1
|
van der Velden TT, Kayastha K, Waterham CYJ, Brünle S, Jeuken LJC. Menaquinone-specific turnover by Mycobacterium tuberculosis cytochrome bd is redox regulated by the Q-loop disulfide bond. J Biol Chem 2025; 301:108094. [PMID: 39706268 PMCID: PMC11786768 DOI: 10.1016/j.jbc.2024.108094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2024] [Revised: 12/02/2024] [Accepted: 12/11/2024] [Indexed: 12/23/2024] Open
Abstract
Cytochrome bd from Mycobacterium tuberculosis (Mtbd) is a menaquinol oxidase that has gained interest as an antibiotic target because of its importance in survival under infectious conditions. Mtbd contains a characteristic disulfide bond that has been hypothesized to allow for Mtbd activity regulation at the enzymatic level, possibly helping M. tuberculosis to rapidly adapt to the hostile environment of the phagosome. Here, the role of the disulfide bond and quinone specificity have been determined by reconstitution of a minimal respiratory chain and the single-particle cryo-EM structure in the disulfide-reduced form. Mtbd was shown to be specific for menaquinone, while regulation by reduction of the Q-loop disulfide bond decreased oxidase activity up to 90%. Structural analysis shows that a salt bridge unique to Mtbd keeps the Q-loop partially structured in its disulfide-reduced form, which could facilitate the rapid activation of Mtbd upon exposure to reactive oxygen species. We signify Mtbd as the first redox sensory terminal oxidase and propose that this helps M. tuberculosis in the defense against reactive oxygen species encountered during infection.
Collapse
Affiliation(s)
| | - Kanwal Kayastha
- Leiden Institute of Chemistry, Leiden University, Leiden, The Netherlands
| | | | - Steffen Brünle
- Leiden Institute of Chemistry, Leiden University, Leiden, The Netherlands
| | - Lars J C Jeuken
- Leiden Institute of Chemistry, Leiden University, Leiden, The Netherlands.
| |
Collapse
|
2
|
Ježek P, Jabůrek M, Holendová B, Engstová H, Dlasková A. Mitochondrial Cristae Morphology Reflecting Metabolism, Superoxide Formation, Redox Homeostasis, and Pathology. Antioxid Redox Signal 2023; 39:635-683. [PMID: 36793196 PMCID: PMC10615093 DOI: 10.1089/ars.2022.0173] [Citation(s) in RCA: 32] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 02/08/2023] [Accepted: 02/09/2023] [Indexed: 02/17/2023]
Abstract
Significance: Mitochondrial (mt) reticulum network in the cell possesses amazing ultramorphology of parallel lamellar cristae, formed by the invaginated inner mitochondrial membrane. Its non-invaginated part, the inner boundary membrane (IBM) forms a cylindrical sandwich with the outer mitochondrial membrane (OMM). Crista membranes (CMs) meet IBM at crista junctions (CJs) of mt cristae organizing system (MICOS) complexes connected to OMM sorting and assembly machinery (SAM). Cristae dimensions, shape, and CJs have characteristic patterns for different metabolic regimes, physiological and pathological situations. Recent Advances: Cristae-shaping proteins were characterized, namely rows of ATP-synthase dimers forming the crista lamella edges, MICOS subunits, optic atrophy 1 (OPA1) isoforms and mitochondrial genome maintenance 1 (MGM1) filaments, prohibitins, and others. Detailed cristae ultramorphology changes were imaged by focused-ion beam/scanning electron microscopy. Dynamics of crista lamellae and mobile CJs were demonstrated by nanoscopy in living cells. With tBID-induced apoptosis a single entirely fused cristae reticulum was observed in a mitochondrial spheroid. Critical Issues: The mobility and composition of MICOS, OPA1, and ATP-synthase dimeric rows regulated by post-translational modifications might be exclusively responsible for cristae morphology changes, but ion fluxes across CM and resulting osmotic forces might be also involved. Inevitably, cristae ultramorphology should reflect also mitochondrial redox homeostasis, but details are unknown. Disordered cristae typically reflect higher superoxide formation. Future Directions: To link redox homeostasis to cristae ultramorphology and define markers, recent progress will help in uncovering mechanisms involved in proton-coupled electron transfer via the respiratory chain and in regulation of cristae architecture, leading to structural determination of superoxide formation sites and cristae ultramorphology changes in diseases. Antioxid. Redox Signal. 39, 635-683.
Collapse
Affiliation(s)
- Petr Ježek
- Department No. 75, Institute of Physiology, Academy of Sciences of the Czech Republic, Prague, Czech Republic
| | - Martin Jabůrek
- Department No. 75, Institute of Physiology, Academy of Sciences of the Czech Republic, Prague, Czech Republic
| | - Blanka Holendová
- Department No. 75, Institute of Physiology, Academy of Sciences of the Czech Republic, Prague, Czech Republic
| | - Hana Engstová
- Department No. 75, Institute of Physiology, Academy of Sciences of the Czech Republic, Prague, Czech Republic
| | - Andrea Dlasková
- Department No. 75, Institute of Physiology, Academy of Sciences of the Czech Republic, Prague, Czech Republic
| |
Collapse
|
3
|
Manicki M, Aydin H, Abriata LA, Overmyer KA, Guerra RM, Coon JJ, Dal Peraro M, Frost A, Pagliarini DJ. Structure and functionality of a multimeric human COQ7:COQ9 complex. Mol Cell 2022; 82:4307-4323.e10. [PMID: 36306796 PMCID: PMC10058641 DOI: 10.1016/j.molcel.2022.10.003] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2021] [Revised: 07/01/2022] [Accepted: 10/04/2022] [Indexed: 11/18/2022]
Abstract
Coenzyme Q (CoQ) is a redox-active lipid essential for core metabolic pathways and antioxidant defense. CoQ is synthesized upon the mitochondrial inner membrane by an ill-defined "complex Q" metabolon. Here, we present structure-function analyses of a lipid-, substrate-, and NADH-bound complex comprising two complex Q subunits: the hydroxylase COQ7 and the lipid-binding protein COQ9. We reveal that COQ7 adopts a ferritin-like fold with a hydrophobic channel whose substrate-binding capacity is enhanced by COQ9. Using molecular dynamics, we further show that two COQ7:COQ9 heterodimers form a curved tetramer that deforms the membrane, potentially opening a pathway for the CoQ intermediates to translocate from the bilayer to the proteins' lipid-binding sites. Two such tetramers assemble into a soluble octamer with a pseudo-bilayer of lipids captured within. Together, these observations indicate that COQ7 and COQ9 cooperate to access hydrophobic precursors within the membrane and coordinate subsequent synthesis steps toward producing CoQ.
Collapse
Affiliation(s)
- Mateusz Manicki
- Department of Cell Biology and Physiology, Washington University School of Medicine, St. Louis, MO 63110, USA; Morgridge Institute for Research, Madison, WI 53715, USA
| | - Halil Aydin
- Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, CA 94158, USA; Department of Biochemistry, University of Colorado Boulder, Boulder, CO 80309, USA
| | - Luciano A Abriata
- Institute of Bioengineering, School of Life Sciences, École Polytechnique Fédérale de Lausanne, 1015 Lausanne, Switzerland; Protein Production and Structure Core Facility, School of Life Sciences, École Polytechnique Fédérale de Lausanne, 1015 Lausanne, Switzerland; Swiss Institute of Bioinformatics, 1015 Lausanne, Switzerland
| | - Katherine A Overmyer
- Morgridge Institute for Research, Madison, WI 53715, USA; National Center for Quantitative Biology of Complex Systems, Madison, WI 53562, USA; Department of Biomolecular Chemistry, University of Wisconsin-Madison, Madison, WI 53562, USA
| | - Rachel M Guerra
- Department of Cell Biology and Physiology, Washington University School of Medicine, St. Louis, MO 63110, USA; Morgridge Institute for Research, Madison, WI 53715, USA
| | - Joshua J Coon
- Morgridge Institute for Research, Madison, WI 53715, USA; National Center for Quantitative Biology of Complex Systems, Madison, WI 53562, USA; Department of Biomolecular Chemistry, University of Wisconsin-Madison, Madison, WI 53562, USA; Department of Chemistry, University of Wisconsin-Madison, Madison, WI 53506, USA
| | - Matteo Dal Peraro
- Institute of Bioengineering, School of Life Sciences, École Polytechnique Fédérale de Lausanne, 1015 Lausanne, Switzerland; Swiss Institute of Bioinformatics, 1015 Lausanne, Switzerland
| | - Adam Frost
- Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, CA 94158, USA; Chan Zuckerberg Biohub and Altos Labs Bay Area Institute of Science, San Francisco, CA, USA.
| | - David J Pagliarini
- Department of Cell Biology and Physiology, Washington University School of Medicine, St. Louis, MO 63110, USA; Morgridge Institute for Research, Madison, WI 53715, USA; Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, MO 63110, USA; Department of Genetics, Washington University School of Medicine, St. Louis, MO 63110, USA.
