1
|
Thammavongsa DA, Jackvony TN, Bookland MJ, Tang-Schomer MD. Targeting Ion Channels: Blockers Suppress Calcium Signals and Induce Cytotoxicity Across Medulloblastoma Cell Models. Bioengineering (Basel) 2025; 12:268. [PMID: 40150732 PMCID: PMC11939613 DOI: 10.3390/bioengineering12030268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2025] [Revised: 02/25/2025] [Accepted: 03/05/2025] [Indexed: 03/29/2025] Open
Abstract
Medulloblastoma (MB) groups 3 and 4 lack targeted therapies despite their dismal prognoses. Ion channels and pumps have been implicated in promoting MB metastasis and growth; however, their roles remain poorly understood. In this study, we repurposed FDA-approved channel blockers and modulators to investigate their potential anti-tumor effects in MB cell lines (DAOY and D283) and primary cell cultures derived from a patient with MB. For the first time, we report spontaneous calcium signaling in MB cells. Spontaneous calcium signals were significantly reduced by mibefradil (calcium channel blocker), paxilline (calcium-activated potassium channel blocker), and thioridazine (potassium channel blocker). These drugs induced dose-dependent cytotoxicity in both the DAOY and D283 cell lines, as well as in primary cell cultures of a patient with group 3 or 4 MB. In contrast, digoxin and ouabain, inhibitors of the Na/K pump, reduced the calcium signaling by over 90% in DAOY cells and induced approximately 90% cell death in DAOY cells and 80% cell death in D283 cells. However, these effects were significantly diminished in the cells derived from a patient with MB, highlighting the variability in drug sensitivity among MB models. These findings demonstrate that calcium signaling is critical for MB cell survival and that the targeted inhibition of calcium pathways suppresses tumor cell growth across multiple MB models.
Collapse
Affiliation(s)
- Darani Ashley Thammavongsa
- UConn Health, Department of Pediatrics, 263 Farmington Avenue, Farmington, CT 06030, USA; (D.A.T.); (T.N.J.)
| | - Taylor N. Jackvony
- UConn Health, Department of Pediatrics, 263 Farmington Avenue, Farmington, CT 06030, USA; (D.A.T.); (T.N.J.)
| | - Markus J. Bookland
- Connecticut Children’s Medical Center, 282 Washington St, Hartford, CT 06106, USA;
| | - Min D. Tang-Schomer
- UConn Health, Department of Pediatrics, 263 Farmington Avenue, Farmington, CT 06030, USA; (D.A.T.); (T.N.J.)
- Connecticut Children’s Medical Center, 282 Washington St, Hartford, CT 06106, USA;
- The Jackson Laboratory for Genomic Medicine, 10 Discovery Drive, Farmington, CT 06030, USA
| |
Collapse
|
2
|
Levin M. The Multiscale Wisdom of the Body: Collective Intelligence as a Tractable Interface for Next-Generation Biomedicine. Bioessays 2025; 47:e202400196. [PMID: 39623868 PMCID: PMC11848127 DOI: 10.1002/bies.202400196] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Revised: 11/12/2024] [Accepted: 11/18/2024] [Indexed: 02/25/2025]
Abstract
The dominant paradigm in biomedicine focuses on genetically-specified components of cells and their biochemical dynamics, emphasizing bottom-up emergence of complexity. Here, I explore the biomedical implications of a complementary emerging field: diverse intelligence. Using tools from behavioral science and multiscale neuroscience, we can study development, regenerative repair, and cancer suppression as behaviors of a collective intelligence of cells navigating the spaces of possible morphologies and transcriptional and physiological states. A focus on the competencies of living material-from molecular to organismal scales-reveals a new landscape for interventions. Such top-down approaches take advantage of the memories and homeodynamic goal-seeking behavior of cells and tissues, offering the same massive advantages in biomedicine and bioengineering that reprogrammable hardware has provided information technologies. The bioelectric networks that bind individual cells toward large-scale anatomical goals are an especially tractable interface to organ-level plasticity, and tools to modulate them already exist. This suggests a research program to understand and tame the software of life for therapeutic gain by understanding the many examples of basal cognition that operate throughout living bodies.
Collapse
Affiliation(s)
- Michael Levin
- Biology DepartmentAllen Discovery Center at Tufts UniversityMedfordMassachusettsUSA
- Wyss Institute for Biologically Inspired EngineeringHarvard UniversityBostonMassachusettsUSA
| |
Collapse
|
3
|
Cüce‐Aydoğmuş EM, İnhan‐Garip GA. Investigation of the Effects of Blocking Potassium Channels With 4-Aminopyridine on Paclitaxel Activity in Breast Cancer Cell Lines. Cancer Rep (Hoboken) 2024; 7:e70072. [PMID: 39648339 PMCID: PMC11625685 DOI: 10.1002/cnr2.70072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 10/23/2024] [Accepted: 11/21/2024] [Indexed: 12/10/2024] Open
Abstract
BACKGROUND Paclitaxel (PTX) has been used as a chemotherapeutic agent for several malignancies, including breast cancer, and efforts to increase the efficiency of PTX are continuous. Previous studies have shown that the voltage-gated K+ channels are over-expressed in breast cancer cell lines; therefore, blocking this type of K+ channel reduces cell proliferation and viability. AIMS In this study, FDA-approved 4-aminopyridine (4-AP), a voltage-gated potassium channel blocker, was used in combination with PTX to improve the anticancer activity of PTX in MCF-7 and MDA-MB-231 cell lines. METHODS AND RESULTS Viability was determined with trypan blue, a clonogenic assay was performed, and the cell cycle was determined with a flow cytometer and immunochemistry. To gain an insight into the mechanism, intracellular K+ concentration, intracellular Ca2+ (calcium) concentration, and transmembrane potential measurements were made with corresponding fluorescent dyes. The apoptotic cell number was determined using Annexin /PI method by flow cytometer. Viability decreased with combination therapy and the clonogenic assay proved decreased colony formation. The apoptotic cell number was increased after treatment with the combination in both cell lines. Cell cycle measurements showed G1 arrest for both MCF-7 and MDA-MB-231 cell lines upon 4-AP treatment. PTX caused G1 arrest in MCF-7 cells and S phase arrest in MDA-MB-231 cells. Combination treatment caused S phase arrest in MCF-7 cells and S phase and G2/M phase arrest in MDA-MB-231 cells. Intracellular K+ concentration was increased after all treatments in both cell lines. Ca2+ concentration was increased significantly after combination treatment. Depolarization in the transmembrane potential was observed after all treatments in both cell lines. CONCLUSION Biophysical parameters like the transmembrane potential and ion fluxes have been defined in cancer progression which can provide new aspects for cancer treatments. This study shows that the combination of 4-AP with PTX is a promising alternative the mechanism of which needs further investigation considering the results obtained for Ca2+, K+, and membrane potential.
Collapse
Affiliation(s)
- Esra M. Cüce‐Aydoğmuş
- School of Medicine, Biophysics DepartmentT.C. Maltepe UniversityMaltepeİstanbulTurkey
| | - G. Ayşe İnhan‐Garip
- School of Medicine, Biophysics DepartmentT.C. Marmara UniversityMaltepeİstanbulTurkey
| |
Collapse
|
4
|
Al Khzem AH, Gomaa MS, Alturki MS, Tawfeeq N, Sarafroz M, Alonaizi SM, Al Faran A, Alrumaihi LA, Alansari FA, Alghamdi AA. Drug Repurposing for Cancer Treatment: A Comprehensive Review. Int J Mol Sci 2024; 25:12441. [PMID: 39596504 PMCID: PMC11595001 DOI: 10.3390/ijms252212441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Revised: 11/12/2024] [Accepted: 11/17/2024] [Indexed: 11/28/2024] Open
Abstract
Cancer ranks among the primary contributors to global mortality. In 2022, the global incidence of new cancer cases reached about 20 million, while the number of cancer-related fatalities reached 9.7 million. In Saudi Arabia, there were 13,399 deaths caused by cancer and 28,113 newly diagnosed cases of cancer. Drug repurposing is a drug discovery strategy that has gained special attention and implementation to enhance the process of drug development due to its time- and money-saving effect. It involves repositioning existing medications to new clinical applications. Cancer treatment is a therapeutic area where drug repurposing has shown the most prominent impact. This review presents a compilation of medications that have been repurposed for the treatment of various types of cancers. It describes the initial therapeutic and pharmacological classes of the repurposed drugs and their new applications and mechanisms of action in cancer treatment. The review reports on drugs from various pharmacological classes that have been successfully repurposed for cancer treatment, including approved ones and those in clinical trials and preclinical development. It stratifies drugs based on their anticancer repurpose as multi-type, type-specific, and mechanism-directed, and according to their pharmacological classes. The review also reflects on the future potential that drug repurposing has in the clinical development of novel anticancer therapies.
Collapse
Affiliation(s)
- Abdulaziz H. Al Khzem
- Department of Pharmaceutical Chemistry, College of Clinical Pharmacy, Imam Abdulrahman Bin Faisal University, P.O. Box 1982, Dammam 31441, Eastern Province, Saudi Arabia; (M.S.A.); (N.T.); (M.S.)
| | - Mohamed S. Gomaa
- Department of Pharmaceutical Chemistry, College of Clinical Pharmacy, Imam Abdulrahman Bin Faisal University, P.O. Box 1982, Dammam 31441, Eastern Province, Saudi Arabia; (M.S.A.); (N.T.); (M.S.)
| | - Mansour S. Alturki
- Department of Pharmaceutical Chemistry, College of Clinical Pharmacy, Imam Abdulrahman Bin Faisal University, P.O. Box 1982, Dammam 31441, Eastern Province, Saudi Arabia; (M.S.A.); (N.T.); (M.S.)
| | - Nada Tawfeeq
- Department of Pharmaceutical Chemistry, College of Clinical Pharmacy, Imam Abdulrahman Bin Faisal University, P.O. Box 1982, Dammam 31441, Eastern Province, Saudi Arabia; (M.S.A.); (N.T.); (M.S.)
| | - Mohammad Sarafroz
- Department of Pharmaceutical Chemistry, College of Clinical Pharmacy, Imam Abdulrahman Bin Faisal University, P.O. Box 1982, Dammam 31441, Eastern Province, Saudi Arabia; (M.S.A.); (N.T.); (M.S.)
| | - Shareefa M. Alonaizi
- College of Clinical Pharmacy, Imam Abdulrahman Bin Faisal University, P.O. Box 1982, Dammam 31441, Eastern Province, Saudi Arabia; (S.M.A.); (A.A.F.); (L.A.A.); (F.A.A.); (A.A.A.)
| | - Alhassan Al Faran
- College of Clinical Pharmacy, Imam Abdulrahman Bin Faisal University, P.O. Box 1982, Dammam 31441, Eastern Province, Saudi Arabia; (S.M.A.); (A.A.F.); (L.A.A.); (F.A.A.); (A.A.A.)
| | - Laela Ahmed Alrumaihi
- College of Clinical Pharmacy, Imam Abdulrahman Bin Faisal University, P.O. Box 1982, Dammam 31441, Eastern Province, Saudi Arabia; (S.M.A.); (A.A.F.); (L.A.A.); (F.A.A.); (A.A.A.)
| | - Fatimah Ahmed Alansari
- College of Clinical Pharmacy, Imam Abdulrahman Bin Faisal University, P.O. Box 1982, Dammam 31441, Eastern Province, Saudi Arabia; (S.M.A.); (A.A.F.); (L.A.A.); (F.A.A.); (A.A.A.)
| | - Abdullah Abbas Alghamdi
- College of Clinical Pharmacy, Imam Abdulrahman Bin Faisal University, P.O. Box 1982, Dammam 31441, Eastern Province, Saudi Arabia; (S.M.A.); (A.A.F.); (L.A.A.); (F.A.A.); (A.A.A.)
| |
Collapse
|
5
|
Kofman K, Levin M. Bioelectric pharmacology of cancer: A systematic review of ion channel drugs affecting the cancer phenotype. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2024; 191:25-39. [PMID: 38971325 DOI: 10.1016/j.pbiomolbio.2024.07.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 05/21/2024] [Accepted: 07/04/2024] [Indexed: 07/08/2024]
Abstract
Cancer is a pernicious and pressing medical problem; moreover, it is a failure of multicellular morphogenesis that sheds much light on evolutionary developmental biology. Numerous classes of pharmacological agents have been considered as cancer therapeutics and evaluated as potential carcinogenic agents; however, these are spread throughout the primary literature. Here, we briefly review recent work on ion channel drugs as promising anti-cancer treatments and present a systematic review of the known cancer-relevant effects of 109 drugs targeting ion channels. The roles of ion channels in cancer are consistent with the importance of bioelectrical parameters in cell regulation and with the functions of bioelectric signaling in morphogenetic signals that act as cancer suppressors. We find that compounds that are well-known for having targets in the nervous system, such as voltage-gated ion channels, ligand-gated ion channels, proton pumps, and gap junctions are especially relevant to cancer. Our review suggests further opportunities for the repurposing of numerous promising candidates in the field of cancer electroceuticals.
