1
|
Li Y, Loh YR, Li Q, Luo D, Kang C. 1H, 15N and 13C backbone resonance assignment of the N-terminal region of Zika virus NS4B protein in detergent micelles. BIOMOLECULAR NMR ASSIGNMENTS 2025; 19:1-6. [PMID: 39505821 DOI: 10.1007/s12104-024-10208-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2024] [Accepted: 10/30/2024] [Indexed: 11/08/2024]
Abstract
Zika virus has raised global concerns due to its link to microcephaly and Guillain-Barré syndrome in adults. One of viral nonstructural proteins-NS4B, an integral membrane protein, plays crucial roles in viral replication by interacting with both viral and host proteins, rendering it an attractive drug target for antiviral development. We purified the N-terminal region of ZIKV NS4B (NS4B NTD) and reconstituted it into detergent micelles. Here, we report the assignments of the backbone resonances of NS4B NTD in detergent micelles. The available assignment is useful for understanding its structure and ligand binding to provide useful information for developing NS4B inhibitors.
Collapse
Affiliation(s)
- Yan Li
- Experimental Drug Development Centre, Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
- Department of Pathogen Biology, School of Basic Medicine, Tongji Medical College and State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Huazhong University of Science and Technology, 13 Hangkong Road, Wuhan, China
| | - Ying Ru Loh
- Experimental Drug Development Centre, Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
| | - Qingxin Li
- Guangdong Provincial Engineering Laboratory of Biomass High Value Utilization, Institute of Biological and Medical Engineering, Guangdong Academy of Sciences, Guangzhou, China
| | - Dahai Luo
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, Singapore
- NTU Institute of Structural Biology, Nanyang Technological University, Singapore, Singapore
- National Centre for Infectious Diseases, Singapore, Singapore
| | - CongBao Kang
- Experimental Drug Development Centre, Agency for Science, Technology and Research (A*STAR), Singapore, Singapore.
| |
Collapse
|
2
|
Khanra M, Ghosh I, Khatun S, Ghosh N, Gayen S. Dengue virus-host interactions: Structural and mechanistic insights for future therapeutic strategies. J Struct Biol 2025; 217:108196. [PMID: 40090430 DOI: 10.1016/j.jsb.2025.108196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 01/14/2025] [Accepted: 03/11/2025] [Indexed: 03/18/2025]
Abstract
Dengue pathogen, transmitted by mosquitoes, poses a growing threat as it is capable of inflicting severe illness in humans. Around 40% of the global population is currently affected by the virus, resulting in thousands of fatalities each year. The genetic blueprint of the virus comprises 10 proteins. Three proteins serve as structural components: the capsid (C), the precursor of the membrane protein (PrM/M), and the envelope protein (E). The other proteins serve as non-structural (NS) proteins, consisting of NS1, NS2A, NS2B, NS3, NS4A, NS4B, and NS5. The virus relies on these NS proteins to expropriate host proteins for its replication. During their intracellular replication, these viruses engage with numerous host components and exploit the cellular machinery for tasks such as entry into various organs, propagation, and transmission. This review explores mainly the relationship between dengue viral protein and host proteins elucidating the development of viral-host interactions. These relationships between the virus and the host give important information on the processes behind viral replication and the etiology of disease, which in turn facilitates the creation of more potent treatment strategies.
Collapse
Affiliation(s)
- Moumita Khanra
- Molecular Pharmacology Research Laboratory, Department of Pharmaceutical Technology, Jadavpur University, Kolkata 700032, India
| | - Indrani Ghosh
- Molecular Pharmacology Research Laboratory, Department of Pharmaceutical Technology, Jadavpur University, Kolkata 700032, India
| | - Samima Khatun
- Laboratory of Drug Design and Discovery, Department of Pharmaceutical Technology, Jadavpur University, Kolkata 700032, India
| | - Nilanjan Ghosh
- Molecular Pharmacology Research Laboratory, Department of Pharmaceutical Technology, Jadavpur University, Kolkata 700032, India.
| | - Shovanlal Gayen
- Laboratory of Drug Design and Discovery, Department of Pharmaceutical Technology, Jadavpur University, Kolkata 700032, India.
| |
Collapse
|
3
|
Porter SS, Gilchrist TM, Schrodel S, Tai AW. Dengue and Zika virus NS4B proteins differ in topology and in determinants of ER membrane protein complex dependency. J Virol 2025; 99:e0144324. [PMID: 39745435 PMCID: PMC11852961 DOI: 10.1128/jvi.01443-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Accepted: 12/16/2024] [Indexed: 02/26/2025] Open
Abstract
Flaviviruses utilize the cellular endoplasmic reticulum (ER) for all aspects of their lifecycle. Genome replication and other viral activities take place in structures called replication organelles (ROs), which are invaginations induced in the ER membrane. Among the required elements for RO formation is the biogenesis of viral nonstructural proteins NS4A and NS4B. We have previously shown that NS4A and NS4B from Dengue virus (DENV) and Zika virus (ZIKV) depend on the cellular ER membrane protein complex (EMC) for biogenesis. Here, we find that this dependency extends to the NS4A and NS4B proteins of Yellow Fever virus (YFV) and West Nile virus (WNV), which share similar computationally predicted membrane topologies. However, we demonstrate that ZIKV NS4B has different determinants of its dependency on the EMC than those for DENV NS4B, as well as a different membrane topology. Furthermore, we characterize mutant isolates of DENV and ZIKV that were serially passaged in EMC knockout cells and find that none are completely independent of the EMC for infection, and that mutant NS4B proteins remain sensitive to EMC depletion, suggesting a high genetic barrier to EMC depletion. Collectively, our findings are consistent with a model in which the EMC recognizes multiple determinants in the NS4B protein to support infection in several flaviviruses of critical public health importance.IMPORTANCEThe NS4A and NS4B proteins of flaviviruses are critically important to replication, but little is known about their function. It has been previously reported that the cellular EMC supports the biogenesis of NS4A and NS4B from Dengue and Zika virus. In this work, we demonstrate that this dependency on the EMC for NS4A and NS4B biogenesis extends to the West Nile and Yellow Fever viruses. Furthermore, we examine the features of ZIKV NS4B and find that its membrane topology of ZIKV NS4B and its determinants of dependency on the EMC are different from those previously described in DENV NS4B. Finally, we present evidence that there is a high genetic barrier for Dengue and Zika viruses to overcome EMC depletion.
Collapse
Affiliation(s)
- Samuel S. Porter
- />Division of Gastroenterology, Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, Michigan, USA
| | - Talon M. Gilchrist
- />Division of Gastroenterology, Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, Michigan, USA
| | - Samantha Schrodel
- />Division of Gastroenterology, Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, Michigan, USA
| | - Andrew W. Tai
- />Division of Gastroenterology, Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, Michigan, USA
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, Michigan, USA
- Medicine Service, VA Ann Arbor Healthcare System, Ann Arbor, Michigan, USA
| |
Collapse
|
4
|
Donaldson MK, Zanders LA, Jose J. Functional Roles and Host Interactions of Orthoflavivirus Non-Structural Proteins During Replication. Pathogens 2025; 14:184. [PMID: 40005559 PMCID: PMC11858440 DOI: 10.3390/pathogens14020184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2025] [Revised: 02/06/2025] [Accepted: 02/10/2025] [Indexed: 02/27/2025] Open
Abstract
Orthoflavivirus, a genus encompassing arthropod-borne, positive-sense, single-stranded RNA viruses in the Flaviviridae family, represents clinically relevant viruses that pose significant threats to human and animal health worldwide. With warming climates and persistent urbanization, arthropod vectors and the viruses they transmit continue to widen their geographic distribution, expanding endemic zones. Flaviviruses such as dengue virus, Zika virus, West Nile virus, and tick-borne encephalitis virus cause debilitating and fatal infections globally. In 2024, the World Health Organization and the Pan American Health Organization declared the current dengue situation a Multi-Country Grade 3 Outbreak, the highest level. FDA-approved treatment options for diseases caused by flaviviruses are limited or non-existent, and vaccines are suboptimal for many flaviviruses. Understanding the molecular characteristics of the flavivirus life cycle, virus-host interactions, and resulting pathogenesis in various cells and model systems is critical for developing effective therapeutic intervention strategies. This review will focus on the virus-host interactions of mosquito- and tick-borne flaviviruses from the virus replication and assembly perspective, emphasizing the interplay between viral non-structural proteins and host pathways that are hijacked for their advantage. Highlighting interaction pathways, including innate immunity, intracellular movement, and membrane modification, emphasizes the need for rigorous and targeted antiviral research and development against these re-emerging viruses.
Collapse
Affiliation(s)
- Meghan K. Donaldson
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, PA 16802, USA; (M.K.D.); (L.A.Z.)
| | - Levi A. Zanders
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, PA 16802, USA; (M.K.D.); (L.A.Z.)
| | - Joyce Jose
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, PA 16802, USA; (M.K.D.); (L.A.Z.)
