1
|
Hallaj A, Ribeiro FT, Widmann C. No Evidence for Plasma Membrane Potential-Independent Cell Penetrating Peptide Direct Translocation. J Pept Sci 2025; 31:e70014. [PMID: 40186362 DOI: 10.1002/psc.70014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2025] [Revised: 03/19/2025] [Accepted: 03/24/2025] [Indexed: 04/07/2025]
Abstract
Cell-penetrating peptides (CPPs) are small peptides that can carry bioactive cargoes into cells. CPPs access the cell's cytosol via direct translocation across the plasma membrane. We and others have shown that direct translocation of CPPs occurs through water pores that are formed upon hyperpolarization of the cell's membrane. Direct translocation through water pores can therefore be blocked by depolarizing the plasma membrane. Other direct translocation mechanisms have been proposed that would not rely on membrane hyperpolarization. It has been reported, for example, that in HEK cells, CPP translocation occurs in a plasma membrane potential-independent manner, in contrast to HeLa cells, where CPP access to the cytosol required plasma membrane hyperpolarization. To address these apparent discrepant data, we have tested the requirement of plasma membrane hyperpolarization in a series of cell lines, including HEK and HeLa cells, for CPP direct translocation. Our data, obtained from a wide range of CPP concentrations, show that efficient direct translocation always requires plasma membrane hyperpolarization. We discuss the possible reasons why earlier studies have not evidenced the importance of the plasma membrane potential in the cytosolic uptake of CPPs in some cell lines.
Collapse
Affiliation(s)
- Ali Hallaj
- Department of Biomedical Sciences, University of Lausanne, Lausanne, Switzerland
| | | | - Christian Widmann
- Department of Biomedical Sciences, University of Lausanne, Lausanne, Switzerland
| |
Collapse
|
2
|
Cosi V, Jung J, Popella L, Ponath F, Ghosh C, Barquist L, Vogel J. An antisense oligomer conjugate with unpredicted bactericidal activity against Fusobacterium nucleatum. mBio 2025:e0052425. [PMID: 40298409 DOI: 10.1128/mbio.00524-25] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2025] [Accepted: 03/26/2025] [Indexed: 04/30/2025] Open
Abstract
Fusobacteria are commensal members of the oral microbiome that can spread from their primary niche and colonize distal sites in the human body. Their enrichment in colorectal and breast cancer tissue has been associated with tumor growth, metastasis, and chemotherapeutic resistance. The use of non-selective antibiotics to remove fusobacteria impairs tumor progression, but prolonged application causes side effects, such as gastrointestinal problems and dysbiosis. Species-specific antisense antibiotics based on peptide nucleic acid (PNA) have shown efficacy in many gram-negative species, suggesting that antisense PNAs may also enable a tailored depletion of fusobacteria. Here, we have investigated the antibacterial potential of cell-penetrating peptide (CPP)-PNA conjugates targeting the mRNA of putative essential genes in Fusobacterium nucleatum. Unexpectedly, we observed no growth inhibition with any of the target-specific PNAs but identified a non-targeting control CPP-PNA [FUS79, (RXR)4XB-GACATAATTGT] as a potent growth inhibitor of F. nucleatum. Our data suggest that the CPP and specific sequence features of FUS79 are responsible for its activity, rather than an antisense effect. Interestingly, FUS79 also inhibits the growth of five additional fusobacterial strains but not of F. nucleatum subsp. vincentii (FNV). RNA-seq analysis indicates that FUS79 induces a membrane stress response in a vulnerable F. nucleatum strain but not in FNV. Collectively, our attempt at developing antisense antibiotics for fusobacteria discovers a potent growth inhibitor, whose bactericidal effect appears independent of target-specific mRNA inhibition.IMPORTANCEEnrichment of F. nucleatum at cancer sites is associated with increased tumor growth and metastasis. Antibiotic treatment to remove the bacteria was shown to change the course of cancer progression. Here, we explore first steps to establish peptide nucleic acids (PNAs) as specific antisense antibiotics, thereby laying the foundation for further development of antisense technology in fusobacteria. Although the CPP-PNA FUS79 was initially designed as a control, we observed that the compound was bactericidal for specific fusobacterial strains. Our results suggest that FUS79 might be able to selectively deplete fusobacterial strains from bacterial communities, offering a new perspective on fusobacterial removal at the tumor site.
