017, Las Palmas de Gran Canaria, Spain; Research Institute of Biomedical and Health Sciences (IUIBS), University of Las Palmas de Gran Canaria, Paseo Blas Cabrera Felipe "Físico" (s/n), 35017, Las Palmas de Gran Canaria, Canary Islands, Spain
| |
Collapse
|
22
|
Kuznetsov AV, Javadov S, Grimm M, Margreiter R, Ausserlechner MJ, Hagenbuchner J. Crosstalk between Mitochondria and Cytoskeleton in Cardiac Cells. Cells 2020; 9:cells9010222. [PMID: 31963121 PMCID: PMC7017221 DOI: 10.3390/cells9010222] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Revised: 01/10/2020] [Accepted: 01/13/2020] [Indexed: 12/28/2022] Open
Abstract
Elucidation of the mitochondrial regulatory mechanisms for the understanding of muscle bioenergetics and the role of mitochondria is a fundamental problem in cellular physiology and pathophysiology. The cytoskeleton (microtubules, intermediate filaments, microfilaments) plays a central role in the maintenance of mitochondrial shape, location, and motility. In addition, numerous interactions between cytoskeletal proteins and mitochondria can actively participate in the regulation of mitochondrial respiration and oxidative phosphorylation. In cardiac and skeletal muscles, mitochondrial positions are tightly fixed, providing their regular arrangement and numerous interactions with other cellular structures such as sarcoplasmic reticulum and cytoskeleton. This can involve association of cytoskeletal proteins with voltage-dependent anion channel (VDAC), thereby, governing the permeability of the outer mitochondrial membrane (OMM) to metabolites, and regulating cell energy metabolism. Cardiomyocytes and myocardial fibers demonstrate regular arrangement of tubulin beta-II isoform entirely co-localized with mitochondria, in contrast to other isoforms of tubulin. This observation suggests the participation of tubulin beta-II in the regulation of OMM permeability through interaction with VDAC. The OMM permeability is also regulated by the specific isoform of cytolinker protein plectin. This review summarizes and discusses previous studies on the role of cytoskeletal proteins in the regulation of energy metabolism and mitochondrial function, adenosine triphosphate (ATP) production, and energy transfer.
Collapse
Affiliation(s)
- Andrey V. Kuznetsov
- Cardiac Surgery Research Laboratory, Department of Cardiac Surgery, Innsbruck Medical University, 6020 Innsbruck, Austria;
- Department of Paediatrics I, Medical University of Innsbruck, 6020 Innsbruck, Austria;
- Correspondence: (A.V.K.); (J.H.); Tel.: +43-512-504-27815 (A.V.K.); +43-512-504-81578 (J.H.)
| | - Sabzali Javadov
- Department of Physiology, School of Medicine, University of Puerto Rico, San Juan, PR 00936-5067, USA;
| | - Michael Grimm
- Cardiac Surgery Research Laboratory, Department of Cardiac Surgery, Innsbruck Medical University, 6020 Innsbruck, Austria;
| | - Raimund Margreiter
- Department of Visceral, Transplant and Thoracic Surgery, Medical University of Innsbruck, 6020 Innsbruck, Austria;
| | | | - Judith Hagenbuchner
- Department of Paediatrics II, Medical University of Innsbruck, 6020 Innsbruck, Austria
- Correspondence: (A.V.K.); (J.H.); Tel.: +43-512-504-27815 (A.V.K.); +43-512-504-81578 (J.H.)
| |
Collapse
|
23
|
Tepp K, Puurand M, Timohhina N, Aid-Vanakova J, Reile I, Shevchuk I, Chekulayev V, Eimre M, Peet N, Kadaja L, Paju K, Käämbre T. Adaptation of striated muscles to Wolframin deficiency in mice: Alterations in cellular bioenergetics. Biochim Biophys Acta Gen Subj 2020; 1864:129523. [PMID: 31935437 DOI: 10.1016/j.bbagen.2020.129523] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2019] [Revised: 01/09/2020] [Accepted: 01/10/2020] [Indexed: 12/12/2022]
Abstract
BACKGROUND Wolfram syndrome (WS), caused by mutations in WFS1 gene, is a multi-targeting disease affecting multiple organ systems. Wolframin is localized in the membrane of the endoplasmic reticulum (ER), influencing Ca2+ metabolism and ER interaction with mitochondria, but the exact role of the protein remains unclear. In this study we aimed to characterize alterations in energy metabolism in the cardiac and in the oxidative and glycolytic skeletal muscles in Wfs1-deficiency. METHODS Alterations in the bioenergetic profiles in the cardiac and skeletal muscles of Wfs1-knock-out (KO) male mice and their wild type male littermates were determined using high resolution respirometry, quantitative RT-PCR, NMR spectroscopy, and immunofluorescence confocal microscopy. RESULTS Oxygen consumption without ATP synthase activation (leak) was significantly higher in the glycolytic muscles of Wfs1 KO mice compared to wild types. ADP-stimulated respiration with glutamate and malate was reduced in the Wfs1-deficient cardiac as well as oxidative and glycolytic skeletal muscles. CONCLUSIONS Wfs1-deficiency in both cardiac and skeletal muscles results in functional alterations of energy transport from mitochondria to ATP-ases. There was a substrate-dependent decrease in the maximal Complex I -linked respiratory capacity of the electron transport system in muscles of Wfs1 KO mice. Moreover, in cardiac and gastrocnemius white muscles a decrease in the function of one pathway were balanced by the increase in the activity of the parallel pathway. GENERAL SIGNIFICANCE This work provides new insights to the muscle involvement at early stages of metabolic syndrome like WS as well as developing glucose intolerance.
Collapse
Affiliation(s)
- Kersti Tepp
- Laboratory of Chemical Biology, National Institute of Chemical Physics and Biophysics, Akadeemia tee 23, 12618 Tallinn, Estonia.
| | - Marju Puurand
- Laboratory of Chemical Biology, National Institute of Chemical Physics and Biophysics, Akadeemia tee 23, 12618 Tallinn, Estonia
| | - Natalja Timohhina
- Laboratory of Chemical Biology, National Institute of Chemical Physics and Biophysics, Akadeemia tee 23, 12618 Tallinn, Estonia
| | - Jekaterina Aid-Vanakova
- Laboratory of Chemical Biology, National Institute of Chemical Physics and Biophysics, Akadeemia tee 23, 12618 Tallinn, Estonia
| | - Indrek Reile
- Laboratory of Chemical Physics, National Institute of Chemical Physics and Biophysics, Akadeemia tee 23, 12618 Tallinn, Estonia
| | - Igor Shevchuk
- Laboratory of Chemical Biology, National Institute of Chemical Physics and Biophysics, Akadeemia tee 23, 12618 Tallinn, Estonia
| | - Vladimir Chekulayev
- Laboratory of Chemical Biology, National Institute of Chemical Physics and Biophysics, Akadeemia tee 23, 12618 Tallinn, Estonia
| | - Margus Eimre
- Department of Pathophysiology, Institute of Biomedicine and Translational Medicine, University of Tartu, Ravila 19, 50411 Tartu, Estonia
| | - Nadežda Peet
- Department of Pathophysiology, Institute of Biomedicine and Translational Medicine, University of Tartu, Ravila 19, 50411 Tartu, Estonia
| | - Lumme Kadaja
- Department of Pathophysiology, Institute of Biomedicine and Translational Medicine, University of Tartu, Ravila 19, 50411 Tartu, Estonia
| | - Kalju Paju
- Department of Pathophysiology, Institute of Biomedicine and Translational Medicine, University of Tartu, Ravila 19, 50411 Tartu, Estonia
| | - Tuuli Käämbre
- Laboratory of Chemical Biology, National Institute of Chemical Physics and Biophysics, Akadeemia tee 23, 12618 Tallinn, Estonia
| |
Collapse
|
24
|
Lyra-Leite DM, Andres AM, Cho N, Petersen AP, Ariyasinghe NR, Kim SS, Gottlieb RA, McCain ML. Matrix-guided control of mitochondrial function in cardiac myocytes. Acta Biomater 2019; 97:281-295. [PMID: 31401347 PMCID: PMC6801042 DOI: 10.1016/j.actbio.2019.08.007] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2018] [Revised: 07/31/2019] [Accepted: 08/02/2019] [Indexed: 02/08/2023]
Abstract
In ventricular myocardium, extracellular matrix (ECM) remodeling is a hallmark of physiological and pathological growth, coincident with metabolic rewiring of cardiac myocytes. However, the direct impact of the biochemical and mechanical properties of the ECM on the metabolic function of cardiac myocytes is mostly unknown. Furthermore, understanding the impact of distinct biomaterials on cardiac myocyte metabolism is critical for engineering physiologically-relevant models of healthy and diseased myocardium. For these reasons, we systematically measured morphological and metabolic responses of neonatal rat ventricular myocytes cultured on fibronectin- or gelatin-coated polydimethylsiloxane (PDMS) of three elastic moduli and gelatin hydrogels with four elastic moduli. On all substrates, total protein content, cell morphology, and the ratio of mitochondrial DNA to nuclear DNA were preserved. Cytotoxicity was low on all substrates, although slightly higher on PDMS compared to gelatin hydrogels. We also quantified oxygen consumption rates and extracellular acidification rates using a Seahorse extracellular flux analyzer. Our data indicate that several metrics associated with baseline glycolysis and baseline and maximum mitochondrial function are enhanced when cardiac myocytes are cultured on gelatin hydrogels compared to all PDMS substrates, irrespective of substrate rigidity. These results yield new insights into how mechanical and biochemical cues provided by the ECM impact mitochondrial function in cardiac myocytes. STATEMENT OF SIGNIFICANCE: Cardiac development and disease are associated with remodeling of the extracellular matrix coincident with metabolic rewiring of cardiac myocytes. However, little is known about the direct impact of the biochemical and mechanical properties of the extracellular matrix on the metabolic function of cardiac myocytes. In this study, oxygen consumption rates were measured in neonatal rat ventricular myocytes maintained on several commonly-used biomaterial substrates to reveal new relationships between the extracellular matrix and cardiac myocyte metabolism. Several mitochondrial parameters were enhanced on gelatin hydrogels compared to synthetic PDMS substrates. These data are important for comprehensively understanding matrix-regulation of cardiac myocyte physiology. Additionally, these data should be considered when selecting scaffolds for engineering in vitro cardiac tissue models.