- The Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, PA 16802, USA
| |
Collapse
|
5
|
Verhaegen M, Vermeire K. The endoplasmic reticulum (ER): a crucial cellular hub in flavivirus infection and potential target site for antiviral interventions. NPJ VIRUSES 2024; 2:24. [PMID: 40295816 PMCID: PMC11721386 DOI: 10.1038/s44298-024-00031-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Accepted: 03/23/2024] [Indexed: 04/30/2025]
Abstract
Dengue virus (DENV) is the most prevalent arthropod-borne flavivirus and imposes a significant healthcare threat worldwide. At present no FDA-approved specific antiviral treatment is available, and the safety of a vaccine against DENV is still on debate. Following its entry into the host cell, DENV takes advantage of the cellular secretory pathway to produce new infectious particles. The key organelle of the host cell in DENV infections is the endoplasmic reticulum (ER) which supports various stages throughout the entire life cycle of flaviviruses. This review delves into the intricate interplay between flaviviruses and the ER during their life cycle with a focus on the molecular mechanisms underlying viral replication, protein processing and virion assembly. Emphasizing the significance of the ER in the flavivirus life cycle, we highlight potential antiviral targets in ER-related steps during DENV replication and summarize the current antiviral drugs that are in (pre)clinical developmental stage. Insights into the exploitation of the ER by DENV offer promising avenues for the development of targeted antiviral strategies, providing a foundation for future research and therapeutic interventions against flaviviruses.
Collapse
Affiliation(s)
- Marijke Verhaegen
- KU Leuven, Department of Microbiology, Immunology and Transplantation, Rega Institute, Laboratory of Virology and Chemotherapy, Herestraat 49, 3000, Leuven, Belgium
| | - Kurt Vermeire
- KU Leuven, Department of Microbiology, Immunology and Transplantation, Rega Institute, Laboratory of Virology and Chemotherapy, Herestraat 49, 3000, Leuven, Belgium.
| |
Collapse
|
6
|
Sarratea MB, Alberti AS, Redolfi DM, Truant SN, Iannantuono Lopez LV, Bivona AE, Mariuzza RA, Fernández MM, Malchiodi EL. Zika virus NS4B protein targets TANK-binding kinase 1 and inhibits type I interferon production. Biochim Biophys Acta Gen Subj 2023; 1867:130483. [PMID: 37802371 DOI: 10.1016/j.bbagen.2023.130483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2023] [Revised: 09/26/2023] [Accepted: 10/02/2023] [Indexed: 10/10/2023]
Abstract
BACKGROUND During viral infections, nucleic acid sensing by intracellular receptors can trigger type I interferon (IFN-I) production, key mediators in antiviral innate immunity. However, many flaviviruses use non-structural proteins to evade immune sensing favoring their survival. These mechanisms remain poorly characterized. Here, we studied the role of Zika virus (ZIKV) NS4B protein in the inhibition of IFN-I induction pathway and its biophysical interaction with host proteins. METHODS Using different cell-based assays, we studied the effect of ZIKV NS4B in the activation of interferon regulatory factors (IRFs), NF-κB, cytokines secretion and the expression of interferon-stimulating genes (ISG). We also analyzed the in vitro interaction between recombinant ZIKV NS4B and TANK-binding kinase 1 (TBK1) using surface plasmon resonance (SPR). RESULTS Transfection assays showed that ZIKV NS4B inhibits IRFs activation involved in different nucleic acid sensing cascades. Cells expressing NS4B secreted lower levels of IFN-β and IL-6. Furthermore, early induction of ISGs was also restricted by ZIKV NS4B. For the first time, we demonstrate by SPR assays that TBK1, a critical component in IFN-I production pathway, binds directly to ZIKV NS4B (KD of 3.7 × 10-6 M). In addition, we show that the N-terminal region of NS4B is directly involved in this interaction. CONCLUSIONS Altogether, our results strongly support that ZIKV NS4B affects nucleic acid sensing cascades and disrupts the TBK1/IRF3 axis, leading to an impairment of IFN-β production. SIGNIFICANCE This study provides the first biophysical data of the interaction between ZIKV NS4B and TBK1, and highlights the role of ZIKV NS4B in evading the early innate immune response.
Collapse
Affiliation(s)
- Maria B Sarratea
- Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica, Cátedra de Inmunología-IDEHU (UBA-CONICET), Junín 956, C1113AAD Buenos Aires, Argentina; W.M. Keck Laboratory for Structural Biology, University of Maryland Institute for Bioscience and Biotechnology Research, Rockville, MD 20850, USA
| | - Andrés Sánchez Alberti
- Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica, Cátedra de Inmunología-IDEHU (UBA-CONICET), Junín 956, C1113AAD Buenos Aires, Argentina; Universidad de Buenos Aires, Facultad de Medicina, Departamento de Microbiología, Parasitología e Inmunología-IMPAM (UBA-CONICET), Paraguay 2155, C1121ABG Buenos Aires, Argentina
| | - Daniela M Redolfi
- Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica, Cátedra de Inmunología-IDEHU (UBA-CONICET), Junín 956, C1113AAD Buenos Aires, Argentina
| | - Sofía Noli Truant
- Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica, Cátedra de Inmunología-IDEHU (UBA-CONICET), Junín 956, C1113AAD Buenos Aires, Argentina
| | - Laura V Iannantuono Lopez
- Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica, Cátedra de Inmunología-IDEHU (UBA-CONICET), Junín 956, C1113AAD Buenos Aires, Argentina
| | - Augusto E Bivona
- Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica, Cátedra de Inmunología-IDEHU (UBA-CONICET), Junín 956, C1113AAD Buenos Aires, Argentina; Universidad de Buenos Aires, Facultad de Medicina, Departamento de Microbiología, Parasitología e Inmunología-IMPAM (UBA-CONICET), Paraguay 2155, C1121ABG Buenos Aires, Argentina
| | - Roy A Mariuzza
- W.M. Keck Laboratory for Structural Biology, University of Maryland Institute for Bioscience and Biotechnology Research, Rockville, MD 20850, USA; Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, MD 20742, USA
| | - Marisa M Fernández
- Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica, Cátedra de Inmunología-IDEHU (UBA-CONICET), Junín 956, C1113AAD Buenos Aires, Argentina.
| | - Emilio L Malchiodi
- Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica, Cátedra de Inmunología-IDEHU (UBA-CONICET), Junín 956, C1113AAD Buenos Aires, Argentina; Universidad de Buenos Aires, Facultad de Medicina, Departamento de Microbiología, Parasitología e Inmunología-IMPAM (UBA-CONICET), Paraguay 2155, C1121ABG Buenos Aires, Argentina.
| |
Collapse
|
7
|
Huang Q, Ng HQ, Loh YY, Ke Z, Lim WH, Kang C. Backbone 1H, 15N and 13C resonance assignments for an E2 ubiquitin conjugating enzyme-UBE2T. BIOMOLECULAR NMR ASSIGNMENTS 2023; 17:269-274. [PMID: 37773242 DOI: 10.1007/s12104-023-10154-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Accepted: 09/20/2023] [Indexed: 10/01/2023]
Abstract
Ubiquitin-conjugating enzyme E2 T (UBE2T) plays important roles in ubiquitination of proteins through participation in transferring ubiquitin to its substrate. Due to its importance in protein modifications, UBE2T associates with diverse diseases and serves as an important target for drug discovery and development. The crystal structure of UBE2T has been determined and the structure reveals the lack of a druggable pocket for binding to small molecules for clinical applications. Despite the challenge, effort has been made to develop UBE2T inhibitors. We obtained UBE2T constructs with and without the C-terminal region which is flexible in solution. Herein, we report the backbone resonance assignments for human UBE2T without the C-terminal region. The backbone dynamics of UBE2T was also explored. The available assignments will be helpful for hit identification, determining ligand binding site and understanding the mechanism of action of UBE2T inhibitors.
Collapse
Affiliation(s)
- Qiwei Huang
- Experimental Drug Development Centre (EDDC), Agency for Science, Technology and Research (A*STAR), 10 Biopolis Road, #05-01, Singapore, 138670, Singapore
| | - Hui Qi Ng
- Experimental Drug Development Centre (EDDC), Agency for Science, Technology and Research (A*STAR), 10 Biopolis Road, #05-01, Singapore, 138670, Singapore
| | - Yong Yao Loh
- Experimental Drug Development Centre (EDDC), Agency for Science, Technology and Research (A*STAR), 10 Biopolis Road, #05-01, Singapore, 138670, Singapore
| | - Zhiyuan Ke
- Experimental Drug Development Centre (EDDC), Agency for Science, Technology and Research (A*STAR), 10 Biopolis Road, #05-01, Singapore, 138670, Singapore
| | - Wan Hsin Lim
- Experimental Drug Development Centre (EDDC), Agency for Science, Technology and Research (A*STAR), 10 Biopolis Road, #05-01, Singapore, 138670, Singapore
| | - CongBao Kang
- Experimental Drug Development Centre (EDDC), Agency for Science, Technology and Research (A*STAR), 10 Biopolis Road, #05-01, Singapore, 138670, Singapore.
| |
Collapse
|
8
|
Flavivirus NS4B protein: Structure, function, and antiviral discovery. Antiviral Res 2022; 207:105423. [PMID: 36179934 DOI: 10.1016/j.antiviral.2022.105423] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2022] [Revised: 09/16/2022] [Accepted: 09/18/2022] [Indexed: 11/02/2022]
Abstract
Infections with mosquito-borne flaviviruses, such as Dengue virus, ZIKV virus, and West Nile virus, pose significant threats to public health. Flaviviruses cause about 400 million infections each year, leading to many forms of diseases, including fatal hemorrhagic, encephalitis, congenital abnormalities, and deaths. Currently, there are no clinically approved antiviral drugs for the treatment of flavivirus infections. The non-structural protein NS4B is an emerging target for drug discovery due to its multiple roles in the flaviviral life cycle. In this review, we summarize the latest knowledge on the structure and function of flavivirus NS4B, as well as the progress on antiviral compounds that target NS4B.