Collapse
Affiliation(s)
- Karina Kofman
- Faculty of Dentistry, University of Toronto, Toronto, Canada
| | - Michael Levin
- Allen Discovery Center at Tufts University, USA; Wyss Institute for Biologically Inspired Engineering at Harvard University, USA.
| |
Collapse
|
6
|
Ji R, Chang L, An C, Zhang J. Proton-sensing ion channels, GPCRs and calcium signaling regulated by them: implications for cancer. Front Cell Dev Biol 2024; 12:1326231. [PMID: 38505262 PMCID: PMC10949864 DOI: 10.3389/fcell.2024.1326231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Accepted: 02/14/2024] [Indexed: 03/21/2024] Open
Abstract
Extracellular acidification of tumors is common. Through proton-sensing ion channels or proton-sensing G protein-coupled receptors (GPCRs), tumor cells sense extracellular acidification to stimulate a variety of intracellular signaling pathways including the calcium signaling, which consequently exerts global impacts on tumor cells. Proton-sensing ion channels, and proton-sensing GPCRs have natural advantages as drug targets of anticancer therapy. However, they and the calcium signaling regulated by them attracted limited attention as potential targets of anticancer drugs. In the present review, we discuss the progress in studies on proton-sensing ion channels, and proton-sensing GPCRs, especially emphasizing the effects of calcium signaling activated by them on the characteristics of tumors, including proliferation, migration, invasion, metastasis, drug resistance, angiogenesis. In addition, we review the drugs targeting proton-sensing channels or GPCRs that are currently in clinical trials, as well as the relevant potential drugs for cancer treatments, and discuss their future prospects. The present review aims to elucidate the important role of proton-sensing ion channels, GPCRs and calcium signaling regulated by them in cancer initiation and development. This review will promote the development of drugs targeting proton-sensing channels or GPCRs for cancer treatments, effectively taking their unique advantage as anti-cancer drug targets.
Collapse
Affiliation(s)
- Renhui Ji
- Foundational and Translational Medical Research Center, Department of Allergy and General Surgery, Hohhot First Hospital, Hohhot, China
- Department of Pathophysiology, Basic Medicine College of Inner Mongolia Medical University, Hohhot, China
| | - Li Chang
- Foundational and Translational Medical Research Center, Department of Allergy and General Surgery, Hohhot First Hospital, Hohhot, China
- Department of Pathophysiology, Basic Medicine College of Inner Mongolia Medical University, Hohhot, China
| | - Caiyan An
- Foundational and Translational Medical Research Center, Department of Allergy and General Surgery, Hohhot First Hospital, Hohhot, China
| | - Junjing Zhang
- Foundational and Translational Medical Research Center, Department of Allergy and General Surgery, Hohhot First Hospital, Hohhot, China
| |
Collapse
|
7
|
Manicka S, Pai VP, Levin M. Information integration during bioelectric regulation of morphogenesis of the embryonic frog brain. iScience 2023; 26:108398. [PMID: 38034358 PMCID: PMC10687303 DOI: 10.1016/j.isci.2023.108398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Revised: 07/18/2023] [Accepted: 11/02/2023] [Indexed: 12/02/2023] Open
Abstract
Spatiotemporal patterns of cellular resting potential regulate several aspects of development. One key aspect of the bioelectric code is that transcriptional and morphogenetic states are determined not by local, single-cell, voltage levels but by specific distributions of voltage across cell sheets. We constructed and analyzed a minimal dynamical model of collective gene expression in cells based on inputs of multicellular voltage patterns. Causal integration analysis revealed a higher-order mechanism by which information about the voltage pattern was spatiotemporally integrated into gene activity, as well as a division of labor among and between the bioelectric and genetic components. We tested and confirmed predictions of this model in a system in which bioelectric control of morphogenesis regulates gene expression and organogenesis: the embryonic brain of the frog Xenopus laevis. This study demonstrates that machine learning and computational integration approaches can advance our understanding of the information-processing underlying morphogenetic decision-making, with a potential for other applications in developmental biology and regenerative medicine.
Collapse
Affiliation(s)
- Santosh Manicka
- Allen Discovery Center at Tufts University, Medford, MA 02155, USA
| | - Vaibhav P. Pai
- Allen Discovery Center at Tufts University, Medford, MA 02155, USA
| | - Michael Levin
- Allen Discovery Center at Tufts University, Medford, MA 02155, USA
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA 02115, USA
| |
Collapse
|
8
|
Ruffinatti FA, Scarpellino G, Chinigò G, Visentin L, Munaron L. The Emerging Concept of Transportome: State of the Art. Physiology (Bethesda) 2023; 38:0. [PMID: 37668550 DOI: 10.1152/physiol.00010.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 09/01/2023] [Accepted: 09/01/2023] [Indexed: 09/06/2023] Open
Abstract
The array of ion channels and transporters expressed in cell membranes, collectively referred to as the transportome, is a complex and multifunctional molecular machinery; in particular, at the plasma membrane level it finely tunes the exchange of biomolecules and ions, acting as a functionally adaptive interface that accounts for dynamic plasticity in the response to environmental fluctuations and stressors. The transportome is responsible for the definition of membrane potential and its variations, participates in the transduction of extracellular signals, and acts as a filter for most of the substances entering and leaving the cell, thus enabling the homeostasis of many cellular parameters. For all these reasons, physiologists have long been interested in the expression and functionality of ion channels and transporters, in both physiological and pathological settings and across the different domains of life. Today, thanks to the high-throughput technologies of the postgenomic era, the omics approach to the study of the transportome is becoming increasingly popular in different areas of biomedical research, allowing for a more comprehensive, integrated, and functional perspective of this complex cellular apparatus. This article represents a first effort for a systematic review of the scientific literature on this topic. Here we provide a brief overview of all those studies, both primary and meta-analyses, that looked at the transportome as a whole, regardless of the biological problem or the models they used. A subsequent section is devoted to the methodological aspect by reviewing the most important public databases annotating ion channels and transporters, along with the tools they provide to retrieve such information. Before conclusions, limitations and future perspectives are also discussed.
Collapse
Affiliation(s)
- Federico Alessandro Ruffinatti
- Turin Cell Physiology Laboratory (TCP-Lab), Department of Life Sciences and Systems Biology, University of Turin, Turin, Italy
| | - Giorgia Scarpellino
- Turin Cell Physiology Laboratory (TCP-Lab), Department of Life Sciences and Systems Biology, University of Turin, Turin, Italy
| | - Giorgia Chinigò
- Turin Cell Physiology Laboratory (TCP-Lab), Department of Life Sciences and Systems Biology, University of Turin, Turin, Italy
| | - Luca Visentin
- Turin Cell Physiology Laboratory (TCP-Lab), Department of Life Sciences and Systems Biology, University of Turin, Turin, Italy
| | - Luca Munaron
- Turin Cell Physiology Laboratory (TCP-Lab), Department of Life Sciences and Systems Biology, University of Turin, Turin, Italy
| |
Collapse
|
9
|
Sesti F, Bortolami A, Kathera-Ibarra EF. Non-conducting functions of potassium channels in cancer and neurological disease. CURRENT TOPICS IN MEMBRANES 2023; 92:199-231. [PMID: 38007268 DOI: 10.1016/bs.ctm.2023.09.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/27/2023]
Abstract
Cancer and neurodegenerative disease, albeit fundamental differences, share some common pathogenic mechanisms. Accordingly, both conditions are associated with aberrant cell proliferation and migration. Here, we review the causative role played by potassium (K+) channels, a fundamental class of proteins, in cancer and neurodegenerative disease. The concept that emerges from the review of the literature is that K+ channels can promote the development and progression of cancerous and neurodegenerative pathologies by dysregulating cell proliferation and migration. K+ channels appear to control these cellular functions in ways that not necessarily depend on their conducting properties and that involve the ability to directly or indirectly engage growth and survival signaling pathways. As cancer and neurodegenerative disease represent global health concerns, identifying commonalities may help understand the molecular basis for those devastating conditions and may facilitate the design of new drugs or the repurposing of existing drugs.
Collapse
Affiliation(s)
- Federico Sesti
- Department of Neuroscience and Cell Biology, Robert Wood Johnson Medical School, Rutgers University, Hoes Ln. West, Piscataway, NJ, United States.
| | - Alessandro Bortolami
- Department of Neuroscience and Cell Biology, Robert Wood Johnson Medical School, Rutgers University, Hoes Ln. West, Piscataway, NJ, United States
| | - Elena Forzisi Kathera-Ibarra
- Department of Neuroscience and Cell Biology, Robert Wood Johnson Medical School, Rutgers University, Hoes Ln. West, Piscataway, NJ, United States
| |
Collapse
|
10
|
Pillai U J, Ray A, Maan M, Dutta M. Repurposing drugs targeting metabolic diseases for cancer therapeutics. Drug Discov Today 2023; 28:103684. [PMID: 37379903 DOI: 10.1016/j.drudis.2023.103684] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2023] [Revised: 06/01/2023] [Accepted: 06/18/2023] [Indexed: 06/30/2023]
Abstract
Hurdles in the identification of new drugs for cancer treatment have made drug repurposing an increasingly appealing alternative. The approach involves the use of old drugs for new therapeutic purposes. It is cost-effective and facilitates rapid clinical translation. Given that cancer is also considered a metabolic disease, drugs for metabolic disorders are being actively repurposed for cancer therapeutics. In this review, we discuss the repurposing of such drugs approved for two major metabolic diseases, diabetes and cardiovascular disease (CVD), which have shown potential as anti-cancer treatment. We also highlight the current understanding of the cancer signaling pathways that these drugs target.
Collapse
Affiliation(s)
- Jisha Pillai U
- Department of Biotechnology, BITS Pilani, Dubai Campus, Academic City, Dubai, UAE
| | - Anindita Ray
- Department of Biotechnology, BITS Pilani, Dubai Campus, Academic City, Dubai, UAE
| | - Meenu Maan
- Mohammed Bin Rashid University of Medicine and Health Sciences (MBRU), Dubai, UAE; New York University-Abu Dhabi, Abu Dhabi, UAE.
| | - Mainak Dutta
- Department of Biotechnology, BITS Pilani, Dubai Campus, Academic City, Dubai, UAE.
| |
Collapse
|
11
|
Manna S, Kirtana R, Roy A, Baral T, Patra SK. Mechanisms of hedgehog, calcium and retinoic acid signalling pathway inhibitors: Plausible modes of action along the MLL-EZH2-p53 axis in cellular growth control. Arch Biochem Biophys 2023; 742:109600. [PMID: 37142078 DOI: 10.1016/j.abb.2023.109600] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Revised: 04/04/2023] [Accepted: 04/05/2023] [Indexed: 05/06/2023]
Abstract
Understanding the molecular mechanism(s) of small compounds in cellular growth control are essential for using those against the disease(s). Oral cancers exhibit a very high mortality rate due to higher metastatic potential. Aberrant EGFR, RAR, HH signalling, enhanced [Ca2+] and oxidative stress are some of the important characteristics of oral cancer. So, we target these for our study. Herein, we tested the effect of fendiline hydrochloride (FH) as an LTCC Ca2+-channel inhibitor, erismodegib (a SMO inhibitor of HH-signalling) and all-trans retinoic acid (RA) inducer of RAR signalling that causes cellular differentiation. OCT4 activating compound (OAC1) counters differentiation and induces stemness properties. Cytosine β-D arabinofuranoside (Cyto-BDA), a DNA replication inhibitor was used to reduce high proliferative capacity. Treatment of FaDu cells with OAC1, Cyto-BDA and FH increase G0/G1 population by 3%, 20% and 7% respectively, and lead to reduction of cyclin D1, CDK4/6 levels. Erismodegib arrests the cells in S-phase with reduced cyclin-E1&A1 levels, whereas RA-treatment causes G2/M phase arrest with reduced cyclin-B1. There was a decrease in the expression of EGFR and mesenchymal markers, Snail/Slug/Vim/Zeb/Twist, and increased E-cadherin expression in all the drug treatments, indicating a reduction in proliferative signal and EMT. Enhanced MLL2 (Mll4) and reduced EZH2 expression associated overexpression of p53 and p21 were traced out. We conclude that these drugs impact expression of epigenetic modifiers by modulating signalling pathways and the epigenetic modifiers then controls the expression of cell cycle control genes, including p53 and p21.
Collapse
Affiliation(s)
- Soumen Manna
- Epigenetics and Cancer Research Laboratory, Biochemistry and Molecular Biology Group, Department of Life Science, National Institute of Technology, Rourkela, Odisha, 769008, India
| | - R Kirtana
- Epigenetics and Cancer Research Laboratory, Biochemistry and Molecular Biology Group, Department of Life Science, National Institute of Technology, Rourkela, Odisha, 769008, India
| | - Ankan Roy
- Epigenetics and Cancer Research Laboratory, Biochemistry and Molecular Biology Group, Department of Life Science, National Institute of Technology, Rourkela, Odisha, 769008, India
| | - Tirthankar Baral
- Epigenetics and Cancer Research Laboratory, Biochemistry and Molecular Biology Group, Department of Life Science, National Institute of Technology, Rourkela, Odisha, 769008, India
| | - Samir Kumar Patra
- Epigenetics and Cancer Research Laboratory, Biochemistry and Molecular Biology Group, Department of Life Science, National Institute of Technology, Rourkela, Odisha, 769008, India.
| |
Collapse
|
12
|
Wawrzkiewicz-Jałowiecka A, Lalik A, Lukasiak A, Richter-Laskowska M, Trybek P, Ejfler M, Opałka M, Wardejn S, Delfino DV. Potassium Channels, Glucose Metabolism and Glycosylation in Cancer Cells. Int J Mol Sci 2023; 24:ijms24097942. [PMID: 37175655 PMCID: PMC10178682 DOI: 10.3390/ijms24097942] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 04/24/2023] [Accepted: 04/25/2023] [Indexed: 05/15/2023] Open
Abstract
Potassium channels emerge as one of the crucial groups of proteins that shape the biology of cancer cells. Their involvement in processes like cell growth, migration, or electric signaling, seems obvious. However, the relationship between the function of K+ channels, glucose metabolism, and cancer glycome appears much more intriguing. Among the typical hallmarks of cancer, one can mention the switch to aerobic glycolysis as the most favorable mechanism for glucose metabolism and glycome alterations. This review outlines the interconnections between the expression and activity of potassium channels, carbohydrate metabolism, and altered glycosylation in cancer cells, which have not been broadly discussed in the literature hitherto. Moreover, we propose the potential mediators for the described relations (e.g., enzymes, microRNAs) and the novel promising directions (e.g., glycans-orinented drugs) for further research.