| |
Collapse
|
4
|
Braasch-Turi MM, Koehn JT, Crans DC. Chemistry of Lipoquinones: Properties, Synthesis, and Membrane Location of Ubiquinones, Plastoquinones, and Menaquinones. Int J Mol Sci 2022; 23:12856. [PMID: 36361645 PMCID: PMC9656164 DOI: 10.3390/ijms232112856] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 10/20/2022] [Accepted: 10/21/2022] [Indexed: 07/30/2023] Open
Abstract
Lipoquinones are the topic of this review and are a class of hydrophobic lipid molecules with key biological functions that are linked to their structure, properties, and location within a biological membrane. Ubiquinones, plastoquinones, and menaquinones vary regarding their quinone headgroup, isoprenoid sidechain, properties, and biological functions, including the shuttling of electrons between membrane-bound protein complexes within the electron transport chain. Lipoquinones are highly hydrophobic molecules that are soluble in organic solvents and insoluble in aqueous solution, causing obstacles in water-based assays that measure their chemical properties, enzyme activities and effects on cell growth. Little is known about the location and ultimately movement of lipoquinones in the membrane, and these properties are topics described in this review. Computational studies are particularly abundant in the recent years in this area, and there is far less experimental evidence to verify the often conflicting interpretations and conclusions that result from computational studies of very different membrane model systems. Some recent experimental studies have described using truncated lipoquinone derivatives, such as ubiquinone-2 (UQ-2) and menaquinone-2 (MK-2), to investigate their conformation, their location in the membrane, and their biological function. Truncated lipoquinone derivatives are soluble in water-based assays, and hence can serve as excellent analogs for study even though they are more mobile in the membrane than the longer chain counterparts. In this review, we will discuss the properties, location in the membrane, and syntheses of three main classes of lipoquinones including truncated derivatives. Our goal is to highlight the importance of bridging the gap between experimental and computational methods and to incorporate properties-focused considerations when proposing future studies relating to the function of lipoquinones in membranes.
Collapse
Affiliation(s)
| | - Jordan T. Koehn
- Chemistry Department, Colorado State University, Fort Collins, CO 80523, USA
| | - Debbie C. Crans
- Chemistry Department, Colorado State University, Fort Collins, CO 80523, USA
- Cell & Molecular Biology Program, Colorado State University, Fort Collins, CO 80523, USA
| |
Collapse
|
5
|
Nyssen P, Franck T, Serteyn D, Mouithys-Mickalad A, Hoebeke M. Propofol metabolites and derivatives inhibit the oxidant activities of neutrophils and myeloperoxidase. Free Radic Biol Med 2022; 191:164-175. [PMID: 36064069 DOI: 10.1016/j.freeradbiomed.2022.08.039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 08/10/2022] [Accepted: 08/29/2022] [Indexed: 10/14/2022]
Abstract
In previous studies, propofol has shown immunomodulatory abilities on various in vitro models. As this anesthetic molecule is extensively used in intensive care units, its anti-inflammatory properties present a great interest for the treatment of inflammatory disorders like the systemic inflammatory response syndrome. In addition to its inhibition abilities on important neutrophils mechanisms (chemotaxis, reactive oxygen species (ROS) production, Neutrophil Extracellular Traps (NETs) formation, …), our group has shown that propofol is also a reversible inhibitor of the oxidant myeloperoxidase (MPO) activity. Propofol being subject to rapid metabolism, its derivatives could contribute to its anti-inflammatory action. First, propofol-β-glucuronide (PPFG), 2,6-diisopropyl-1,4-p-benzoquinone (PPFQ) and 3,5,3',5'-tetraisopropyl-(4,4')-diphenoquinone (PPFDQ) were compared on their superoxide (O2.-) scavenging properties and more importantly on their inhibitory action on the O2.- release by activated neutrophils using EPR spectroscopy and chemiluminescence assays. PPFQ and PPFDQ are potent superoxide scavengers and also inhibit the release of ROS by neutrophils. An Enzyme-Linked Immunosorbent Assay (ELISA) has also highlighted the ability of both molecules to significantly decrease the MPO degranulation process of neutrophils. Fluorescence enzymatic assays helped to investigate the action of the propofol derivatives on the peroxidase and chlorination activities of MPO. In addition, using SIEFED (Specific Immunological Extraction Followed by Enzyme Detection) assays and docking, we demonstrated the concentration-dependent inhibitory action of PPFQ and its ability to bind to the enzyme active site while PPFG presented a much weaker inhibitory action. Overall, the oxidation derivatives and metabolites PPFQ and PPFDQ can, at physiological concentrations, perpetuate the immunomodulatory action of propofol by acting on the oxidant response of PMN and MPO.
Collapse
Affiliation(s)
- Pauline Nyssen
- Biomedical Spectroscopy Laboratory, Department of Physics, CESAM, University of Liège, Building B5a, Quartier Agora, Allée Du 6 Août, 19, 4000 Liège (Sart-Tilman), Belgium.
| | - Thierry Franck
- CORD, Department of Chemistry, CIRM, University of Liège, Building B6a, Quartier Agora, Allée Du 6 Août, 13, 4000 Liège (Sart-Tilman), Belgium
| | - Didier Serteyn
- CORD, Department of Chemistry, CIRM, University of Liège, Building B6a, Quartier Agora, Allée Du 6 Août, 13, 4000 Liège (Sart-Tilman), Belgium; Department of Clinical Sciences, Anesthesiology and Equine Surgery, Faculty of Veterinary Medicine, University of Liège, Building B41, Quartier Vallée 2, Avenue de Cureghem 5, 4000 Liège (Sart-Tilman), Belgium
| | - Ange Mouithys-Mickalad
- CORD, Department of Chemistry, CIRM, University of Liège, Building B6a, Quartier Agora, Allée Du 6 Août, 13, 4000 Liège (Sart-Tilman), Belgium
| | - Maryse Hoebeke
- Biomedical Spectroscopy Laboratory, Department of Physics, CESAM, University of Liège, Building B5a, Quartier Agora, Allée Du 6 Août, 19, 4000 Liège (Sart-Tilman), Belgium
| |
Collapse
|
6
|
Ishikawa M, Masuya T, Kuroda S, Uno S, Butler NL, Foreman S, Murai M, Barquera B, Miyoshi H. The side chain of ubiquinone plays a critical role in Na + translocation by the NADH-ubiquinone oxidoreductase (Na +-NQR) from Vibrio cholerae. BIOCHIMICA ET BIOPHYSICA ACTA. BIOENERGETICS 2022; 1863:148547. [PMID: 35337841 DOI: 10.1016/j.bbabio.2022.148547] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Revised: 02/18/2022] [Accepted: 03/17/2022] [Indexed: 11/19/2022]
Abstract
The Na+-pumping NADH-ubiquinone (UQ) oxidoreductase (Na+-NQR) is an essential bacterial respiratory enzyme that generates a Na+ gradient across the cell membrane. However, the mechanism that couples the redox reactions to Na+ translocation remains unknown. To address this, we examined the relation between reduction of UQ and Na+ translocation using a series of synthetic UQs with Vibrio cholerae Na+-NQR reconstituted into liposomes. UQ0 that has no side chain and UQCH3 and UQC2H5, which have methyl and ethyl side chains, respectively, were catalytically reduced by Na+-NQR, but their reduction generated no membrane potential, indicating that the overall electron transfer and Na+ translocation are not coupled. While these UQs were partly reduced by electron leak from the cofactor(s) located upstream of riboflavin, this complete loss of Na+ translocation cannot be explained by the electron leak. Lengthening the UQ side chain to n-propyl (C3H7) or longer significantly restored Na+ translocation. It has been considered that Na+ translocation is completed when riboflavin, a terminal redox cofactor residing within the membrane, is reduced. In this view, the role of UQ is simply to accept electrons from the reduced riboflavin to regenerate the stable neutral riboflavin radical and reset the catalytic cycle. However, the present study revealed that the final UQ reduction via reduced riboflavin makes an important contribution to Na+ translocation through a critical role of its side chain. Based on the results, we discuss the critical role of the UQ side chain in Na+ translocation.
Collapse
Affiliation(s)
- Moe Ishikawa
- Division of Applied Life Sciences, Graduate School of Agriculture, Kyoto University, Kyoto 606-8502, Japan
| | - Takahiro Masuya
- Division of Applied Life Sciences, Graduate School of Agriculture, Kyoto University, Kyoto 606-8502, Japan
| | - Seina Kuroda
- Division of Applied Life Sciences, Graduate School of Agriculture, Kyoto University, Kyoto 606-8502, Japan
| | - Shinpei Uno
- Division of Applied Life Sciences, Graduate School of Agriculture, Kyoto University, Kyoto 606-8502, Japan
| | - Nicole L Butler
- Department of Biological Science, Rensselaer Polytechnic Institute, Troy, NY 12180, United States
| | - Sara Foreman
- Department of Biological Science, Rensselaer Polytechnic Institute, Troy, NY 12180, United States
| | - Masatoshi Murai
- Division of Applied Life Sciences, Graduate School of Agriculture, Kyoto University, Kyoto 606-8502, Japan
| | - Blanca Barquera
- Department of Biological Science, Rensselaer Polytechnic Institute, Troy, NY 12180, United States; Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY 12180, United States
| | - Hideto Miyoshi
- Division of Applied Life Sciences, Graduate School of Agriculture, Kyoto University, Kyoto 606-8502, Japan.
| |
Collapse
|
7
|
Feng S, Kong L, Gee S, Im W. Molecular Condensate in a Membrane: A Tugging Game between Hydrophobicity and Polarity with Its Biological Significance. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2022; 38:5955-5962. [PMID: 35503859 DOI: 10.1021/acs.langmuir.2c00876] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Lipid self-organization and lipid-water interfaces have been an increasingly important topic positioned at the crossroads of physical chemistry and biology. Some neutral lipids can partition into the biomembrane and play an important biological role. In this study, we have used all-atom molecular dynamics simulations to dissect the partition, aggregation, flip-flop, and modulation of neutral lipids including (i) menaquinone/menaquinol, (ii) ubiquinone/ubiquinol, and (iii) triacylglycerol. The partitioning of these molecules is driven by the balancing force between headgroup hydrophilicity and acyl chain hydrophobicity as well as the lipid shapes. We then discuss the emerging questions in this area, share our own perspectives, and mention the development of the CHARMM-GUI membrane modeling platform, which enables further computational investigations into those questions.