Collapse
|
9
|
Bhardwaj T, Kumar P, Giri R. Investigating the conformational dynamics of Zika virus NS4B protein. Virology 2022; 575:20-35. [PMID: 36037701 DOI: 10.1016/j.virol.2022.08.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 08/14/2022] [Accepted: 08/16/2022] [Indexed: 11/27/2022]
Abstract
Zika virus (ZIKV) NS4B protein is a membranotropic multifunctional protein. Despite its versatile functioning, its topology and dynamics are not entirely understood. There is no X-ray or cryo-EM structure available for any flaviviral NS4B full-length protein. In this study, we have investigated the structural dynamics of full-length ZIKV NS4B protein through 3D structure models using molecular dynamics simulations and experimental techniques. Also, we employed a reductionist approach to understand the dynamics of NS4B protein where we studied its N-terminal (residues 1-38), C-terminal (residues 194-251), and cytosolic (residues 131-169) regions in isolation in addition to the full-length protein. Further, using a series of circular dichroism spectroscopic experiments, we validate the cytosolic region as an intrinsically disordered protein region. The microsecond-long all atoms molecular dynamics and replica-exchange simulations complement the experimental observations. Furthermore, we have also studied the NS4B proteins C-terminal regions of four other flaviviruses viz. DENV2, JEV, WNV, and YFV through microsecond simulations to characterize their behaviour in presence and absence of lipid membranes. There are significant differences observed in the conformations of other flavivirus NS4B C-terminal regions in comparison to ZIKV NS4B. Lastly, we have proposed a ZIKV NS4B protein model illustrating its putative topology consisting of various membrane-spanning and non-membranous regions.
Collapse
Affiliation(s)
- Taniya Bhardwaj
- School of Biosciences and Bioengineering, Indian Institute of Technology Mandi, VPO Kamand, Himachal Pradesh, 175005, India
| | - Prateek Kumar
- School of Biosciences and Bioengineering, Indian Institute of Technology Mandi, VPO Kamand, Himachal Pradesh, 175005, India
| | - Rajanish Giri
- School of Biosciences and Bioengineering, Indian Institute of Technology Mandi, VPO Kamand, Himachal Pradesh, 175005, India.
| |
Collapse
|
10
|
Li Q, Kang C. Dengue virus NS4B protein as a target for developing antivirals. Front Cell Infect Microbiol 2022; 12:959727. [PMID: 36017362 PMCID: PMC9398000 DOI: 10.3389/fcimb.2022.959727] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Accepted: 07/21/2022] [Indexed: 12/04/2022] Open
Abstract
Dengue virus is an important pathogen affecting global population while no specific treatment is available against this virus. Effort has been made to develop inhibitors through targeting viral nonstructural proteins such as NS3 and NS5 with enzymatic activities. No potent inhibitors entering clinical studies have been developed so far due to many challenges. The genome of dengue virus encodes four membrane-bound nonstructural proteins which do not possess any enzymatic activities. Studies have shown that the membrane protein-NS4B is a validated target for drug discovery and several NS4B inhibitors exhibited antiviral activities in various assays and entered preclinical studies.. Here, we summarize the recent studies on dengue NS4B protein. The structure and membrane topology of dengue NS4B derived from biochemical and biophysical studies are described. Function of NS4B through protein-protein interactions and some available NS4B inhibitors are summarized. Accumulated studies demonstrated that cell-based assays play important roles in developing NS4B inhibitors. Although the atomic structure of NS4B is not obtained, target-based drug discovery approach become feasible to develop NS4B inhibitors as recombinant NS4B protein is available.
Collapse
Affiliation(s)
- Qingxin Li
- Guangdong Provincial Engineering Laboratory of Biomass High Value Utilization, Institute of Biological and Medical Engineering, Guangdong Academy of Sciences, Guangzhou, China
| | - Congbao Kang
- Experimental Drug Development Centre, Agency for Science, Technology and Research, Singapore, Singapore
| |
Collapse
|
11
|
The Dengue Virus Nonstructural Protein 1 (NS1) Interacts with the Putative Epigenetic Regulator DIDO1 to Promote Flavivirus Replication in Mosquito Cells. J Virol 2022; 96:e0070422. [PMID: 35652656 DOI: 10.1128/jvi.00704-22] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Dengue virus (DENV) NS1 is a multifunctional protein essential for viral replication. To gain insights into NS1 functions in mosquito cells, the protein interactome of DENV NS1 in C6/36 cells was investigated using a proximity biotinylation system and mass spectrometry. A total of 817 mosquito targets were identified as protein-protein interacting with DENV NS1. Approximately 14% of them coincide with interactomes previously obtained in vertebrate cells, including the oligosaccharide transferase complex, the chaperonin containing TCP-1, vesicle localization, and ribosomal proteins. Notably, other protein pathways not previously reported in vertebrate cells, such as epigenetic regulation and RNA silencing, were also found in the NS1 interactome in mosquito cells. Due to the novel and strong interactions observed for NS1 and the epigenetic regulator DIDO1 (Death-Inducer Obliterator 1), the role of DIDO1 in viral replication was further explored. Interactions between NS1 and DIDO1 were corroborated in infected mosquito cells, by colocalization and proximity ligation assays. Silencing DIDO1 expression results in a significant reduction in DENV and ZIKV replication and progeny production. Comparison of transcription analysis of mock or DENV infected cells silenced for DIDO1 revealed variations in multiple gene expression pathways, including pathways associated with DENV infection such as RNA surveillance, IMD, and Toll. These results suggest that DIDO1 is a host factor involved in the negative modulation of the antiviral response necessary for flavivirus replication in mosquito cells. Our findings uncover novel mechanisms of NS1 to promote DENV and ZIKV replication, and add to the understanding of NS1 as a multifunctional protein. IMPORTANCE Dengue is the most important mosquito-borne viral disease to humans. Dengue virus NS1 is a multifunctional protein essential for replication and modulation of innate immunity. To gain insights into NS1 functions, the protein interactome of dengue virus NS1 in Aedes albopictus cells was investigated using a proximity biotinylation system and mass spectrometry. Several protein pathways, not previously observed in vertebrate cells, such as transcription and epigenetic regulation, were found as part of the NS1 interactome in mosquito cells. Among those, DIDO1 was found to be a necessary host factor for dengue and Zika virus replication in mosquito cells. Transcription analysis of infected mosquito cells silenced for DIDO1 revealed alterations of the IMD and Toll pathways, part of the antiviral response in mosquitoes. The results suggest that DIDO1 is a host factor involved in modulation of the antiviral response and necessary for flavivirus replication.
Collapse
|
12
|
Li Q, Kang C. Structures and Dynamics of Dengue Virus Nonstructural Membrane Proteins. MEMBRANES 2022; 12:231. [PMID: 35207152 PMCID: PMC8880049 DOI: 10.3390/membranes12020231] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Revised: 02/11/2022] [Accepted: 02/15/2022] [Indexed: 02/01/2023]
Abstract
Dengue virus is an important human pathogen threating people, especially in tropical and sub-tropical regions. The viral genome has one open reading frame and encodes one polyprotein which can be processed into structural and nonstructural (NS) proteins. Four of the seven nonstructural proteins, NS2A, NS2B, NS4A and NS4B, are membrane proteins. Unlike NS3 or NS5, these proteins do not harbor any enzymatic activities, but they play important roles in viral replication through interactions with viral or host proteins to regulate important pathways and enzymatic activities. The location of these proteins on the cell membrane and the functional roles in viral replication make them important targets for antiviral development. Indeed, NS4B inhibitors exhibit antiviral activities in different assays. Structural studies of these proteins are hindered due to challenges in crystallization and the dynamic nature of these proteins. In this review, the function and membrane topologies of dengue nonstructural membrane proteins are presented. The roles of solution NMR spectroscopy in elucidating the structure and dynamics of these proteins are introduced. The success in the development of NS4B inhibitors proves that this class of proteins is an attractive target for antiviral development.