Collapse
Affiliation(s)
- Valentina Cosi
- Helmholtz Institute for RNA-based Infection Research (HIRI), Helmholtz Centre for Infection Research (HZI), Würzburg, Germany
| | - Jakob Jung
- Helmholtz Institute for RNA-based Infection Research (HIRI), Helmholtz Centre for Infection Research (HZI), Würzburg, Germany
| | - Linda Popella
- RNA Biology Group, Institute for Molecular Infection Biology (IMIB), University of Würzburg RNA Biology Group, Würzburg, Germany
- Cluster for Nucleic Acid Therapeutics Munich (CNATM), Munich, Germany
| | - Falk Ponath
- Helmholtz Institute for RNA-based Infection Research (HIRI), Helmholtz Centre for Infection Research (HZI), Würzburg, Germany
| | - Chandradhish Ghosh
- Helmholtz Institute for RNA-based Infection Research (HIRI), Helmholtz Centre for Infection Research (HZI), Würzburg, Germany
| | - Lars Barquist
- Helmholtz Institute for RNA-based Infection Research (HIRI), Helmholtz Centre for Infection Research (HZI), Würzburg, Germany
- Department of Biology, University of Toronto, Mississauga, Ontario, Canada
| | - Jörg Vogel
- Helmholtz Institute for RNA-based Infection Research (HIRI), Helmholtz Centre for Infection Research (HZI), Würzburg, Germany
- RNA Biology Group, Institute for Molecular Infection Biology (IMIB), University of Würzburg RNA Biology Group, Würzburg, Germany
- Cluster for Nucleic Acid Therapeutics Munich (CNATM), Munich, Germany
| |
Collapse
|
3
|
Qi Z, Bujold KE, Wylie RG. Graft-then-Shrink Polymer Coatings for Localized Surface Plasmon Resonance Active Interfaces. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2025; 41:4834-4843. [PMID: 39932231 DOI: 10.1021/acs.langmuir.4c04929] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/26/2025]
Abstract
Increasing the polymer content on biosensors is important to improve sensor function by altering surface properties and increasing the number of capture sites for analytes. Grafting-to methods are often employed but may be limited by insufficient polymer immobilization. Herein, we have utilized Graft-then-Shrink (GtS) to simultaneously increase polymer content on grafting-to surfaces and produce low-cost, local surface plasmon resonance (LSPR) Au biosensors. The biosensors were incorporated within microwell plates, where the translocation of materials across biological barriers can be tracked by visible light absorbance shifts as a platform for biological barrier crossing molecules. Biosensors were constructed by coating a flat Au layer on stretched polystyrene (PS) with thiol-terminated polymers that, upon heating, produced LSPR active wrinkled Au layers with ∼78% greater polymer content and lower water contact angles (WCA; ∼15°) compared to Shrink-then-Graft (StG) controls (∼55°) for PEG2MA coatings. To demonstrate translocation detection, 48-well microplates were 3D printed for GtS biosensor incorporation in the presence of a phospholipid bilayer. Using visible light to track LSPR peak shifts, cell penetrating peptides (CPPs) were screened for bilayer translocation and rate kinetics. GtS offers a simple method to increase the polymer content within coatings and an LSPR fabrication platform to track biomolecule translocation.