Collapse
Affiliation(s)
- Agata Wawrzkiewicz-Jałowiecka
- Department of Physical Chemistry and Technology of Polymers, Silesian University of Technology, 44-100 Gliwice, Poland
| | - Anna Lalik
- Department of Systems Biology and Engineering, Silesian University of Technology, 44-100 Gliwice, Poland
- Biotechnology Center, Silesian University of Technology, 44-100 Gliwice, Poland
| | - Agnieszka Lukasiak
- Department of Physics and Biophysics, Institute of Biology, Warsaw University of Life Sciences, 02-776 Warsaw, Poland
| | - Monika Richter-Laskowska
- The Centre for Biomedical Engineering, Łukasiewicz Research Network-Krakow Institute of Technology, 30-418 Krakow, Poland
| | - Paulina Trybek
- Institute of Physics, University of Silesia in Katowice, 41-500 Chorzów, Poland
| | - Maciej Ejfler
- Faculty of Automatic Control, Electronics and Computer Science, Silesian University of Technology, 44-100 Gliwice, Poland
| | - Maciej Opałka
- Faculty of Automatic Control, Electronics and Computer Science, Silesian University of Technology, 44-100 Gliwice, Poland
| | - Sonia Wardejn
- Faculty of Automatic Control, Electronics and Computer Science, Silesian University of Technology, 44-100 Gliwice, Poland
| | - Domenico V Delfino
- Section of Pharmacology, Department of Medicine and Surgery, University of Perugia, 06129 Perugia, Italy
| |
Collapse
|
13
|
Pio-Lopez L, Levin M. Morphoceuticals: perspectives for discovery of drugs targeting anatomical control mechanisms in regenerative medicine, cancer and aging. Drug Discov Today 2023; 28:103585. [PMID: 37059328 DOI: 10.1016/j.drudis.2023.103585] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Revised: 03/18/2023] [Accepted: 04/06/2023] [Indexed: 04/16/2023]
Abstract
Morphoceuticals are a new class of interventions that target the setpoints of anatomical homeostasis for efficient, modular control of growth and form. Here, we focus on a subclass: electroceuticals, which specifically target the cellular bioelectrical interface. Cellular collectives in all tissues form bioelectrical networks via ion channels and gap junctions that process morphogenetic information, controlling gene expression and allowing cell networks to adaptively and dynamically control growth and pattern formation. Recent progress in understanding this physiological control system, including predictive computational models, suggests that targeting bioelectrical interfaces can control embryogenesis and maintain shape against injury, senescence and tumorigenesis. We propose a roadmap for drug discovery focused on manipulating endogenous bioelectric signaling for regenerative medicine, cancer suppression and antiaging therapeutics. Teaser: By taking advantage of the native problem-solving competencies of cells and tissues, a new kind of top-down approach to biomedicine becomes possible. Bioelectricity offers an especially tractable interface for interventions targeting the software of life for regenerative medicine applications.
Collapse
Affiliation(s)
- Léo Pio-Lopez
- Allen Discovery Center, Tufts University, Medford, MA, USA
| | - Michael Levin
- Allen Discovery Center, Tufts University, Medford, MA, USA; Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA, 02115, USA.
| |
Collapse
|
14
|
Naseem MU, Gurrola-Briones G, Romero-Imbachi MR, Borrego J, Carcamo-Noriega E, Beltrán-Vidal J, Zamudio FZ, Shakeel K, Possani LD, Panyi G. Characterization and Chemical Synthesis of Cm39 (α-KTx 4.8): A Scorpion Toxin That Inhibits Voltage-Gated K + Channel K V1.2 and Small- and Intermediate-Conductance Ca 2+-Activated K + Channels K Ca2.2 and K Ca3.1. Toxins (Basel) 2023; 15:41. [PMID: 36668861 PMCID: PMC9866218 DOI: 10.3390/toxins15010041] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 12/22/2022] [Accepted: 12/27/2022] [Indexed: 01/06/2023] Open
Abstract
A novel peptide, Cm39, was identified in the venom of the scorpion Centruroides margaritatus. Its primary structure was determined. It consists of 37 amino acid residues with a MW of 3980.2 Da. The full chemical synthesis and proper folding of Cm39 was obtained. Based on amino acid sequence alignment with different K+ channel inhibitor scorpion toxin (KTx) families and phylogenetic analysis, Cm39 belongs to the α-KTx 4 family and was registered with the systematic number of α-KTx 4.8. Synthetic Cm39 inhibits the voltage-gated K+ channel hKV1.2 with high affinity (Kd = 65 nM). The conductance-voltage relationship of KV1.2 was not altered in the presence of Cm39, and the analysis of the toxin binding kinetics was consistent with a bimolecular interaction between the peptide and the channel; therefore, the pore blocking mechanism is proposed for the toxin-channel interaction. Cm39 also inhibits the Ca2+-activated KCa2.2 and KCa3.1 channels, with Kd = 502 nM, and Kd = 58 nM, respectively. However, the peptide does not inhibit hKV1.1, hKV1.3, hKV1.4, hKV1.5, hKV1.6, hKV11.1, mKCa1.1 K+ channels or the hNaV1.5 and hNaV1.4 Na+ channels at 1 μM concentrations. Understanding the unusual selectivity profile of Cm39 motivates further experiments to reveal novel interactions with the vestibule of toxin-sensitive channels.
Collapse
Affiliation(s)
- Muhammad Umair Naseem
- Department of Biophysics and Cell Biology, Faculty of Medicine, Research Center for Molecular Medicine, University of Debrecen, Egyetem ter. 1, 4032 Debrecen, Hungary
| | - Georgina Gurrola-Briones
- Departamento de Medicina Molecular y Bioprocesos, Instituto de Biotecnologia, Universidad Nacional Autónoma de México, Av. Universidad 2001, Cuernavaca 62210, Morelos, Mexico
| | - Margarita R. Romero-Imbachi
- Grupo de Investigaciones Herpetológicas y Toxinológicas, Centro de Investigaciones Biomédicas, Departamento de Biología, Facultad de Ciencias Naturales, Exactas y de la Educación, Universidad del Cauca, Sector Tulcan, Calle 2 N 3N-100, Popayán 190002, Cauca, Colombia
| | - Jesus Borrego
- Department of Biophysics and Cell Biology, Faculty of Medicine, Research Center for Molecular Medicine, University of Debrecen, Egyetem ter. 1, 4032 Debrecen, Hungary
| | - Edson Carcamo-Noriega
- Departamento de Medicina Molecular y Bioprocesos, Instituto de Biotecnologia, Universidad Nacional Autónoma de México, Av. Universidad 2001, Cuernavaca 62210, Morelos, Mexico
| | - José Beltrán-Vidal
- Grupo de Investigaciones Herpetológicas y Toxinológicas, Centro de Investigaciones Biomédicas, Departamento de Biología, Facultad de Ciencias Naturales, Exactas y de la Educación, Universidad del Cauca, Sector Tulcan, Calle 2 N 3N-100, Popayán 190002, Cauca, Colombia
| | - Fernando Z. Zamudio
- Departamento de Medicina Molecular y Bioprocesos, Instituto de Biotecnologia, Universidad Nacional Autónoma de México, Av. Universidad 2001, Cuernavaca 62210, Morelos, Mexico
| | - Kashmala Shakeel
- Department of Biophysics and Cell Biology, Faculty of Medicine, Research Center for Molecular Medicine, University of Debrecen, Egyetem ter. 1, 4032 Debrecen, Hungary
| | - Lourival Domingos Possani
- Departamento de Medicina Molecular y Bioprocesos, Instituto de Biotecnologia, Universidad Nacional Autónoma de México, Av. Universidad 2001, Cuernavaca 62210, Morelos, Mexico
| | - Gyorgy Panyi
- Department of Biophysics and Cell Biology, Faculty of Medicine, Research Center for Molecular Medicine, University of Debrecen, Egyetem ter. 1, 4032 Debrecen, Hungary
| |
Collapse
|
15
|
Yu HG, Sizemore G, Martinez I, Perrotta P. Inhibition of SARS-CoV-2 Viral Channel Activity Using FDA-Approved Channel Modulators Independent of Variants. Biomolecules 2022; 12:1673. [PMID: 36421688 PMCID: PMC9687591 DOI: 10.3390/biom12111673] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Revised: 10/29/2022] [Accepted: 11/07/2022] [Indexed: 11/16/2022] Open
Abstract
BACKGROUND SARS-CoV-2 has undergone mutations, yielding clinically relevant variants. HYPOTHESIS We hypothesized that in SARS-CoV-2, two highly conserved Orf3a and E channels directly related to the virus replication were a target for the detection and inhibition of the viral replication, independent of the variant, using FDA-approved ion channel modulators. METHODS A combination of a fluorescence potassium ion assay with channel modulators was developed to detect SARS-CoV-2 Orf3a/E channel activity. Two FDA-approved drugs, amantadine (an antiviral) and amitriptyline (an antidepressant), which are ion channel blockers, were tested as to whether they inhibited Orf3a/E channel activity in isolated virus variants and in nasal swab samples from COVID-19 patients. The variants were confirmed by PCR sequencing. RESULTS In isolated SARS-CoV-2 Alpha, Beta, and Delta variants, the channel activity of Orf3a/E was detected and inhibited by emodin and gliclazide (IC50 = 0.42 mM). In the Delta swab samples, amitriptyline and amantadine inhibited the channel activity of viral proteins, with IC50 values of 0.73 mM and 1.11 mM, respectively. In the Omicron swab samples, amitriptyline inhibited the channel activity, with an IC50 of 0.76 mM. CONCLUSIONS We developed an efficient method to screen FDA-approved ion channel modulators that could be repurposed to detect and inhibit SARS-CoV-2 viral replication, independent of variants.
Collapse
Affiliation(s)
- Han-Gang Yu
- Department of Physiology and Pharmacology, School of Medicine, West Virginia University, Morgantown, WV 26506, USA
| | - Gina Sizemore
- Clinical Medicine Resources, EZCARE Walk-in Medical Center, Moorefield, WV 26836, USA
| | - Ivan Martinez
- Department of Microbiology, Immunology, & Cell Biology, Cancer Institute, School of Medicine, West Virginia University, Morgantown, WV 26506, USA
| | - Peter Perrotta
- Anatomy & Laboratory Medicine, Department of Pathology, School of Medicine, West Virginia University, Morgantown, WV 26506, USA
| |
Collapse
|
16
|
Merritt JC, Richbart SD, Moles EG, Cox AJ, Brown KC, Miles SL, Finch PT, Hess JA, Tirona MT, Valentovic MA, Dasgupta P. Anti-cancer activity of sustained release capsaicin formulations. Pharmacol Ther 2022; 238:108177. [PMID: 35351463 PMCID: PMC9510151 DOI: 10.1016/j.pharmthera.2022.108177] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Revised: 03/16/2022] [Accepted: 03/22/2022] [Indexed: 11/17/2022]
Abstract
Capsaicin (trans-8-methyl-N-vanillyl-6-noneamide) is a hydrophobic, lipophilic vanilloid phytochemical abundantly found in chili peppers and pepper extracts. Several convergent studies show that capsaicin displays robust cancer activity, suppressing the growth, angiogenesis and metastasis of several human cancers. Despite its potent cancer-suppressing activity, the clinical applications of capsaicin as a viable anti-cancer drug have remained problematic due to its poor bioavailability and aqueous solubility properties. In addition, the administration of capsaicin is associated with adverse side effects like gastrointestinal cramps, stomach pain, nausea and diarrhea and vomiting. All these hurdles may be circumvented by encapsulation of capsaicin in sustained release drug delivery systems. Most of the capsaicin-based the sustained release drugs have been tested for their pain-relieving activity. Only a few of these formulations have been investigated as anti-cancer agents. The present review describes the physicochemical properties, bioavailability, and anti-cancer activity of capsaicin-sustained release agents. The asset of such continuous release capsaicin formulations is that they display better solubility, stability, bioavailability, and growth-suppressive activity than the free drug. The encapsulation of capsaicin in sustained release carriers minimizes the adverse side effects of capsaicin. In summary, these capsaicin-based sustained release drug delivery systems have the potential to function as novel chemotherapies, unique diagnostic imaging probes and innovative chemosensitization agents in human cancers.