Collapse
Affiliation(s)
- Qingxin Li
- Guangdong Provincial Engineering Laboratory of Biomass High Value Utilization, Institute of Biological and Medical Engineering, Guangdong Academy of Sciences, Guangzhou 510316, China
| | - Congbao Kang
- Experimental Drug Development Centre, Agency for Science, Technology and Research, 10 Biopolis Road, #5-01, Singapore 138670, Singapore
| |
Collapse
|
13
|
Li Q, Huang Q, Kang C. Secondary Structures of the Transmembrane Domain of SARS-CoV-2 Spike Protein in Detergent Micelles. Int J Mol Sci 2022; 23:ijms23031040. [PMID: 35162961 PMCID: PMC8834715 DOI: 10.3390/ijms23031040] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 01/08/2022] [Accepted: 01/14/2022] [Indexed: 01/11/2023] Open
Abstract
Spike protein of SARS-CoV-2 contains a single-span transmembrane (TM) domain and plays roles in receptor binding, viral attachment and viral entry to the host cells. The TM domain of spike protein is critical for viral infectivity. Herein, the TM domain of spike protein of SARS-CoV-2 was reconstituted in detergent micelles and subjected to structural analysis using solution NMR spectroscopy. The results demonstrate that the TM domain of the protein forms a helical structure in detergent micelles. An unstructured linker is identified between the TM helix and heptapeptide repeat 2 region. The linker is due to the proline residue at position 1213. Side chains of the three tryptophan residues preceding to and within the TM helix important for the function of S-protein might adopt multiple conformations which may be critical for their function. The side chain of W1212 was shown to be exposed to solvent and the side chains of residues W1214 and W1217 are buried in micelles. Relaxation study shows that the TM helix is rigid in solution while several residues have exchanges. The secondary structure and dynamics of the TM domain in this study provide insights into the function of the TM domain of spike protein.
Collapse
Affiliation(s)
- Qingxin Li
- Guangdong Provincial Engineering Laboratory of Biomass High Value Utilization, Institute of Biological and Medical Engineering, Guangdong Academy of Sciences, Guangzhou 510316, China;
| | - Qiwei Huang
- Experimental Drug Development Centre (EDDC), Agency for Science, Technology and Research (A*STAR), Singapore 138670, Singapore;
| | - Congbao Kang
- Experimental Drug Development Centre (EDDC), Agency for Science, Technology and Research (A*STAR), Singapore 138670, Singapore;
- Correspondence:
| |
Collapse
|
14
|
Structure and Dynamics of Zika Virus Protease and Its Insights into Inhibitor Design. Biomedicines 2021; 9:biomedicines9081044. [PMID: 34440248 PMCID: PMC8394600 DOI: 10.3390/biomedicines9081044] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Revised: 08/04/2021] [Accepted: 08/16/2021] [Indexed: 12/16/2022] Open
Abstract
Zika virus (ZIKV)—a member of the Flaviviridae family—is an important human pathogen. Its genome encodes a polyprotein that can be further processed into structural and non-structural proteins. ZIKV protease is an important target for antiviral development due to its role in cleaving the polyprotein to release functional viral proteins. The viral protease is a two-component protein complex formed by NS2B and NS3. Structural studies using different approaches demonstrate that conformational changes exist in the protease. The structures and dynamics of this protease in the absence and presence of inhibitors were explored to provide insights into the inhibitor design. The dynamic nature of residues binding to the enzyme cleavage site might be important for the function of the protease. Due to the charges at the protease cleavage site, it is challenging to develop small-molecule compounds acting as substrate competitors. Developing small-molecule compounds to inhibit protease activity through an allosteric mechanism is a feasible strategy because conformational changes are observed in the protease. Herein, structures and dynamics of ZIKV protease are summarized. The conformational changes of ZIKV protease and other proteases in the same family are discussed. The progress in developing allosteric inhibitors is also described. Understanding the structures and dynamics of the proteases are important for designing potent inhibitors.
Collapse
|
15
|
Voss S, Nitsche C. Targeting the protease of West Nile virus. RSC Med Chem 2021; 12:1262-1272. [PMID: 34458734 PMCID: PMC8372202 DOI: 10.1039/d1md00080b] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Accepted: 05/17/2021] [Indexed: 01/04/2023] Open
Abstract
West Nile virus infections can cause severe neurological symptoms. During the last 25 years, cases have been reported in Asia, North America, Africa, Europe and Australia (Kunjin). No West Nile virus vaccines or specific antiviral therapies are available to date. Various viral proteins and host-cell factors have been evaluated as potential drug targets. The viral protease NS2B-NS3 is among the most promising viral targets. It releases viral proteins from a non-functional polyprotein precursor, making it a critical factor of viral replication. Despite strong efforts, no protease inhibitors have reached clinical trials yet. Substrate-derived peptidomimetics have facilitated structural elucidations of the active protease state, while alternative compounds with increased drug-likeness have recently expanded drug discovery efforts beyond the active site.
Collapse
Affiliation(s)
- Saan Voss
- Research School of Chemistry, Australian National University Canberra ACT 2601 Australia
| | - Christoph Nitsche
- Research School of Chemistry, Australian National University Canberra ACT 2601 Australia
| |
Collapse
|
16
|
Molecular Insights into the Flavivirus Replication Complex. Viruses 2021; 13:v13060956. [PMID: 34064113 PMCID: PMC8224304 DOI: 10.3390/v13060956] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2021] [Revised: 05/17/2021] [Accepted: 05/17/2021] [Indexed: 12/11/2022] Open
Abstract
Flaviviruses are vector-borne RNA viruses, many of which are clinically relevant human viral pathogens, such as dengue, Zika, Japanese encephalitis, West Nile and yellow fever viruses. Millions of people are infected with these viruses around the world each year. Vaccines are only available for some members of this large virus family, and there are no effective antiviral drugs to treat flavivirus infections. The unmet need for vaccines and therapies against these flaviviral infections drives research towards a better understanding of the epidemiology, biology and immunology of flaviviruses. In this review, we discuss the basic biology of the flavivirus replication process and focus on the molecular aspects of viral genome replication. Within the virus-induced intracellular membranous compartments, flaviviral RNA genome replication takes place, starting from viral poly protein expression and processing to the assembly of the virus RNA replication complex, followed by the delivery of the progeny viral RNA to the viral particle assembly sites. We attempt to update the latest understanding of the key molecular events during this process and highlight knowledge gaps for future studies.
Collapse
|
17
|
Lu H, Zhan Y, Li X, Bai X, Yuan F, Ma L, Wang X, Xie M, Wu W, Chen Z. Novel insights into the function of an N-terminal region of DENV2 NS4B for the optimal helicase activity of NS3. Virus Res 2021; 295:198318. [PMID: 33485995 DOI: 10.1016/j.virusres.2021.198318] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Revised: 12/19/2020] [Accepted: 01/17/2021] [Indexed: 10/22/2022]
Abstract
Dengue virus NS3 is a prototypical DEx(H/D) helicase that binds and hydrolyzes NTP to translocate along and unwind double-stranded nucleic acids. NS3 and NS4B are essential components of the flavivirus replication complex. Evidences showed that NS4B interacted with NS3 and modulated the helicase activity of NS3. Despite important insights into structural, mechanistic, and cellular aspects of the NS3 function, there is still a gap in understanding how it coordinates the helicase activities within the replicase complex for efficient replication. Here, using the DENV2 as a model, we redefined the critical region of NS4B required for NS3 function by pull-down and MST assays. The FRET-based unwinding assay showed that NS3 would accelerate unwinding duplex nucleic acids in the presence of NS4B (51-83). The simulated NS3-NS4B complex models based on the rigid-body docking delineated the potential interaction sites located in the conserved motif within the core domain of NS3. Mutations in motif I (I190A) and motif III (P319L) of NS3 interfered with the unwinding activity stimulated by NS4B. Upon binding to the NS3 helicase, NS4B assisted NS3 to dissociate from single-stranded nucleic acid and enabled NS3 helicase to keep high activity at high ATP concentrations. These results suggest that NS4B probably serves as an essential cofactor for NS3 to coordinate the ATP cycles and nucleic acid binding during viral genome replication.
Collapse
Affiliation(s)
- Hongyun Lu
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - Yumeng Zhan
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - Xiaorong Li
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - Xuehui Bai
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - Feifei Yuan
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - Lulu Ma
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - Xue Wang
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - Mengjia Xie
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - Wei Wu
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - Zhongzhou Chen
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, 100193, China.
| |
Collapse
|
18
|
The ER Membrane Protein Complex Promotes Biogenesis of Dengue and Zika Virus Non-structural Multi-pass Transmembrane Proteins to Support Infection. Cell Rep 2020; 27:1666-1674.e4. [PMID: 31067454 PMCID: PMC6521869 DOI: 10.1016/j.celrep.2019.04.051] [Citation(s) in RCA: 60] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2018] [Revised: 03/05/2019] [Accepted: 04/09/2019] [Indexed: 01/01/2023] Open
Abstract
Although flaviviruses co-opt the function of the host endoplasmic reticulum (ER) membrane protein complex (EMC) during infection, a mechanistic explanation for this observation remains unclear. Here, we show that the EMC promotes biogenesis of dengue virus (DENV) and Zika virus (ZIKV) non-structural multi-pass transmembrane proteins NS4A and NS4B, which are necessary for viral replication. The EMC binds to NS4B and colocalizes with the DENV replication organelle. Mapping analysis reveals that the two N-terminal marginally hydrophobic domains of NS4B confer EMC dependency. Furthermore, altering the hydrophobicity of these two marginally hydrophobic domains relieves NS4B’s EMC dependency. We demonstrate that NS4B biogenesis, but not its stability, is reduced in EMC-depleted cells. Our data suggest that the EMC acts as a multi-pass transmembrane chaperone required for expression of at least two virally encoded proteins essential for flavivirus infection and point to a shared vulnerability during the viral life cycle that could be exploited for antiviral therapy. Multiple genetic screens have identified the ER membrane protein complex (EMC) as essential for infection by dengue and Zika flaviviruses. Lin et al. demonstrate that efficient biogenesis of the viral non-structural proteins NS4A and NS4B requires the EMC.