Collapse
|
4
|
Nadal-Bufi F, Nithun RV, de Moliner F, Lin X, Habiballah S, Jbara M, Vendrell M. Late-Stage Minimal Labeling of Peptides and Proteins for Real-Time Imaging of Cellular Trafficking. ACS CENTRAL SCIENCE 2025; 11:66-75. [PMID: 39866693 PMCID: PMC11758221 DOI: 10.1021/acscentsci.4c01249] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 11/09/2024] [Accepted: 11/12/2024] [Indexed: 01/28/2025]
Abstract
The cellular uptake routes of peptides and proteins are complex and diverse, often handicapping therapeutic success. Understanding their mechanisms of internalization requires chemical derivatization with approaches that are compatible with wash-free and real-time imaging. In this work, we developed a new late-stage labeling strategy for unprotected peptides and proteins, which retains their biological activity while enabling live-cell imaging of uptake and intracellular trafficking. Benzo-2,1,3-thiadiazoles were selectively incorporated into Cys residues of both linear and cyclic peptides via Pd-mediated arylation with good yields and high purities. The resulting labeled peptides are chemically stable under physiological conditions and display strong fluorogenic character for wash-free imaging studies. We utilized this approach to prepare native-like analogues of cell-penetrating peptides and performed time-course analysis of their internalization routes in live cells by fluorescence lifetime imaging. Furthermore, we applied our strategy to label the chemokine protein mCCL2 and monitor its internalization via receptor-mediated endocytosis in live macrophages. This study provides a straightforward strategy for late-stage fluorogenic labeling of intact peptides and small proteins and direct visualization of dynamic intracellular events.
Collapse
Affiliation(s)
- Ferran Nadal-Bufi
- Centre
for Inflammation Research, The University
of Edinburgh, EH16 4UU Edinburgh, U.K.
- IRR
Chemistry Hub, Institute for Regeneration and Repair, The University of Edinburgh, EH16 4UU Edinburgh, U.K.
| | - Raj V. Nithun
- School
of Chemistry, Tel Aviv University, 69978 Tel Aviv, Israel
| | - Fabio de Moliner
- Centre
for Inflammation Research, The University
of Edinburgh, EH16 4UU Edinburgh, U.K.
- IRR
Chemistry Hub, Institute for Regeneration and Repair, The University of Edinburgh, EH16 4UU Edinburgh, U.K.
| | - Xiaoxi Lin
- School
of Chemistry, Tel Aviv University, 69978 Tel Aviv, Israel
| | | | - Muhammad Jbara
- School
of Chemistry, Tel Aviv University, 69978 Tel Aviv, Israel
| | - Marc Vendrell
- Centre
for Inflammation Research, The University
of Edinburgh, EH16 4UU Edinburgh, U.K.
- IRR
Chemistry Hub, Institute for Regeneration and Repair, The University of Edinburgh, EH16 4UU Edinburgh, U.K.
| |
Collapse
|
5
|
de Souza JVM, Costa NCS, Brasil MCOA, dos Anjos LR, de Menezes RPB, Zampieri EH, de Lima JS, Velasquez AMA, Scotti L, Scotti MT, Graminha MAS, Gonzalez ERP, Cilli EM. Guanidines Conjugated with Cell-Penetrating Peptides: A New Approach for the Development of Antileishmanial Molecules. Molecules 2025; 30:264. [PMID: 39860134 PMCID: PMC11768059 DOI: 10.3390/molecules30020264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2024] [Revised: 01/07/2025] [Accepted: 01/09/2025] [Indexed: 01/27/2025] Open
Abstract
Leishmaniasis is a neglected tropical disease caused by a protozoan of the genus Leishmania, which has visceral and cutaneous forms. The symptoms of leishmaniasis include high fever and weakness, and the cutaneous infection also causes lesions under the skin. The drugs used to treat leishmaniasis have become less effective due to the resistance mechanisms of the protozoa. In addition, the current compounds have low selectivity for the pathogen, leading to various side effects, which results in lower adherence to treatment. Various strategies were developed to solve this problem. The bioconjugation between natural compounds with antimicrobial activity and cell-penetrating peptides could alleviate the resistance and toxicity of current treatments. This work aims to conjugate the cell penetration peptide TAT to the guanidine GVL1. The GVL1-TAT bioconjugate exhibited leishmanicidal activity against Leishmania amazonensis and Leishmania infantum with a high selectivity index. In addition, the bioconjugate was more active against the intracellular enzyme CPP than the individual compounds. This target is very important for the viability and virulence of the parasite within the host cell. Docking studies confirmed the higher interaction of the conjugate with CPP and suggested that other proteins, such as trypanothione reductase, could be targeted. Thus, the data indicated that guanidines conjugated with cell-penetrating peptides could be a good approach for developing antileishmanial molecules.