Collapse
Affiliation(s)
- Davi M Lyra-Leite
- Laboratory for Living Systems Engineering, Department of Biomedical Engineering, USC Viterbi School of Engineering, University of Southern California, Los Angeles CA, 90089, United States
| | - Allen M Andres
- Smidt Heart Institute and Barbra Streisand Women's Heart Center, Cedars-Sinai Medical Center, Los Angeles CA, 90048, United States
| | - Nathan Cho
- Laboratory for Living Systems Engineering, Department of Biomedical Engineering, USC Viterbi School of Engineering, University of Southern California, Los Angeles CA, 90089, United States
| | - Andrew P Petersen
- Laboratory for Living Systems Engineering, Department of Biomedical Engineering, USC Viterbi School of Engineering, University of Southern California, Los Angeles CA, 90089, United States
| | - Nethika R Ariyasinghe
- Laboratory for Living Systems Engineering, Department of Biomedical Engineering, USC Viterbi School of Engineering, University of Southern California, Los Angeles CA, 90089, United States
| | - Suyon Sarah Kim
- Laboratory for Living Systems Engineering, Department of Biomedical Engineering, USC Viterbi School of Engineering, University of Southern California, Los Angeles CA, 90089, United States
| | - Roberta A Gottlieb
- Smidt Heart Institute and Barbra Streisand Women's Heart Center, Cedars-Sinai Medical Center, Los Angeles CA, 90048, United States
| | - Megan L McCain
- Laboratory for Living Systems Engineering, Department of Biomedical Engineering, USC Viterbi School of Engineering, University of Southern California, Los Angeles CA, 90089, United States; Department of Stem Cell Biology and Regenerative Medicine, Keck School of Medicine of USC, University of Southern California, Los Angeles CA, 90033, United States.
| |
Collapse
|
25
|
Hughes MC, Ramos SV, Turnbull PC, Rebalka IA, Cao A, Monaco CM, Varah NE, Edgett BA, Huber JS, Tadi P, Delfinis LJ, Schlattner U, Simpson JA, Hawke TJ, Perry CG. Early myopathy in Duchenne muscular dystrophy is associated with elevated mitochondrial H 2 O 2 emission during impaired oxidative phosphorylation. J Cachexia Sarcopenia Muscle 2019; 10:643-661. [PMID: 30938481 PMCID: PMC6596403 DOI: 10.1002/jcsm.12405] [Citation(s) in RCA: 85] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/02/2018] [Revised: 12/13/2018] [Accepted: 01/09/2019] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Muscle wasting and weakness in Duchenne muscular dystrophy (DMD) causes severe locomotor limitations and early death due in part to respiratory muscle failure. Given that current clinical practice focuses on treating secondary complications in this genetic disease, there is a clear need to identify additional contributions in the aetiology of this myopathy for knowledge-guided therapy development. Here, we address the unresolved question of whether the complex impairments observed in DMD are linked to elevated mitochondrial H2 O2 emission in conjunction with impaired oxidative phosphorylation. This study performed a systematic evaluation of the nature and degree of mitochondrial-derived H2 O2 emission and mitochondrial oxidative dysfunction in a mouse model of DMD by designing in vitro bioenergetic assessments that attempt to mimic in vivo conditions known to be critical for the regulation of mitochondrial bioenergetics. METHODS Mitochondrial bioenergetics were compared with functional and histopathological indices of myopathy early in DMD (4 weeks) in D2.B10-DMDmdx /2J mice (D2.mdx)-a model that demonstrates severe muscle weakness. Adenosine diphosphate's (ADP's) central effect of attenuating H2 O2 emission while stimulating respiration was compared under two models of mitochondrial-cytoplasmic phosphate exchange (creatine independent and dependent) in muscles that stained positive for membrane damage (diaphragm, quadriceps, and white gastrocnemius). RESULTS Pathway-specific analyses revealed that Complex I-supported maximal H2 O2 emission was elevated concurrent with a reduced ability of ADP to attenuate emission during respiration in all three muscles (mH2 O2 : +17 to +197% in D2.mdx vs. wild type). This was associated with an impaired ability of ADP to stimulate respiration at sub-maximal and maximal kinetics (-17 to -72% in D2.mdx vs. wild type), as well as a loss of creatine-dependent mitochondrial phosphate shuttling in diaphragm and quadriceps. These changes largely occurred independent of mitochondrial density or abundance of respiratory chain complexes, except for quadriceps. This muscle was also the only one exhibiting decreased calcium retention capacity, which indicates increased sensitivity to calcium-induced permeability transition pore opening. Increased H2 O2 emission was accompanied by a compensatory increase in total glutathione, while oxidative stress markers were unchanged. Mitochondrial bioenergetic dysfunctions were associated with induction of mitochondrial-linked caspase 9, necrosis, and markers of atrophy in some muscles as well as reduced hindlimb torque and reduced respiratory muscle function. CONCLUSIONS These results provide evidence that Complex I dysfunction and loss of central respiratory control by ADP and creatine cause elevated oxidant generation during impaired oxidative phosphorylation. These dysfunctions may contribute to early stage disease pathophysiology and support the growing notion that mitochondria are a potential therapeutic target in this disease.
Collapse
Affiliation(s)
- Meghan C. Hughes
- School of Kinesiology and Health Science, Muscle Health Research Centre, 344 Norman Bethune CollegeYork UniversityTorontoONCanada
| | - Sofhia V. Ramos
- School of Kinesiology and Health Science, Muscle Health Research Centre, 344 Norman Bethune CollegeYork UniversityTorontoONCanada
| | - Patrick C. Turnbull
- School of Kinesiology and Health Science, Muscle Health Research Centre, 344 Norman Bethune CollegeYork UniversityTorontoONCanada
| | - Irena A. Rebalka
- Department of Pathology and Molecular MedicineMcMaster UniversityHamiltonONCanada
| | - Andrew Cao
- Department of Pathology and Molecular MedicineMcMaster UniversityHamiltonONCanada
| | - Cynthia M.F. Monaco
- Department of Pathology and Molecular MedicineMcMaster UniversityHamiltonONCanada
| | - Nina E. Varah
- Department of Pathology and Molecular MedicineMcMaster UniversityHamiltonONCanada
| | - Brittany A. Edgett
- Department of Human Health and Nutritional Sciences and Cardiovascular Research GroupUniversity of GuelphGuelphONCanada
| | - Jason S. Huber
- Department of Human Health and Nutritional Sciences and Cardiovascular Research GroupUniversity of GuelphGuelphONCanada
| | - Peyman Tadi
- School of Kinesiology and Health Science, Muscle Health Research Centre, 344 Norman Bethune CollegeYork UniversityTorontoONCanada
| | - Luca J. Delfinis
- School of Kinesiology and Health Science, Muscle Health Research Centre, 344 Norman Bethune CollegeYork UniversityTorontoONCanada
| | - U. Schlattner
- Laboratory of Fundamental and Applied Bioenergetics (LBFA) and SFR Environmental and Systems Biology (BEeSy)University Grenoble AlpesGrenobleFrance
| | - Jeremy A. Simpson
- Department of Human Health and Nutritional Sciences and Cardiovascular Research GroupUniversity of GuelphGuelphONCanada
| | - Thomas J. Hawke
- Department of Pathology and Molecular MedicineMcMaster UniversityHamiltonONCanada
| | - Christopher G.R. Perry
- School of Kinesiology and Health Science, Muscle Health Research Centre, 344 Norman Bethune CollegeYork UniversityTorontoONCanada
| |
Collapse
|
26
|
Puurand M, Tepp K, Timohhina N, Aid J, Shevchuk I, Chekulayev V, Kaambre T. Tubulin βII and βIII Isoforms as the Regulators of VDAC Channel Permeability in Health and Disease. Cells 2019; 8:cells8030239. [PMID: 30871176 PMCID: PMC6468622 DOI: 10.3390/cells8030239] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2019] [Revised: 03/07/2019] [Accepted: 03/09/2019] [Indexed: 12/14/2022] Open
Abstract
In recent decades, there have been several models describing the relationships between the cytoskeleton and the bioenergetic function of the cell. The main player in these models is the voltage-dependent anion channel (VDAC), located in the mitochondrial outer membrane. Most metabolites including respiratory substrates, ADP, and Pi enter mitochondria only through VDAC. At the same time, high-energy phosphates are channeled out and directed to cellular energy transfer networks. Regulation of these energy fluxes is controlled by β-tubulin, bound to VDAC. It is also thought that β-tubulin‒VDAC interaction modulates cellular energy metabolism in cancer, e.g., switching from oxidative phosphorylation to glycolysis. In this review we focus on the described roles of unpolymerized αβ-tubulin heterodimers in regulating VDAC permeability for adenine nucleotides and cellular bioenergetics. We introduce the Mitochondrial Interactosome model and the function of the βII-tubulin subunit in this model in muscle cells and brain synaptosomes, and also consider the role of βIII-tubulin in cancer cells.
Collapse
Affiliation(s)
- Marju Puurand
- Laboratory of Chemical Biology, National Institute of Chemical Physics and Biophysics, Akadeemia tee 23, 12618 Tallinn, Estonia.
| | - Kersti Tepp
- Laboratory of Chemical Biology, National Institute of Chemical Physics and Biophysics, Akadeemia tee 23, 12618 Tallinn, Estonia.
| | - Natalja Timohhina
- Laboratory of Chemical Biology, National Institute of Chemical Physics and Biophysics, Akadeemia tee 23, 12618 Tallinn, Estonia.
| | - Jekaterina Aid
- Laboratory of Chemical Biology, National Institute of Chemical Physics and Biophysics, Akadeemia tee 23, 12618 Tallinn, Estonia.
| | - Igor Shevchuk
- Laboratory of Chemical Biology, National Institute of Chemical Physics and Biophysics, Akadeemia tee 23, 12618 Tallinn, Estonia.
| | - Vladimir Chekulayev
- Laboratory of Chemical Biology, National Institute of Chemical Physics and Biophysics, Akadeemia tee 23, 12618 Tallinn, Estonia.
| | - Tuuli Kaambre
- Laboratory of Chemical Biology, National Institute of Chemical Physics and Biophysics, Akadeemia tee 23, 12618 Tallinn, Estonia.