Collapse
|
19
|
Strottmann DM, Zanluca C, Mosimann ALP, Koishi AC, Auwerter NC, Faoro H, Cataneo AHD, Kuczera D, Wowk PF, Bordignon J, Duarte Dos Santos CN. Genetic and biological characterisation of Zika virus isolates from different Brazilian regions. Mem Inst Oswaldo Cruz 2019; 114:e190150. [PMID: 31432892 PMCID: PMC6701881 DOI: 10.1590/0074-02760190150] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2019] [Accepted: 07/19/2019] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Zika virus (ZIKV) infections reported in recent epidemics have been linked
to clinical complications that had never been associated with ZIKV before.
Adaptive mutations could have contributed to the successful emergence of
ZIKV as a global health threat to a nonimmune population. However, the
causal relationships between the ZIKV genetic determinants, the pathogenesis
and the rapid spread in Latin America and in the Caribbean remain widely
unknown. OBJECTIVES The aim of this study was to characterise three ZIKV isolates obtained from
patient samples during the 2015/2016 Brazilian epidemics. METHODS The ZIKV genomes of these strains were completely sequenced and in
vitro infection kinetics experiments were carried out in cell
lines and human primary cells. FINDINGS Eight nonsynonymous substitutions throughout the viral genome of the three
Brazilian isolates were identified. Infection kinetics experiments were
carried out with mammalian cell lines A549, Huh7.5, Vero E6 and human
monocyte-derived dendritic cells (mdDCs) and insect cells (Aag2, C6/36 and
AP61) and suggest that some of these mutations might be associated with
distinct viral fitness. The clinical isolates also presented differences in
their infectivity rates when compared to the well-established ZIKV strains
(MR766 and PE243), especially in their abilities to infect mammalian
cells. MAIN CONCLUSIONS Genomic analysis of three recent ZIKV isolates revealed some nonsynonymous
substitutions, which could have an impact on the viral fitness in mammalian
and insect cells.
Collapse
Affiliation(s)
- Daisy Maria Strottmann
- Fundação Oswaldo Cruz-Fiocruz, Instituto Carlos Chagas, Laboratório de Virologia Molecular, Curitiba, PR, Brasil
| | - Camila Zanluca
- Fundação Oswaldo Cruz-Fiocruz, Instituto Carlos Chagas, Laboratório de Virologia Molecular, Curitiba, PR, Brasil
| | - Ana Luiza Pamplona Mosimann
- Fundação Oswaldo Cruz-Fiocruz, Instituto Carlos Chagas, Laboratório de Virologia Molecular, Curitiba, PR, Brasil
| | - Andrea C Koishi
- Fundação Oswaldo Cruz-Fiocruz, Instituto Carlos Chagas, Laboratório de Virologia Molecular, Curitiba, PR, Brasil
| | - Nathalia Cavalheiro Auwerter
- Fundação Oswaldo Cruz-Fiocruz, Instituto Carlos Chagas, Laboratório de Virologia Molecular, Curitiba, PR, Brasil
| | - Helisson Faoro
- Fundação Oswaldo Cruz-Fiocruz, Instituto Carlos Chagas, Laboratório de Regulação da Expressão Gênica, Curitiba, PR, Brasil
| | | | - Diogo Kuczera
- Fundação Oswaldo Cruz-Fiocruz, Instituto Carlos Chagas, Laboratório de Virologia Molecular, Curitiba, PR, Brasil
| | - Pryscilla Fanini Wowk
- Fundação Oswaldo Cruz-Fiocruz, Instituto Carlos Chagas, Laboratório de Virologia Molecular, Curitiba, PR, Brasil
| | - Juliano Bordignon
- Fundação Oswaldo Cruz-Fiocruz, Instituto Carlos Chagas, Laboratório de Virologia Molecular, Curitiba, PR, Brasil
| | | |
Collapse
|
20
|
Reyes-Ruiz JM, Osuna-Ramos JF, Bautista-Carbajal P, Jaworski E, Soto-Acosta R, Cervantes-Salazar M, Angel-Ambrocio AH, Castillo-Munguía JP, Chávez-Munguía B, De Nova-Ocampo M, Routh A, Del Ángel RM, Salas-Benito JS. Mosquito cells persistently infected with dengue virus produce viral particles with host-dependent replication. Virology 2019; 531:1-18. [PMID: 30844508 DOI: 10.1016/j.virol.2019.02.018] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2018] [Revised: 02/22/2019] [Accepted: 02/26/2019] [Indexed: 11/26/2022]
Abstract
Dengue viruses (DENV) are important arboviruses that can establish a persistent infection in its mosquito vector Aedes. Mosquitoes have a short lifetime in nature which makes trying to study the processes that take place during persistent viral infections in vivo. Therefore, C6/36 cells have been used to study this type of infection. C6/36 cells persistently infected with DENV 2 produce virions that cannot infect BHK -21 cells. We hypothesized that the following passages in mosquito cells have a deleterious impact on DENV fitness in vertebrate cells. Here, we demonstrated that the viral particles released from persistently infected cells were infectious to mosquito but not to vertebrate cells. This host restriction occurs at the replication level and is associated with several mutations in the DENV genome. In summary, our findings provide new information about viral replication fitness in a host-dependent manner.
Collapse
Affiliation(s)
- José Manuel Reyes-Ruiz
- Departamento de Infectómica y Patogénesis Molecular, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Mexico
| | - Juan Fidel Osuna-Ramos
- Departamento de Infectómica y Patogénesis Molecular, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Mexico
| | - Patricia Bautista-Carbajal
- Departamento de Infectómica y Patogénesis Molecular, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Mexico
| | - Elizabeth Jaworski
- Department of Biochemistry and Molecular Biology, The University of Texas, Medical Branch, Galveston, TX 77555, USA
| | - Rubén Soto-Acosta
- Department of Biochemistry and Molecular Biology, The University of Texas, Medical Branch, Galveston, TX 77555, USA
| | - Margot Cervantes-Salazar
- Departamento de Infectómica y Patogénesis Molecular, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Mexico
| | | | - Juan Pablo Castillo-Munguía
- Maestría en Ciencias en Biomedicina Molecular, Escuela Nacional de Medicina y Homeopatía, Instituto Politécnico Nacional, Mexico
| | - Bibiana Chávez-Munguía
- Departamento de Infectómica y Patogénesis Molecular, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Mexico
| | - Mónica De Nova-Ocampo
- Maestría en Ciencias en Biomedicina Molecular, Escuela Nacional de Medicina y Homeopatía, Instituto Politécnico Nacional, Mexico
| | - Andrew Routh
- Department of Biochemistry and Molecular Biology, The University of Texas, Medical Branch, Galveston, TX 77555, USA; Sealy Center for Structural Biology and Molecular Biophysics, The University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Rosa María Del Ángel
- Departamento de Infectómica y Patogénesis Molecular, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Mexico.
| | - Juan Santiago Salas-Benito
- Maestría en Ciencias en Biomedicina Molecular, Escuela Nacional de Medicina y Homeopatía, Instituto Politécnico Nacional, Mexico; Doctorado en Ciencias en Biotecnología, Escuela Nacional de Medicina y Homeopatía, Instituto Politécnico Nacional, Mexico.
| |
Collapse
|
21
|
Silva EM, Conde JN, Allonso D, Ventura GT, Coelho DR, Carneiro PH, Silva ML, Paes MV, Rabelo K, Weissmuller G, Bisch PM, Mohana-Borges R. Dengue virus nonstructural 3 protein interacts directly with human glyceraldehyde-3-phosphate dehydrogenase (GAPDH) and reduces its glycolytic activity. Sci Rep 2019; 9:2651. [PMID: 30804377 PMCID: PMC6389977 DOI: 10.1038/s41598-019-39157-7] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2018] [Accepted: 01/16/2019] [Indexed: 12/29/2022] Open
Abstract
Dengue is an important mosquito-borne disease and a global public health problem. The disease is caused by dengue virus (DENV), which is a member of the Flaviviridae family and contains a positive single-stranded RNA genome that encodes a single precursor polyprotein that is further cleaved into structural and non-structural proteins. Among these proteins, the non-structural 3 (NS3) protein is very important because it forms a non-covalent complex with the NS2B cofactor, thereby forming the functional viral protease. NS3 also contains a C-terminal ATPase/helicase domain that is essential for RNA replication. Here, we identified 47 NS3-interacting partners using the yeast two-hybrid system. Among those partners, we highlight several proteins involved in host energy metabolism, such as apolipoprotein H, aldolase B, cytochrome C oxidase and glyceraldehyde-3-phosphate dehydrogenase (GAPDH). GAPDH directly binds full-length NS3 and its isolated helicase and protease domains. Moreover, we observed an intense colocalization between the GAPDH and NS3 proteins in DENV2-infected Huh7.5.1 cells, in NS3-transfected BHK-21 cells and in hepatic tissue from a fatal dengue case. Taken together, these results suggest that the human GAPDH-DENV NS3 interaction is involved in hepatic metabolic alterations, which may contribute to the appearance of steatosis in dengue-infected patients. The interaction between GAPDH and full-length NS3 or its helicase domain in vitro as well as in NS3-transfected cells resulted in decreased GAPDH glycolytic activity. Reduced GAPDH glycolytic activity may lead to the accumulation of metabolic intermediates, shifting metabolism to alternative, non-glycolytic pathways. This report is the first to identify the interaction of the DENV2 NS3 protein with the GAPDH protein and to demonstrate that this interaction may play an important role in the molecular mechanism that triggers hepatic alterations.