Collapse
Affiliation(s)
- João Victor Marcelino de Souza
- Department of Biochemistry and Organic Chemistry, Institute of Chemistry, São Paulo State University (UNESP), Araraquara 14800-060, SP, Brazil
| | - Natalia C. S. Costa
- School of Pharmaceutical Sciences, São Paulo State University (UNESP), Araraquara 14800-903, SP, Brazil; (N.C.S.C.)
| | - Maria C. O. Arruda Brasil
- Department of Biochemistry and Organic Chemistry, Institute of Chemistry, São Paulo State University (UNESP), Araraquara 14800-060, SP, Brazil
| | - Luana Ribeiro dos Anjos
- Fine Organic Chemistry Lab, School of Sciences and Technology, São Paulo State University (UNESP), Presidente Prudente 19060-080, SP, Brazil; (L.R.d.A.)
| | - Renata Priscila Barros de Menezes
- Natural Products and Synthetic Bioactives Postgraduation Program, Federal Paraiba University (UFPB), João Pessoa 58051-900, PB, Brazil
| | - Eduardo Henrique Zampieri
- Fine Organic Chemistry Lab, School of Sciences and Technology, São Paulo State University (UNESP), Presidente Prudente 19060-080, SP, Brazil; (L.R.d.A.)
| | - Jhonatan Santos de Lima
- School of Pharmaceutical Sciences, São Paulo State University (UNESP), Araraquara 14800-903, SP, Brazil; (N.C.S.C.)
| | | | - Luciana Scotti
- Natural Products and Synthetic Bioactives Postgraduation Program, Federal Paraiba University (UFPB), João Pessoa 58051-900, PB, Brazil
| | - Marcus Tullius Scotti
- Natural Products and Synthetic Bioactives Postgraduation Program, Federal Paraiba University (UFPB), João Pessoa 58051-900, PB, Brazil
| | - Marcia A. S. Graminha
- School of Pharmaceutical Sciences, São Paulo State University (UNESP), Araraquara 14800-903, SP, Brazil; (N.C.S.C.)
| | - Eduardo R. Pérez Gonzalez
- Fine Organic Chemistry Lab, School of Sciences and Technology, São Paulo State University (UNESP), Presidente Prudente 19060-080, SP, Brazil; (L.R.d.A.)
| | - Eduardo Maffud Cilli
- Department of Biochemistry and Organic Chemistry, Institute of Chemistry, São Paulo State University (UNESP), Araraquara 14800-060, SP, Brazil
| |
Collapse
|
6
|
Machado A, Gama M, Martins JA. Development of a dextrin-vitamin D3 micelle nanocarrier for the antimicrobial peptide LLKKK18 as a potential therapeutic agent for bone infections. J Mater Chem B 2024; 12:11464-11476. [PMID: 39392350 DOI: 10.1039/d4tb00903g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/12/2024]
Abstract
In this work, an expedite synthesis was developed for a self-assembled micelle carrier for the antimicrobial peptide LL18. Covalent one-pot functionalization of dextrin with succinylated vitamin D3 and succinic anhydride produced an amphiphilic material that undergoes self-assembly into micelles in aqueous medium. Succinylated dextrin-vitamin D3 micelles were efficiently loaded with LL18 by electrostatic and hydrophobic interactions. Remarkably, the LL18-loaded micelle formulation dramatically improves the antibacterial activity of free LL18 against S. aureus, completely abrogates its severe hemolytic activity, redirects the internalization of LL18 from the perinuclear region of osteoblasts to the lysosomes and reduces cellular toxicity towards osteoblasts and macrophages. Overall, this work demonstrates that self-assembled micelle formulations based on dextrin, vitamin D3 and antimicrobial peptides, are promising platforms to develop multifunctional antibiotic-independent antimicrobial agents, not prone to the development of bacterial resistance, to treat bone infections.