Collapse
|
8
|
Djurabekova A, Galemou Yoga E, Nyman A, Pirttikoski A, Zickermann V, Haapanen O, Sharma V. Docking and molecular simulations reveal a quinone binding site on the surface of respiratory complex I. FEBS Lett 2022; 596:1133-1146. [PMID: 35363885 DOI: 10.1002/1873-3468.14346] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Revised: 03/11/2022] [Accepted: 03/24/2022] [Indexed: 11/07/2022]
Abstract
The first component of the mitochondrial electron transport chain is respiratory complex I. Several high-resolution structures of complex I from different species have been resolved. However, despite these significant achievements, the mechanism of redox-coupled proton pumping remains elusive. Here, we combined atomistic docking, molecular dynamics simulations and site-directed mutagenesis on respiratory complex I from Yarrowia lipolytica to identify a quinone (Q) binding site on its surface near the horizontal amphipathic helices of ND1 and NDUFS7 subunits. The surface-bound Q makes stable interactions with conserved charged and polar residues, including the highly conserved Arg72 from the NDUFS7 subunit. The binding and dynamics of a Q molecule at the surface-binding site raises interesting possibilities about the mechanism of complex I, which are discussed.
Collapse
Affiliation(s)
| | - Etienne Galemou Yoga
- Institute of Biochemistry II, University Hospital, Goethe University, Frankfurt am Main, Germany.,Centre for Biomolecular Magnetic Resonance, Institute for Biophysical Chemistry, Goethe University, Frankfurt am Main, Germany
| | - Aino Nyman
- Department of Physics, University of Helsinki, Finland
| | | | - Volker Zickermann
- Institute of Biochemistry II, University Hospital, Goethe University, Frankfurt am Main, Germany.,Centre for Biomolecular Magnetic Resonance, Institute for Biophysical Chemistry, Goethe University, Frankfurt am Main, Germany
| | - Outi Haapanen
- Department of Physics, University of Helsinki, Finland
| | - Vivek Sharma
- Department of Physics, University of Helsinki, Finland.,HiLIFE Institute of Biotechnology, University of Helsinki, Finland
| |
Collapse
|
9
|
Braasch-Turi MM, Koehn JT, Kostenkova K, Van Cleave C, Ives JW, Murakami HA, Crick DC, Crans DC. Electron Transport Lipids Fold Within Membrane-Like Interfaces. Front Chem 2022; 10:827530. [PMID: 35350775 PMCID: PMC8957872 DOI: 10.3389/fchem.2022.827530] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Accepted: 01/07/2022] [Indexed: 12/23/2022] Open
Abstract
Lipoquinones, such as ubiquinones (UQ) and menaquinones (MK), function as essential lipid components of the electron transport system (ETS) by shuttling electrons and protons to facilitate the production of ATP in eukaryotes and prokaryotes. Lipoquinone function in membrane systems has been widely studied, but the exact location and conformation within membranes remains controversial. Lipoquinones, such as Coenzyme Q (UQ-10), are generally depicted simply as "Q" in life science diagrams or in extended conformations in primary literature even though specific conformations are important for function in the ETS. In this study, our goal was to determine the location, orientation, and conformation of UQ-2, a truncated analog of UQ-10, in model membrane systems and to compare our results to previously studied MK-2. Herein, we first carried out a six-step synthesis to yield UQ-2 and then demonstrated that UQ-2 adopts a folded conformation in organic solvents using 1H-1H 2D NOESY and ROESY NMR spectroscopic studies. Similarly, using 1H-1H 2D NOESY NMR spectroscopic studies, UQ-2 was found to adopt a folded, U-shaped conformation within the interface of an AOT reverse micelle model membrane system. UQ-2 was located slightly closer to the surfactant-water interface compared to the more hydrophobic MK-2. In addition, Langmuir monolayer studies determined UQ-2 resided within the monolayer water-phospholipid interface causing expansion, whereas MK-2 was more likely to be compressed out and reside within the phospholipid tails. All together these results support the model that lipoquinones fold regardless of the headgroup structure but that the polarity of the headgroup influences lipoquinone location within the membrane interface. These results have implications regarding the redox activity near the interface as quinone vs. quinol forms may facilitate locomotion of lipoquinones within the membrane. The location, orientation, and conformation of lipoquinones are critical for their function in generating cellular energy within membrane ETS, and the studies described herein shed light on the behavior of lipoquinones within membrane-like environments.
Collapse
Affiliation(s)
| | - Jordan T. Koehn
- Chemistry Department, Colorado State University, Fort Collins, CO, United States
| | - Kateryna Kostenkova
- Chemistry Department, Colorado State University, Fort Collins, CO, United States
| | - Cameron Van Cleave
- Chemistry Department, Colorado State University, Fort Collins, CO, United States
| | - Jacob W. Ives
- Chemistry Department, Colorado State University, Fort Collins, CO, United States
| | - Heide A. Murakami
- Chemistry Department, Colorado State University, Fort Collins, CO, United States
| | - Dean C. Crick
- Cell and Molecular Biology Program, Colorado State University, Fort Collins, CO, United States
- Microbiology, Immunology, and Pathology Department, Colorado State University, Fort Collins, CO, United States
| | - Debbie C. Crans
- Chemistry Department, Colorado State University, Fort Collins, CO, United States
- Cell and Molecular Biology Program, Colorado State University, Fort Collins, CO, United States
| |
Collapse
|
10
|
Róg T, Girych M, Bunker A. Mechanistic Understanding from Molecular Dynamics in Pharmaceutical Research 2: Lipid Membrane in Drug Design. Pharmaceuticals (Basel) 2021; 14:1062. [PMID: 34681286 PMCID: PMC8537670 DOI: 10.3390/ph14101062] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Revised: 10/14/2021] [Accepted: 10/15/2021] [Indexed: 11/17/2022] Open
Abstract
We review the use of molecular dynamics (MD) simulation as a drug design tool in the context of the role that the lipid membrane can play in drug action, i.e., the interaction between candidate drug molecules and lipid membranes. In the standard "lock and key" paradigm, only the interaction between the drug and a specific active site of a specific protein is considered; the environment in which the drug acts is, from a biophysical perspective, far more complex than this. The possible mechanisms though which a drug can be designed to tinker with physiological processes are significantly broader than merely fitting to a single active site of a single protein. In this paper, we focus on the role of the lipid membrane, arguably the most important element outside the proteins themselves, as a case study. We discuss work that has been carried out, using MD simulation, concerning the transfection of drugs through membranes that act as biological barriers in the path of the drugs, the behavior of drug molecules within membranes, how their collective behavior can affect the structure and properties of the membrane and, finally, the role lipid membranes, to which the vast majority of drug target proteins are associated, can play in mediating the interaction between drug and target protein. This review paper is the second in a two-part series covering MD simulation as a tool in pharmaceutical research; both are designed as pedagogical review papers aimed at both pharmaceutical scientists interested in exploring how the tool of MD simulation can be applied to their research and computational scientists interested in exploring the possibility of a pharmaceutical context for their research.
Collapse
Affiliation(s)
- Tomasz Róg
- Department of Physics, University of Helsinki, 00014 Helsinki, Finland;
| | - Mykhailo Girych
- Department of Physics, University of Helsinki, 00014 Helsinki, Finland;
| | - Alex Bunker
- Drug Research Program, Division of Pharmaceutical Biosciences, Faculty of Pharmacy, University of Helsinki, 00014 Helsinki, Finland;
| |
Collapse
|
11
|
Abdelkader HA, Rashed LA, Assaad E, Saleh MA. Serum and tissue levels of coenzyme Q10 in pemphigus vulgaris. J Cosmet Dermatol 2021; 21:3002-3006. [PMID: 34601804 DOI: 10.1111/jocd.14511] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Revised: 09/12/2021] [Accepted: 09/24/2021] [Indexed: 11/26/2022]
Abstract
BACKGROUND Pemphigus vulgaris (PV) is a debilitating autoimmune blistering disease of the skin and mucous membranes. It occurs due to the action of autoantibodies against various keratinocyte self-antigens. Anti-mitochondrial autoantibodies are detected in patients with PV. Coenzyme Q10 (CoQ10) is a member of the mitochondrial respiratory chain involved in cellular metabolism, including apoptosis. This study aimed to assess the serum and tissue levels of CoQ10 of patients with PV and healthy controls to determine its relevance to the disease pathogenesis. METHODS In this case-control study, 20 patients with PV and 20 healthy controls were included. Blood and skin samples were collected for the measurement of CoQ10 levels using ELISA. RESULTS CoQ10 was significantly lower in both serum and tissue of patients with PV compared with controls (p = 0.001). Similar results were found when gender subgroups were separately compared. A significant positive correlation was found between serum and tissue CoQ10 levels in controls (p = 0.019, r = 0.521), but not in patients with PV. CONCLUSION CoQ10 appears to be one of the parameters affected by the autoimmune response in PV, which may contribute to the tissue damage caused by autoantibodies. The absence of a significant correlation between CoQ10 level and disease severity or duration may be caused by the complex pathophysiological process in PV with multiple autoantibodies against different keratinocyte antigens.