Collapse
Affiliation(s)
- Emiliana M Silva
- Laboratório de Genômica Estrutural, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, 21941-590, Brazil
| | - Jonas N Conde
- Laboratório de Genômica Estrutural, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, 21941-590, Brazil
| | - Diego Allonso
- Departamento de Biotecnologia Farmacêutica, Faculdade de Farmácia, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Gustavo T Ventura
- Laboratório de Genômica Estrutural, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, 21941-590, Brazil
| | - Diego R Coelho
- Laboratório de Genômica Estrutural, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, 21941-590, Brazil
| | - Pedro Henrique Carneiro
- Laboratório de Genômica Estrutural, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, 21941-590, Brazil
| | - Manuela L Silva
- Instituto de Biodiversidade e Sustentabilidade (NUPEM/UFRJ), Universidade Federal do Rio de Janeiro, Macaé, RJ, Brazil
| | - Marciano V Paes
- Laboratório Interdisciplinar de Pesquisa Médica, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro, RJ, Brazil
| | - Kíssila Rabelo
- Laboratório de Ultraestrutura e Biologia Tecidual, Universidade Estadual do Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Gilberto Weissmuller
- Laboratório de Física Biológica, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, 21941-590, Brazil
| | - Paulo Mascarello Bisch
- Laboratório de Física Biológica, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, 21941-590, Brazil
| | - Ronaldo Mohana-Borges
- Laboratório de Genômica Estrutural, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, 21941-590, Brazil.
| |
Collapse
|
22
|
Li Q, Ng HQ, Kang C. Secondary structure and topology of the transmembrane domain of Syndecan‐2 in detergent micelles. FEBS Lett 2019; 593:554-561. [DOI: 10.1002/1873-3468.13335] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2018] [Revised: 02/03/2019] [Accepted: 02/07/2019] [Indexed: 01/18/2023]
Affiliation(s)
- Qingxin Li
- Institute of Chemical and Engineering Sciences Agency for Science, Technology and Research (A*STAR) Jurong Island Singapore
| | - Hui Qi Ng
- Experimental Therapeutics Centre Experimental Drug Development Centre (EDDC) Agency for Science, Technology and Research (A*STAR) Singapore Singapore
| | - CongBao Kang
- Experimental Therapeutics Centre Experimental Drug Development Centre (EDDC) Agency for Science, Technology and Research (A*STAR) Singapore Singapore
| |
Collapse
|
23
|
Ng EY, Loh YR, Li Y, Li Q, Kang C. Expression, purification of Zika virus membrane protein-NS2B in detergent micelles for NMR studies. Protein Expr Purif 2019; 154:1-6. [DOI: 10.1016/j.pep.2018.09.013] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2018] [Revised: 09/17/2018] [Accepted: 09/20/2018] [Indexed: 12/15/2022]
|
24
|
Ahmad Z, Poh CL. The Conserved Molecular Determinants of Virulence in Dengue Virus. Int J Med Sci 2019; 16:355-365. [PMID: 30911269 PMCID: PMC6428985 DOI: 10.7150/ijms.29938] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/14/2018] [Accepted: 12/17/2018] [Indexed: 12/22/2022] Open
Abstract
Dengue virus belongs to the Flaviviridae family which also includes viruses such as the Zika, West Nile and yellow fever virus. Dengue virus generally causes mild disease, however, more severe forms of the dengue virus infection, dengue haemorrhagic fever (DHF) and dengue haemorrhagic fever with shock syndrome (DSS) can also occur, resulting in multiple organ failure and even death, especially in children. The only dengue vaccine available in the market, CYD-TDV offers limited coverage for vaccinees from 9-45 years of age and is only recommended for individuals with prior dengue exposure. A number of mutations that were shown to attenuate virulence of dengue virus in vitro and/or in vivo have been identified in the literature. The mutations which fall within the conserved regions of all four dengue serotypes are discussed. This review hopes to provide information leading to the construction of a live attenuated dengue vaccine that is suitable for all ages, irrespective of the infecting dengue serotype and prior dengue exposure.
Collapse
Affiliation(s)
- Zuleeza Ahmad
- Centre for Virus and Vaccine Research, School of Science and Technology, Sunway University, 47500 Subang Jaya, Selangor, Malaysia
| | - Chit Laa Poh
- Centre for Virus and Vaccine Research, School of Science and Technology, Sunway University, 47500 Subang Jaya, Selangor, Malaysia
| |
Collapse
|
25
|
Bui TT, Moi ML, Nabeshima T, Takemura T, Nguyen TT, Nguyen LN, Pham HTT, Nguyen TTT, Manh DH, Dumre SP, Mizukami S, Hirayama K, Tajima S, Le MTQ, Aoyagi K, Hasebe F, Morita K. A single amino acid substitution in the NS4B protein of Dengue virus confers enhanced virus growth and fitness in human cells in vitro through IFN-dependent host response. J Gen Virol 2018; 99:1044-1057. [PMID: 29916798 DOI: 10.1099/jgv.0.001092] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Dengue virus (DENV) replication between mosquito and human hosts is hypothesized to be associated with viral determinants that interact in a differential manner between hosts. However, the understanding of inter-host viral determinants that drive DENV replication and growth between hosts is limited. Through the use of clinical isolates, we identified an amino acid variation of Ala, Met and Val at position 116 of DENV-1 NS4B. While the proportion of virus with the NS4B-116V variant remained constantly high in serial passages in a mosquito cell line, populations of the NS4B-116M and NS4B-116A variants became dominant after serial passages in mammalian cell lines. Using recombinant DENV-1 viruses, the Val to Ala or Met alteration at position NS4B-116 (rDENV-1-NS4B-116A and rDENV-1-NS4B-116M) resulted in enhanced virus growth in human cells in comparison to the clone with Val at NS4B-116 (rDENV-1-NS4B-116V). However, the reverse phenomenon was observed in a mosquito cell line. Additionally, in a human cell line, differential levels of IFN-α/β and IFN-stimulated gene expressions (IFIT3, IFI44L, OAS1) suggested that the enhanced viral growth was dependent on the ability of the NS4B protein to hamper host IFN response during the early phase of infection. Overall, we identified a novel and critical viral determinant at the pTMD3 of NS4B region that displayed differential effects on DENV replication and fitness in human and mosquito cell lines. Taken together, the results suggest the importance of the NS4B protein in virus replication and adaptation between hosts.
Collapse
Affiliation(s)
- Thuy Thu Bui
- 1Department of Virology, Institute of Tropical Medicine, Nagasaki University, Nagasaki, Japan.,2Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki, Japan
| | - Meng Ling Moi
- 1Department of Virology, Institute of Tropical Medicine, Nagasaki University, Nagasaki, Japan
| | - Takeshi Nabeshima
- 1Department of Virology, Institute of Tropical Medicine, Nagasaki University, Nagasaki, Japan
| | - Taichiro Takemura
- 3NIHE-Nagasaki Friendship Laboratory, Nagasaki University, Hanoi, Vietnam
| | - Trang Thu Nguyen
- 3NIHE-Nagasaki Friendship Laboratory, Nagasaki University, Hanoi, Vietnam
| | - Linh Ngoc Nguyen
- 4Department of Virology, National Institute of Hygiene and Epidemiology, Hanoi, Vietnam
| | - Hang Thi Thu Pham
- 4Department of Virology, National Institute of Hygiene and Epidemiology, Hanoi, Vietnam
| | - Thi Thu Thuy Nguyen
- 4Department of Virology, National Institute of Hygiene and Epidemiology, Hanoi, Vietnam
| | - Dao Huy Manh
- 2Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki, Japan.,5Department of Immunogenetics, Institute of Tropical Medicine, Nagasaki University, Nagasaki, Japan
| | - Shyam Prakash Dumre
- 5Department of Immunogenetics, Institute of Tropical Medicine, Nagasaki University, Nagasaki, Japan
| | - Shusaku Mizukami
- 6Department of Clinical Product Development, Institute of Tropical Medicine, Nagasaki University, Nagasaki, Japan
| | - Kenji Hirayama
- 5Department of Immunogenetics, Institute of Tropical Medicine, Nagasaki University, Nagasaki, Japan
| | - Shigeru Tajima
- 7Department of Virology 1, National Insitute of Infectious Diseases, Tokyo, Japan
| | - Mai Thi Quynh Le
- 4Department of Virology, National Institute of Hygiene and Epidemiology, Hanoi, Vietnam
| | - Kiyoshi Aoyagi
- 8Department of Public Health, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
| | - Futoshi Hasebe
- 9Vietnam Research station, Center for Infectious Disease Research in Asia and Africa, Institute of Tropical Medicine, Nagasaki University, Nagasaki, Japan
| | - Kouichi Morita
- 1Department of Virology, Institute of Tropical Medicine, Nagasaki University, Nagasaki, Japan
| |
Collapse
|
26
|
Hussain W, Qaddir I, Mahmood S, Rasool N. In silico targeting of non-structural 4B protein from dengue virus 4 with spiropyrazolopyridone: study of molecular dynamics simulation, ADMET and virtual screening. Virusdisease 2018; 29:147-156. [PMID: 29911147 PMCID: PMC6003060 DOI: 10.1007/s13337-018-0446-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2018] [Accepted: 03/24/2018] [Indexed: 01/08/2023] Open
Abstract
Dengue fever is one of the most prevalent disease in tropical and sub-tropical regions of the world. According to the World Health Organisation (WHO), approximately 3.5 billion people have been affected with dengue fever. Four serotypes of dengue virus (DENV) i.e. DENV1, DENV2, DENV3 and DENV4 have up to 65% genetic variations among themselves. dengue virus 4 (DENV4) was first reported from Amazonas, Brazil and is spreading perilously due to lack of awareness of preventive measures, as it is the least targeted serotype. In this study, non-structural protein 4B of dengue virus 4 (DENV4-NS4B) is computationally characterised and simulations are performed including solvation, energy minimizations and neutralisation for the refinement of predicted model of the protein. The spiropyrazolopyridone is considered as an effective drug against NS4B of DENV2, therefore, a total of 91 different analogues of spiropyrazolopyridone are used to analyse their inhibitory action against DENV4-NS4B. These compounds are docked at the binding site with various binding affinities, representing their efficacy to block the binding pocket of the protein. Pharmacological and pharmacokinetic assessment performed on these inhibitors shows that these are suitable candidates to be used as a drug against the dengue fever. Among all these 91 compounds, Analogue-I and Analogue-II are analysed to be the most effective inhibitor having potential to be used as drugs against dengue virus.