| |
Collapse
|
27
|
Hughes MC, Ramos SV, Turnbull PC, Edgett BA, Huber JS, Polidovitch N, Schlattner U, Backx PH, Simpson JA, Perry CGR. Impairments in left ventricular mitochondrial bioenergetics precede overt cardiac dysfunction and remodelling in Duchenne muscular dystrophy. J Physiol 2019; 598:1377-1392. [PMID: 30674086 DOI: 10.1113/jp277306] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2018] [Accepted: 01/22/2019] [Indexed: 12/21/2022] Open
Abstract
KEY POINTS Ninety-eight per cent of patients with Duchenne muscular dystrophy (DMD) develop cardiomyopathy, with 40% developing heart failure. While increased propensity for mitochondrial induction of cell death has been observed in left ventricle, it remains unknown whether this is linked to impaired mitochondrial respiratory control and elevated H2 O2 emission prior to the onset of cardiomyopathy. Classic mouse models of DMD demonstrate hyper-regeneration in skeletal muscle which may mask mitochondrial abnormalities. Using a model with less regenerative capacity that is more akin to DMD patients, we observed elevated left ventricular mitochondrial H2 O2 and impaired oxidative phosphorylation in the absence of cardiac remodelling or overt cardiac dysfunction at 4 weeks. These impairments were associated with dysfunctions at complex I, governance by ADP and creatine-dependent phosphate shuttling, which results in a less efficient response to energy demands. Mitochondria may be a therapeutic target for the treatment of cardiomyopathy in DMD. ABSTRACT In Duchenne muscular dystrophy (DMD), mitochondrial dysfunction is predicted as a response to numerous cellular stressors, yet the contribution of mitochondria to the onset of cardiomyopathy remains unknown. To resolve this uncertainty, we designed in vitro assessments of mitochondrial bioenergetics to model mitochondrial control parameters that influence cardiac function. Both left ventricular mitochondrial responsiveness to the central bioenergetic controller ADP and the ability of creatine to facilitate mitochondrial-cytoplasmic phosphate shuttling were assessed. These measurements were performed in D2.B10-DMDmdx /2J mice - a model that demonstrates skeletal muscle atrophy and weakness due to limited regenerative capacities and cardiomyopathy more akin to people with DMD than classic models. At 4 weeks of age, there was no evidence of cardiac remodelling or cardiac dysfunction despite impairments in ADP-stimulated respiration and ADP attenuation of H2 O2 emission. These impairments were seen at both submaximal and maximal ADP concentrations despite no reductions in mitochondrial content markers. The ability of creatine to enhance ADP's control of mitochondrial bioenergetics was also impaired, suggesting an impairment in mitochondrial creatine kinase-dependent phosphate shuttling. Susceptibly to permeability transition pore opening and the subsequent activation of cell death pathways remained unchanged. Mitochondrial H2 O2 emission was elevated despite no change in markers of irreversible oxidative damage, suggesting alternative redox signalling mechanisms should be explored. These findings demonstrate that selective mitochondrial dysfunction precedes the onset of overt cardiomyopathy in D2.mdx mice, suggesting that improving mitochondrial bioenergetics by restoring ADP, creatine-dependent phosphate shuttling and complex I should be considered for treating DMD patients.
Collapse
Affiliation(s)
- Meghan C Hughes
- School of Kinesiology and Health Science and the Muscle Health Research Centre, York University, Toronto, ON, Canada
| | - Sofhia V Ramos
- School of Kinesiology and Health Science and the Muscle Health Research Centre, York University, Toronto, ON, Canada
| | - Patrick C Turnbull
- School of Kinesiology and Health Science and the Muscle Health Research Centre, York University, Toronto, ON, Canada
| | - Brittany A Edgett
- Department of Human Health and Nutritional Sciences and Cardiovascular Research Group, University of Guelph, Guelph, ON, Canada.,Department of Pharmacology, Dalhousie Medicine New Brunswick, Saint John, New Brunswick, Canada.,IMPART Team Canada Investigator Network, Saint John, New Brunswick, Canada
| | - Jason S Huber
- Department of Human Health and Nutritional Sciences and Cardiovascular Research Group, University of Guelph, Guelph, ON, Canada
| | - Nazari Polidovitch
- Department of Biology and the Muscle Health Research Centre, York University, Toronto, ON, Canada
| | - Uwe Schlattner
- Laboratory of Fundamental and Applied Bioenergetics (LBFA) and SFR Environmental and Systems Biology (BEeSy), University Grenoble Alpes, Grenoble, France
| | - Peter H Backx
- Department of Biology and the Muscle Health Research Centre, York University, Toronto, ON, Canada
| | - Jeremy A Simpson
- Department of Human Health and Nutritional Sciences and Cardiovascular Research Group, University of Guelph, Guelph, ON, Canada.,IMPART Team Canada Investigator Network, Saint John, New Brunswick, Canada
| | - Christopher G R Perry
- School of Kinesiology and Health Science and the Muscle Health Research Centre, York University, Toronto, ON, Canada
| |
Collapse
|
28
|
Mado K, Chekulayev V, Shevchuk I, Puurand M, Tepp K, Kaambre T. On the role of tubulin, plectin, desmin, and vimentin in the regulation of mitochondrial energy fluxes in muscle cells. Am J Physiol Cell Physiol 2019; 316:C657-C667. [PMID: 30811221 DOI: 10.1152/ajpcell.00303.2018] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Mitochondria perform a central role in life and death of the eukaryotic cell. They are major players in the generation of macroergic compounds and function as integrated signaling pathways, including the regulation of Ca2+ signals and apoptosis. A growing amount of evidence is demonstrating that mitochondria of muscle cells use cytoskeletal proteins (both microtubules and intermediate filaments) not only for their movement and proper cellular positioning, but also to maintain their biogenesis, morphology, function, and regulation of energy fluxes through the outer mitochondrial membrane (MOM). Here we consider the known literature data concerning the role of tubulin, plectin, desmin and vimentin in bioenergetic function of mitochondria in striated muscle cells, as well as in controlling the permeability of MOM for adenine nucleotides (ADNs). This is of great interest since dysfunctionality of these cytoskeletal proteins has been shown to result in severe myopathy associated with pronounced mitochondrial dysfunction. Further efforts are needed to uncover the pathways by which the cytoskeleton supports the functional capacity of mitochondria and transport of ADN(s) across the MOM (through voltage-dependent anion channel).
Collapse
Affiliation(s)
- Kati Mado
- Laboratory of Chemical Biology, National Institute of Chemical Physics and Biophysics , Tallinn , Estonia
| | - Vladimir Chekulayev
- Laboratory of Chemical Biology, National Institute of Chemical Physics and Biophysics , Tallinn , Estonia
| | - Igor Shevchuk
- Laboratory of Chemical Biology, National Institute of Chemical Physics and Biophysics , Tallinn , Estonia
| | - Marju Puurand
- Laboratory of Chemical Biology, National Institute of Chemical Physics and Biophysics , Tallinn , Estonia
| | - Kersti Tepp
- Laboratory of Chemical Biology, National Institute of Chemical Physics and Biophysics , Tallinn , Estonia
| | - Tuuli Kaambre
- Laboratory of Chemical Biology, National Institute of Chemical Physics and Biophysics , Tallinn , Estonia
| |
Collapse
|
29
|
Ramos SV, Hughes MC, Perry CGR. Altered skeletal muscle microtubule-mitochondrial VDAC2 binding is related to bioenergetic impairments after paclitaxel but not vinblastine chemotherapies. Am J Physiol Cell Physiol 2019; 316:C449-C455. [PMID: 30624982 DOI: 10.1152/ajpcell.00384.2018] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Microtubule-targeting chemotherapies are linked to impaired cellular metabolism, which may contribute to skeletal muscle dysfunction. However, the mechanisms by which metabolic homeostasis is perturbed remains unknown. Tubulin, the fundamental unit of microtubules, has been implicated in the regulation of mitochondrial-cytosolic ADP/ATP exchange through its interaction with the outer membrane voltage-dependent anion channel (VDAC). Based on this model, we predicted that disrupting microtubule architecture with the stabilizer paclitaxel and destabilizer vinblastine would impair skeletal muscle mitochondrial bioenergetics. Here, we provide in vitro evidence of a direct interaction between both α-tubulin and βII-tubulin with VDAC2 in untreated single extensor digitorum longus (EDL) fibers. Paclitaxel increased both α- and βII-tubulin-VDAC2 interactions, whereas vinblastine had no effect. Utilizing a permeabilized muscle fiber bundle preparation that retains the cytoskeleton, paclitaxel treatment impaired the ability of ADP to attenuate H2O2 emission, resulting in greater H2O2 emission kinetics. Despite no effect on tubulin-VDAC2 binding, vinblastine still altered mitochondrial bioenergetics through a surprising increase in ADP-stimulated respiration while also impairing ADP suppression of H2O2 and increasing mitochondrial susceptibility to calcium-induced formation of the proapoptotic permeability transition pore. Collectively, these results demonstrate that altering microtubule architecture with chemotherapeutics disrupts mitochondrial bioenergetics in EDL skeletal muscle. Specifically, microtubule stabilization increases H2O2 emission by impairing ADP sensitivity in association with greater tubulin-VDAC binding. In contrast, decreasing microtubule abundance triggers a broad impairment of ADP's governance of respiration and H2O2 emission as well as calcium retention capacity, albeit through an unknown mechanism.
Collapse
Affiliation(s)
- Sofhia V Ramos
- School of Kinesiology and Health Science, Muscle Health Research Centre, York University , Toronto, Ontario , Canada
| | - Meghan C Hughes
- School of Kinesiology and Health Science, Muscle Health Research Centre, York University , Toronto, Ontario , Canada
| | - Christopher G R Perry
- School of Kinesiology and Health Science, Muscle Health Research Centre, York University , Toronto, Ontario , Canada
| |
Collapse
|
30
|
Ariyasinghe NR, Lyra-Leite DM, McCain ML. Engineering cardiac microphysiological systems to model pathological extracellular matrix remodeling. Am J Physiol Heart Circ Physiol 2018; 315:H771-H789. [PMID: 29906229 PMCID: PMC6230901 DOI: 10.1152/ajpheart.00110.2018] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/08/2018] [Revised: 05/27/2018] [Accepted: 06/08/2018] [Indexed: 12/11/2022]
Abstract
Many cardiovascular diseases are associated with pathological remodeling of the extracellular matrix (ECM) in the myocardium. ECM remodeling is a complex, multifactorial process that often contributes to declines in myocardial function and progression toward heart failure. However, the direct effects of the many forms of ECM remodeling on myocardial cell and tissue function remain elusive, in part because conventional model systems used to investigate these relationships lack robust experimental control over the ECM. To address these shortcomings, microphysiological systems are now being developed and implemented to establish direct relationships between distinct features in the ECM and myocardial function with unprecedented control and resolution in vitro. In this review, we will first highlight the most prominent characteristics of ECM remodeling in cardiovascular disease and describe how these features can be mimicked with synthetic and natural biomaterials that offer independent control over multiple ECM-related parameters, such as rigidity and composition. We will then detail innovative microfabrication techniques that enable precise regulation of cellular architecture in two and three dimensions. We will also describe new approaches for quantifying multiple aspects of myocardial function in vitro, such as contractility, action potential propagation, and metabolism. Together, these collective technologies implemented as cardiac microphysiological systems will continue to uncover important relationships between pathological ECM remodeling and myocardial cell and tissue function, leading to new fundamental insights into cardiovascular disease, improved human disease models, and novel therapeutic approaches.