Collapse
Affiliation(s)
| | - Laila Ahmed Rashed
- Department of Biochemistry, Faculty of Medicine, Cairo University, Cairo, Egypt
| | - Eman Assaad
- Department of Dermatology, Faculty of Medicine, Cairo University, Cairo, Egypt
| | - Marwah Adly Saleh
- Department of Dermatology, Faculty of Medicine, Cairo University, Cairo, Egypt
| |
Collapse
|
12
|
Oh Y, Song ES, Sung BJ. The effects of the lipid type on the spatial arrangement and dynamics of cholesterol in binary component lipid membranes. J Chem Phys 2021; 154:135101. [PMID: 33832232 DOI: 10.1063/5.0043212] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Intermolecular interactions between cholesterol and lipids in cell membranes, which play critical roles in cellular processes such as the formation of nano-domains, depend on the molecular structure of the lipids. The diffusion and the spatial arrangement of cholesterol within the lipid membranes also change with the type of lipids. For example, the flip-flop, an important transport mechanism for cholesterol in the membranes, can be facilitated significantly by the presence of unsaturated lipids. However, how the structure of lipids affects the spatial arrangement and the dynamics of cholesterol remains elusive at a molecular level. In this study, we investigate the effects of lipid-cholesterol interactions on the spatial arrangement and the dynamics of cholesterol. We perform molecular dynamics simulations for the binary component membranes of lipids and cholesterol. We employ seven different kinds of lipids by changing either the degree of a saturation level or the length of lipid tails. We find from our simulations that the rate of cholesterol flip-flop is enhanced as the lipids are either less saturated or shorter, which is consistent with previous studies. Interestingly, when the lipid tails are fully saturated and sufficiently long, the center in between two leaflets becomes metastable for cholesterol to stay at. Because the cholesterol at the membrane center diffuses faster than that within leaflets, regardless of the lipid type, such an emergence of the metastable state (in terms of the cholesterol position) complicates the cholesterol diffusion significantly.
Collapse
Affiliation(s)
- Younghoon Oh
- Department of Chemistry, Sogang University, Seoul 04107, Republic of Korea
| | - Eun Sub Song
- Department of Chemistry, Sogang University, Seoul 04107, Republic of Korea
| | - Bong June Sung
- Department of Chemistry, Sogang University, Seoul 04107, Republic of Korea
| |
Collapse
|
13
|
Godoy-Hernandez A, McMillan DGG. The Profound Influence of Lipid Composition on the Catalysis of the Drug Target NADH Type II Oxidoreductase. MEMBRANES 2021; 11:membranes11050363. [PMID: 34067848 PMCID: PMC8156991 DOI: 10.3390/membranes11050363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/11/2021] [Revised: 05/10/2021] [Accepted: 05/12/2021] [Indexed: 11/25/2022]
Abstract
Lipids play a pivotal role in cellular respiration, providing the natural environment in which an oxidoreductase interacts with the quinone pool. To date, it is generally accepted that negatively charged lipids play a major role in the activity of quinone oxidoreductases. By changing lipid compositions when assaying a type II NADH:quinone oxidoreductase, we demonstrate that phosphatidylethanolamine has an essential role in substrate binding and catalysis. We also reveal the importance of acyl chain composition, specifically c14:0, on membrane-bound quinone-mediated catalysis. This demonstrates that oxidoreductase lipid specificity is more diverse than originally thought and that the lipid environment plays an important role in the physiological catalysis of membrane-bound oxidoreductases.
Collapse
|
14
|
Feng S, Wang R, Pastor RW, Klauda JB, Im W. Location and Conformational Ensemble of Menaquinone and Menaquinol, and Protein-Lipid Modulations in Archaeal Membranes. J Phys Chem B 2021; 125:4714-4725. [PMID: 33913729 PMCID: PMC8379905 DOI: 10.1021/acs.jpcb.1c01930] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Halobacteria, a type of archaea in high salt environments, have phytanyl ether phospholipid membranes containing up to 50% menaquinone. It is not understood why a high concentration of menaquinone is required and how it influences membrane properties. In this study, menaquinone-8 headgroup and torsion parameters of isoprenoid tail are optimized in the CHARMM36 force field. Molecular dynamics simulations of archaeal bilayers containing 0 to 50% menaquinone characterize the distribution of menaquinone-8 and menaquinol-8, as well as their effects on mechanical properties and permeability. Menaquinone-8 segregates to the membrane midplane above concentrations of 10%, favoring an extended conformation in a fluid state. Menaquinone-8 increases the bilayer thickness but does not significantly alter the area compressibility modulus and lipid chain ordering. Counterintuitively, menaquinone-8 increases water permeability because it lowers the free energy barrier in the midplane. The thickness increase due to menaquinone-8 may help halobacteria ameliorate hyper-osmotic pressure by increasing the membrane bending constant. Simulations of the archaeal membranes with archaerhodopsin-3 show that the local membrane surface adjusts to accommodate the thick membranes. Overall, this study delineates the biophysical landscape of 50% menaquinone in the archaeal bilayer, demonstrates the mixing of menaquinone and menaquinol, and provides atomistic details about menaquinone configurations.
Collapse
Affiliation(s)
- Shasha Feng
- Departments of Biological Sciences, Chemistry, and Bioengineering, Lehigh University, Bethlehem, Pennsylvania 18015, USA
| | - Ruixing Wang
- Department of Chemistry and Biochemistry, Chemistry Program, University of Maryland, College Park, Maryland 20742, USA
| | - Richard W. Pastor
- Laboratory of Computational Biology, National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, Maryland 20892, USA
| | - Jeffery B. Klauda
- Department of Chemical and Biomolecular Engineering, Biophysics Program, University of Maryland, College Park, Maryland 20742, USA
| | - Wonpil Im
- Departments of Biological Sciences, Chemistry, and Bioengineering, Lehigh University, Bethlehem, Pennsylvania 18015, USA
| |
Collapse
|
15
|
Fontaine F, Legallois D, Créveuil C, Chtourou M, Coulbault L, Milliez P, Hodzic A, Saloux E, Beygui F, Allouche S. Is plasma concentration of coenzyme Q10 a predictive marker for left ventricular remodelling after revascularization for ST-segment elevation myocardial infarction? Ann Clin Biochem 2021; 58:327-334. [PMID: 33622041 DOI: 10.1177/00045632211001100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
BACKGROUND Left ventricular remodelling that frequently occurs after acute myocardial infarction is associated with an increased risk of heart failure and cardiovascular death. Although several risk factors have been identified, there is still no marker in clinical use to predict left ventricular remodelling. Plasma concentration of coenzyme Q10, which plays a key role in mitochondrial energy production and as an antioxidant, seems to be negatively correlated with left ventricular function after acute myocardial infarction. OBJECTIVE The goal of our study was to determine whether the plasma coenzyme Q10 baseline concentrations at time of the ST-elevation myocardial infarction (STEMI) could predict left ventricular remodelling at six months' follow-up. METHODS Sixty-eight patients who were admitted to hospital for STEMI and successfully revascularized with primary percutaneous coronary intervention were recruited. All patients underwent a 3D-echocardiography examination within the first four days after percutaneous coronary intervention and six months later then divided into two groups based on the presence or not of left ventricular remodelling. Plasma coenzyme Q10 concentration at the time of percutaneous coronary intervention was determined using high-performance liquid chromatography-tandem mass spectrometry. RESULTS While we found similar plasma coenzyme Q10 concentrations compared with other studies, no association was evidenced between coenzyme Q10 concentrations and left ventricular remodelling (P = 0.89). CONCLUSION We found no evidence for using plasma coenzyme Q10 concentration as an early prediction marker of left ventricular remodelling after STEMI.