Collapse
Affiliation(s)
- Waqar Hussain
- Department of Computer Science, University of Management and Technology, Lahore, Pakistan
| | - Iqra Qaddir
- Department of Chemistry, University of Management and Technology, Lahore, Pakistan
| | - Sajid Mahmood
- Department of Informatics and System, University of Management and Technology, Lahore, Pakistan
| | - Nouman Rasool
- Department of Life Sciences, University of Management and Technology, Lahore, Pakistan
- Dr. Panjwani Center for Molecular Medicine and Drug Research, International Center for Chemical and Biological Sciences, University of Karachi, Karachi, 75270 Pakistan
| |
Collapse
|
27
|
The Dengue Virus Replication Complex: From RNA Replication to Protein-Protein Interactions to Evasion of Innate Immunity. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2018; 1062:115-129. [PMID: 29845529 DOI: 10.1007/978-981-10-8727-1_9] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Viruses from the Flavivirus family are the causative agents of dengue fever, Zika, Japanese encephalitis, West Nile encephalitis or Yellow fever and constitute major or emerging public health problems. A better understanding of the flavivirus replication cycle is likely to offer new opportunities for the design of antiviral therapies to treat severe conditions provoked by these viruses, but it should also help reveal fundamental biological mechanisms of the host cell. During virus replication, RNA synthesis is mediated by a dynamic and membrane-bound multi-protein assembly, named the replication complex (RC). The RC is composed of both viral and host-cell proteins that assemble within vesicles composed of the endoplasmic reticulum membrane, near the nucleus. At the heart of the flavivirus RC lies NS4B, a viral integral membrane protein that plays a role in virulence and in down-regulating the innate immune response. NS4B binds to the NS2B-NS3 protease-helicase, which itself interacts with the NS5 methyl-transferase polymerase. We present an overview of recent structural and functional data that augment our understanding of how viral RNA is replicated by dengue virus. We focus on structural data that illuminate the various roles played by proteins NS2B-NS3, NS4B and NS5. By participating in viral RNA cap methylation, the NS5 methyltransferase enables the virus to escape the host cell innate immune response. We present the molecular basis for this activity. We summarize what we know about the network of interactions established by NS2B-NS3, NS4B and NS5 (their "interactome"). This leads to a working model that is captured in the form of a rather naïve "cartoon", which we hope will be refined towards an atomic model in the near future.
Collapse
|
28
|
Hernandez-Morales I, Geluykens P, Clynhens M, Strijbos R, Goethals O, Megens S, Verheyen N, Last S, McGowan D, Coesemans E, De Boeck B, Stoops B, Devogelaere B, Pauwels F, Vandyck K, Berke JM, Raboisson P, Simmen K, Lory P, Van Loock M. Characterization of a dengue NS4B inhibitor originating from an HCV small molecule library. Antiviral Res 2017; 147:149-158. [DOI: 10.1016/j.antiviral.2017.10.011] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2017] [Revised: 10/08/2017] [Accepted: 10/12/2017] [Indexed: 12/14/2022]
|
29
|
Li Y, Lee MY, Loh YR, Kang C. Secondary structure and membrane topology of dengue virus NS4A protein in micelles. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2017; 1860:442-450. [PMID: 29055659 DOI: 10.1016/j.bbamem.2017.10.016] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2017] [Revised: 09/28/2017] [Accepted: 10/14/2017] [Indexed: 11/18/2022]
Abstract
Dengue virus (DENV) non-structural (NS) 4A is a membrane protein essential for viral replication. The N-terminal region of NS4A contains several helices interacting with the cell membrane and the C-terminal region consists of three potential transmembrane regions. The secondary structure of the intact NS4A is not known as the previous structural studies were carried out on its fragments. In this study, we purified the full-length NS4A of DENV serotype 4 into dodecylphosphocholine (DPC) micelles. Solution NMR studies reveal that NS4A contains six helices in DPC micelles. The N-terminal three helices are amphipathic and interact with the membrane. The C-terminal three helices are embedded in micelles. Our results suggest that NS4A contains three transmembrane helices. Our studies provide for the first time structural information of the intact NS4A of DENV and will be useful for further understanding its role in viral replication.
Collapse
Affiliation(s)
- Yan Li
- Experimental Therapeutics Centre, Agency for Science, Technology and Research (A*STAR), 31 Biopolis Way, Nanos, Singapore 138669, Singapore
| | - Michelle Yueqi Lee
- Experimental Therapeutics Centre, Agency for Science, Technology and Research (A*STAR), 31 Biopolis Way, Nanos, Singapore 138669, Singapore
| | - Ying Ru Loh
- Experimental Therapeutics Centre, Agency for Science, Technology and Research (A*STAR), 31 Biopolis Way, Nanos, Singapore 138669, Singapore
| | - CongBao Kang
- Experimental Therapeutics Centre, Agency for Science, Technology and Research (A*STAR), 31 Biopolis Way, Nanos, Singapore 138669, Singapore.
| |
Collapse
|
30
|
Kaiser JA, Wang T, Barrett AD. Virulence determinants of West Nile virus: how can these be used for vaccine design? Future Virol 2017; 12:283-295. [PMID: 28919920 DOI: 10.2217/fvl-2016-0141] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2016] [Accepted: 02/14/2017] [Indexed: 12/12/2022]
Abstract
West Nile virus (WNV), a neurotropic mosquito-borne flavivirus, has become endemic in the USA and parts of Europe since 1999. There is no licensed WNV vaccine for humans. Considering the robust immunity from immunization with live, attenuated vaccines, a live WNV vaccine is an ideal platform for disease control. Animal and mosquito studies have identified a number of candidate attenuating mutations, including the structural proteins premembrane/membrane and envelope, and the nonstructural proteins NS1, NS2A, NS3, NS4A, NS4B and NS5, and the 3' UTR. Many of the mutations that have been examined attenuate WNV using different mechanisms, thus providing a greater understanding of WNV virulence while also identifying specific mutations as candidates to include in a WNV live vaccine.
Collapse
Affiliation(s)
- Jaclyn A Kaiser
- Department of Microbiology & Immunology, University of Texas Medical Branch, Galveston, TX 77555, USA.,Department of Microbiology & Immunology, University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Tian Wang
- Department of Microbiology & Immunology, University of Texas Medical Branch, Galveston, TX 77555, USA.,Department of Pathology, University of Texas Medical Branch, Galveston, TX 77555, USA.,Sealy Center for Vaccine Development, University of Texas Medical Branch, Galveston, TX 77555, USA.,Department of Microbiology & Immunology, University of Texas Medical Branch, Galveston, TX 77555, USA.,Department of Pathology, University of Texas Medical Branch, Galveston, TX 77555, USA.,Sealy Center for Vaccine Development, University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Alan Dt Barrett
- Department of Microbiology & Immunology, University of Texas Medical Branch, Galveston, TX 77555, USA.,Department of Pathology, University of Texas Medical Branch, Galveston, TX 77555, USA.,Sealy Center for Vaccine Development, University of Texas Medical Branch, Galveston, TX 77555, USA.,Department of Microbiology & Immunology, University of Texas Medical Branch, Galveston, TX 77555, USA.,Department of Pathology, University of Texas Medical Branch, Galveston, TX 77555, USA.,Sealy Center for Vaccine Development, University of Texas Medical Branch, Galveston, TX 77555, USA
| |
Collapse
|
31
|
El Sahili A, Lescar J. Dengue Virus Non-Structural Protein 5. Viruses 2017; 9:E91. [PMID: 28441781 PMCID: PMC5408697 DOI: 10.3390/v9040091] [Citation(s) in RCA: 85] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2017] [Revised: 04/15/2017] [Accepted: 04/20/2017] [Indexed: 12/17/2022] Open
Abstract
The World Health Organization estimates that the yearly number of dengue cases averages 390 million. This mosquito-borne virus disease is endemic in over 100 countries and will probably continue spreading, given the observed trend in global warming. So far, there is no antiviral drug available against dengue, but a vaccine has been recently marketed. Dengue virus also serves as a prototype for the study of other pathogenic flaviviruses that are emerging, like West Nile virus and Zika virus. Upon viral entry into the host cell and fusion of the viral lipid membrane with the endosomal membrane, the viral RNA is released and expressed as a polyprotein, that is then matured into three structural and seven non-structural (NS) proteins. The envelope, membrane and capsid proteins form the viral particle while NS1-NS2A-NS2B-NS3-NS4A-NS4B and NS5 assemble inside a cellular replication complex, which is embedded in endoplasmic reticulum (ER)-derived vesicles. In addition to their roles in RNA replication within the infected cell, NS proteins help the virus escape the host innate immunity and reshape the host-cell inner structure. This review focuses on recent progress in characterizing the structure and functions of NS5, a protein responsible for the replication and capping of viral RNA that represents a promising drug target.