Collapse
Affiliation(s)
- Nethika R Ariyasinghe
- Laboratory for Living Systems Engineering, Department of Biomedical Engineering, USC Viterbi School of Engineering, University of Southern California , Los Angeles, California
| | - Davi M Lyra-Leite
- Laboratory for Living Systems Engineering, Department of Biomedical Engineering, USC Viterbi School of Engineering, University of Southern California , Los Angeles, California
| | - Megan L McCain
- Laboratory for Living Systems Engineering, Department of Biomedical Engineering, USC Viterbi School of Engineering, University of Southern California , Los Angeles, California
- Department of Stem Cell Biology and Regenerative Medicine, Keck School of Medicine, University of Southern California , Los Angeles, California
| |
Collapse
|
31
|
Klepinin A, Ounpuu L, Mado K, Truu L, Chekulayev V, Puurand M, Shevchuk I, Tepp K, Planken A, Kaambre T. The complexity of mitochondrial outer membrane permeability and VDAC regulation by associated proteins. J Bioenerg Biomembr 2018; 50:339-354. [PMID: 29998379 PMCID: PMC6209068 DOI: 10.1007/s10863-018-9765-9] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2018] [Accepted: 07/05/2018] [Indexed: 12/18/2022]
Abstract
Previous studies have shown that class II β-tubulin plays a key role in the regulation of oxidative phosphorylation (OXPHOS) in some highly differentiated cells, but its role in malignant cells has remained unclear. To clarify these aspects, we compared the bioenergetic properties of HL-1 murine sarcoma cells, murine neuroblastoma cells (uN2a) and retinoic acid - differentiated N2a cells (dN2a). We examined the expression and possible co-localization of mitochondrial voltage dependent anion channel (VDAC) with hexokinase-2 (HK-2) and βII-tubulin, the role of depolymerized βII-tubuline and the effect of both proteins in the regulation of mitochondrial outer membrane (MOM) permeability. Our data demonstrate that neuroblastoma and sarcoma cells are prone to aerobic glycolysis, which is partially mediated by the presence of VDAC bound HK-2. Microtubule destabilizing (colchicine) and stabilizing (taxol) agents do not affect the MOM permeability for ADP in N2a and HL-1 cells. The obtained results show that βII-tubulin does not regulate the MOM permeability for adenine nucleotides in these cells. HL-1 and NB cells display comparable rates of ADP-activated respiration. It was also found that differentiation enhances the involvement of OXPHOS in N2a cells due to the rise in their mitochondrial reserve capacity. Our data support the view that the alteration of mitochondrial affinity for ADNs is one of the characteristic features of cancer cells. It can be concluded that the binding sites for tubulin and hexokinase within the large intermembrane protein supercomplex Mitochondrial Interactosome, could be different between muscle and cancer cells.
Collapse
Affiliation(s)
- Aleksandr Klepinin
- Laboratory of Bioenergetics, National Institute of Chemical Physics and Biophysics, Akadeemia tee 23, 12618, Tallinn, Estonia
| | - Lyudmila Ounpuu
- Laboratory of Bioenergetics, National Institute of Chemical Physics and Biophysics, Akadeemia tee 23, 12618, Tallinn, Estonia
| | - Kati Mado
- Laboratory of Bioenergetics, National Institute of Chemical Physics and Biophysics, Akadeemia tee 23, 12618, Tallinn, Estonia
| | - Laura Truu
- Laboratory of Bioenergetics, National Institute of Chemical Physics and Biophysics, Akadeemia tee 23, 12618, Tallinn, Estonia
| | - Vladimir Chekulayev
- Laboratory of Bioenergetics, National Institute of Chemical Physics and Biophysics, Akadeemia tee 23, 12618, Tallinn, Estonia
| | - Marju Puurand
- Laboratory of Bioenergetics, National Institute of Chemical Physics and Biophysics, Akadeemia tee 23, 12618, Tallinn, Estonia
| | - Igor Shevchuk
- Laboratory of Bioenergetics, National Institute of Chemical Physics and Biophysics, Akadeemia tee 23, 12618, Tallinn, Estonia
| | - Kersti Tepp
- Laboratory of Bioenergetics, National Institute of Chemical Physics and Biophysics, Akadeemia tee 23, 12618, Tallinn, Estonia
| | - Anu Planken
- Oncology and Hematology Clinic at the North Estonia Medical Centre, Tallinn, Estonia
| | - Tuuli Kaambre
- Laboratory of Bioenergetics, National Institute of Chemical Physics and Biophysics, Akadeemia tee 23, 12618, Tallinn, Estonia.
| |
Collapse
|
32
|
Abstract
Isoforms of creatine kinase (CK) generate and use phosphocreatine, a concentrated and highly diffusible cellular "high energy" intermediate, for the main purpose of energy buffering and transfer in order to maintain cellular energy homeostasis. The mitochondrial CK isoform (mtCK) localizes to the mitochondrial intermembrane and cristae space, where it assembles into peripherally membrane-bound, large cuboidal homooctamers. These are part of proteolipid complexes wherein mtCK directly interacts with cardiolipin and other anionic phospholipids, as well as with the VDAC channel in the outer membrane. This leads to a stabilization and cross-linking of inner and outer mitochondrial membrane, forming so-called contact sites. Also the adenine nucleotide translocator of the inner membrane can be recruited into these proteolipid complexes, probably mediated by cardiolipin. The complexes have functions mainly in energy transfer to the cytosol and stimulation of oxidative phosphorylation, but also in restraining formation of reactive oxygen species and apoptosis. In vitro evidence indicates a putative role of mtCK in mitochondrial phospholipid distribution, and most recently a role in thermogenesis has been proposed. This review summarizes the essential structural and functional data of these mtCK complexes and describes in more detail the more recent advances in phospholipid interaction, thermogenesis, cancer and evolution of mtCK.
Collapse
|
33
|
Caterino M, Ruoppolo M, Mandola A, Costanzo M, Orrù S, Imperlini E. Protein-protein interaction networks as a new perspective to evaluate distinct functional roles of voltage-dependent anion channel isoforms. MOLECULAR BIOSYSTEMS 2018; 13:2466-2476. [PMID: 29028058 DOI: 10.1039/c7mb00434f] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Voltage-dependent anion channels (VDACs) are a family of three mitochondrial porins and the most abundant integral membrane proteins of the mitochondrial outer membrane (MOM). VDACs are known to be involved in metabolite/ion transport across the MOM and in many cellular processes ranging from mitochondria-mediated apoptosis to the control of energy metabolism, by interacting with cytosolic, mitochondrial and cytoskeletal proteins and other membrane channels. Despite redundancy and compensatory mechanisms among VDAC isoforms, they display not only different channel properties and protein expression levels, but also distinct protein partners. Here, we review the known protein interactions for each VDAC isoform in order to shed light on their peculiar roles in physiological and pathological conditions. As proteins associated with the MOM, VDAC opening/closure as a metabolic checkpoint is regulated by protein-protein interactions, and is of pharmacological interest in pathological conditions such as cancer. The interactions involving VDAC1 have been characterized more in depth than those involving VDAC2 and VDAC3. Nevertheless, the so far explored VDAC-protein interactions for each isoform show that VDAC1 is mainly involved in the maintenance of cellular homeostasis and in pro-apoptotic processes, whereas VDAC2 displays an anti-apoptotic role. Despite there being limited information on VDAC3, this isoform could contribute to mitochondrial protein quality control and act as a marker of oxidative status. In pathological conditions, namely neurodegenerative and cardiovascular diseases, both VDAC1 and VDAC2 establish abnormal interactions aimed to counteract the mitochondrial dysfunction which contributes to end-organ damage.
Collapse
Affiliation(s)
- Marianna Caterino
- Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Università degli Studi di Napoli "Federico II", Naples, Italy
| | | | | | | | | | | |
Collapse
|
34
|
Holloway GP. Nutrition and Training Influences on the Regulation of Mitochondrial Adenosine Diphosphate Sensitivity and Bioenergetics. Sports Med 2018; 47:13-21. [PMID: 28332118 PMCID: PMC5371621 DOI: 10.1007/s40279-017-0693-3] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Since the seminal finding almost 50 years ago that exercise training increases mitochondrial content in skeletal muscle, a considerable amount of research has been dedicated to elucidate the mechanisms inducing mitochondrial biogenesis. The discovery of peroxisome proliferator-activated receptor γ co-activator 1α as a major regulator of exercise-induced gene transcription was instrumental in beginning to understand the signals regulating this process. However, almost two decades after its discovery, our understanding of the signals inducing mitochondrial biogenesis remain poorly defined, limiting our insights into possible novel training modalities in elite athletes that can increase the oxidative potential of muscle. In particular, the role of mitochondrial reactive oxygen species has received very little attention; however, several lifestyle interventions associated with an increase in mitochondrial reactive oxygen species coincide with the induction of mitochondrial biogenesis. Furthermore, the diminishing returns of exercise training are associated with reductions in exercise-induced, mitochondrial-derived reactive oxygen species. Therefore, research focused on altering redox signaling in elite athletes may prove to be effective at inducing mitochondrial biogenesis and augmenting training regimes. In the context of exercise performance, the biological effect of increasing mitochondrial content is an attenuated rise in free cytosolic adenosine diphosphate (ADP), and subsequently decreased carbohydrate flux at a given power output. Recent evidence has shown that mitochondrial ADP sensitivity is a regulated process influenced by nutritional interventions, acute exercise, and exercise training. This knowledge raises the potential to improve mitochondrial bioenergetics in the absence of changes in mitochondrial content. Elucidating the mechanisms influencing the acute regulation of mitochondrial ADP sensitivity could have performance benefits in athletes, especially as these individuals display high levels of mitochondria, and therefore are subjects in whom it is notoriously difficult to further induce mitochondrial adaptations. In addition to changes in ADP sensitivity, an increase in mitochondrial coupling would have a similar bioenergetic response, namely a reduction in free cytosolic ADP. While classically the stoichiometry of the electron transport chain has been considered rigid, recent evidence suggests that sodium nitrate can improve the efficiency of this process, creating the potential for dietary sources of nitrate (e.g., beetroot juice) to display similar improvements in exercise performance. The current review focuses on these processes, while also discussing the biological relevance in the context of exercise performance.
Collapse
Affiliation(s)
- Graham P Holloway
- Department of Human Health and Nutritional Sciences, University of Guelph, 491 Gordon St., Guelph, ON, N1G 2W1, Canada.
| |
Collapse
|
35
|
Willis WT, Miranda-Grandjean D, Hudgens J, Willis EA, Finlayson J, De Filippis EA, Zapata Bustos R, Langlais PR, Mielke C, Mandarino LJ. Dominant and sensitive control of oxidative flux by the ATP-ADP carrier in human skeletal muscle mitochondria: Effect of lysine acetylation. Arch Biochem Biophys 2018; 647:93-103. [PMID: 29653079 DOI: 10.1016/j.abb.2018.04.006] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2018] [Revised: 03/29/2018] [Accepted: 04/08/2018] [Indexed: 02/01/2023]
Abstract
The adenine nucleotide translocase (ANT) of the mitochondrial inner membrane exchanges ADP for ATP. Mitochondria were isolated from human vastus lateralis muscle (n = 9). Carboxyatractyloside titration of O2 consumption rate (Jo) at clamped [ADP] of 21 μM gave ANT abundance of 0.97 ± 0.14 nmol ANT/mg and a flux control coefficient of 82% ± 6%. Flux control fell to 1% ± 1% at saturating (2 mM) [ADP]. The KmADP for Jo was 32.4 ± 1.8 μM. In terms of the free (-3) ADP anion this KmADP was 12.0 ± 0.7 μM. A novel luciferase-based assay for ATP production gave KmADP of 13.1 ± 1.9 μM in the absence of ATP competition. The free anion KmADP in this case was 2.0 ± 0.3 μM. Targeted proteomic analyses showed significant acetylation of ANT Lysine23 and that ANT1 was the most abundant isoform. Acetylation of Lysine23 correlated positively with KmADP, r = 0.74, P = 0.022. The findings underscore the central role played by ANT in the control of oxidative phosphorylation, particularly at the energy phosphate levels associated with low ATP demand. As predicted by molecular dynamic modeling, ANT Lysine23 acetylation decreased the apparent affinity of ADP for ANT binding.