Collapse
Affiliation(s)
- Justin C Merritt
- Department of Biomedical Sciences, Joan C. Edwards School of Medicine, Marshall University, Huntington, WV 25755, United States
| | - Stephen D Richbart
- Department of Biomedical Sciences, Joan C. Edwards School of Medicine, Marshall University, Huntington, WV 25755, United States
| | - Emily G Moles
- Department of Biomedical Sciences, Joan C. Edwards School of Medicine, Marshall University, Huntington, WV 25755, United States
| | - Ashley J Cox
- Department of Biomedical Sciences, Joan C. Edwards School of Medicine, Marshall University, Huntington, WV 25755, United States
| | - Kathleen C Brown
- Department of Biomedical Sciences, Joan C. Edwards School of Medicine, Marshall University, Huntington, WV 25755, United States
| | - Sarah L Miles
- Department of Biomedical Sciences, Joan C. Edwards School of Medicine, Marshall University, Huntington, WV 25755, United States
| | - Paul T Finch
- Department of Oncology, Edwards Cancer Center, Joan C. Edwards School of Medicine, Marshall University, 1400 Hal Greer Boulevard, Huntington, WV 25755, United States
| | - Joshua A Hess
- Department of Oncology, Edwards Cancer Center, Joan C. Edwards School of Medicine, Marshall University, 1400 Hal Greer Boulevard, Huntington, WV 25755, United States
| | - Maria T Tirona
- Department of Hematology-Oncology, Edwards Cancer Center, Joan C. Edwards School of Medicine, Marshall University, 1400 Hal Greer Boulevard, Huntington, WV 25755, United States
| | - Monica A Valentovic
- Department of Biomedical Sciences, Joan C. Edwards School of Medicine, Marshall University, Huntington, WV 25755, United States
| | - Piyali Dasgupta
- Department of Biomedical Sciences, Joan C. Edwards School of Medicine, Marshall University, Huntington, WV 25755, United States.
| |
Collapse
|
17
|
Ion Channels in Endometrial Cancer. Cancers (Basel) 2022; 14:cancers14194733. [PMID: 36230654 PMCID: PMC9564232 DOI: 10.3390/cancers14194733] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Revised: 09/22/2022] [Accepted: 09/23/2022] [Indexed: 11/17/2022] Open
Abstract
Simple Summary Uterine or endometrial cancer is one of the most common types of cancer among the female population. Different alterations of molecules are related to many types of cancer. Some molecules called ion channels have been described as involved in the development of cancer, including endometrial cancer. We review the scientific evidence about the involvement of the ion channels in endometrial cancer and how some treatments can be developed with these molecules as a target. Even though they are involved in the progression of endometrial cancer, since they are present throughout the whole body, some possible treatments based on these could be studied. Abstract Uterine or endometrial cancer (EC) is the sixth most common neoplasia among women worldwide. Cancer can originate from a myriad of causes, and increasing evidence suggests that ion channels (IC) play an important role in the process of carcinogenesis, taking part in many pathways such as self-sufficiency in growth signals, proliferation, evasion of programmed cell death (apoptosis), angiogenesis, cell differentiation, migration, adhesion, and metastasis. Hormones and growth factors are well-known to be involved in the development and/or progression of many cancers and can also regulate some ion channels and pumps. Since the endometrium is responsive and regulated by these factors, the ICs could make an important contribution to the development and progression of endometrial cancer. In this review, we explore what is beyond (ion) flow regulation by investigating the role of the main families of ICs in EC, including as possible targets for EC treatment.
Collapse
|
18
|
T-Type Calcium Channels: A Mixed Blessing. Int J Mol Sci 2022; 23:ijms23179894. [PMID: 36077291 PMCID: PMC9456242 DOI: 10.3390/ijms23179894] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Revised: 08/26/2022] [Accepted: 08/29/2022] [Indexed: 11/17/2022] Open
Abstract
The role of T-type calcium channels is well established in excitable cells, where they preside over action potential generation, automaticity, and firing. They also contribute to intracellular calcium signaling, cell cycle progression, and cell fate; and, in this sense, they emerge as key regulators also in non-excitable cells. In particular, their expression may be considered a prognostic factor in cancer. Almost all cancer cells express T-type calcium channels to the point that it has been considered a pharmacological target; but, as the drugs used to reduce their expression are not completely selective, several complications develop, especially within the heart. T-type calcium channels are also involved in a specific side effect of several anticancer agents, that act on microtubule transport, increase the expression of the channel, and, thus, the excitability of sensory neurons, and make the patient more sensitive to pain. This review puts into context the relevance of T-type calcium channels in cancer and in chemotherapy side effects, considering also the cardiotoxicity induced by new classes of antineoplastic molecules.
Collapse
|
19
|
Luis E, Anaya-Hernández A, León-Sánchez P, Durán-Pastén ML. The Kv10.1 Channel: A Promising Target in Cancer. Int J Mol Sci 2022; 23:ijms23158458. [PMID: 35955591 PMCID: PMC9369319 DOI: 10.3390/ijms23158458] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Revised: 07/25/2022] [Accepted: 07/27/2022] [Indexed: 12/19/2022] Open
Abstract
Carcinogenesis is a multistage process involving the dysregulation of multiple genes, proteins, and pathways that make any normal cell acquire a cancer cell phenotype. Therefore, it is no surprise that numerous ion channels could be involved in this process. Since their discovery and subsequent cloning, ion channels have been established as therapeutic targets in excitable cell pathologies (e.g., cardiac arrhythmias or epilepsy); however, their involvement in non-excitable cell pathologies is relatively recent. Among all ion channels, the voltage-gated potassium channels Kv10.1 have been established as a promising target in cancer treatment due to their high expression in tumoral tissues compared to low levels in healthy tissues.
Collapse
Affiliation(s)
- Enoch Luis
- Cátedras CONACYT—Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Circuito Exterior s/n, C.U., Ciudad de México 04510, Mexico
- Laboratorio Nacional de Canalopatías, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Circuito Exterior s/n, C.U., Ciudad de México 04510, Mexico; (P.L.-S.); (M.L.D.-P.)
- Correspondence:
| | - Arely Anaya-Hernández
- Centro de Investigación en Genética y Ambiente, Universidad Autónoma de Tlaxcala, Km. 10.5 Autopista Tlaxcala-San Martín, Tlaxcala 90120, Mexico;
| | - Paulina León-Sánchez
- Laboratorio Nacional de Canalopatías, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Circuito Exterior s/n, C.U., Ciudad de México 04510, Mexico; (P.L.-S.); (M.L.D.-P.)
| | - María Luisa Durán-Pastén
- Laboratorio Nacional de Canalopatías, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Circuito Exterior s/n, C.U., Ciudad de México 04510, Mexico; (P.L.-S.); (M.L.D.-P.)
| |
Collapse
|
20
|
Identification of a Prognostic Microenvironment-Related Gene Signature in Glioblastoma Patients Treated with Carmustine Wafers. Cancers (Basel) 2022; 14:cancers14143413. [PMID: 35884475 PMCID: PMC9320240 DOI: 10.3390/cancers14143413] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 07/11/2022] [Accepted: 07/12/2022] [Indexed: 11/17/2022] Open
Abstract
Despite the state-of-the-art treatment, patients diagnosed with glioblastoma (GBM) have a median overall survival (OS) of 14 months. The insertion of carmustine wafers (CWs) into the resection cavity as adjuvant treatment represents a promising option, although its use has been limited due to contrasting clinical results. Our retrospective evaluation of CW efficacy showed a significant improvement in terms of OS in a subgroup of patients. Given the crucial role of the tumor microenvironment (TME) in GBM progression and response to therapy, we hypothesized that the TME of patients who benefited from CW could have different properties compared to that of patients who did not show any advantage. Using an in vitro model of the glioma microenvironment, represented by glioma-associated-stem cells (GASC), we performed a transcriptomic analysis of GASC isolated from tumors of patients responsive and not responsive to CW to identify differentially expressed genes. We found different transcriptomic profiles, and we identified four genes, specifically down-regulated in GASC isolated from long-term survivors, correlated with clinical data deposited in the TCGA–GBM dataset. Our results highlight that studying the in vitro properties of patient-specific glioma microenvironments can help to identify molecular determinants potentially prognostic for patients treated with CW.
Collapse
|
21
|
Ion Channel Drugs Suppress Cancer Phenotype in NG108-15 and U87 Cells: Toward Novel Electroceuticals for Glioblastoma. Cancers (Basel) 2022; 14:cancers14061499. [PMID: 35326650 PMCID: PMC8946312 DOI: 10.3390/cancers14061499] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Revised: 03/08/2022] [Accepted: 03/09/2022] [Indexed: 01/07/2023] Open
Abstract
Glioblastoma is a lethal brain cancer that commonly recurs after tumor resection and chemotherapy treatment. Depolarized resting membrane potentials and an acidic intertumoral extracellular pH have been associated with a proliferative state and drug resistance, suggesting that forced hyperpolarization and disruption of proton pumps in the plasma membrane could be a successful strategy for targeting glioblastoma overgrowth. We screened 47 compounds and compound combinations, most of which were ion-modulating, at different concentrations in the NG108-15 rodent neuroblastoma/glioma cell line. A subset of these were tested in the U87 human glioblastoma cell line. A FUCCI cell cycle reporter was stably integrated into both cell lines to monitor proliferation and cell cycle response. Immunocytochemistry, electrophysiology, and a panel of physiological dyes reporting voltage, calcium, and pH were used to characterize responses. The most effective treatments on proliferation in U87 cells were combinations of NS1643 and pantoprazole; retigabine and pantoprazole; and pantoprazole or NS1643 with temozolomide. Marker analysis and physiological dye signatures suggest that exposure to bioelectric drugs significantly reduces proliferation, makes the cells senescent, and promotes differentiation. These results, along with the observed low toxicity in human neurons, show the high efficacy of electroceuticals utilizing combinations of repurposed FDA approved drugs.
Collapse
|
22
|
In Silico Analysis of Ion Channels and Their Correlation with Epithelial to Mesenchymal Transition in Breast Cancer. Cancers (Basel) 2022; 14:cancers14061444. [PMID: 35326596 PMCID: PMC8946083 DOI: 10.3390/cancers14061444] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 02/09/2022] [Accepted: 02/11/2022] [Indexed: 02/01/2023] Open
Abstract
Simple Summary Breast cancer involves changes in the healthy cells of the breast resulting in rapid and abnormal division of cells that later spread to other parts of the body through the process of metastasis, which involves epithelial mesenchymal transition (EMT). Ion channels play a significant role in the switch from epithelial to mesenchymal transition through their contributions to cellular motility, cell volume regulation and cell cycle progression. Comprehensive computational analyses were performed to understand the role of ion channels in tumor/metastatic samples of breast cancer and their correlation with EMT. Abstract Uncontrolled growth of breast cells due to altered gene expression is a key feature of breast cancer. Alterations in the expression of ion channels lead to variations in cellular activities, thus contributing to attributes of cancer hallmarks. Changes in the expression levels of ion channels were observed as a consequence of EMT. Additionally, ion channels were reported in the activation of EMT and maintenance of a mesenchymal phenotype. Here, to identify altered ion channels in breast cancer patients, differential gene expression and weighted gene co-expression network analyses were performed using transcriptomic data. Protein–protein interactions network analysis was carried out to determine the ion channels interacting with hub EMT-related genes in breast cancer. Thirty-two ion channels were found interacting with twenty-six hub EMT-related genes. The identified ion channels were further correlated with EMT scores, indicating mesenchymal phenotype. Further, the pathway map was generated to represent a snapshot of deregulated cellular processes by altered ion channels and EMT-related genes. Kaplan–Meier five-year survival analysis and Cox regressions indicated the expression of CACNA1B, ANO6, TRPV3, VDAC1 and VDAC2 to be potentially associated with poor survival. Deregulated ion channels correlate with EMT-related genes and have a crucial role in breast cancer-associated tumorigenesis. Most likely, they are potential candidates for the determination of prognosis in patients with breast cancer.
Collapse
|
23
|
Bergantin LB. The Interactions among Hypertension, Cancer, and COVID-19: Perspective with Regard to Ca 2+/cAMP Signalling. Curr Cancer Drug Targets 2022; 22:351-360. [PMID: 35168520 DOI: 10.2174/1568009622666220215143805] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Revised: 12/02/2021] [Accepted: 12/16/2021] [Indexed: 11/22/2022]
Abstract
BACKGROUND The hypothesis that hypertension is clinically associated with an enhanced risk of developing cancer has been highlighted. However, the working principles involved in this link are still under intensive discussion. A correlation among inflammation, hypertension, and cancer could accurately describe the clinical link between these diseases. In addition, dyshomeostasis of Ca2+ has been considered to be involved in both cancer and hypertension, and inflammation. There is a strong link between Ca2+ signalling, e.g. enhanced Ca2+ signals, and inflammatory outcomes. cAMP also modulates pro- and anti-inflammatory outcomes; pharmaceuticals, which increase intracellular cAMP levels, can decrease the production of proinflammatory mediators and enhance the production of antiinflammatory outcomes. OBJECTIVE This article highlights the participation of Ca2+/cAMP signalling in the clinical association among inflammation, hypertension, and an enhanced risk for the development of cancer. In addition, considering that research on coronavirus disease 2019 (COVID-19) is a rapidly evolving field, this article also reviews recent reports related to the role of Ca2+ channel blockers in restoring Ca2+ signalling disruption due to COVID-19, including the relationship among COVID-19, cancer, and hypertension. CONCLUSION An understanding of the association among these diseases could expand current pharmacotherapy, involving Ca2+ channel blockers and pharmaceuticals that facilitate a rise in cAMP levels.