Collapse
Affiliation(s)
- Abbas El Sahili
- School of Biological Sciences, Nanyang Technological University, Nanyang Institute for Structural Biology, Experimental Medicine Building, 59 Nanyang Drive, Singapore 636921, Singapore.
| | - Julien Lescar
- School of Biological Sciences, Nanyang Technological University, Nanyang Institute for Structural Biology, Experimental Medicine Building, 59 Nanyang Drive, Singapore 636921, Singapore.
| |
Collapse
|
32
|
da Fonseca NJ, Lima Afonso MQ, Pedersolli NG, de Oliveira LC, Andrade DS, Bleicher L. Sequence, structure and function relationships in flaviviruses as assessed by evolutive aspects of its conserved non-structural protein domains. Biochem Biophys Res Commun 2017; 492:565-571. [PMID: 28087275 DOI: 10.1016/j.bbrc.2017.01.041] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2016] [Accepted: 01/09/2017] [Indexed: 10/20/2022]
Abstract
Flaviviruses are responsible for serious diseases such as dengue, yellow fever, and zika fever. Their genomes encode a polyprotein which, after cleavage, results in three structural and seven non-structural proteins. Homologous proteins can be studied by conservation and coevolution analysis as detected in multiple sequence alignments, usually reporting positions which are strictly necessary for the structure and/or function of all members in a protein family or which are involved in a specific sub-class feature requiring the coevolution of residue sets. This study provides a complete conservation and coevolution analysis on all flaviviruses non-structural proteins, with results mapped on all well-annotated available sequences. A literature review on the residues found in the analysis enabled us to compile available information on their roles and distribution among different flaviviruses. Also, we provide the mapping of conserved and coevolved residues for all sequences currently in SwissProt as a supplementary material, so that particularities in different viruses can be easily analyzed.
Collapse
Affiliation(s)
- Néli José da Fonseca
- Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais (UFMG), Av. Antônio Carlos, 6627, Belo Horizonte, 31270-901, Brazil.
| | - Marcelo Querino Lima Afonso
- Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais (UFMG), Av. Antônio Carlos, 6627, Belo Horizonte, 31270-901, Brazil.
| | - Natan Gonçalves Pedersolli
- Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais (UFMG), Av. Antônio Carlos, 6627, Belo Horizonte, 31270-901, Brazil.
| | - Lucas Carrijo de Oliveira
- Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais (UFMG), Av. Antônio Carlos, 6627, Belo Horizonte, 31270-901, Brazil.
| | - Dhiego Souto Andrade
- Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais (UFMG), Av. Antônio Carlos, 6627, Belo Horizonte, 31270-901, Brazil.
| | - Lucas Bleicher
- Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais (UFMG), Av. Antônio Carlos, 6627, Belo Horizonte, 31270-901, Brazil.
| |
Collapse
|
33
|
Li Y, Wong YL, Lee MY, Li Q, Wang QY, Lescar J, Shi PY, Kang C. Secondary Structure and Membrane Topology of the Full-Length Dengue Virus NS4B in Micelles. Angew Chem Int Ed Engl 2016; 55:12068-72. [DOI: 10.1002/anie.201606609] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2016] [Indexed: 01/15/2023]
Affiliation(s)
- Yan Li
- Experimental Therapeutics Centre; Agency for Science, Technology and Research (A*STAR); 31 Biopolis Way, Nanos, #03-01 Singapore 138669 Singapore
| | - Ying Lei Wong
- Experimental Therapeutics Centre; Agency for Science, Technology and Research (A*STAR); 31 Biopolis Way, Nanos, #03-01 Singapore 138669 Singapore
| | - Michelle Yueqi Lee
- Experimental Therapeutics Centre; Agency for Science, Technology and Research (A*STAR); 31 Biopolis Way, Nanos, #03-01 Singapore 138669 Singapore
| | - Qingxin Li
- Institute of Chemical & Engineering Sciences; Agency for Science, Technology, and Research; 1 Pesek Road, Jurong Island Singapore 627833 Singapore
| | - Qing-Yin Wang
- Novartis Institute for Tropical Diseases; Singapore Singapore
| | - Julien Lescar
- School of Biological Sciences; Nanyang Technological University; Singapore Singapore
| | - Pei-Yong Shi
- Department of Biochemistry & Molecular Biology, Department of Pharmacology & Toxicology; Sealy Center for Structural Biology & Molecular Biophysics; University of Texas Medical Branch; Galveston TX USA
| | - CongBao Kang
- Experimental Therapeutics Centre; Agency for Science, Technology and Research (A*STAR); 31 Biopolis Way, Nanos, #03-01 Singapore 138669 Singapore
| |
Collapse
|
34
|
Secondary Structure and Membrane Topology of the Full-Length Dengue Virus NS4B in Micelles. Angew Chem Int Ed Engl 2016. [DOI: 10.1002/ange.201606609] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
35
|
van Cleef KWR, Overheul GJ, Thomassen MC, Marjakangas JM, van Rij RP. Escape Mutations in NS4B Render Dengue Virus Insensitive to the Antiviral Activity of the Paracetamol Metabolite AM404. Antimicrob Agents Chemother 2016; 60:2554-7. [PMID: 26856827 PMCID: PMC4808173 DOI: 10.1128/aac.02462-15] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2015] [Accepted: 01/25/2016] [Indexed: 12/25/2022] Open
Abstract
Despite the enormous disease burden associated with dengue virus infections, a licensed antiviral drug is lacking. Here, we show that the paracetamol (acetaminophen) metabolite AM404 inhibits dengue virus replication. Moreover, we find that mutations in NS4B that were previously found to confer resistance to the antiviral compounds NITD-618 and SDM25N also render dengue virus insensitive to AM404. Our work provides further support for NS4B as a direct or indirect target for antiviral drug development.
Collapse
Affiliation(s)
- Koen W R van Cleef
- Department of Medical Microbiology, Radboud University Medical Center, Radboud Institute for Molecular Life Sciences, Nijmegen, The Netherlands
| | - Gijs J Overheul
- Department of Medical Microbiology, Radboud University Medical Center, Radboud Institute for Molecular Life Sciences, Nijmegen, The Netherlands
| | - Michael C Thomassen
- Department of Medical Microbiology, Radboud University Medical Center, Radboud Institute for Molecular Life Sciences, Nijmegen, The Netherlands
| | - Jenni M Marjakangas
- Department of Medical Microbiology, Radboud University Medical Center, Radboud Institute for Molecular Life Sciences, Nijmegen, The Netherlands
| | - Ronald P van Rij
- Department of Medical Microbiology, Radboud University Medical Center, Radboud Institute for Molecular Life Sciences, Nijmegen, The Netherlands
| |
Collapse
|
36
|
Abstract
INTRODUCTION Flaviviruses are major causes of infectious disease. The vast global, social and economic impact due to morbidity and mortality associated with diseases caused by these viruses urgently demands effective therapeutic interventions. There is currently no specific antiviral therapy available for the effective clinical treatment of infections by any of the flaviviridae. Development of more effective vaccines and antiviral agents for the prevention and treatment of most flavivirus infections remains a clear public health priority in the 21st century. AREAS COVERED This review describes some of the recent discoveries in the field of flavivirus inhibitor development, with a particular focus on targeting viral proteins. Emphasis is placed on the advances published during the 2012-2015 period. EXPERT OPINION The field of drug discovery targeting viral proteins has progressed slowly in recent years. New information, particularly on structures, location and mechanisms of action of established protein targets have been reported. There have also been studies on repurposing known drugs as templates for targeting flavivirus proteins and these hits could be promising templates for developing new more potent inhibitors. Further research should be conducted to improve in vitro assays that better reflect the conditions found in cellular environments.
Collapse
Affiliation(s)
- W Mei Kok
- a Division of Chemistry and Structural Biology, Institute for Molecular Bioscience , The University of Queensland , Brisbane , Australia
| |
Collapse
|