Collapse
Affiliation(s)
- W T Willis
- University of Arizona, College of Medicine, Department of Medicine, 1501 N. Campbell Avenue, P.O. Box 245099, Tucson, AZ 85724-5099, USA.
| | - D Miranda-Grandjean
- Mayo Clinic, Division of Endocrinology, East Shea Boulevard and 134th Street, Scottsdale, AZ 85259, USA.
| | - J Hudgens
- Mayo Clinic, Division of Endocrinology, East Shea Boulevard and 134th Street, Scottsdale, AZ 85259, USA.
| | - E A Willis
- Mayo Clinic, Division of Endocrinology, East Shea Boulevard and 134th Street, Scottsdale, AZ 85259, USA.
| | - J Finlayson
- University of Arizona, College of Medicine, Department of Medicine, 1501 N. Campbell Avenue, P.O. Box 245099, Tucson, AZ 85724-5099, USA.
| | - E A De Filippis
- Mayo Clinic, Division of Endocrinology, East Shea Boulevard and 134th Street, Scottsdale, AZ 85259, USA.
| | - R Zapata Bustos
- University of Arizona, College of Medicine, Department of Medicine, 1501 N. Campbell Avenue, P.O. Box 245099, Tucson, AZ 85724-5099, USA.
| | - P R Langlais
- University of Arizona, College of Medicine, Department of Medicine, 1501 N. Campbell Avenue, P.O. Box 245099, Tucson, AZ 85724-5099, USA.
| | - C Mielke
- Mayo Clinic, Division of Endocrinology, East Shea Boulevard and 134th Street, Scottsdale, AZ 85259, USA.
| | - L J Mandarino
- University of Arizona, College of Medicine, Department of Medicine, 1501 N. Campbell Avenue, P.O. Box 245099, Tucson, AZ 85724-5099, USA.
| |
Collapse
|
36
|
Miotto PM, McGlory C, Holloway TM, Phillips SM, Holloway GP. Sex differences in mitochondrial respiratory function in human skeletal muscle. Am J Physiol Regul Integr Comp Physiol 2018. [PMID: 29513564 DOI: 10.1152/ajpregu.00025.2018] [Citation(s) in RCA: 72] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Mitochondrial bioenergetic contributions to sex differences in human skeletal muscle metabolism remain poorly defined. The primary aim of this study was to determine whether mitochondrial respiratory kinetics differed between healthy young men and women in permeabilized skeletal muscle fibers. While men and women displayed similar ( P > 0.05) maximal respiration rates and abundance of mitochondrial/adenosine diphosphate (ADP) transport proteins, women had lower ( P < 0.05) mitochondrial ADP sensitivity (+30% apparent Km) and absolute respiration rates at a physiologically relevant ADP concentration (100 μM). Moreover, although men and women exhibited similar carnitine palmitoyl transferase-I protein content- and palmitoyl-CoA-supported respiration, women displayed greater sensitivity to malonyl-CoA-mediated respiratory inhibition. These data establish baseline sex differences in mitochondrial bioenergetics and provide the foundation for studying mitochondrial function within the context of metabolic perturbations and diseases that affect men and women differently.
Collapse
Affiliation(s)
- Paula M Miotto
- Department of Human Health and Nutritional Sciences, University of Guelph , Guelph, Ontario , Canada
| | - Chris McGlory
- Department of Kinesiology, McMaster University , Hamilton, Ontario , Canada
| | - Tanya M Holloway
- Department of Kinesiology, McMaster University , Hamilton, Ontario , Canada
| | - Stuart M Phillips
- Department of Kinesiology, McMaster University , Hamilton, Ontario , Canada
| | - Graham P Holloway
- Department of Human Health and Nutritional Sciences, University of Guelph , Guelph, Ontario , Canada
| |
Collapse
|
37
|
Lyra-Leite DM, Andres AM, Petersen AP, Ariyasinghe NR, Cho N, Lee JA, Gottlieb RA, McCain ML. Mitochondrial function in engineered cardiac tissues is regulated by extracellular matrix elasticity and tissue alignment. Am J Physiol Heart Circ Physiol 2017; 313:H757-H767. [PMID: 28733449 DOI: 10.1152/ajpheart.00290.2017] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/01/2017] [Revised: 06/29/2017] [Accepted: 07/16/2017] [Indexed: 01/20/2023]
Abstract
Mitochondria in cardiac myocytes are critical for generating ATP to meet the high metabolic demands associated with sarcomere shortening. Distinct remodeling of mitochondrial structure and function occur in cardiac myocytes in both developmental and pathological settings. However, the factors that underlie these changes are poorly understood. Because remodeling of tissue architecture and extracellular matrix (ECM) elasticity are also hallmarks of ventricular development and disease, we hypothesize that these environmental factors regulate mitochondrial function in cardiac myocytes. To test this, we developed a new procedure to transfer tunable polydimethylsiloxane disks microcontact-printed with fibronectin into cell culture microplates. We cultured Sprague-Dawley neonatal rat ventricular myocytes within the wells, which consistently formed tissues following the printed fibronectin, and measured oxygen consumption rate using a Seahorse extracellular flux analyzer. Our data indicate that parameters associated with baseline metabolism are predominantly regulated by ECM elasticity, whereas the ability of tissues to adapt to metabolic stress is regulated by both ECM elasticity and tissue alignment. Furthermore, bioenergetic health index, which reflects both the positive and negative aspects of oxygen consumption, was highest in aligned tissues on the most rigid substrate, suggesting that overall mitochondrial function is regulated by both ECM elasticity and tissue alignment. Our results demonstrate that mitochondrial function is regulated by both ECM elasticity and myofibril architecture in cardiac myocytes. This provides novel insight into how extracellular cues impact mitochondrial function in the context of cardiac development and disease.NEW & NOTEWORTHY A new methodology has been developed to measure O2 consumption rates in engineered cardiac tissues with independent control over tissue alignment and matrix elasticity. This led to the findings that matrix elasticity regulates basal mitochondrial function, whereas both matrix elasticity and tissue alignment regulate mitochondrial stress responses.
Collapse
Affiliation(s)
- Davi M Lyra-Leite
- Laboratory for Living Systems Engineering, Department of Biomedical Engineering, USC Viterbi School of Engineering, University of Southern California, Los Angeles, California
| | - Allen M Andres
- Heart Institute and Barbra Streisand Women's Heart Center, Cedars-Sinai Medical Center, Los Angeles, California; and
| | - Andrew P Petersen
- Laboratory for Living Systems Engineering, Department of Biomedical Engineering, USC Viterbi School of Engineering, University of Southern California, Los Angeles, California
| | - Nethika R Ariyasinghe
- Laboratory for Living Systems Engineering, Department of Biomedical Engineering, USC Viterbi School of Engineering, University of Southern California, Los Angeles, California
| | - Nathan Cho
- Laboratory for Living Systems Engineering, Department of Biomedical Engineering, USC Viterbi School of Engineering, University of Southern California, Los Angeles, California
| | - Jezell A Lee
- Laboratory for Living Systems Engineering, Department of Biomedical Engineering, USC Viterbi School of Engineering, University of Southern California, Los Angeles, California
| | - Roberta A Gottlieb
- Heart Institute and Barbra Streisand Women's Heart Center, Cedars-Sinai Medical Center, Los Angeles, California; and
| | - Megan L McCain
- Laboratory for Living Systems Engineering, Department of Biomedical Engineering, USC Viterbi School of Engineering, University of Southern California, Los Angeles, California; .,Department of Stem Cell Biology and Regenerative Medicine, Keck School of Medicine of USC, University of Southern California, Los Angeles, California
| |
Collapse
|
38
|
Camara AKS, Zhou Y, Wen PC, Tajkhorshid E, Kwok WM. Mitochondrial VDAC1: A Key Gatekeeper as Potential Therapeutic Target. Front Physiol 2017; 8:460. [PMID: 28713289 PMCID: PMC5491678 DOI: 10.3389/fphys.2017.00460] [Citation(s) in RCA: 249] [Impact Index Per Article: 31.1] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2017] [Accepted: 06/16/2017] [Indexed: 12/23/2022] Open
Abstract
Mitochondria are the key source of ATP that fuels cellular functions, and they are also central in cellular signaling, cell division and apoptosis. Dysfunction of mitochondria has been implicated in a wide range of diseases, including neurodegenerative and cardiac diseases, and various types of cancer. One of the key proteins that regulate mitochondrial function is the voltage-dependent anion channel 1 (VDAC1), the most abundant protein on the outer membrane of mitochondria. VDAC1 is the gatekeeper for the passages of metabolites, nucleotides, and ions; it plays a crucial role in regulating apoptosis due to its interaction with apoptotic and anti-apoptotic proteins, namely members of the Bcl-2 family of proteins and hexokinase. Therefore, regulation of VDAC1 is crucial not only for metabolic functions of mitochondria, but also for cell survival. In fact, multiple lines of evidence have confirmed the involvement of VDAC1 in several diseases. Consequently, modulation or dysregulation of VDAC1 function can potentially attenuate or exacerbate pathophysiological conditions. Understanding the role of VDAC1 in health and disease could lead to selective protection of cells in different tissues and diverse diseases. The purpose of this review is to discuss the role of VDAC1 in the pathogenesis of diseases and as a potentially effective target for therapeutic management of various pathologies.