Collapse
Affiliation(s)
- Fanny Fontaine
- Department of Biochemistry, University Hospital of Caen, Caen, France
| | - Damien Legallois
- Department of Cardiology, University Hospital of Caen, Caen, France.,Department of Signalisation, Électrophysiologie et Imagerie des Lésions d'Ischémie-Reperfusion Myocardique EA4650, Normandie Univ, UNICAEN, Caen, France
| | - Christian Créveuil
- Department of Biostatistics and Clinical Research, University Hospital of Caen, Caen, France
| | - Mohamed Chtourou
- Department of Biochemistry, University Hospital of Caen, Caen, France
| | - Laurent Coulbault
- Department of Biochemistry, University Hospital of Caen, Caen, France.,Department of Signalisation, Électrophysiologie et Imagerie des Lésions d'Ischémie-Reperfusion Myocardique EA4650, Normandie Univ, UNICAEN, Caen, France
| | - Paul Milliez
- Department of Cardiology, University Hospital of Caen, Caen, France.,Department of Signalisation, Électrophysiologie et Imagerie des Lésions d'Ischémie-Reperfusion Myocardique EA4650, Normandie Univ, UNICAEN, Caen, France
| | - Amir Hodzic
- Department of Clinical Physiology, INSERM Comete, Normandie Univ, UNICAEN, Caen, France
| | - Eric Saloux
- Department of Cardiology, University Hospital of Caen, Caen, France.,Department of Signalisation, Électrophysiologie et Imagerie des Lésions d'Ischémie-Reperfusion Myocardique EA4650, Normandie Univ, UNICAEN, Caen, France
| | - Farzin Beygui
- Department of Cardiology, University Hospital of Caen, Caen, France.,Department of Signalisation, Électrophysiologie et Imagerie des Lésions d'Ischémie-Reperfusion Myocardique EA4650, Normandie Univ, UNICAEN, Caen, France
| | - Stéphane Allouche
- Department of Biochemistry, University Hospital of Caen, Caen, France.,Department of Signalisation, Électrophysiologie et Imagerie des Lésions d'Ischémie-Reperfusion Myocardique EA4650, Normandie Univ, UNICAEN, Caen, France
| |
Collapse
|
16
|
Pastor-Maldonado CJ, Suárez-Rivero JM, Povea-Cabello S, Álvarez-Córdoba M, Villalón-García I, Munuera-Cabeza M, Suárez-Carrillo A, Talaverón-Rey M, Sánchez-Alcázar JA. Coenzyme Q 10: Novel Formulations and Medical Trends. Int J Mol Sci 2020; 21:E8432. [PMID: 33182646 PMCID: PMC7697799 DOI: 10.3390/ijms21228432] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2020] [Revised: 10/31/2020] [Accepted: 11/07/2020] [Indexed: 12/11/2022] Open
Abstract
The aim of this review is to shed light over the most recent advances in Coenzyme Q10 (CoQ10) applications as well as to provide detailed information about the functions of this versatile molecule, which have proven to be of great interest in the medical field. Traditionally, CoQ10 clinical use was based on its antioxidant properties; however, a wide range of highly interesting alternative functions have recently been discovered. In this line, CoQ10 has shown pain-alleviating properties in fibromyalgia patients, a membrane-stabilizing function, immune system enhancing ability, or a fundamental role for insulin sensitivity, apart from potentially beneficial properties for familial hypercholesterolemia patients. In brief, it shows a remarkable amount of functions in addition to those yet to be discovered. Despite its multiple therapeutic applications, CoQ10 is not commonly prescribed as a drug because of its low oral bioavailability, which compromises its efficacy. Hence, several formulations have been developed to face such inconvenience. These were initially designed as lipid nanoparticles for CoQ10 encapsulation and distribution through biological membranes and eventually evolved towards chemical modifications of the molecule to decrease its hydrophobicity. Some of the most promising formulations will also be discussed in this review.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - José A. Sánchez-Alcázar
- Centro Andaluz de Biología del Desarrollo (CABD-CSIC-Universidad Pablo de Olavide), and Centro de Investigación Biomédica en Red: Enfermedades Raras, Instituto de Salud Carlos III. Universidad Pablo de Olavide, 41013 Sevilla, Spain; (C.J.P.-M.); (J.M.S.-R.); (S.P.-C.); (M.Á.-C.); (I.V.-G.); (M.M.-C.); (A.S.-C.); (M.T.-R.)
| |
Collapse
|
17
|
Braasch-Turi M, Crans DC. Synthesis of Naphthoquinone Derivatives: Menaquinones, Lipoquinones and Other Vitamin K Derivatives. Molecules 2020; 25:molecules25194477. [PMID: 33003459 PMCID: PMC7582351 DOI: 10.3390/molecules25194477] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2020] [Revised: 09/26/2020] [Accepted: 09/27/2020] [Indexed: 12/20/2022] Open
Abstract
Menaquinones are a class of isoprenoid molecules that have important roles in human biology and bacterial electron transport, and multiple methods have been developed for their synthesis. These compounds consist of a methylnaphthoquinone (MK) unit and an isoprene side chain, such as found in vitamin K1 (phylloquinone), K2, and other lipoquinones. The most common naturally occurring menaquinones contain multiple isoprene units and are very hydrophobic, rendering it difficult to evaluate the biological activity of these compounds in aqueous assays. One way to overcome this challenge has been the application of truncated MK-derivatives for their moderate solubility in water. The synthesis of such derivatives has been dominated by Friedel-Crafts alkylation with BF3∙OEt2. This attractive method occurs over two steps from commercially available starting materials, but it generally produces low yields and a mixture of isomers. In this review, we summarize reported syntheses of both truncated and naturally occurring MK-derivatives that encompass five different synthetic strategies: Nucleophilic ring methods, metal-mediated reactions, electrophilic ring methods, pericyclic reactions, and homologation and side chain extensions. The advantages and disadvantages of each method are discussed, identifying methods with a focus on high yields, regioselectivity, and stereochemistry leading to a detailed overview of the reported chemistry available for preparation of these compounds.
Collapse
Affiliation(s)
| | - Debbie C. Crans
- Chemistry Department, Colorado State University, Ft. Collins, CO 80525, USA;
- Cell & Molecular Biology Program, Colorado State University, Ft. Collins, CO 80525, USA
- Correspondence:
| |
Collapse
|
18
|
Haapanen O, Reidelbach M, Sharma V. Coupling of quinone dynamics to proton pumping in respiratory complex I. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2020; 1861:148287. [PMID: 32777307 DOI: 10.1016/j.bbabio.2020.148287] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Revised: 07/09/2020] [Accepted: 08/03/2020] [Indexed: 12/12/2022]
Abstract
Respiratory complex I (NADH:quinone oxidoreductase) plays a central role in generating the proton electrochemical gradient in mitochondrial and bacterial membranes, which is needed to generate ATP. Several high-resolution structures of complex I have been determined, revealing its intricate architecture and complementing the biochemical and biophysical studies. However, the molecular mechanism of long-range coupling between ubiquinone (Q) reduction and proton pumping is not known. Computer simulations have been applied to decipher the dynamics of Q molecule in the ~30 Å long Q tunnel. In this short report, we discuss the binding and dynamics of Q at computationally predicted Q binding sites, many of which are supported by structural data on complex I. We suggest that the binding of Q at these sites is coupled to proton pumping by means of conformational rearrangements in the conserved loops of core subunits.
Collapse
Affiliation(s)
- Outi Haapanen
- Department of Physics, University of Helsinki, Finland
| | | | - Vivek Sharma
- Department of Physics, University of Helsinki, Finland; HiLIFE Institute of Biotechnology, University of Helsinki, Finland.
| |
Collapse
|
19
|
Van Cleave C, Murakami HA, Samart N, Koehn JT, Maldonado P, Kreckel HD, Cope EJ, Basile A, Crick DC, Crans DC. Location of menaquinone and menaquinol headgroups in model membranes. CAN J CHEM 2020. [DOI: 10.1139/cjc-2020-0024] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Menaquinones are lipoquinones that consist of a headgroup (naphthoquinone, menadione) and an isoprenyl sidechain. They function as electron transporters in prokaryotes such as Mycobacterium tuberculosis. For these studies, we used Langmuir monolayers and microemulsions to investigate how the menaquinone headgroup (menadione) and the menahydroquinone headgroup (menadiol) interact with model membrane interfaces to determine if differences are observed in the location of these headgroups in a membrane. It has been suggested that the differences in the locations are mainly caused by the isoprenyl sidechain rather than the headgroup quinone-to-quinol reduction during electron transport. This study presents evidence that suggests the influence of the headgroup drives the movement of the oxidized quinone and the reduced hydroquinone to different locations within the interface. Utilizing the model membranes of microemulsions and Langmuir monolayers, it is determined whether or not there is a difference in the location of menadione and menadiol within the interface. Based on our findings, we conclude that the menadione and menadiol may reside in different locations within model membranes. It follows that if menaquinone moves within the cell membrane upon menaquinol formation, it is due at least in part, to the differences in the properties of headgroup interactions with the membrane in addition to the isoprenyl sidechain.
Collapse
Affiliation(s)
- Cameron Van Cleave
- Department of Chemistry, Colorado State University, Fort Collins, CO 80523, USA
| | - Heide A. Murakami
- Department of Chemistry, Colorado State University, Fort Collins, CO 80523, USA
| | - Nuttaporn Samart
- Department of Chemistry, Colorado State University, Fort Collins, CO 80523, USA
- Department of Chemistry, Rajabhat Rajanagarindra University, Chachoengsao, Thailand
| | - Jordan T. Koehn
- Department of Chemistry, Colorado State University, Fort Collins, CO 80523, USA
| | - Pablo Maldonado
- Department of Chemistry, Colorado State University, Fort Collins, CO 80523, USA
| | - Heidi D. Kreckel
- Department of Chemistry, Colorado State University, Fort Collins, CO 80523, USA
| | - Elana J. Cope
- Department of Chemistry, Colorado State University, Fort Collins, CO 80523, USA
| | - Andrea Basile
- Department of Chemistry, Colorado State University, Fort Collins, CO 80523, USA
| | - Dean C. Crick
- Cell and Molecular Biology Program, Colorado State University, Fort Collins, CO 80523, USA
- Department of Microbiology, Immunology, and Pathology, Colorado State University, Fort Collins, CO 80523, USA
| | - Debbie C. Crans
- Department of Chemistry, Colorado State University, Fort Collins, CO 80523, USA
- Cell and Molecular Biology Program, Colorado State University, Fort Collins, CO 80523, USA
| |
Collapse
|
20
|
Berardo A, Quinzii CM. Redefining infantile-onset multisystem phenotypes of coenzyme Q 10-deficiency in the next-generation sequencing era. JOURNAL OF TRANSLATIONAL GENETICS AND GENOMICS 2020; 4:22-35. [PMID: 33426503 PMCID: PMC7791541 DOI: 10.20517/jtgg.2020.02] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Primary coenzyme Q10 (CoQ10) deficiency encompasses a subset of mitochondrial diseases caused by mutations affecting proteins involved in the CoQ10 biosynthetic pathway. One of the most frequent clinical syndromes associated with primary CoQ10 deficiency is the severe infantile multisystemic form, which, until recently, was underdiagnosed. In the last few years, the availability of genetic screening through whole exome sequencing and whole genome sequencing has enabled molecular diagnosis in a growing number of patients with this syndrome and has revealed new disease phenotypes and molecular defects in CoQ10 biosynthetic pathway genes. Early genetic screening can rapidly and non-invasively diagnose primary CoQ10 deficiencies. Early diagnosis is particularly important in cases of CoQ10 deficient steroid-resistant nephrotic syndrome, which frequently improves with treatment. In contrast, the infantile multisystemic forms of CoQ10 deficiency, particularly when manifesting with encephalopathy, present therapeutic challenges, due to poor responses to CoQ10 supplementation. Administration of CoQ10 biosynthetic intermediate compounds is a promising alternative to CoQ10; however, further pre-clinical studies are needed to establish their safety and efficacy, as well as to elucidate the mechanism of actions of the intermediates. Here, we review the molecular defects causes of the multisystemic infantile phenotype of primary CoQ10 deficiency, genotype-phenotype correlations, and recent therapeutic advances.