Collapse
Affiliation(s)
- Leandro Bueno Bergantin
- Department of Pharmacology, Universidade Federal de São Paulo, Escola Paulista de Medicina, Laboratory of Autonomic and Cardiovascular Pharmacology, 55 11 5576-4973, Rua Pedro de Toledo, 669, Vila Clementino, São Paulo, SP, Brazil
| |
Collapse
|
24
|
Payne SL, Ram P, Srinivasan DH, Le TT, Levin M, Oudin MJ. Potassium channel-driven bioelectric signalling regulates metastasis in triple-negative breast cancer. EBioMedicine 2022; 75:103767. [PMID: 34933180 PMCID: PMC8688589 DOI: 10.1016/j.ebiom.2021.103767] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2021] [Revised: 11/22/2021] [Accepted: 12/06/2021] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND There is a critical need to better understand the mechanisms that drive local cell invasion and metastasis to develop new therapeutics targeting metastatic disease. Bioelectricity is an important mediator of cellular processes and changes in the resting membrane potential (RMP) are associated with increased cancer cell invasion. However, whether the RMP can be used to target invading cancer cells is unknown. METHODS We employed both genetic and pharmacological manipulation of potassium channel activity and characterized the effects on breast cancer cell migration and invasion in vitro, and metastasis in an animal model of breast cancer. FINDINGS Our data demonstrate that altering the RMP of triple-negative breast cancer (TNBC) cells by manipulating potassium channel expression increases in vitro invasion, in vivo tumour growth and metastasis, and is accompanied by changes in gene expression associated with cell adhesion. INTERPRETATION We describe a novel mechanism for RMP-mediated cell migration involving cadherin-11 and the MAPK pathway. Importantly, we identify a new strategy to target metastatic TNBC in vivo by repurposing an FDA-approved potassium channel blocker. Our results demonstrate that bioelectricity regulates cancer cell invasion and metastasis which could lead to a new class of therapeutics for patients with metastatic disease. FUNDING This work was supported by the National Institutes of Health (R00-CA207866 to M.J.O.), Tufts University (Start-up funds from the School of Engineering to M.J.O., Tufts Collaborates Award to M.J.O. and M.L.), Allen Discovery centre program (Paul G. Allen Frontiers Group (12,171) to M.L.), and Breast Cancer Alliance Young Investigator Grant to M.J.O, Laidlaw Scholar funding to D.S. M.L. also gratefully acknowledges support of the Barton Family Foundation.
Collapse
Affiliation(s)
- Samantha L Payne
- Department of Biomedical Engineering, 200 College Avenue, Tufts University, Medford MA 02155, United States of America
| | - Priyanka Ram
- Department of Biomedical Engineering, 200 College Avenue, Tufts University, Medford MA 02155, United States of America
| | - Deepti H Srinivasan
- Department of Biomedical Engineering, 200 College Avenue, Tufts University, Medford MA 02155, United States of America
| | - Thanh T Le
- Department of Biomedical Engineering, 200 College Avenue, Tufts University, Medford MA 02155, United States of America
| | - Michael Levin
- Allen Discovery Center, 200 College Avenue, Tufts University, Medford, MA 02155, United States of America
| | - Madeleine J Oudin
- Department of Biomedical Engineering, 200 College Avenue, Tufts University, Medford MA 02155, United States of America.
| |
Collapse
|
25
|
Patil VM, Gaurav A, Garg P, Masand N. Non-cancer to anti-cancer: investigation of human ether-a-go-go-related gene potassium channel inhibitors as potential therapeutics. J Egypt Natl Canc Inst 2021; 33:33. [PMID: 34746987 DOI: 10.1186/s43046-021-00091-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Accepted: 09/11/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The expression of hERG K+ channels is observed in various cancer cells including epithelial, neuronal, leukemic, and connective tissue. The role of hERG potassium channels in regulating the growth and death of cancer cells include cell proliferation, survival, secretion of proangiogenic factors, invasiveness, and metastasis. METHODS In the reported study, an attempt has been made to investigate some non-cancer hERG blockers as potential cancer therapeutics using a computational drug repurposing strategy. Preliminary investigation for hERG blockers/non-blockers has identified 26 potential clinically approved compounds for further studies using molecular modeling. RESULTS The interactions at the binding pockets have been investigated along with the prioritization based on the binding score. Some of the identified potential hERG inhibitors, i.e., Bromocriptine, Darglitazone, and Troglitazone, have been investigated to derive the mechanism of cancer inhibition. CONCLUSIONS The proposed mechanism for anti-cancer properties via hERG blocking for some of the potential compounds is required to be explored using other experimental methodologies. The drug repurposing approach applied to investigate anti-cancer therapeutics may direct to provide a therapeutic solution to late-stage cancer and benefit a significant population of patients.
Collapse
Affiliation(s)
- Vaishali M Patil
- KIET School of Pharmacy, KIET Group of Institutions, Delhi-NCR, Ghaziabad, India.
| | - Anand Gaurav
- Faculty of Pharmaceutical Sciences, UCSI University, Jalan Menara Gading, Taman Connaught, Cheras, 56000, Kuala Lumpur, Malaysia
| | - Priyanka Garg
- KIET School of Pharmacy, KIET Group of Institutions, Delhi-NCR, Ghaziabad, India
| | - Neeraj Masand
- Department of Pharmacy, Lala Lajpat Rai Memorial Medical College, Meerut, Uttar Pradesh, India
| |
Collapse
|
26
|
Cell Systems Bioelectricity: How Different Intercellular Gap Junctions Could Regionalize a Multicellular Aggregate. Cancers (Basel) 2021; 13:cancers13215300. [PMID: 34771463 PMCID: PMC8582473 DOI: 10.3390/cancers13215300] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Revised: 10/18/2021] [Accepted: 10/19/2021] [Indexed: 01/10/2023] Open
Abstract
Electric potential distributions can act as instructive pre-patterns for development, regeneration, and tumorigenesis in cell systems. The biophysical states influence transcription, proliferation, cell shape, migration, and differentiation through biochemical and biomechanical downstream transduction processes. A major knowledge gap is the origin of spatial patterns in vivo, and their relationship to the ion channels and the electrical synapses known as gap junctions. Understanding this is critical for basic evolutionary developmental biology as well as for regenerative medicine. We computationally show that cells may express connexin proteins with different voltage-gated gap junction conductances as a way to maintain multicellular regions at distinct membrane potentials. We show that increasing the multicellular connectivity via enhanced junction function does not always contribute to the bioelectrical normalization of abnormally depolarized multicellular patches. From a purely electrical junction view, this result suggests that the reduction rather than the increase of specific connexin levels can also be a suitable bioelectrical approach in some cases and time stages. We offer a minimum model that incorporates effective conductances ultimately related to specific ion channel and junction proteins that are amenable to external regulation. We suggest that the bioelectrical patterns and their encoded instructive information can be externally modulated by acting on the mean fields of cell systems, a complementary approach to that of acting on the molecular characteristics of individual cells. We believe that despite the limitations of a biophysically focused model, our approach can offer useful qualitative insights into the collective dynamics of cell system bioelectricity.
Collapse
|
27
|
Valosin-Containing Protein (VCP)/p97: A Prognostic Biomarker and Therapeutic Target in Cancer. Int J Mol Sci 2021; 22:ijms221810177. [PMID: 34576340 PMCID: PMC8469696 DOI: 10.3390/ijms221810177] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Revised: 09/17/2021] [Accepted: 09/18/2021] [Indexed: 01/02/2023] Open
Abstract
Valosin-containing protein (VCP)/p97, a member of the AAA+ ATPase family, is a molecular chaperone recruited to the endoplasmic reticulum (ER) membrane by binding to membrane adapters (nuclear protein localization protein 4 (NPL4), p47 and ubiquitin regulatory X (UBX) domain-containing protein 1 (UBXD1)), where it is involved in ER-associated protein degradation (ERAD). However, VCP/p97 interacts with many cofactors to participate in different cellular processes that are critical for cancer cell survival and aggressiveness. Indeed, VCP/p97 is reported to be overexpressed in many cancer types and is considered a potential cancer biomarker and therapeutic target. This review summarizes the role of VCP/p97 in different cancers and the advances in the discovery of small-molecule inhibitors with therapeutic potential, focusing on the challenges associated with cancer-related VCP mutations in the mechanisms of resistance to inhibitors.
Collapse
|
28
|
Chen YC, Chen JH, Tsai CF, Wu CT, Wu MH, Chang PC, Yeh WL. Nicardipine Inhibits Breast Cancer Migration via Nrf2/HO-1 Axis and Matrix Metalloproteinase-9 Regulation. Front Pharmacol 2021; 12:710978. [PMID: 34483918 PMCID: PMC8414136 DOI: 10.3389/fphar.2021.710978] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Accepted: 07/07/2021] [Indexed: 11/22/2022] Open
Abstract
Background: Metastasis represents an advanced stage of cancers, and matrix metalloproteinases are critical regulators. Calcium signal is crucial for appropriate cell behaviors. The efficacy and effects of calcium channel blockers in treating cancers are individually differ from each other. Here, we attempt to investigate the effects of nicardipine, a FDA-approved calcium channel blocker, in advanced breast cancers. Methods: We analyzed the influence of nicardipine on the colony-forming ability of triple negative breast cancer cell lines. Using cell culture inserts, cell migration was also examined. The expression of regulatory proteins was evaluated by real-time PCR, Western blot, and ELISA. Results: We have confirmed that nicardipine inhibits the breast cancer cells migration and colony formation. In addition, we also revealed that nicardipine increases the Nrf2 and HO-1 expression. The inhibition of HO-1 abrogates nicardipine-reduced matrix metalloproteinase-9 expression. Moreover, the end products of HO-1, namely, CO, Fe2+, and biliverdin (will converted to bilirubin), also decreases the expression of matrix metalloproteinase-9. Conclusion: These findings suggest that nicardipine-mediated matrix metalloproteinase-9 reduction is regulated by Nrf2/HO-1 axis and its catalytic end products. Therefore, nicardipine may be a potential candidate for repurposing against advanced breast cancers.
Collapse
Affiliation(s)
- Yen-Chang Chen
- Department of Biological Science and Technology, China Medical University, Taichung, Taiwan.,Institute of New Drug Development, China Medical University, Taichung, Taiwan
| | - Jia-Hong Chen
- Department of General Surgery, Taichung Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Taichung, Taiwan
| | - Cheng-Fang Tsai
- Department of Medical Laboratory Science and Biotechnology, Asia University, Taichung, Taiwan
| | - Chen-Teng Wu
- Department of Surgery, China Medical University Hospital, Taichung, Taiwan
| | - Miao-Hsiang Wu
- Department of Biological Science and Technology, China Medical University, Taichung, Taiwan
| | - Pei-Chun Chang
- Department of Bioinformatics and Medical Engineering, Asia University, Taichung, Taiwan
| | - Wei-Lan Yeh
- Department of Biological Science and Technology, China Medical University, Taichung, Taiwan.,Institute of New Drug Development, China Medical University, Taichung, Taiwan.,Department of Biochemistry, School of Medicine, China Medical University, Taichung, Taiwan
| |
Collapse
|
29
|
El-Wakil MH, Teleb M, Abu-Serie MM, Huang S, Zamponi GW, Fahmy H. Structural optimization, synthesis and in vitro synergistic anticancer activities of combinations of new N3-substituted dihydropyrimidine calcium channel blockers with cisplatin and etoposide. Bioorg Chem 2021; 115:105262. [PMID: 34411980 DOI: 10.1016/j.bioorg.2021.105262] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2021] [Revised: 07/19/2021] [Accepted: 08/07/2021] [Indexed: 01/09/2023]
Abstract
T-type calcium channels are considered potential drug targets to combat cancer. Combining T-type calcium channel blockers with conventional chemotherapy drugs represents a promising strategy towards successful cancer treatment. From this perspective, we report in this study the design and synthesis of a novel series of N3-sustituted dihydropyrimidines (DHPMs) as anticancer adjuvants to cisplatin (Cis) and etoposide (Eto). Full spectral characterization of the new compounds was done using FT-IR, 1H NMR, 13C NMR, and HRMS. Structure elucidation was confirmed by 2D NMR 1H-H COSY, HSQC and NOESY experiments. Novel derivatives were tested for their Ca2+ channel blocking activity by employing the whole cell patch-clamp technique. Results demonstrated that most compounds were potential T-type calcium channel blockers with the triazole-based C12 and C13 being the most selective agents against CaV3.2 channel. Further electrophysiological studies demonstrated that C12 and C13 inhibited CaV3.2 currents with respective affinity of 2.26 and 1.27 µM, and induced 5 mV hyperpolarizing shifts in the half-inactivation potential. Subsequently, C12 and C13 were evaluated for their anticancer activities alone and in combination with Cis and Eto against A549 and MDA-MB 231 cancer cells. Interestingly, both compounds exhibited potential anticancer effects with IC50 values < 5 µM. Combination studies revealed that both compounds had synergistic effects (combination index CI < 1) on Cis and Eto through induction of apoptosis (p53 activation and up-regulation of BAX and p21 gene expression). Importantly, in silico physicochemical and ADMET assessment of both compounds revealed their potential drug-like properties with decreased risk of cardiac toxicity. Hence, C12 and C13 are promising anticancer adjuvants through inhibition of CaV3.2 T-type calcium channels, thereby serving as eminent leads for further modification.