Collapse
Affiliation(s)
- Amadou K S Camara
- Department of Anesthesiology, Medical College of WisconsinMilwaukee, WI, United States.,Cardiovascular Center, Medical College of WisconsinMilwaukee, WI, United States
| | - YiFan Zhou
- Department of Assay Development, HD BiosciencesShanghai, China
| | - Po-Chao Wen
- Department of Biochemistry, Beckman Institute for Advanced Science and Technology, Center for Biophysics and Quantitative Biology, University of Illinois at Urbana-ChampaignUrbana, IL, United States
| | - Emad Tajkhorshid
- Department of Biochemistry, Beckman Institute for Advanced Science and Technology, Center for Biophysics and Quantitative Biology, University of Illinois at Urbana-ChampaignUrbana, IL, United States
| | - Wai-Meng Kwok
- Department of Anesthesiology, Medical College of WisconsinMilwaukee, WI, United States.,Cardiovascular Center, Medical College of WisconsinMilwaukee, WI, United States.,Department of Pharmacology and Toxicology, Medical College of WisconsinMilwaukee, WI, United States
| |
Collapse
|
39
|
Zala D, Schlattner U, Desvignes T, Bobe J, Roux A, Chavrier P, Boissan M. The advantage of channeling nucleotides for very processive functions. F1000Res 2017; 6:724. [PMID: 28663786 PMCID: PMC5473427 DOI: 10.12688/f1000research.11561.2] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 07/17/2017] [Indexed: 12/26/2022] Open
Abstract
Nucleoside triphosphate (NTP)s, like ATP (adenosine 5'-triphosphate) and GTP (guanosine 5'-triphosphate), have long been considered sufficiently concentrated and diffusible to fuel all cellular ATPases (adenosine triphosphatases) and GTPases (guanosine triphosphatases) in an energetically healthy cell without becoming limiting for function. However, increasing evidence for the importance of local ATP and GTP pools, synthesised in close proximity to ATP- or GTP-consuming reactions, has fundamentally challenged our view of energy metabolism. It has become evident that cellular energy metabolism occurs in many specialised 'microcompartments', where energy in the form of NTPs is transferred preferentially from NTP-generating modules directly to NTP-consuming modules. Such energy channeling occurs when diffusion through the cytosol is limited, where these modules are physically close and, in particular, if the NTP-consuming reaction has a very high turnover, i.e. is very processive. Here, we summarise the evidence for these conclusions and describe new insights into the physiological importance and molecular mechanisms of energy channeling gained from recent studies. In particular, we describe the role of glycolytic enzymes for axonal vesicle transport and nucleoside diphosphate kinases for the functions of dynamins and dynamin-related GTPases.
Collapse
Affiliation(s)
- Diana Zala
- ESPCI - Paris, PSL Research University, Paris, F-75005, France.,CNRS, UMR8249, Paris, F-75005, France
| | - Uwe Schlattner
- Laboratory of Fundamental and Applied Bioenergetics (LBFA), and SFR Environmental and Systems Biology (BEeSy), U1055, University Grenoble Alpes, Grenoble, 38058, France.,Inserm-U1055, Grenoble, F-38058, France
| | - Thomas Desvignes
- Institute of Neuroscience, University of Oregon, Eugene, OR, 97401, USA
| | - Julien Bobe
- INRA, UR1037 LPGP, Campus de Beaulieu, Rennes, F-35000, France
| | - Aurélien Roux
- Department of Biochemistry, University of Geneva, Geneva, CH-1211, Switzerland.,Swiss National Centre for Competence in Research Programme Chemical Biology, Geneva, CH-1211, Switzerland
| | - Philippe Chavrier
- Institut Curie, Paris, F-75248, France.,PSL Research University, Paris, F-75005, France.,CNRS, UMR144, Paris, F-75248, France
| | - Mathieu Boissan
- Sorbonne Universités, UPMC Univ Paris 06, INSERM, UMRS938, Saint-Antoine Research Center, Paris, F-75012, France.,AP-HP, Hospital Tenon, Service de Biochimie et Hormonologie, Paris, F-75020, France
| |
Collapse
|
40
|
Zala D, Schlattner U, Desvignes T, Bobe J, Roux A, Chavrier P, Boissan M. The advantage of channeling nucleotides for very processive functions. F1000Res 2017; 6:724. [PMID: 28663786 DOI: 10.12688/f1000research.11561.1] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 05/15/2017] [Indexed: 01/01/2023] Open
Abstract
Nucleoside triphosphate (NTP)s, like ATP (adenosine 5'-triphosphate) and GTP (guanosine 5'-triphosphate), have long been considered sufficiently concentrated and diffusible to fuel all cellular ATPases (adenosine triphosphatases) and GTPases (guanosine triphosphatases) in an energetically healthy cell without becoming limiting for function. However, increasing evidence for the importance of local ATP and GTP pools, synthesised in close proximity to ATP- or GTP-consuming reactions, has fundamentally challenged our view of energy metabolism. It has become evident that cellular energy metabolism occurs in many specialised 'microcompartments', where energy in the form of NTPs is transferred preferentially from NTP-generating modules directly to NTP-consuming modules. Such energy channeling occurs when diffusion through the cytosol is limited, where these modules are physically close and, in particular, if the NTP-consuming reaction has a very high turnover, i.e. is very processive. Here, we summarise the evidence for these conclusions and describe new insights into the physiological importance and molecular mechanisms of energy channeling gained from recent studies. In particular, we describe the role of glycolytic enzymes for axonal vesicle transport and nucleoside diphosphate kinases for the functions of dynamins and dynamin-related GTPases.
Collapse
Affiliation(s)
- Diana Zala
- ESPCI - Paris, PSL Research University, Paris, F-75005, France.,CNRS, UMR8249, Paris, F-75005, France
| | - Uwe Schlattner
- Laboratory of Fundamental and Applied Bioenergetics (LBFA), and SFR Environmental and Systems Biology (BEeSy), U1055, University Grenoble Alpes, Grenoble, 38058, France.,Inserm-U1055, Grenoble, F-38058, France
| | - Thomas Desvignes
- Institute of Neuroscience, University of Oregon, Eugene, OR, 97401, USA
| | - Julien Bobe
- INRA, UR1037 LPGP, Campus de Beaulieu, Rennes, F-35000, France
| | - Aurélien Roux
- Department of Biochemistry, University of Geneva, Geneva, CH-1211, Switzerland.,Swiss National Centre for Competence in Research Programme Chemical Biology, Geneva, CH-1211, Switzerland
| | - Philippe Chavrier
- Institut Curie, Paris, F-75248, France.,PSL Research University, Paris, F-75005, France.,CNRS, UMR144, Paris, F-75248, France
| | - Mathieu Boissan
- Sorbonne Universités, UPMC Univ Paris 06, INSERM, UMRS938, Saint-Antoine Research Center, Paris, F-75012, France.,AP-HP, Hospital Tenon, Service de Biochimie et Hormonologie, Paris, F-75020, France
| |
Collapse
|
41
|
Tepp K, Puurand M, Timohhina N, Adamson J, Klepinin A, Truu L, Shevchuk I, Chekulayev V, Kaambre T. Changes in the mitochondrial function and in the efficiency of energy transfer pathways during cardiomyocyte aging. Mol Cell Biochem 2017; 432:141-158. [PMID: 28293876 DOI: 10.1007/s11010-017-3005-1] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2016] [Accepted: 03/04/2017] [Indexed: 12/11/2022]
Abstract
The role of mitochondria in alterations that take place in the muscle cell during healthy aging is a matter of debate during recent years. Most of the studies in bioenergetics have a focus on the model of isolated mitochondria, while changes in the crosstalk between working myofibrils and mitochondria in senescent cardiomyocytes have been less studied. The aim of our research was to investigate the modifications in the highly regulated ATP production and energy transfer systems in heart cells in old rat cardiomyocytes. The results of our work demonstrated alterations in the diffusion restrictions of energy metabolites, manifested by changes in the apparent Michaelis-Menten constant of mitochondria to exogenous ADP. The creatine kinase (CK) phosphotransfer pathway efficiency declines significantly in senescence. The ability of creatine to stimulate OXPHOS as well as to increase the affinity of mitochondria for ADP is falling and the most critical decline is already in the 1-year group (middle-age model in rats). Also, a moderate decrease in the adenylate kinase phosphotransfer system was detected. The importance of glycolysis increases in senescence, while the hexokinase activity does not change during healthy aging. The main result of our study is that the decline in the heart muscle performance is not caused by the changes in the respiratory chain complexes activity but mainly by the decrease in the energy transfer efficiency, especially by the CK pathway.
Collapse
Affiliation(s)
- Kersti Tepp
- Laboratory of Bioenergetics, National Institute of Chemical Physics and Biophysics, Akadeemia tee 23, 12618, Tallinn, Estonia.
| | - Marju Puurand
- Laboratory of Bioenergetics, National Institute of Chemical Physics and Biophysics, Akadeemia tee 23, 12618, Tallinn, Estonia
| | - Natalja Timohhina
- Laboratory of Bioenergetics, National Institute of Chemical Physics and Biophysics, Akadeemia tee 23, 12618, Tallinn, Estonia
| | - Jasper Adamson
- Laboratory of Chemical Physics, National Institute of Chemical Physics and Biophysics, Tallinn, Estonia
| | - Aleksandr Klepinin
- Laboratory of Bioenergetics, National Institute of Chemical Physics and Biophysics, Akadeemia tee 23, 12618, Tallinn, Estonia
| | - Laura Truu
- Laboratory of Bioenergetics, National Institute of Chemical Physics and Biophysics, Akadeemia tee 23, 12618, Tallinn, Estonia
| | - Igor Shevchuk
- Laboratory of Bioenergetics, National Institute of Chemical Physics and Biophysics, Akadeemia tee 23, 12618, Tallinn, Estonia
| | - Vladimir Chekulayev
- Laboratory of Bioenergetics, National Institute of Chemical Physics and Biophysics, Akadeemia tee 23, 12618, Tallinn, Estonia
| | - Tuuli Kaambre
- Laboratory of Bioenergetics, National Institute of Chemical Physics and Biophysics, Akadeemia tee 23, 12618, Tallinn, Estonia.,School of Natural Sciences and Health, Tallinn University, Tallinn, Estonia
| |
Collapse
|
42
|
Cheniour M, Brewer J, Bagatolli L, Marcillat O, Granjon T. Evidence of proteolipid domain formation in an inner mitochondrial membrane mimicking model. Biochim Biophys Acta Gen Subj 2017; 1861:969-976. [PMID: 28185927 DOI: 10.1016/j.bbagen.2017.02.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2016] [Revised: 01/29/2017] [Accepted: 02/01/2017] [Indexed: 12/16/2022]
Abstract
BACKGROUND Mitochondrial creatine kinase (mtCK) is highly abundant in mitochondria; its quantity is equimolecular to the Adenylic Nucleotide Translocator and represents 1% of the mitochondrial proteins. It is a multitask protein localized in the mitochondria intermembrane space where it binds to the specific cardiolipin (CL) phospholipid. If mtCK was initially thought to be exclusively implicated in energy transfer between mitochondria and cytosol through a mechanism referred to as the phosphocreatine shuttle, several recent studies suggested an additional role in maintaining mitochondria membrane structure. METHODS To further characterized mtCK binding process we used multiphoton excitation fluorescence microscopy coupled with Giant Unilamellar Vesicles (GUV) and laurdan as fluorescence probe. RESULTS We gathered structural and dynamical information on the molecular events occurring during the binding of mtCK to the mitochondria inner membrane. We present the first visualization of mtCK-induced CL segregation on a bilayer model forming micrometer-size proteolipid domains at the surface of the GUV. Those microdomains, which only occurred when CL is included in the lipid mixture, were accompanied by the formation of protein multimolecular assembly, vesicle clamping, and changes in both vesicle curvature and membrane fluidity CONCLUSION: Those results highlighted the importance of the highly abundant mtCK in the lateral organization of the mitochondrial inner membrane. GENERAL SIGNIFICANCE Microdomains were induced in mitochondria-mimicking membranes composed of natural phospholipids without cholesterol and/or sphingolipids differing from the proposed cytoplasmic membrane rafts. Those findings as well as membrane curvature modification were discussed in relation with protein-membrane interaction and protein cluster involvement in membrane morphology.