Collapse
Affiliation(s)
- Andres Berardo
- Department of Neurology, Columbia University Medical Center, New York, NY 10032, USA
| | - Catarina M Quinzii
- Department of Neurology, Columbia University Medical Center, New York, NY 10032, USA
| |
Collapse
|
21
|
Parey K, Haapanen O, Sharma V, Köfeler H, Züllig T, Prinz S, Siegmund K, Wittig I, Mills DJ, Vonck J, Kühlbrandt W, Zickermann V. High-resolution cryo-EM structures of respiratory complex I: Mechanism, assembly, and disease. SCIENCE ADVANCES 2019; 5:eaax9484. [PMID: 31844670 PMCID: PMC6905873 DOI: 10.1126/sciadv.aax9484] [Citation(s) in RCA: 96] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2019] [Accepted: 10/22/2019] [Indexed: 05/23/2023]
Abstract
Respiratory complex I is a redox-driven proton pump, accounting for a large part of the electrochemical gradient that powers mitochondrial adenosine triphosphate synthesis. Complex I dysfunction is associated with severe human diseases. Assembly of the one-megadalton complex I in the inner mitochondrial membrane requires assembly factors and chaperones. We have determined the structure of complex I from the aerobic yeast Yarrowia lipolytica by electron cryo-microscopy at 3.2-Å resolution. A ubiquinone molecule was identified in the access path to the active site. The electron cryo-microscopy structure indicated an unusual lipid-protein arrangement at the junction of membrane and matrix arms that was confirmed by molecular simulations. The structure of a complex I mutant and an assembly intermediate provide detailed molecular insights into the cause of a hereditary complex I-linked disease and complex I assembly in the inner mitochondrial membrane.
Collapse
Affiliation(s)
- Kristian Parey
- Institute of Biochemistry II, University Hospital, Goethe University, Frankfurt am Main, Germany
- Department of Structural Biology, Max Planck Institute of Biophysics, Frankfurt am Main, Germany
- Centre for Biomolecular Magnetic Resonance, Institute for Biophysical Chemistry, Goethe University, Frankfurt am Main, Germany
| | - Outi Haapanen
- Department of Physics, University of Helsinki, Helsinki, Finland
| | - Vivek Sharma
- Department of Physics, University of Helsinki, Helsinki, Finland
- Institute of Biotechnology, University of Helsinki, Helsinki, Finland
| | - Harald Köfeler
- Core Facility Mass Spectrometry, Medical University of Graz, Graz, Austria
| | - Thomas Züllig
- Core Facility Mass Spectrometry, Medical University of Graz, Graz, Austria
| | - Simone Prinz
- Department of Structural Biology, Max Planck Institute of Biophysics, Frankfurt am Main, Germany
| | - Karin Siegmund
- Institute of Biochemistry II, University Hospital, Goethe University, Frankfurt am Main, Germany
- Centre for Biomolecular Magnetic Resonance, Institute for Biophysical Chemistry, Goethe University, Frankfurt am Main, Germany
| | - Ilka Wittig
- Functional Proteomics, SFB815 Core Unit, Medical School, Goethe University, Frankfurt am Main, Germany
| | - Deryck J. Mills
- Department of Structural Biology, Max Planck Institute of Biophysics, Frankfurt am Main, Germany
| | - Janet Vonck
- Department of Structural Biology, Max Planck Institute of Biophysics, Frankfurt am Main, Germany
| | - Werner Kühlbrandt
- Department of Structural Biology, Max Planck Institute of Biophysics, Frankfurt am Main, Germany
| | - Volker Zickermann
- Institute of Biochemistry II, University Hospital, Goethe University, Frankfurt am Main, Germany
- Centre for Biomolecular Magnetic Resonance, Institute for Biophysical Chemistry, Goethe University, Frankfurt am Main, Germany
| |
Collapse
|
22
|
Singharoy A, Maffeo C, Delgado-Magnero KH, Swainsbury DJK, Sener M, Kleinekathöfer U, Vant JW, Nguyen J, Hitchcock A, Isralewitz B, Teo I, Chandler DE, Stone JE, Phillips JC, Pogorelov TV, Mallus MI, Chipot C, Luthey-Schulten Z, Tieleman DP, Hunter CN, Tajkhorshid E, Aksimentiev A, Schulten K. Atoms to Phenotypes: Molecular Design Principles of Cellular Energy Metabolism. Cell 2019; 179:1098-1111.e23. [PMID: 31730852 PMCID: PMC7075482 DOI: 10.1016/j.cell.2019.10.021] [Citation(s) in RCA: 118] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2019] [Revised: 09/04/2019] [Accepted: 10/21/2019] [Indexed: 01/01/2023]
Abstract
We report a 100-million atom-scale model of an entire cell organelle, a photosynthetic chromatophore vesicle from a purple bacterium, that reveals the cascade of energy conversion steps culminating in the generation of ATP from sunlight. Molecular dynamics simulations of this vesicle elucidate how the integral membrane complexes influence local curvature to tune photoexcitation of pigments. Brownian dynamics of small molecules within the chromatophore probe the mechanisms of directional charge transport under various pH and salinity conditions. Reproducing phenotypic properties from atomistic details, a kinetic model evinces that low-light adaptations of the bacterium emerge as a spontaneous outcome of optimizing the balance between the chromatophore's structural integrity and robust energy conversion. Parallels are drawn with the more universal mitochondrial bioenergetic machinery, from whence molecular-scale insights into the mechanism of cellular aging are inferred. Together, our integrative method and spectroscopic experiments pave the way to first-principles modeling of whole living cells.
Collapse
Affiliation(s)
- Abhishek Singharoy
- School of Molecular Sciences, Center for Applied Structural Discovery, Arizona State University at Tempe, Tempe, AZ 85282, USA.
| | - Christopher Maffeo
- Department of Physics, NSF Center for the Physics of Living Cells, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA; Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Karelia H Delgado-Magnero
- Centre for Molecular Simulation and Department of Biological Sciences, University of Calgary, Calgary, AB T2N 1N4, Canada
| | - David J K Swainsbury
- Department of Molecular Biology and Biotechnology, University of Sheffield, Sheffield S10 2TN, UK
| | - Melih Sener
- Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Ulrich Kleinekathöfer
- Department of Physics and Earth Sciences, Jacobs University Bremen, 28759 Bremen, Germany
| | - John W Vant
- School of Molecular Sciences, Center for Applied Structural Discovery, Arizona State University at Tempe, Tempe, AZ 85282, USA
| | - Jonathan Nguyen
- School of Molecular Sciences, Center for Applied Structural Discovery, Arizona State University at Tempe, Tempe, AZ 85282, USA
| | - Andrew Hitchcock
- Department of Molecular Biology and Biotechnology, University of Sheffield, Sheffield S10 2TN, UK
| | - Barry Isralewitz
- Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Ivan Teo
- Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Danielle E Chandler
- Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - John E Stone
- Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - James C Phillips
- Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Taras V Pogorelov
- Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA; Department of Chemistry, School of Chemical Sciences, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA; Center for Biophysics and Quantitative Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA; National Center for Supercomputing Applications, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - M Ilaria Mallus
- Department of Physics and Earth Sciences, Jacobs University Bremen, 28759 Bremen, Germany
| | - Christophe Chipot
- Department of Physics, NSF Center for the Physics of Living Cells, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA; Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA; Laboratoire International Associé CNRS-UIUC, UMR 7019, Université de Lorraine, 54506 Vandœuvre-lès-Nancy, France
| | - Zaida Luthey-Schulten
- Department of Physics, NSF Center for the Physics of Living Cells, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA; Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA; Department of Chemistry, School of Chemical Sciences, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA; Center for Biophysics and Quantitative Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - D Peter Tieleman
- Centre for Molecular Simulation and Department of Biological Sciences, University of Calgary, Calgary, AB T2N 1N4, Canada
| | - C Neil Hunter
- Department of Molecular Biology and Biotechnology, University of Sheffield, Sheffield S10 2TN, UK.
| | - Emad Tajkhorshid
- Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA; Center for Biophysics and Quantitative Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA; Departments of Biochemistry, Chemistry, Bioengineering, and Pharmacology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA.
| | - Aleksei Aksimentiev
- Department of Physics, NSF Center for the Physics of Living Cells, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA; Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA; Center for Biophysics and Quantitative Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA.
| | - Klaus Schulten
- Department of Physics, NSF Center for the Physics of Living Cells, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA; Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| |
Collapse
|
23
|
Salvador-Castell M, Tourte M, Oger PM. In Search for the Membrane Regulators of Archaea. Int J Mol Sci 2019; 20:E4434. [PMID: 31505830 PMCID: PMC6770870 DOI: 10.3390/ijms20184434] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2019] [Revised: 09/04/2019] [Accepted: 09/06/2019] [Indexed: 11/23/2022] Open
Abstract
Membrane regulators such as sterols and hopanoids play a major role in the physiological and physicochemical adaptation of the different plasmic membranes in Eukarya and Bacteria. They are key to the functionalization and the spatialization of the membrane, and therefore indispensable for the cell cycle. No archaeon has been found to be able to synthesize sterols or hopanoids to date. They also lack homologs of the genes responsible for the synthesis of these membrane regulators. Due to their divergent membrane lipid composition, the question whether archaea require membrane regulators, and if so, what is their nature, remains open. In this review, we review evidence for the existence of membrane regulators in Archaea, and propose tentative location and biological functions. It is likely that no membrane regulator is shared by all archaea, but that they may use different polyterpenes, such as carotenoids, polyprenols, quinones and apolar polyisoprenoids, in response to specific stressors or physiological needs.