Collapse
Affiliation(s)
- Alexandra Machado
- Centre of Biological Engineering, University of Minho (CEB), Campus de Gualtar, 4710-057 Braga, Portugal
- LABBELS - Associate Laboratory, Braga, Guimarães, Portugal
| | - Miguel Gama
- Centre of Biological Engineering, University of Minho (CEB), Campus de Gualtar, 4710-057 Braga, Portugal
- LABBELS - Associate Laboratory, Braga, Guimarães, Portugal
| | - José Alberto Martins
- Center of Chemistry, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal.
| |
Collapse
|
7
|
de Jong-Hoogland D, Ulmschneider J, Ulmschneider M. Computational investigation of the effect of BODIPY labelling on peptide-membrane interaction. Sci Rep 2024; 14:27726. [PMID: 39532898 PMCID: PMC11557973 DOI: 10.1038/s41598-024-72662-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Accepted: 09/09/2024] [Indexed: 11/16/2024] Open
Abstract
Optical monitoring of peptide binding to live cells is hampered by the abundance of naturally occurring fluorophores such as tryptophan. Unnatural amino acids incorporating synthetic fluorophores such as BODIPY overcome these optical limitations. A drawback to using fluorophores in lipid binding peptide design is their propensity to override other interactions, potentially causing the peptides to lose their binding selectivity. Here, the binding strength of a selection of peptides incorporating a variety of BODIPY derivatized amino acids has been studied via molecular dynamics simulations to quantify the impact of BODIPY incorporation on peptide-membrane binding behaviour.
Collapse
Affiliation(s)
| | - Jacob Ulmschneider
- Institute of Natural Sciences, Shanghai Jiao Tong University, Shanghai, China.
| | | |
Collapse
|
8
|
Wang S, Shcherbii MV, Hirvonen SP, Silvennoinen G, Sarparanta M, Santos HA. Quantitative analysis of electroporation-mediated intracellular delivery via bioorthogonal luminescent reaction. Commun Chem 2024; 7:181. [PMID: 39147836 PMCID: PMC11327378 DOI: 10.1038/s42004-024-01266-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Accepted: 08/01/2024] [Indexed: 08/17/2024] Open
Abstract
Efficient intracellular delivery is crucial for biotherapeutics, such as proteins, oligonucleotides, and CRISPR/Cas9 gene-editing systems, to achieve their efficacy. Despite the great efforts of developing new intracellular delivery carriers, the lack of straightforward methods for intracellular delivery quantification limits further development in this area. Herein, we designed a simple and versatile bioorthogonal luminescent reaction (BioLure assay) to analyze intracellular delivery. Our results suggest that BioLure can be used to estimate the amount of intracellularly delivered molecules after electroporation, and the estimation by BioLure is in good correlation with the results from complementary methods. Furthermore, we used BioLure assay to correlate the intracellularly-delivered RNase A amount with its tumoricidal activity. Overall, BioLure is a versatile tool for understanding the intracellular delivery process on live cells, and establishing the link between the cytosolic concentration of intracellularly-delivered biotherapeutics and their therapeutic efficacy.