Collapse
Affiliation(s)
- Mouhedine Cheniour
- Univ Lyon, Université Claude Bernard Lyon 1, ICBMS - UMR CNRS 5246, MEM2, F-69622 Villeurbanne, France
| | - Jonathan Brewer
- Membrane Biophysics and Biophotonics group/MEMPHYS Dept. Biochemistry and Molecular Biology, University of Southern, Denmark
| | - Luis Bagatolli
- Membrane Biophysics and Biophotonics group/MEMPHYS Dept. Biochemistry and Molecular Biology, University of Southern, Denmark
| | - Olivier Marcillat
- Univ Lyon, Université Claude Bernard Lyon 1, Centre de Recherche en Cancérologie de Lyon, F- 69373 Lyon, France
| | - Thierry Granjon
- Univ Lyon, Université Claude Bernard Lyon 1, ICBMS - UMR CNRS 5246, MEM2, F-69622 Villeurbanne, France.
| |
Collapse
|
43
|
Dubey AK, Godbole A, Mathew MK. Regulation of VDAC trafficking modulates cell death. Cell Death Discov 2016; 2:16085. [PMID: 28028442 PMCID: PMC5149589 DOI: 10.1038/cddiscovery.2016.85] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2016] [Revised: 09/04/2016] [Accepted: 09/23/2016] [Indexed: 01/20/2023] Open
Abstract
The voltage-dependent anion channel (VDAC) and mitochondria-associated hexokinase (HxK) have crucial roles in both cell survival and death. Both the individual abundances and their ratio seem to influence the balance of survival and death and are thus critical in scenarios, such as neurodegeneration and cancer. Elevated levels of both VDAC and HxK have been reported in cancerous cells. Physical interaction is surmised and specific residues or regions involved have been identified, but details of the interaction and the mechanism by which it modulates survival are yet to be elucidated. We and others have shown that heterologous expression of VDAC can induce cell death, which can be mitigated by concomitant overexpression of HxK. We have also observed that upon overexpression, fluorescently tagged VDAC is distributed between the cytosol and mitochondria. In this study, we show that cell death ensues only when the protein, which is synthesized on cytoplasmic ribosomes, migrates to the mitochondrion. Further, coexpression of rat HxK II (rHxKII) can delay the translocation of human VDAC1 (hVDAC1) protein to mitochondria and thereby inhibit VDAC-induced cell death. Variation in the level of HxK protein as seen endogenously in different cell lines, or as experimentally manipulated by silencing and overexpression, can lead to differential VDAC translocation kinetics and related cell death. The N-terminal region of HxK and the Glu73 residue of hVDAC1, which have previously been implicated in a physical interaction, are required for cytosolic retention of VDAC. Finally, we show that, in otherwise unperturbed cells in culture, there is a small but significant amount of soluble VDAC in the cytosol present in a complex with HxK. This complex could well determine how a cell is poised with respect to incoming thanatopic signals, thereby tilting the survival/death balance in pharmacologically interesting situations, such as neurodegeneration and cancer.
Collapse
Affiliation(s)
- Ashvini K Dubey
- Laboratory of Membrane Biophysics, National Centre for Biological Sciences, TIFR , Bangalore 560065, India
| | - Ashwini Godbole
- Laboratory of Membrane Biophysics, National Centre for Biological Sciences, TIFR, Bangalore 560065, India; Department of Crop Physiology, GKVK, University of Agricultural Sciences, Bangalore 560065, India
| | - M K Mathew
- Laboratory of Membrane Biophysics, National Centre for Biological Sciences, TIFR , Bangalore 560065, India
| |
Collapse
|
44
|
Simple oxygraphic analysis for the presence of adenylate kinase 1 and 2 in normal and tumor cells. J Bioenerg Biomembr 2016; 48:531-548. [PMID: 27854030 DOI: 10.1007/s10863-016-9687-3] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2016] [Accepted: 10/31/2016] [Indexed: 01/09/2023]
Abstract
The adenylate kinase (AK) isoforms network plays an important role in the intracellular energy transfer processes, the maintenance of energy homeostasis, and it is a major player in AMP metabolic signaling circuits in some highly-differentiated cells. For this purpose, a rapid and sensitive method was developed that enables to estimate directly and semi-quantitatively the distribution between cytosolic AK1 and mitochondrial AK2 localized in the intermembrane space, both in isolated cells and tissue samples (biopsy material). Experiments were performed on isolated rat mitochondria or permeabilized material, including undifferentiated and differentiated neuroblastoma Neuro-2a cells, HL-1 cells, isolated rat heart cardiomyocytes as well as on human breast cancer postoperative samples. In these samples, the presence of AK1 and AK2 could be detected by high-resolution respirometry due to the functional coupling of these enzymes with ATP synthesis. By eliminating extra-mitochondrial ADP with an excess of pyruvate kinase and its substrate phosphoenolpyruvate, the coupling of the AK reaction with mitochondrial ATP synthesis could be quantified for total AK and mitochondrial AK2 as a specific AK index. In contrast to the creatine kinase pathway, the AK phosphotransfer pathway is up-regulated in murine neuroblastoma and HL-1 sarcoma cells and in these malignant cells expression of AK2 is higher than AK1. Differentiated Neuro-2a neuroblastoma cells exhibited considerably higher OXPHOS capacity than undifferentiated cells, and this was associated with a remarkable decrease in their AK activity. The respirometric method also revealed a considerable difference in mitochondrial affinity for AMP between non-transformed cells and tumor cells.
Collapse
|
45
|
Pasteuning-Vuhman S, Boertje-van der Meulen JW, van Putten M, Overzier M, Ten Dijke P, Kiełbasa SM, Arindrarto W, Wolterbeek R, Lezhnina KV, Ozerov IV, Aliper AM, Hoogaars WM, Aartsma-Rus A, Loomans CJM. New function of the myostatin/activin type I receptor (ALK4) as a mediator of muscle atrophy and muscle regeneration. FASEB J 2016; 31:238-255. [PMID: 27733450 PMCID: PMC5161514 DOI: 10.1096/fj.201600675r] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2016] [Accepted: 09/22/2016] [Indexed: 12/13/2022]
Abstract
Skeletal muscle fibrosis and impaired muscle regeneration are major contributors to muscle wasting in Duchenne muscular dystrophy (DMD). Muscle growth is negatively regulated by myostatin (MSTN) and activins. Blockage of these pathways may improve muscle quality and function in DMD. Antisense oligonucleotides (AONs) were designed specifically to block the function of ALK4, a key receptor for the MSTN/activin pathway in skeletal muscle. AON-induced exon skipping resulted in specific Alk4 down-regulation, inhibition of MSTN activity, and increased myoblast differentiation in vitro. Unexpectedly, a marked decrease in muscle mass (10%) was found after Alk4 AON treatment in mdx mice. In line with in vitro results, muscle regeneration was stimulated, and muscle fiber size decreased markedly. Notably, when Alk4 was down-regulated in adult wild-type mice, muscle mass decreased even more. RNAseq analysis revealed dysregulated metabolic functions and signs of muscle atrophy. We conclude that ALK4 inhibition increases myogenesis but also regulates the tight balance of protein synthesis and degradation. Therefore, caution must be used when developing therapies that interfere with MSTN/activin pathways.—Pasteuning-Vuhman, S., Boertje-van der Meulen, J. W., van Putten, M., Overzier, M., ten Dijke, P., Kiełbasa, S. M., Arindrarto, W., Wolterbeek, R., Lezhnina, K. V., Ozerov, I. V., Aliper, A. M., Hoogaars, W. M., Aartsma-Rus, A., Loomans, C. J. M. New function of the myostatin/activin type I receptor (ALK4) as a mediator of muscle atrophy and muscle regeneration.
Collapse
Affiliation(s)
| | | | - Maaike van Putten
- Department of Human Genetics, Leiden University Medical Center, Leiden, The Netherlands
| | - Maurice Overzier
- Department of Human Genetics, Leiden University Medical Center, Leiden, The Netherlands
| | - Peter Ten Dijke
- Department of Molecular and Cell Biology Leiden University Medical Center, Leiden, The Netherlands.,Cancer Genomics Center, Leiden University Medical Center, Leiden, The Netherlands
| | - Szymon M Kiełbasa
- Department of Medical Statistics and Bioinformatics, Leiden University Medical Center, Leiden, The Netherlands
| | - Wibowo Arindrarto
- Department of Medical Statistics and Bioinformatics, Leiden University Medical Center, Leiden, The Netherlands
| | - Ron Wolterbeek
- Department of Medical Statistics and Bioinformatics, Leiden University Medical Center, Leiden, The Netherlands
| | - Ksenia V Lezhnina
- InSilico Medicine, Incorporated, Emerging Technology Centers, Johns Hopkins University, Baltimore, Maryland, USA; and
| | - Ivan V Ozerov
- InSilico Medicine, Incorporated, Emerging Technology Centers, Johns Hopkins University, Baltimore, Maryland, USA; and
| | - Aleksandr M Aliper
- InSilico Medicine, Incorporated, Emerging Technology Centers, Johns Hopkins University, Baltimore, Maryland, USA; and
| | - Willem M Hoogaars
- Department of Human Movement Sciences, Faculty of Behavioral and Movement Sciences, Move Research Institute Amsterdam, Vrije Universiteit (VU) Amsterdam, Amsterdam, The Netherlands
| | - Annemieke Aartsma-Rus
- Department of Human Genetics, Leiden University Medical Center, Leiden, The Netherlands;
| | - Cindy J M Loomans
- Department of Human Genetics, Leiden University Medical Center, Leiden, The Netherlands
| |
Collapse
|
46
|
Coelho RG, Calaça IC, Celestrini DM, Correia-Carneiro AHP, Costa MM, Zancan P, Sola-Penna M. Hexokinase and phosphofructokinase activity and intracellular distribution correlate with aggressiveness and invasiveness of human breast carcinoma. Oncotarget 2016; 6:29375-87. [PMID: 26320188 PMCID: PMC4745733 DOI: 10.18632/oncotarget.4910] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2015] [Accepted: 07/27/2015] [Indexed: 01/01/2023] Open
Abstract
Glycolytic enzymes, such as hexokinase and phosphofructokinase, have been reported to be upregulated in many cancer types. Here, we evaluated these two enzymes in 54 breast cancer samples collected from volunteers subjected to mastectomy, and the results were correlated with the prognosis markers commonly used. We found that both enzymes positively correlate with the major markers for invasiveness and aggressiveness. For invasiveness, the enzymes activities increase in parallel to the tumor size. Moreover, we found augmented activities for both enzymes when the samples were extirpated from patients presenting lymph node involvement or occurrence of metastasis. For aggressiveness, we stained the samples for the estrogen and progesterone receptors, HER-2, p53 and Ki-67. The enzyme activities positively correlated with all markers but Ki-67. Finally, we conclude that these enzymes are good markers for breast cancer prognosis.