Collapse
Affiliation(s)
- Marta Salvador-Castell
- Université de Lyon, CNRS, UMR 5240, F-69621 Villeurbanne, France.
- Université de Lyon, INSA de Lyon, UMR 5240, F-69621 Villeurbanne, France.
| | - Maxime Tourte
- Université de Lyon, CNRS, UMR 5240, F-69621 Villeurbanne, France.
- Université de Lyon, INSA de Lyon, UMR 5240, F-69621 Villeurbanne, France.
| | - Philippe M Oger
- Université de Lyon, CNRS, UMR 5240, F-69621 Villeurbanne, France.
- Université de Lyon, INSA de Lyon, UMR 5240, F-69621 Villeurbanne, France.
| |
Collapse
|
24
|
Teixeira MH, Arantes GM. Effects of lipid composition on membrane distribution and permeability of natural quinones. RSC Adv 2019; 9:16892-16899. [PMID: 35516391 PMCID: PMC9064471 DOI: 10.1039/c9ra01681c] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2019] [Accepted: 05/20/2019] [Indexed: 11/21/2022] Open
Abstract
Natural quinones are amphiphilic molecules that function as mobile charge carriers in biological energy transduction. Their distribution and permeation across membranes are important for binding to enzymatic complexes and for proton translocation. Here, we employ molecular dynamics simulations and free energy calculations with a carefully calibrated classical force-field to probe quinone distribution and permeation in a multi-component bilayer trying to mimic the composition of membranes involved in bioenergetic processes. Ubiquinone, ubiquinol, plastoquinone and menaquinone molecules with short and long isoprenoid tails are simulated. We find that penetration of water molecules bound to the polar quinone head increases considerably in the less ordered and porous bilayer formed by di-linoleoyl (18:2) phospholipids, resulting in a lower free energy barrier for quinone permeation and faster transversal diffusion. In equilibrium, quinone and quinol heads localize preferentially near lipid glycerol groups, but do not perform specific contacts with lipid polar heads. Quinone distribution is not altered significantly by the quinone head, tail and lipid composition in comparison to a single-component bilayer. This study highlights the role of lipid acyl chain unsaturation for permeation and transversal diffusion of polar molecules across biological membranes.
Collapse
Affiliation(s)
- Murilo Hoias Teixeira
- Department of Biochemistry, Instituto de Química, Universidade de São Paulo Av. Prof. Lineu Prestes 748 05508-900 São Paulo SP Brazil
| | - Guilherme Menegon Arantes
- Department of Biochemistry, Instituto de Química, Universidade de São Paulo Av. Prof. Lineu Prestes 748 05508-900 São Paulo SP Brazil
| |
Collapse
|
25
|
Enkavi G, Javanainen M, Kulig W, Róg T, Vattulainen I. Multiscale Simulations of Biological Membranes: The Challenge To Understand Biological Phenomena in a Living Substance. Chem Rev 2019; 119:5607-5774. [PMID: 30859819 PMCID: PMC6727218 DOI: 10.1021/acs.chemrev.8b00538] [Citation(s) in RCA: 196] [Impact Index Per Article: 32.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2018] [Indexed: 12/23/2022]
Abstract
Biological membranes are tricky to investigate. They are complex in terms of molecular composition and structure, functional over a wide range of time scales, and characterized by nonequilibrium conditions. Because of all of these features, simulations are a great technique to study biomembrane behavior. A significant part of the functional processes in biological membranes takes place at the molecular level; thus computer simulations are the method of choice to explore how their properties emerge from specific molecular features and how the interplay among the numerous molecules gives rise to function over spatial and time scales larger than the molecular ones. In this review, we focus on this broad theme. We discuss the current state-of-the-art of biomembrane simulations that, until now, have largely focused on a rather narrow picture of the complexity of the membranes. Given this, we also discuss the challenges that we should unravel in the foreseeable future. Numerous features such as the actin-cytoskeleton network, the glycocalyx network, and nonequilibrium transport under ATP-driven conditions have so far received very little attention; however, the potential of simulations to solve them would be exceptionally high. A major milestone for this research would be that one day we could say that computer simulations genuinely research biological membranes, not just lipid bilayers.
Collapse
Affiliation(s)
- Giray Enkavi
- Department
of Physics, University of
Helsinki, P.O. Box 64, FI-00014 Helsinki, Finland
| | - Matti Javanainen
- Department
of Physics, University of
Helsinki, P.O. Box 64, FI-00014 Helsinki, Finland
- Institute
of Organic Chemistry and Biochemistry of the Czech Academy
of Sciences, Flemingovo naḿesti 542/2, 16610 Prague, Czech Republic
- Computational
Physics Laboratory, Tampere University, P.O. Box 692, FI-33014 Tampere, Finland
| | - Waldemar Kulig
- Department
of Physics, University of
Helsinki, P.O. Box 64, FI-00014 Helsinki, Finland
| | - Tomasz Róg
- Department
of Physics, University of
Helsinki, P.O. Box 64, FI-00014 Helsinki, Finland
- Computational
Physics Laboratory, Tampere University, P.O. Box 692, FI-33014 Tampere, Finland
| | - Ilpo Vattulainen
- Department
of Physics, University of
Helsinki, P.O. Box 64, FI-00014 Helsinki, Finland
- Computational
Physics Laboratory, Tampere University, P.O. Box 692, FI-33014 Tampere, Finland
- MEMPHYS-Center
for Biomembrane Physics
| |
Collapse
|
26
|
Haapanen O, Djurabekova A, Sharma V. Role of Second Quinone Binding Site in Proton Pumping by Respiratory Complex I. Front Chem 2019; 7:221. [PMID: 31024903 PMCID: PMC6465577 DOI: 10.3389/fchem.2019.00221] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2019] [Accepted: 03/21/2019] [Indexed: 12/22/2022] Open
Abstract
Respiratory complex I performs the reduction of quinone (Q) to quinol (QH2) and pumps protons across the membrane. Structural data on complex I have provided spectacular insights into the electron and proton transfer paths, as well as into the long (~30 Å) and unique substrate binding channel. However, due to missing structural information on Q binding modes, it remains unclear how Q reduction drives long range (~20 nm) redox-coupled proton pumping in complex I. Here we applied multiscale computational approaches to study the dynamics and redox chemistry of Q and QH2. Based on tens of microseconds of atomistic molecular dynamics (MD) simulations of bacterial and mitochondrial complex I, we find that the dynamics of Q is remarkably rapid and it diffuses from the N2 binding site to another stable site near the entrance of the Q channel in microseconds. Analysis of simulation trajectories also reveal the presence of yet another Q binding site 25–30 Å from the N2 center, which is in remarkable agreement with the electron density observed in recent cryo electron microscopy structure of complex I from Yarrowia lipolytica. Quantum chemical computations on the two Q binding sites closer to the entrance of the Q tunnel reveal redox-coupled protonation reactions that may be important in driving the proton pump of complex I.
Collapse
Affiliation(s)
- Outi Haapanen
- Department of Physics, University of Helsinki, Helsinki, Finland
| | | | - Vivek Sharma
- Department of Physics, University of Helsinki, Helsinki, Finland.,Institute of Biotechnology, University of Helsinki, Helsinki, Finland
| |
Collapse
|
27
|
Clinical syndromes associated with Coenzyme Q10 deficiency. Essays Biochem 2018; 62:377-398. [DOI: 10.1042/ebc20170107] [Citation(s) in RCA: 68] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2018] [Revised: 05/02/2018] [Accepted: 05/15/2018] [Indexed: 12/27/2022]
Abstract
Primary Coenzyme Q deficiencies represent a group of rare conditions caused by mutations in one of the genes required in its biosynthetic pathway at the enzymatic or regulatory level. The associated clinical manifestations are highly heterogeneous and mainly affect central and peripheral nervous system, kidney, skeletal muscle and heart. Genotype–phenotype correlations are difficult to establish, mainly because of the reduced number of patients and the large variety of symptoms. In addition, mutations in the same COQ gene can cause different clinical pictures. Here, we present an updated and comprehensive review of the clinical manifestations associated with each of the pathogenic variants causing primary CoQ deficiencies.