Collapse
Affiliation(s)
- Marwa H El-Wakil
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Alexandria University, Alexandria 21521, Egypt
| | - Mohamed Teleb
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Alexandria University, Alexandria 21521, Egypt.
| | - Marwa M Abu-Serie
- Department of Medical Biotechnology, Genetic Engineering and Biotechnology Research Institute, City of Scientific Research and Technological Applications (SRTA-City), Egypt
| | - Sun Huang
- Department of Physiology & Pharmacology, Hotchkiss Brain Institute, Alberta Children's Hospital Research Institute, University of Calgary, 3330 Hospital Drive NW, Calgary T2N 4N1, Canada
| | - Gerald W Zamponi
- Department of Physiology & Pharmacology, Hotchkiss Brain Institute, Alberta Children's Hospital Research Institute, University of Calgary, 3330 Hospital Drive NW, Calgary T2N 4N1, Canada
| | - Hesham Fahmy
- Department of Pharmaceutical Sciences, College of Pharmacy & Allied Health Sciences, South Dakota State University, Brookings, SD 57006, USA.
| |
Collapse
|
30
|
Bergantin LB. Diabetes and inflammatory diseases: An overview from the perspective of Ca 2+/3'-5'-cyclic adenosine monophosphate signaling. World J Diabetes 2021; 12:767-779. [PMID: 34168726 PMCID: PMC8192245 DOI: 10.4239/wjd.v12.i6.767] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Revised: 12/29/2020] [Accepted: 03/07/2021] [Indexed: 02/06/2023] Open
Abstract
A large amount of evidence has supported a clinical link between diabetes and inflammatory diseases, e.g., cancer, dementia, and hypertension. In addition, it is also suggested that dysregulations related to Ca2+ signaling could link these diseases, in addition to 3'-5'-cyclic adenosine monophosphate (cAMP) signaling pathways. Thus, revealing this interplay between diabetes and inflammatory diseases may provide novel insights into the pathogenesis of these diseases. Publications involving signaling pathways related to Ca2+ and cAMP, inflammation, diabetes, dementia, cancer, and hypertension (alone or combined) were collected by searching PubMed and EMBASE. Both signaling pathways, Ca2+ and cAMP signaling, control the release of neurotransmitters and hormones, in addition to neurodegeneration, and tumor growth. Furthermore, there is a clear relationship between Ca2+ signaling, e.g., increased Ca2+ signals, and inflammatory responses. cAMP also regulates pro- and anti-inflammatory responses. Due to the experience of our group in this field, this article discusses the role of Ca2+ and cAMP signaling in the correlation between diabetes and inflammatory diseases, including its pharmacological implications. As a novelty, this article also includes: (1) A timeline of the major events in Ca2+/cAMP signaling; and (2) As coronavirus disease 2019 (COVID-19) is an emerging and rapidly evolving situation, this article also discusses recent reports on the role of Ca2+ channel blockers for preventing Ca2+ signaling disruption due to COVID-19, including the correlation between COVID-19 and diabetes.
Collapse
|
31
|
Abstract
Neoplastic transformation is reportedly associated with alterations of the potassium transport across plasma and intracellular membranes. These alterations have been identified as crucial elements of the tumourigenic reprogramming of cells. Potassium channels may contribute to cancer initiation, malignant progression and therapy resistance of tumour cells. The book chapter focusses on (oncogenic) potassium channels frequently upregulated in different tumour entities, upstream and downstream signalling of these channels, their contribution to the maintenance of cancer stemness and the formation of an immunosuppressive tumour microenvironment. In addition, their role in adaptation to tumour hypoxia, metabolic reprogramming, as well as tumour spreading and metastasis is discussed. Finally, we discuss how (oncogenic) potassium channels may confer treatment resistance of tumours against radiation and chemotherapy and thus might be harnessed for new therapy strategies, for instance, by repurposing approved drugs known to target potassium channels.
Collapse
|
32
|
Abstract
The association of leishmaniasis and malignancies in human and animal models has been highlighted in recent years. The misdiagnosis of coexistence of leishmaniasis and cancer and the use of common drugs in the treatment of such diseases prompt us to further survey the molecular biology of Leishmania parasites and cancer cells. The information regarding common expressed proteins, as possible therapeutic targets, in Leishmania parasites and cancer cells is scarce. Therefore, the current study reviews proteins, and investigates the regulation and functions of several key proteins in Leishmania parasites and cancer cells. The up- and down-regulations of such proteins were mostly related to survival, development, pathogenicity, metabolic pathways and vital signalling in Leishmania parasites and cancer cells. The presence of common expressed proteins in Leishmania parasites and cancer cells reveals valuable information regarding the possible shared mechanisms of pathogenicity and opportunities for therapeutic targeting in leishmaniasis and cancers in the future.
Collapse
|
33
|
Hofschröer V, Najder K, Rugi M, Bouazzi R, Cozzolino M, Arcangeli A, Panyi G, Schwab A. Ion Channels Orchestrate Pancreatic Ductal Adenocarcinoma Progression and Therapy. Front Pharmacol 2021; 11:586599. [PMID: 33841132 PMCID: PMC8025202 DOI: 10.3389/fphar.2020.586599] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Accepted: 10/30/2020] [Indexed: 02/06/2023] Open
Abstract
Pancreatic ductal adenocarcinoma is a devastating disease with a dismal prognosis. Therapeutic interventions are largely ineffective. A better understanding of the pathophysiology is required. Ion channels contribute substantially to the "hallmarks of cancer." Their expression is dysregulated in cancer, and they are "misused" to drive cancer progression, but the underlying mechanisms are unclear. Ion channels are located in the cell membrane at the interface between the intracellular and extracellular space. They sense and modify the tumor microenvironment which in itself is a driver of PDAC aggressiveness. Ion channels detect, for example, locally altered proton and electrolyte concentrations or mechanical stimuli and transduce signals triggered by these microenvironmental cues through association with intracellular signaling cascades. While these concepts have been firmly established for other cancers, evidence has emerged only recently that ion channels are drivers of PDAC aggressiveness. Particularly, they appear to contribute to two of the characteristic PDAC features: the massive fibrosis of the tumor stroma (desmoplasia) and the efficient immune evasion. Our critical review of the literature clearly shows that there is still a remarkable lack of knowledge with respect to the contribution of ion channels to these two typical PDAC properties. Yet, we can draw parallels from ion channel research in other fibrotic and inflammatory diseases. Evidence is accumulating that pancreatic stellate cells express the same "profibrotic" ion channels. Similarly, it is at least in part known which major ion channels are expressed in those innate and adaptive immune cells that populate the PDAC microenvironment. We explore potential therapeutic avenues derived thereof. Since drugs targeting PDAC-relevant ion channels are already in clinical use, we propose to repurpose those in PDAC. The quest for ion channel targets is both motivated and complicated by the fact that some of the relevant channels, for example, KCa3.1, are functionally expressed in the cancer, stroma, and immune cells. Only in vivo studies will reveal which arm of the balance we should put our weights on when developing channel-targeting PDAC therapies. The time is up to explore the efficacy of ion channel targeting in (transgenic) murine PDAC models before launching clinical trials with repurposed drugs.
Collapse
Affiliation(s)
| | - Karolina Najder
- Institute of Physiology II, University of Münster, Münster, Germany
| | - Micol Rugi
- Institute of Physiology II, University of Münster, Münster, Germany
| | - Rayhana Bouazzi
- Department of Experimental and Clinical Medicine, Section of Internal Medicine, University of Florence, Florence, Italy
| | - Marco Cozzolino
- Department of Biophysics and Cell Biology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Annarosa Arcangeli
- Department of Experimental and Clinical Medicine, Section of Internal Medicine, University of Florence, Florence, Italy
| | - Gyorgy Panyi
- Department of Biophysics and Cell Biology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Albrecht Schwab
- Institute of Physiology II, University of Münster, Münster, Germany
| |
Collapse
|
34
|
Kamili C, Kandoti HS, Radhakrishnan S, Konde A, Vattikutti UMR. Anti-angiogenic activity of chloride and potassium channel modulators: repurposing ion channel modulators. FUTURE JOURNAL OF PHARMACEUTICAL SCIENCES 2020. [DOI: 10.1186/s43094-020-00041-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
Abstract
Background
Excessive angiogenesis can be the root cause of many pathological conditions. Various types of ion channels are found on the endothelial cells. These ion channels play a vital role in the multi-stepped process of angiogenesis. The study aims to investigate the anti-angiogenic effects of specific ion channel modulators mefloquine (volume-regulated chloride channel blocker), lubiprostone (ClC-2 channel agonist), and 4-aminopyridine (voltage-gated potassium channel blocker).
Results
The anti-angiogenic activity of ion channel modulators was screened by measuring its effects on the area of neovascularization and histopathological studies by in vivo (corneal neovascularization) method and by in vitro assays, endothelial cell proliferation assay, cell migration assay, and matrigel cord-like morphogenesis assay. The test and standard drug (bevacizumab) groups were compared with the control group using one-way ANOVA, followed by post hoc test, and Dunnett’s test to compare the mean of all the groups with the control mean. The results revealed that mefloquine at the dose of 0.6% w/v and 1.0% w/v, lubiprostone at the dose of 0.5% w/v and 1.0% w/v, and 4-aminopyridine at the dose of 2% w/v and 4% w/v showed significant anti-angiogenic property. In the studies on human umbilical vein endothelial cells, the test drugs (100 nM) showed significant inhibition of proliferation, migration, and decrease in network length of cord-like tubes.
Conclusion
The scientific findings indicate that the test drugs have potent anti-angiogenic activity by inhibiting the cell proliferation, inhibiting the cell volume increase, arresting the cell cycle progression and by causing membrane hyperpolarization. The potent anti-angiogenic drugs obtained by repurposing these ion channel modulators, in the further studies, will be able to treat the diseases due to excess angiogenesis from the root cause.
Graphical abstract
Collapse
|
35
|
Griffin M, Khan R, Basu S, Smith S. Ion Channels as Therapeutic Targets in High Grade Gliomas. Cancers (Basel) 2020; 12:cancers12103068. [PMID: 33096667 PMCID: PMC7589494 DOI: 10.3390/cancers12103068] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Revised: 10/16/2020] [Accepted: 10/19/2020] [Indexed: 12/12/2022] Open
Abstract
Simple Summary Glioblastoma multiforme is an aggressive grade IV lethal brain tumour with a median survival of 14 months. Despite surgery to remove the tumour, and subsequent concurrent chemotherapy and radiotherapy, there is little in terms of effective treatment options. Because of this, exploring new treatment avenues is vital. Brain tumours are intrinsically electrically active; expressing unique patterns of ion channels, and this is a characteristic we can exploit. Ion channels are specialised proteins in the cell’s membrane that allow for the passage of positive and negatively charged ions in and out of the cell, controlling membrane potential. Membrane potential is a crucial biophysical signal in normal and cancerous cells. Research has identified that specific classes of ion channels not only move the cell through its cell cycle, thus encouraging growth and proliferation, but may also be essential in the development of brain tumours. Inhibition of sodium, potassium, calcium, and chloride channels has been shown to reduce the capacity of glioblastoma cells to grow and invade. Therefore, we propose that targeting ion channels and repurposing commercially available ion channel inhibitors may hold the key to new therapeutic avenues in high grade gliomas. Abstract Glioblastoma multiforme (GBM) is a lethal brain cancer with an average survival of 14–15 months even with exhaustive treatment. High grade gliomas (HGG) represent the leading cause of CNS cancer-related death in children and adults due to the aggressive nature of the tumour and limited treatment options. The scarcity of treatment available for GBM has opened the field to new modalities such as electrotherapy. Previous studies have identified the clinical benefit of electrotherapy in combination with chemotherapeutics, however the mechanistic action is unclear. Increasing evidence indicates that not only are ion channels key in regulating electrical signaling and membrane potential of excitable cells, they perform a crucial role in the development and neoplastic progression of brain tumours. Unlike other tissue types, neural tissue is intrinsically electrically active and reliant on ion channels and their function. Ion channels are essential in cell cycle control, invasion and migration of cancer cells and therefore present as valuable therapeutic targets. This review aims to discuss the role that ion channels hold in gliomagenesis and whether we can target and exploit these channels to provide new therapeutic targets and whether ion channels hold the mechanistic key to the newfound success of electrotherapies.
Collapse
Affiliation(s)
- Michaela Griffin
- Children’s Brain Tumour Research Centre, Biodiscovery Institute, University of Nottingham, Nottingham NG7 2RD, UK;
| | - Raheela Khan
- Division of Medical Sciences and Graduate Entry Medicine, Royal Derby Hospital, University of Nottingham, Nottingham NG7 2RD, UK;
| | - Surajit Basu
- Department of Neurosurgery, Queen’s Medical Centre, Nottingham University Hospitals, Nottingham NG7 2RD, UK;
| | - Stuart Smith
- Children’s Brain Tumour Research Centre, Biodiscovery Institute, University of Nottingham, Nottingham NG7 2RD, UK;
- Correspondence:
| |
Collapse
|
36
|
Novel Therapeutic Approaches of Ion Channels and Transporters in Cancer. Rev Physiol Biochem Pharmacol 2020; 183:45-101. [PMID: 32715321 DOI: 10.1007/112_2020_28] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The expression and function of many ion channels and transporters in cancer cells display major differences in comparison to those from healthy cells. These differences provide the cancer cells with advantages for tumor development. Accordingly, targeting ion channels and transporters have beneficial anticancer effects including inhibition of cancer cell proliferation, migration, invasion, metastasis, tumor vascularization, and chemotherapy resistance, as well as promoting apoptosis. Some of the molecular mechanisms associating ion channels and transporters with cancer include the participation of oxidative stress, immune response, metabolic pathways, drug synergism, as well as noncanonical functions of ion channels. This diversity of mechanisms offers an exciting possibility to suggest novel and more effective therapeutic approaches to fight cancer. Here, we review and discuss most of the current knowledge suggesting novel therapeutic approaches for cancer therapy targeting ion channels and transporters. The role and regulation of ion channels and transporters in cancer provide a plethora of exceptional opportunities in drug design, as well as novel and promising therapeutic approaches that may be used for the benefit of cancer patients.