Collapse
Affiliation(s)
- Raquel G Coelho
- Laboratório de Enzimologia e Controle do Metabolismo (LabECoM), Departamento de Biotecnologia Farmacêutica, Faculdade de Farmácia, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brasil.,Instituto de Bioquímica Médica Leopoldo De Meis, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brasil.,Present address: Laboratório de Fisiologia Endócrina Doris Rosenthal (LFE), Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brasil
| | - Isadora C Calaça
- Laboratório de Enzimologia e Controle do Metabolismo (LabECoM), Departamento de Biotecnologia Farmacêutica, Faculdade de Farmácia, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brasil
| | - Deborah M Celestrini
- Laboratório de Enzimologia e Controle do Metabolismo (LabECoM), Departamento de Biotecnologia Farmacêutica, Faculdade de Farmácia, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brasil
| | | | - Mauricio M Costa
- Hospital Universitário Clementino Fraga Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brasil
| | - Patricia Zancan
- Laboratório de Oncobiologia Molecular (LabOMol), Departamento de Biotecnologia Farmacêutica, Faculdade de Farmácia, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brasil
| | - Mauro Sola-Penna
- Laboratório de Enzimologia e Controle do Metabolismo (LabECoM), Departamento de Biotecnologia Farmacêutica, Faculdade de Farmácia, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brasil
| |
Collapse
|
47
|
In the absence of phosphate shuttling, exercise reveals the in vivo importance of creatine-independent mitochondrial ADP transport. Biochem J 2016; 473:2831-43. [PMID: 27402793 DOI: 10.1042/bcj20160373] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2016] [Accepted: 07/08/2016] [Indexed: 12/28/2022]
Abstract
The transport of cytosolic adenosine diphosphate (ADP) into the mitochondria is a major control point in metabolic homeostasis, as ADP concentrations directly affect glycolytic flux and oxidative phosphorylation rates within mitochondria. A large contributor to the efficiency of this process is thought to involve phosphocreatine (PCr)/Creatine (Cr) shuttling through mitochondrial creatine kinase (Mi-CK), whereas the biological importance of alterations in Cr-independent ADP transport during exercise remains unknown. Therefore, we utilized an Mi-CK knockout (KO) model to determine whether in vivo Cr-independent mechanisms are biologically important for sustaining energy homeostasis during exercise. Ablating Mi-CK did not alter exercise tolerance, as the time to volitional fatigue was similar between wild-type (WT) and KO mice at various exercise intensities. In addition, skeletal muscle metabolic profiles after exercise, including glycogen, PCr/Cr ratios, free ADP/adenosine monophosphate (AMP), and lactate, were similar between genotypes. While these data suggest that the absence of PCr/Cr shuttling is not detrimental to maintaining energy homeostasis during exercise, KO mice displayed a dramatic increase in Cr-independent mitochondrial ADP sensitivity after exercise. Specifically, whereas mitochondrial ADP sensitivity decreased with exercise in WT mice, in stark contrast, exercise increased mitochondrial Cr-independent ADP sensitivity in KO mice. As a result, the apparent ADP Km was 50% lower in KO mice after exercise, suggesting that in vivo activation of voltage-dependent anion channel (VDAC)/adenine nucleotide translocase (ANT) can support mitochondrial ADP transport. Altogether, we provide insight that Cr-independent ADP transport mechanisms are biologically important for regulating ADP sensitivity during exercise, while highlighting complex regulation and the plasticity of the VDAC/ANT axis to support adenosine triphosphate demand.
Collapse
|
48
|
VDAC electronics: 3. VDAC-Creatine kinase-dependent generation of the outer membrane potential in respiring mitochondria. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2016; 1858:1411-8. [DOI: 10.1016/j.bbamem.2016.04.005] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2016] [Revised: 04/07/2016] [Accepted: 04/08/2016] [Indexed: 01/08/2023]
|
49
|
Ydfors M, Hughes MC, Laham R, Schlattner U, Norrbom J, Perry CGR. Modelling in vivo creatine/phosphocreatine in vitro reveals divergent adaptations in human muscle mitochondrial respiratory control by ADP after acute and chronic exercise. J Physiol 2016; 594:3127-40. [PMID: 26631938 DOI: 10.1113/jp271259] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2015] [Accepted: 11/19/2015] [Indexed: 01/14/2023] Open
Abstract
KEY POINTS Mitochondrial respiratory sensitivity to ADP is thought to influence muscle fitness and is partly regulated by cytosolic-mitochondrial diffusion of ADP or phosphate shuttling via creatine/phosphocreatine (Cr/PCr) through mitochondrial creatine kinase (mtCK). Previous measurements of respiration in vitro with Cr (saturate mtCK) or without (ADP/ATP diffusion) show mixed responses of ADP sensitivity following acute exercise vs. less sensitivity after chronic exercise. In human muscle, modelling in vivo 'exercising' [Cr:PCr] during in vitro assessments revealed novel responses to exercise that differ from detections with or without Cr (±Cr). Acute exercise increased ADP sensitivity when measured without Cr but had no effect ±Cr or with +Cr:PCr, whereas chronic exercise increased sensitivity ±Cr but lowered sensitivity with +Cr:PCr despite increased markers of mitochondrial oxidative capacity. Controlling in vivo conditions during in vitro respiratory assessments reveals responses to exercise that differ from typical ±Cr comparisons and challenges our understanding of how exercise improves metabolic control in human muscle. ABSTRACT Mitochondrial respiratory control by ADP (Kmapp ) is viewed as a critical regulator of muscle energy homeostasis. However, acute exercise increases, decreases or has no effect on Kmapp in human muscle, whereas chronic exercise surprisingly decreases sensitivity despite greater mitochondrial content. We hypothesized that modelling in vivo mitochondrial creatine kinase (mtCK)-dependent phosphate-shuttling conditions in vitro would reveal increased sensitivity (lower Kmapp ) after acute and chronic exercise. The Kmapp was determined in vitro with 20 mm Cr (+Cr), 0 mm Cr (-Cr) or 'in vivo exercising' 20 mm Cr/2.4 mm PCr (Cr:PCr) on vastus lateralis biopsies sampled from 11 men before, immediately after and 3 h after exercise on the first, fifth and ninth sessions over 3 weeks. Dynamic responses to acute exercise occurred throughout training, whereby the first session did not change Kmapp with in vivo Cr:PCr despite increases in -Cr. The fifth session decreased sensitivity with Cr:PCr or +Cr despite no change in -Cr. Chronic exercise increased sensitivity ±Cr in association with increased electron transport chain content (+33-62% complexes I-V), supporting classic proposals that link increased sensitivity to oxidative capacity. However, in vivo Cr:PCr reveals a perplexing decreased sensitivity, contrasting the increases seen ±Cr. Functional responses occurred without changes in fibre type or proteins regulating mitochondrial-cytosolic energy exchange (mtCK, VDAC and ANT). Despite the dynamic responses seen with ±Cr, modelling in vivo phosphate-shuttling conditions in vitro reveals that ADP sensitivity is unchanged after high-intensity exercise and is decreased after training. These findings challenge our understanding of how exercise regulates skeletal muscle energy homeostasis.
Collapse
Affiliation(s)
- Mia Ydfors
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
| | - Meghan C Hughes
- School of Kinesiology and Health Science, York University, Toronto, ON, Canada.,Muscle Health Research Centre, York University, Toronto, ON, Canada
| | - Robert Laham
- Muscle Health Research Centre, York University, Toronto, ON, Canada
| | - Uwe Schlattner
- Laboratory of Fundamental and Applied Bioenergetics (LBFA) and SFR Environmental and Systems Biology (BEeSy), University Grenoble Alpes, Grenoble, France
| | - Jessica Norrbom
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
| | - Christopher G R Perry
- School of Kinesiology and Health Science, York University, Toronto, ON, Canada.,Muscle Health Research Centre, York University, Toronto, ON, Canada
| |
Collapse
|
50
|
Jayasundara N, Tomanek L, Dowd WW, Somero GN. Proteomic analysis of cardiac response to thermal acclimation in the eurythermal goby fish Gillichthys mirabilis. ACTA ACUST UNITED AC 2016; 218:1359-72. [PMID: 25954043 DOI: 10.1242/jeb.118760] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Cardiac function is thought to play a central role in determining thermal optima and tolerance limits in teleost fishes. Investigating proteomic responses to temperature in cardiac tissues may provide insights into mechanisms supporting the thermal plasticity of cardiac function. Here, we utilized a global proteomic analysis to investigate changes in cardiac protein abundance in response to temperature acclimation (transfer from 13°C to 9, 19 and 26°C) in a eurythermal goby, Gillichthys mirabilis. Proteomic data revealed 122 differentially expressed proteins across acclimation groups, 37 of which were identified using tandem mass-spectrometry. These 37 proteins are involved in energy metabolism, mitochondrial regulation, iron homeostasis, cytoprotection against hypoxia, and cytoskeletal organization. Compared with the 9 and 26°C groups, proteins involved in energy metabolism increased in 19°C-acclimated fish, indicating an overall increase in the capacity for ATP production. Creatine kinase abundance increased in 9°C-acclimated fish, suggesting an important role for the phosphocreatine energy shuttle in cold-acclimated hearts. Both 9 and 26°C fish also increased abundance of hexosaminidase, a protein directly involved in post-hypoxia stress cytoprotection of cardiac tissues. Cytoskeletal restructuring appears to occur in all acclimation groups; however, the most prominent effect was detected in 26°C-acclimated fish, which exhibited significantly increased actin levels. Overall, proteomic analysis of cardiac tissue suggests that the capacity to adjust ATP-generating processes is crucial to the thermal plasticity of cardiac function. Furthermore, G. mirabilis may optimize cellular functions at temperatures near 19°C, which lies within the species' preferred temperature range.
Collapse
Affiliation(s)
- Nishad Jayasundara
- Stanford University, Hopkins Marine Station, 120 Oceanview Boulevard, Pacific Grove, CA 93950, USA
| | - Lars Tomanek
- Biological Sciences Department, 1 Grand Avenue, California Polytechnic State University, San Luis Obispo, CA 93407, USA
| | - W Wesley Dowd
- Loyola Marymount University, Department of Biology, 1 LMU Drive, MS 8220, Los Angeles, CA 90045, USA
| | - George N Somero
- Stanford University, Hopkins Marine Station, 120 Oceanview Boulevard, Pacific Grove, CA 93950, USA
| |
Collapse
|