Collapse
Affiliation(s)
- Shiqi Wang
- Drug Research Program, Division of Pharmaceutical Chemistry and Technology, Faculty of Pharmacy, University of Helsinki, FI-00014, Helsinki, Finland.
| | - Mariia V Shcherbii
- Institute of Biotechnology, University of Helsinki, FI-00014, Helsinki, Finland
| | - Sami-Pekka Hirvonen
- Department of Chemistry, Faculty of Science, University of Helsinki, FI-00014, Helsinki, Finland
| | - Gudrun Silvennoinen
- Department of Chemistry, Faculty of Science, University of Helsinki, FI-00014, Helsinki, Finland
| | - Mirkka Sarparanta
- Department of Chemistry, Faculty of Science, University of Helsinki, FI-00014, Helsinki, Finland
| | - Hélder A Santos
- Drug Research Program, Division of Pharmaceutical Chemistry and Technology, Faculty of Pharmacy, University of Helsinki, FI-00014, Helsinki, Finland
- Department of Biomaterials and Biomedical Technology, The Personalized Medicine Research Institute (PRECISION), University Medical Center Groningen, University of Groningen, 9713, AV, Groningen, The Netherlands
| |
Collapse
|
9
|
Thareja A, Leigh T, Hakkarainen JJ, Hughes H, Alvarez-Lorenzo C, Fernandez-Trillo F, Blanch RJ, Ahmed Z. Improving corneal permeability of dexamethasone using penetration enhancing agents: First step towards achieving topical drug delivery to the retina. Int J Pharm 2024; 660:124305. [PMID: 38852749 DOI: 10.1016/j.ijpharm.2024.124305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 06/03/2024] [Accepted: 06/04/2024] [Indexed: 06/11/2024]
Abstract
With an ever-increasing burden of vision loss caused by diseases of the posterior ocular segment, there is an unmet clinical need for non-invasive treatment strategies. Topical drug application using eye drops suffers from low to negligible bioavailability to the posterior segment as a result of static and dynamic defensive ocular barriers to penetration, while invasive delivery systems are expensive to administer and suffer potentially severe complications. As the cornea is the main anatomical barrier to uptake of topically applied drugs from the ocular surface, we present an approach to increase corneal permeability of a corticosteroid, dexamethasone sodium-phosphate (DSP), using a novel penetration enhancing agent (PEA). We synthesised a novel polyacetylene (pAc) polymer and compared its activity to two previously described cell penetrating peptide (CPP) based PEAs, TAT and penetratin, with respect to increasing transcorneal permeability of DSP in a rapid ex-vivo porcine corneal assay over 60 min. The transcorneal apparent permeability coefficients (Papp) for diffusion of pAc, and fluorescein isothiocyanate (FITC) conjugated TAT and penetratin were up to 5 times higher (p < 0.001), when compared to controls. When pAc was used in formulation with DSP, an almost 5-fold significant increase was observed in Papp of DSP across the cornea (p = 0.0130), a significant 6-fold increase with TAT (p = 0.0377), and almost 7-fold mean increase with penetratin (p = 0.9540). Furthermore, we investigated whether the PEAs caused any irreversible damage to the barrier integrity of the corneal epithelium by measuring transepithelial electrical resistance (TEER) and immunostaining of tight junction proteins using zonula occludens-1 (ZO-1) and occludin antibodies. There was no damage or structural toxicity, and the barrier integrity was preserved after PEA application. Finally, an in-vitro cytotoxicity assessment of all PEAs in human retinal pigment epithelium cells (ARPE-19) demonstrated that all PEAs were very well-tolerated, with IC50 values of 64.79 mM for pAc and 1335.45 µM and 87.26 µM for TAT and penetratin, respectively. Our results suggest that this drug delivery technology could potentially be used to achieve a significantly higher intraocular therapeutic bioavailability after topical eye drop administration, than currently afforded.