Collapse
|
37
|
Tajada S, Villalobos C. Calcium Permeable Channels in Cancer Hallmarks. Front Pharmacol 2020; 11:968. [PMID: 32733237 PMCID: PMC7358640 DOI: 10.3389/fphar.2020.00968] [Citation(s) in RCA: 60] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Accepted: 06/15/2020] [Indexed: 12/17/2022] Open
Abstract
Cancer, the second cause of death worldwide, is characterized by several common criteria, known as the “cancer hallmarks” such as unrestrained cell proliferation, cell death resistance, angiogenesis, invasion and metastasis. Calcium permeable channels are proteins present in external and internal biological membranes, diffusing Ca2+ ions down their electrochemical gradient. Numerous physiological functions are mediated by calcium channels, ranging from intracellular calcium homeostasis to sensory transduction. Consequently, calcium channels play important roles in human physiology and it is not a surprise the increasing number of evidences connecting calcium channels disorders with tumor cells growth, survival and migration. Multiple studies suggest that calcium signals are augmented in various cancer cell types, contributing to cancer hallmarks. This review focuses in the role of calcium permeable channels signaling in cancer with special attention to the mechanisms behind the remodeling of the calcium signals. Transient Receptor Potential (TRP) channels and Store Operated Channels (SOC) are the main extracellular Ca2+ source in the plasma membrane of non-excitable cells, while inositol trisphosphate receptors (IP3R) are the main channels releasing Ca2+ from the endoplasmic reticulum (ER). Alterations in the function and/or expression of these calcium channels, as wells as, the calcium buffering by mitochondria affect intracellular calcium homeostasis and signaling, contributing to the transformation of normal cells into their tumor counterparts. Several compounds reported to counteract several cancer hallmarks also modulate the activity and/or the expression of these channels including non-steroidal anti-inflammatory drugs (NSAIDs) like sulindac and aspirin, and inhibitors of polyamine biosynthesis, like difluoromethylornithine (DFMO). The possible role of the calcium permeable channels targeted by these compounds in cancer and their action mechanism will be discussed also in the review.
Collapse
Affiliation(s)
- Sendoa Tajada
- Instituto de Biología y Genética Molecular (IBGM), Universidad de Valladolid and Consejo Superior de Investigaciones Científicas (CSIC), Valladolid, Spain
| | - Carlos Villalobos
- Instituto de Biología y Genética Molecular (IBGM), Universidad de Valladolid and Consejo Superior de Investigaciones Científicas (CSIC), Valladolid, Spain
| |
Collapse
|
38
|
The Interplay of Dysregulated pH and Electrolyte Imbalance in Cancer. Cancers (Basel) 2020; 12:cancers12040898. [PMID: 32272658 PMCID: PMC7226178 DOI: 10.3390/cancers12040898] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2020] [Revised: 04/01/2020] [Accepted: 04/02/2020] [Indexed: 12/11/2022] Open
Abstract
Cancer cells and tissues have an aberrant regulation of hydrogen ion dynamics driven by a combination of poor vascular perfusion, regional hypoxia, and increased the flux of carbons through fermentative glycolysis. This leads to extracellular acidosis and intracellular alkalinization. Dysregulated pH dynamics influence cancer cell biology, from cell transformation and tumorigenesis to proliferation, local growth, invasion, and metastasis. Moreover, this dysregulated intracellular pH (pHi) drives a metabolic shift to increased aerobic glycolysis and reduced mitochondrial oxidative phosphorylation, referred to as the Warburg effect, or Warburg metabolism, which is a selective feature of cancer. This metabolic reprogramming confers a thermodynamic advantage on cancer cells and tissues by protecting them against oxidative stress, enhancing their resistance to hypoxia, and allowing a rapid conversion of nutrients into biomass to enable cell proliferation. Indeed, most cancers have increased glucose uptake and lactic acid production. Furthermore, cancer cells have very dysregulated electrolyte balances, and in the interaction of the pH dynamics with electrolyte, dynamics is less well known. In this review, we highlight the interconnected roles of dysregulated pH dynamics and electrolytes imbalance in cancer initiation, progression, adaptation, and in determining the programming and reprogramming of tumor cell metabolism.
Collapse
|
39
|
Desales-Salazar E, Khusro A, Cipriano-Salazar M, Barbabosa-Pliego A, Rivas-Caceres RR. Scorpion venoms and associated toxins as anticancer agents: update on their application and mechanism of action. J Appl Toxicol 2020; 40:1310-1324. [PMID: 32249452 DOI: 10.1002/jat.3976] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Revised: 03/01/2020] [Accepted: 03/05/2020] [Indexed: 12/29/2022]
Abstract
Cancer remains one of the deadliest non-infectious diseases of the 21st century, causing millions of mortalities per year worldwide. Analyses of conventional treatments, such as radiotherapy and chemotherapy, have shown not only a lower therapeutic efficiency rate but also plethora of side-effects. Considering the desperate need to identify promising anticancer agents, researchers are in quest to design and develop new tumoricidal drugs from natural sources. Over the past few years, scorpion venoms have shown exemplary roles as pivotal anticancer agents. Scorpion venoms associated metabolites, particularly toxins demonstrated in vitro anticancer attributes against diversified cell lines by inhibiting the growth and progression of the cell cycle, inhibiting metastasis by blocking ion channels such as K+ and Cl- , and/or inducing apoptosis by intrinsic and extrinsic pathways. This review sheds light not only on in vitro anticancer properties of distinct scorpion venoms and their toxins, but also on their mechanism of action for designing and developing new therapeutic drugs in future.
Collapse
Affiliation(s)
- Erasto Desales-Salazar
- Centro de Investigación y Estudios Avanzados en Salud Animal (CIESA), Facultad de Medicina Veterinaria y Zootecnia, Universidad Autónoma del Estado de México (UAEM), Toluca, Mexico
| | - Ameer Khusro
- Research Department of Plant Biology and Biotechnology, Loyola College, Nungambakkam, Chennai, Tamil Nadu, India
| | - Moisés Cipriano-Salazar
- Unidad Académica de Medicina Veterinaria y Zootecnia, Universidad Autónoma de Guerrero, Guerrero, Mexico
| | - Alberto Barbabosa-Pliego
- Centro de Investigación y Estudios Avanzados en Salud Animal (CIESA), Facultad de Medicina Veterinaria y Zootecnia, Universidad Autónoma del Estado de México (UAEM), Toluca, Mexico
| | | |
Collapse
|
40
|
Todorova VK, Siegel ER, Kaufmann Y, Kumarapeli A, Owen A, Wei JY, Makhoul I, Klimberg VS. Dantrolene Attenuates Cardiotoxicity of Doxorubicin Without Reducing its Antitumor Efficacy in a Breast Cancer Model. Transl Oncol 2020; 13:471-480. [PMID: 31918212 PMCID: PMC7031101 DOI: 10.1016/j.tranon.2019.12.006] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Revised: 12/02/2019] [Accepted: 12/03/2019] [Indexed: 02/07/2023] Open
Abstract
Dysregulation of calcium homeostasis is a major mechanism of doxorubicin (DOX)-induced cardiotoxicity. Treatment with DOX causes activation of sarcoplasmic reticulum (SR) ryanodine receptor (RYR) and rapid release of Ca2+ in the cytoplasm resulting in depression of myocardial function. The aim of this study was to examine the effect of dantrolene (DNT) a RYR blocker on both the cardiotoxicity and antitumor activity of DOX in a rat model of breast cancer. Female F344 rats with implanted MAT B III breast cancer cells were randomized to receive intraperitoneal DOX twice per week (12 mg/kg total dose), 5 mg/kg/day oral DNT or a combination of DOX + DNT for 3 weeks. Echocardiography and blood troponin I levels were used to measure myocardial injury. Hearts and tumors were evaluated for histopathological alterations. Blood glutathione was assessed as a measure of oxidative stress. The results showed that DNT improved DOX-induced alterations in the echocardiographic parameters by 50%. Histopathologic analysis of hearts showed reduced DOX induced cardiotoxicity in the group treated with DOX + DNT as shown by reduced interstitial edema, cytoplasmic vacuolization, and myofibrillar disruption, compared with DOX-only–treated hearts. Rats treated with DNT lost less body weight, had higher blood GSH levels and lower troponin I levels than DOX-treated rats. These data indicate that DNT is able to provide protection against DOX cardiotoxicity without reducing its antitumor activity. Further studies are needed to determine the optimal dosing of DNT and DOX in a tumor-bearing host.
Collapse
Affiliation(s)
- Valentina K Todorova
- Department of Surgery, University of Arkansas for Medical Sciences, Little Rock, USA.
| | - Eric R Siegel
- Department of Biostatistics, University of Arkansas for Medical Sciences, Little Rock, USA
| | - Yihong Kaufmann
- Department of Surgery, University of Arkansas for Medical Sciences, Little Rock, USA
| | - Asangi Kumarapeli
- Department of Pathology, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - Aaron Owen
- Department of Surgery, University of Arkansas for Medical Sciences, Little Rock, USA
| | - Jeanne Y Wei
- Department of Geriatrics, University of Arkansas for Medical Sciences, Little Rock, USA
| | - Issam Makhoul
- Division of Medical Oncology, University of Arkansas for Medical Sciences, Little Rock, USA
| | - V Suzanne Klimberg
- Department of Surgery, University of Arkansas for Medical Sciences, Little Rock, USA
| |
Collapse
|
41
|
Bergantin LB. The Interplay Between Asthma and Other Diseases: Role of Ca2+/cAMP Signalling. Endocr Metab Immune Disord Drug Targets 2020; 20:321-327. [PMID: 31456527 DOI: 10.2174/1871530319666190828145854] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Revised: 07/19/2019] [Accepted: 07/19/2019] [Indexed: 01/27/2023]
Abstract
OBJECTIVE Asthma is correlated with a higher risk of manifesting other diseases, including hypertension, diabetes, obesity, psychiatric and neurological diseases, and cancer. Therefore, revealing this interplay between asthma and these illnesses may provide novel insights into their pathogenesis. RESULTS It is highly debated that dysregulation of Ca2+ homeostasis is involved in the pathogenesis of these maladies. Not surprisingly, calcium (Ca2+) channel blockers (CCBs), classically used as antihypertensive medicines, have been demonstrating off-label effects such as alleviating asthma symptoms, in addition to antidiabetic, antiobesity, anticancer and antineurodegenerative effects. Our studies about Ca2+/cAMP signalling may shed some new light on this field. CONCLUSION Thus, considering that asthma and associated illnesses such as hypertension, diabetes, obesity, cancer and neurodegenerative diseases have become highly prevalent medical problems in the world, the comprehension of this interplay between asthma and other disorders could improve drug therapy.
Collapse
Affiliation(s)
- Leandro B Bergantin
- Department of Pharmacology, Escola Paulista de Medicina, Universidade Federal de Sao Paulo, Rua Pedro de Toledo 669, Vila Clementino, Sao Paulo, Brazil
| |
Collapse
|
42
|
Bergantin LB. A Hypothesis for the Relationship between Depression and Cancer: Role of Ca2+/cAMP Signalling. Anticancer Agents Med Chem 2020; 20:777-782. [PMID: 32077833 DOI: 10.2174/1871520620666200220113817] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Revised: 10/02/2019] [Accepted: 01/14/2020] [Indexed: 01/17/2023]
Abstract
Limitations on the pharmacotherapy and a high prevalence worldwide are critical issues related to depression and cancer. It has been discussed that a dysregulation of intracellular Ca2+ homeostasis is involved in the pathogenesis of both these diseases. In addition, depression raises the risk of cancer incidence. Consistent data support the concept that depression is an independent risk issue for cancer. However, the cellular mechanisms involved in this link between depression and cancer remain uncertain. Considering our previous reports about Ca2+ and cAMP signalling pathways (Ca2+/cAMP signalling), I herein discussed the putative contribution of Ca2+/cAMP signalling in this link between depression and cancer. Moreover, it is important to take depression into account during the process of prevention and treatment of cancer.
Collapse
Affiliation(s)
- Leandro B Bergantin
- Department of Pharmacology, Escola Paulista de Medicina, Universidade Federal de Sao Paulo, Rua Pedro de Toledo, 669, Vila Clementino, Sao Paulo, SP, Brazil
| |
Collapse
|
43
|
Levin M, Selberg J, Rolandi M. Endogenous Bioelectrics in Development, Cancer, and Regeneration: Drugs and Bioelectronic Devices as Electroceuticals for Regenerative Medicine. iScience 2019; 22:519-533. [PMID: 31837520 PMCID: PMC6920204 DOI: 10.1016/j.isci.2019.11.023] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2019] [Revised: 10/15/2019] [Accepted: 11/12/2019] [Indexed: 12/21/2022] Open
Abstract
A major frontier in the post-genomic era is the investigation of the control of coordinated growth and three-dimensional form. Dynamic remodeling of complex organs in regulative embryogenesis, regeneration, and cancer reveals that cells and tissues make decisions that implement complex anatomical outcomes. It is now essential to understand not only the genetics that specifies cellular hardware but also the physiological software that implements tissue-level plasticity and robust morphogenesis. Here, we review recent discoveries about the endogenous mechanisms of bioelectrical communication among non-neural cells that enables them to cooperate in vivo. We discuss important advances in bioelectronics, as well as computational and pharmacological tools that are enabling the taming of biophysical controls toward applications in regenerative medicine and synthetic bioengineering.