Collapse
|
28
|
A modeling and simulation perspective on the mechanism and function of respiratory complex I. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2018; 1859:510-523. [DOI: 10.1016/j.bbabio.2018.04.001] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2018] [Revised: 04/03/2018] [Accepted: 04/10/2018] [Indexed: 12/12/2022]
|
29
|
Aravintha Siva M, Mahalakshmi R, Bhakta-Guha D, Guha G. Gene therapy for the mitochondrial genome: Purging mutations, pacifying ailments. Mitochondrion 2018; 46:195-208. [PMID: 29890303 DOI: 10.1016/j.mito.2018.06.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2018] [Revised: 05/24/2018] [Accepted: 06/07/2018] [Indexed: 12/21/2022]
Abstract
In the recent years, the reported cases of mitochondrial disorders have reached a colossal number. These disorders spawn a sundry of pathological conditions, which lead to pernicious symptoms and even fatality. Due to the unpredictable etiologies, mitochondrial diseases are putatively referred to as "mystondria" (mysterious diseases of mitochondria). Although present-day research has greatly improved our understanding of mitochondrial disorders, effective therapeutic interventions are still at the precursory stage. The conundrum becomes further complicated because these pathologies might occur due to either mitochondrial DNA (mtDNA) mutations or due to mutations in the nuclear DNA (nDNA), or both. While correcting nDNA mutations by using gene therapy (replacement of defective genes by delivering wild-type (WT) ones into the host cell, or silencing a dominant mutant allele that is pathogenic) has emerged as a promising strategy to address some mitochondrial diseases, the complications in correcting the defects of mtDNA in order to renovate mitochondrial functions have remained a steep challenge. In this review, we focus specifically on the selective gene therapy strategies that have demonstrated prospects in targeting the pathological mutations in the mitochondrial genome, thereby treating mitochondrial ailments.
Collapse
Affiliation(s)
- M Aravintha Siva
- Cellular Dyshomeostasis Laboratory (CDHL), School of Chemical and Bio Technology, SASTRA University, Thanjavur 613 401, Tamil Nadu, India
| | - R Mahalakshmi
- Cellular Dyshomeostasis Laboratory (CDHL), School of Chemical and Bio Technology, SASTRA University, Thanjavur 613 401, Tamil Nadu, India
| | - Dipita Bhakta-Guha
- Cellular Dyshomeostasis Laboratory (CDHL), School of Chemical and Bio Technology, SASTRA University, Thanjavur 613 401, Tamil Nadu, India.
| | - Gunjan Guha
- Cellular Dyshomeostasis Laboratory (CDHL), School of Chemical and Bio Technology, SASTRA University, Thanjavur 613 401, Tamil Nadu, India.
| |
Collapse
|
30
|
Eriksson EK, Agmo Hernández V, Edwards K. Effect of ubiquinone-10 on the stability of biomimetic membranes of relevance for the inner mitochondrial membrane. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2018; 1860:1205-1215. [PMID: 29470946 DOI: 10.1016/j.bbamem.2018.02.015] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2017] [Revised: 02/13/2018] [Accepted: 02/15/2018] [Indexed: 01/05/2023]
Abstract
Ubiquinone-10 (Q10) plays a pivotal role as electron-carrier in the mitochondrial respiratory chain, and is also well known for its powerful antioxidant properties. Recent findings suggest moreover that Q10 could have an important membrane stabilizing function. In line with this, we showed in a previous study that Q10 decreases the permeability to carboxyfluorescein (CF) and increases the mechanical strength of 1-palmitoyl-2-oleyl-sn-glycero-phosphocholine (POPC) membranes. In the current study we report on the effects exerted by Q10 in membranes having a more complex lipid composition designed to mimic that of the inner mitochondrial membrane (IMM). Results from DPH fluorescence anisotropy and permeability measurements, as well as investigations probing the interaction of liposomes with silica surfaces, corroborate a membrane stabilizing effect of Q10 also in the IMM-mimicking membranes. Comparative investigations examining the effect of Q10 and the polyisoprenoid alcohol solanesol on the IMM model and on membranes composed of individual IMM components suggest, moreover, that Q10 improves the membrane barrier properties via different mechanisms depending on the lipid composition of the membrane. Thus, whereas Q10's inhibitory effect on CF release from pure POPC membranes appears to be directly and solely related to Q10's lipid ordering and condensing effect, a mechanism linked to Q10's ability to amplify intrinsic curvature elastic stress dominates in case of membranes containing high proportions of palmitoyl-2-oleoyl-sn-glycero-3-phosphoethanolamine (POPE).
Collapse
Affiliation(s)
- Emma K Eriksson
- Department of Chemistry-BMC, Uppsala University, Box 579, SE-75123 Uppsala, Sweden.
| | | | - Katarina Edwards
- Department of Chemistry-BMC, Uppsala University, Box 579, SE-75123 Uppsala, Sweden.
| |
Collapse
|
31
|
Hedger G, Rouse SL, Domański J, Chavent M, Koldsø H, Sansom MSP. Lipid-Loving ANTs: Molecular Simulations of Cardiolipin Interactions and the Organization of the Adenine Nucleotide Translocase in Model Mitochondrial Membranes. Biochemistry 2016; 55:6238-6249. [PMID: 27786441 PMCID: PMC5120876 DOI: 10.1021/acs.biochem.6b00751] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
![]()
The exchange of ADP
and ATP across the inner mitochondrial membrane
is a fundamental cellular process. This exchange is facilitated by
the adenine nucleotide translocase, the structure and function of
which are critically dependent on the signature phospholipid of mitochondria,
cardiolipin (CL). Here we employ multiscale molecular dynamics simulations
to investigate CL interactions within a membrane environment. Using
simulations at both coarse-grained and atomistic resolutions, we identify
three CL binding sites on the translocase, in agreement with those
seen in crystal structures and inferred from nuclear magnetic resonance
measurements. Characterization of the free energy landscape for lateral
lipid interaction via potential of mean force calculations demonstrates
the strength of interaction compared to those of binding sites on
other mitochondrial membrane proteins, as well as their selectivity
for CL over other phospholipids. Extending the analysis to other members
of the family, yeast Aac2p and mouse uncoupling protein 2, suggests
a degree of conservation. Simulation of large patches of a model mitochondrial
membrane containing multiple copies of the translocase shows that
CL interactions persist in the presence of protein–protein
interactions and suggests CL may mediate interactions between translocases.
This study provides a key example of how computational microscopy
may be used to shed light on regulatory lipid–protein interactions.
Collapse
Affiliation(s)
- George Hedger
- Department of Biochemistry, University of Oxford , South Parks Road, Oxford OX1 3QU, U.K
| | - Sarah L Rouse
- Department of Biochemistry, University of Oxford , South Parks Road, Oxford OX1 3QU, U.K.,Department of Life Sciences, Imperial College London , London SW7 2AZ, U.K
| | - Jan Domański
- Department of Biochemistry, University of Oxford , South Parks Road, Oxford OX1 3QU, U.K
| | - Matthieu Chavent
- Department of Biochemistry, University of Oxford , South Parks Road, Oxford OX1 3QU, U.K
| | - Heidi Koldsø
- Department of Biochemistry, University of Oxford , South Parks Road, Oxford OX1 3QU, U.K.,D. E. Shaw Research , 120 West 45th Street, 39th Floor, New York, New York 10036, United States
| | - Mark S P Sansom
- Department of Biochemistry, University of Oxford , South Parks Road, Oxford OX1 3QU, U.K
| |
Collapse
|
32
|
Samiee F, Pedron FN, Estrin DA, Trevani L. Experimental and Theoretical Study of the High-Temperature UV-Visible Spectra of Aqueous Hydroquinone and 1,4-Benzoquinone. J Phys Chem B 2016; 120:10547-10552. [PMID: 27627463 DOI: 10.1021/acs.jpcb.6b07893] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
UV-visible spectroscopic studies of aqueous hydroquinone (HQ) and 1,4-benzoquinone (BQ) have been carried out along with classical molecular dynamics (MD) and quantum calculations. The experimental results confirmed that HQ is stable in hot compressed water up to at least 523 K at 70 bar, but BQ decomposes at temperatures lower than 373 K, leading to the formation of HQ and other nonabsorbing products. Even though benzoquinone is not stable, our study significantly extended the temperature range of other spectroscopic studies, and the spectra of HQ up to 523 K can still be useful for other studies, particularly those related to organic species in deep ocean hydrothermal vents. Classical MD simulations at high temperatures show, as expected, a weakening of the solute-solvent H-bonding interactions. The dependence of the maximum absorption of BQ on temperature was also analyzed, although a significant degree of decomposition was observed in the time frame of our experiments. The shift of the maximum absorption peak of BQ with temperature was consistent with time-dependent density functional theory calculations.
Collapse
Affiliation(s)
- Fereshteh Samiee
- Faculty of Science, University of Ontario Institute of Technology , 2000 Simcoe Street North, Oshawa L1H 7K4, Ontario, Canada
| | - Federico N Pedron
- Departamento de Química Inorgánica, Analítica y Química Física, and INQUIMAE-CONICET, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria , Pab. 2, C1428EHA CABA, Argentina
| | - Dario A Estrin
- Departamento de Química Inorgánica, Analítica y Química Física, and INQUIMAE-CONICET, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria , Pab. 2, C1428EHA CABA, Argentina
| | - Liliana Trevani
- Faculty of Science, University of Ontario Institute of Technology , 2000 Simcoe Street North, Oshawa L1H 7K4, Ontario, Canada
| |
Collapse
|