Collapse
Affiliation(s)
- Michael Levin
- Allen Discovery Center at Tufts University, Medford, MA 02155, USA.
| | - John Selberg
- Electrical and Computer Engineering Department, University of California, Santa Cruz, CA 95064, USA
| | - Marco Rolandi
- Electrical and Computer Engineering Department, University of California, Santa Cruz, CA 95064, USA
| |
Collapse
|
44
|
The regulatory roles of calcium channels in tumors. Biochem Pharmacol 2019; 169:113603. [DOI: 10.1016/j.bcp.2019.08.005] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2019] [Accepted: 08/08/2019] [Indexed: 02/06/2023]
|
45
|
Dandu K, Kallamadi PR, Thakur SS, Rao CM. Drug Repurposing for Retinoblastoma: Recent Advances. Curr Top Med Chem 2019; 19:1535-1544. [PMID: 30659544 DOI: 10.2174/1568026619666190119152706] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2018] [Revised: 12/28/2018] [Accepted: 01/07/2019] [Indexed: 02/06/2023]
Abstract
Retinoblastoma is the intraocular malignancy that occurs during early childhood. The current standard of care includes chemotherapy followed by focal consolidative therapies, and enucleation. Unfortunately, these are associated with many side and late effects. New drugs and/or drug combinations need to be developed for safe and effective treatment. This compelling need stimulated efforts to explore drug repurposing for retinoblastoma. While conventional drug development is a lengthy and expensive process, drug repurposing is a faster, alternate approach, where an existing drug, not meant for treating cancer, can be repurposed to treat retinoblastoma. The present article reviews various attempts to test drugs approved for different purposes such as calcium channels blockers, non-steroidal antiinflammatory drugs, cardenolides, antidiabetic, antibiotics and antimalarial for treating retinoblastoma. It also discusses other promising candidates that could be explored for repurposing for retinoblastoma.
Collapse
Affiliation(s)
- Kamakshi Dandu
- CSIR-Centre for Cellular and Molecular Biology, Uppal Road, Habsiguda, Hyderabad 500 007, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad- 201002, India
| | - Prathap R Kallamadi
- School of Life Sciences. University of Hyderabad, Prof. C.R. Rao Road, Hyderabad 500 046, India
| | - Suman S Thakur
- CSIR-Centre for Cellular and Molecular Biology, Uppal Road, Habsiguda, Hyderabad 500 007, India
| | - Ch Mohan Rao
- CSIR-Centre for Cellular and Molecular Biology, Uppal Road, Habsiguda, Hyderabad 500 007, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad- 201002, India
| |
Collapse
|
46
|
Anderson KJ, Cormier RT, Scott PM. Role of ion channels in gastrointestinal cancer. World J Gastroenterol 2019; 25:5732-5772. [PMID: 31636470 PMCID: PMC6801186 DOI: 10.3748/wjg.v25.i38.5732] [Citation(s) in RCA: 133] [Impact Index Per Article: 22.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/05/2019] [Revised: 07/26/2019] [Accepted: 09/27/2019] [Indexed: 02/06/2023] Open
Abstract
In their seminal papers Hanahan and Weinberg described oncogenic processes a normal cell undergoes to be transformed into a cancer cell. The functions of ion channels in the gastrointestinal (GI) tract influence a variety of cellular processes, many of which overlap with these hallmarks of cancer. In this review we focus on the roles of the calcium (Ca2+), sodium (Na+), potassium (K+), chloride (Cl-) and zinc (Zn2+) transporters in GI cancer, with a special emphasis on the roles of the KCNQ1 K+ channel and CFTR Cl- channel in colorectal cancer (CRC). Ca2+ is a ubiquitous second messenger, serving as a signaling molecule for a variety of cellular processes such as control of the cell cycle, apoptosis, and migration. Various members of the TRP superfamily, including TRPM8, TRPM7, TRPM6 and TRPM2, have been implicated in GI cancers, especially through overexpression in pancreatic adenocarcinomas and down-regulation in colon cancer. Voltage-gated sodium channels (VGSCs) are classically associated with the initiation and conduction of action potentials in electrically excitable cells such as neurons and muscle cells. The VGSC NaV1.5 is abundantly expressed in human colorectal CRC cell lines as well as being highly expressed in primary CRC samples. Studies have demonstrated that conductance through NaV1.5 contributes significantly to CRC cell invasiveness and cancer progression. Zn2+ transporters of the ZIP/SLC39A and ZnT/SLC30A families are dysregulated in all major GI organ cancers, in particular, ZIP4 up-regulation in pancreatic cancer (PC). More than 70 K+ channel genes, clustered in four families, are found expressed in the GI tract, where they regulate a range of cellular processes, including gastrin secretion in the stomach and anion secretion and fluid balance in the intestinal tract. Several distinct types of K+ channels are found dysregulated in the GI tract. Notable are hERG1 upregulation in PC, gastric cancer (GC) and CRC, leading to enhanced cancer angiogenesis and invasion, and KCNQ1 down-regulation in CRC, where KCNQ1 expression is associated with enhanced disease-free survival in stage II, III, and IV disease. Cl- channels are critical for a range of cellular and tissue processes in the GI tract, especially fluid balance in the colon. Most notable is CFTR, whose deficiency leads to mucus blockage, microbial dysbiosis and inflammation in the intestinal tract. CFTR is a tumor suppressor in several GI cancers. Cystic fibrosis patients are at a significant risk for CRC and low levels of CFTR expression are associated with poor overall disease-free survival in sporadic CRC. Two other classes of chloride channels that are dysregulated in GI cancers are the chloride intracellular channels (CLIC1, 3 & 4) and the chloride channel accessory proteins (CLCA1,2,4). CLIC1 & 4 are upregulated in PC, GC, gallbladder cancer, and CRC, while the CLCA proteins have been reported to be down-regulated in CRC. In summary, it is clear, from the diverse influences of ion channels, that their aberrant expression and/or activity can contribute to malignant transformation and tumor progression. Further, because ion channels are often localized to the plasma membrane and subject to multiple layers of regulation, they represent promising clinical targets for therapeutic intervention including the repurposing of current drugs.
Collapse
Affiliation(s)
- Kyle J Anderson
- Department of Biomedical Sciences, University of Minnesota Medical School, Duluth, MN 55812, United States
| | - Robert T Cormier
- Department of Biomedical Sciences, University of Minnesota Medical School, Duluth, MN 55812, United States
| | - Patricia M Scott
- Department of Biomedical Sciences, University of Minnesota Medical School, Duluth, MN 55812, United States
| |
Collapse
|
47
|
Wong KK, Banham AH, Yaacob NS, Nur Husna SM. The oncogenic roles of TRPM ion channels in cancer. J Cell Physiol 2019; 234:14556-14573. [PMID: 30710353 DOI: 10.1002/jcp.28168] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2018] [Accepted: 01/10/2019] [Indexed: 01/24/2023]
Abstract
Transient receptor potential (TRP) proteins are a diverse family of ion channels present in multiple types of tissues. They function as gatekeepers for responses to sensory stimuli including temperature, vision, taste, and pain through their activities in conducting ion fluxes. The TRPM (melastatin) subfamily consists of eight members (i.e., TRPM1-8), which collectively regulate fluxes of various types of cations such as K+ , Na+ , Ca2+ , and Mg2+ . Growing evidence in the past two decades indicates that TRPM ion channels, their isoforms, or long noncoding RNAs encoded within the locus may be oncogenes involved in the regulation of cancer cell growth, proliferation, autophagy, invasion, and epithelial-mesenchymal transition, and their significant association with poor clinical outcomes of cancer patients. In this review, we describe and discuss recent findings implicating TRPM channels in different malignancies, their functions, mechanisms, and signaling pathways involved in cancers, as well as summarizing their normal physiological functions and the availability of ion channel pharmacological inhibitors.
Collapse
Affiliation(s)
- Kah Keng Wong
- Department of Immunology, School of Medical Sciences, Universiti Sains Malaysia, Kubang Kerian, Kelantan, Malaysia
| | - Alison H Banham
- Nuffield Division of Clinical Laboratory Sciences, Radcliffe Department of Medicine, University of Oxford, John Radcliffe Hospital, Oxford, UK
| | - Nik Soriani Yaacob
- Department of Chemical Pathology, School of Medical Sciences, Universiti Sains Malaysia, Health Campus, Kubang Kerian, Kelantan, Malaysia
| | - Siti Muhamad Nur Husna
- Department of Immunology, School of Medical Sciences, Universiti Sains Malaysia, Kubang Kerian, Kelantan, Malaysia
| |
Collapse
|
48
|
Beyond the boundaries of cardiology: Still untapped anticancer properties of the cardiovascular system-related drugs. Pharmacol Res 2019; 147:104326. [DOI: 10.1016/j.phrs.2019.104326] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/24/2019] [Revised: 06/18/2019] [Accepted: 06/21/2019] [Indexed: 02/07/2023]
|
49
|
Yu S, Huang S, Ding Y, Wang W, Wang A, Lu Y. Transient receptor potential ion-channel subfamily V member 4: a potential target for cancer treatment. Cell Death Dis 2019; 10:497. [PMID: 31235786 PMCID: PMC6591233 DOI: 10.1038/s41419-019-1708-9] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2018] [Revised: 05/13/2019] [Accepted: 05/28/2019] [Indexed: 12/29/2022]
Abstract
The transient receptor potential ion-channel superfamily consists of nonselective cation channels located mostly on the plasma membranes of numerous animal cell types, which are closely related to sensory information transmission (e.g., vision, pain, and temperature perception), as well as regulation of intracellular Ca2+ balance and physiological activities of growth and development. Transient receptor potential ion channel subfamily V (TRPV) is one of the largest and most diverse subfamilies, including TRPV1-TRPV6 involved in the regulation of a variety of cellular functions. TRPV4 can be activated by various physical and chemical stimuli, such as heat, mechanical force, and phorbol ester derivatives participating in the maintenance of normal cellular functions. In recent years, the roles of TRPV4 in cell proliferation, differentiation, apoptosis, and migration have been extensively studied. Its abnormal expression has also been closely related to the onset and progression of multiple tumors, so TRPV4 may be a target for cancer diagnosis and treatment. In this review, we focused on the latest studies concerning the role of TRPV4 in tumorigenesis and the therapeutic potential. As evidenced by the effects on cancerogenesis, TRPV4 is a potential target for anticancer therapy.
Collapse
Affiliation(s)
- Suyun Yu
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, P. R. China
| | - Shuai Huang
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, P. R. China
| | - Yushi Ding
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, P. R. China
| | - Wei Wang
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, P. R. China
| | - Aiyun Wang
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, P. R. China
- Jiangsu Collaborative Innovation Center of Traditional Chinese Medicine Prevention and Treatment of Tumor, Nanjing University of Chinese Medicine, Nanjing, P. R. China
| | - Yin Lu
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, P. R. China.
- Jiangsu Collaborative Innovation Center of Traditional Chinese Medicine Prevention and Treatment of Tumor, Nanjing University of Chinese Medicine, Nanjing, P. R. China.
| |
Collapse
|
50
|
Sharma J, Deb B, George IA, Kapil S, Coral K, Kakkar N, Pattanaik S, Mandal AK, Mavuduru RS, Kumar P. Somatic Mutations Profile of a Young Patient With Metastatic Urothelial Carcinoma Reveals Mutations in Genes Involved in Ion Channels. Front Oncol 2019; 9:435. [PMID: 31192134 PMCID: PMC6549525 DOI: 10.3389/fonc.2019.00435] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2019] [Accepted: 05/07/2019] [Indexed: 11/15/2022] Open
Abstract
Background: Urothelial carcinoma is the most common malignancy of the bladder and is primarily considered as a disease of the elderly. Studies that address bladder tumor occurrence in young age groups are rare. Case Presentation: A 19-year-old male presented with a gross total painless hematuria. A histology after biopsy revealed a high-grade transitional cell carcinoma with lymph node metastasis. The patient succumbed to the disease on day 72 of the treatment. Here, we used whole-exome sequencing of a paired tumor-normal sample to identify the somatic mutations and the possible targets of treatment. Result: We predicted eight potential driver mutations (TP53 p.V157L, RB1 c.1498+1G>T, MED23 p.L1127P, CTNND1 p.S713C, NSD1 p.P2212A, MED17 p.G556V, DPYD p.Q814K, and SPEN p.S1078*). In addition, we predicted deleterious mutations in genes involved in the ion channels (CACNA1S p.E1581K, CACNG1 p.P71T, CACNG8 p.G404W, GRIN2B p.A1096T, KCNC1 p.G16V, KCNH4 p.E874K, KCNK9 p.R131S, P2RX7 p.A296D, and SCN8A p.R558H). Conclusions: Most likely, mutations in genes involved in ion channels may be responsible for the aggressive behavior of a tumor. Ion channels are the second largest class of drug targets, and may thus serve as a putative potential therapeutic target in advanced stage urothelial carcinoma.
Collapse
Affiliation(s)
- Jyoti Sharma
- Institute of Bioinformatics, International Technology Park, Bangalore, India.,Manipal Academy of Higher Education (MAHE), Manipal, India
| | - Barnali Deb
- Institute of Bioinformatics, International Technology Park, Bangalore, India.,Manipal Academy of Higher Education (MAHE), Manipal, India
| | - Irene A George
- Institute of Bioinformatics, International Technology Park, Bangalore, India
| | | | | | - Nandita Kakkar
- Department of Histopathology, Post Graduate Institute of Medical Education and Research, Chandigarh, India
| | - Smita Pattanaik
- Department of Pharmacology, Post Graduate Institute of Medical Education and Research, Chandigarh, India
| | - Arup Kumar Mandal
- Department of Urology, Post Graduate Institute of Medical Education and Research, Chandigarh, India
| | - Ravimohan S Mavuduru
- Department of Urology, Post Graduate Institute of Medical Education and Research, Chandigarh, India
| | - Prashant Kumar
- Institute of Bioinformatics, International Technology Park, Bangalore, India.,Manipal Academy of Higher Education (MAHE), Manipal, India
| |
Collapse
|