Collapse
Affiliation(s)
- Abhinav Thareja
- Neuroscience and Ophthalmology Group, Institute of Inflammation and Ageing, College of Medical and Dental Sciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, West Midlands, United Kingdom.
| | - Thomas Leigh
- School of Chemistry, University of Birmingham, Edgbaston, Birmingham B15 2TT, West Midlands, United Kingdom; Royal College of Surgeons in Ireland (RCSI), University of Medicine and Health Sciences, Dublin 2, Ireland.
| | | | - Helen Hughes
- Pharmaceutical and Molecular Biotechnology Research Centre (PMBRC), School of Science & Computing, Department of Science, South East Technological University, Cork Road, Waterford City X91 K0EK, Ireland.
| | - Carmen Alvarez-Lorenzo
- Departamento de Farmacología, Farmacia y Tecnología Farmacéutica, I+DFarma, Facultad de Farmacia, iMATUS and Health Research Institute of Santiago de Compostela (IDIS), Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain.
| | - Francisco Fernandez-Trillo
- School of Chemistry, University of Birmingham, Edgbaston, Birmingham B15 2TT, West Midlands, United Kingdom; BioMedNano Group, Centro de Investigacións Científicas Avanzadas (CICA), Facultade de Ciencias Rúa As Carballeiras, Universidade da Coruna, 15008 A Coruña, Galicia, Spain.
| | - Richard J Blanch
- Neuroscience and Ophthalmology Group, Institute of Inflammation and Ageing, College of Medical and Dental Sciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, West Midlands, United Kingdom; Academic Department of Military Surgery & Trauma, Royal Centre for Defence Medicine, United Kingdom; Department of Ophthalmology, University Hospitals Birmingham NHS Foundation Trust, Birmingham, West Midlands, United Kingdom; Centre for Trauma Sciences Research, University of Birmingham, Edgbaston, Birmingham B15 2TT, West Midlands, United Kingdom.
| | - Zubair Ahmed
- Neuroscience and Ophthalmology Group, Institute of Inflammation and Ageing, College of Medical and Dental Sciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, West Midlands, United Kingdom; Centre for Trauma Sciences Research, University of Birmingham, Edgbaston, Birmingham B15 2TT, West Midlands, United Kingdom.
| |
Collapse
|
10
|
Giancola JB, Grimm JB, Jun JV, Petri YD, Lavis LD, Raines RT. Evaluation of the Cytosolic Uptake of HaloTag Using a pH-Sensitive Dye. ACS Chem Biol 2024; 19:908-915. [PMID: 38525961 PMCID: PMC11186736 DOI: 10.1021/acschembio.3c00713] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/26/2024]
Abstract
The efficient cytosolic delivery of proteins is critical for advancing novel therapeutic strategies. Current delivery methods are severely limited by endosomal entrapment, and detection methods lack sophistication in tracking the fate of delivered protein cargo. HaloTag, a commonly used protein in chemical biology and a challenging delivery target, is an exceptional model system for understanding and exploiting cellular delivery. Here, we employed a combinatorial strategy to direct HaloTag to the cytosol. We established the use of Virginia Orange, a pH-sensitive fluorophore, and Janelia Fluor 585, a similar but pH-agnostic fluorophore, in a fluorogenic assay to ascertain protein localization within human cells. Using this assay, we investigated HaloTag delivery upon modification with cell-penetrating peptides, carboxyl group esterification, and cotreatment with an endosomolytic agent. We found efficacious cytosolic entry with two distinct delivery methods. This study expands the toolkit for detecting the cytosolic access of proteins and highlights that multiple intracellular delivery strategies can be used synergistically to effect cytosolic access. Moreover, HaloTag is poised to serve as a platform for the delivery of varied cargo into human cells.
Collapse
Affiliation(s)
- JoLynn B. Giancola
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Jonathan B. Grimm
- Janelia Research Campus, Howard Hughes Medical Institute, 19700 Helix Drive, Ashburn VA 20147, United States
| | - Joomyung V. Jun
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Yana D. Petri
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Luke D. Lavis
- Janelia Research Campus, Howard Hughes Medical Institute, 19700 Helix Drive, Ashburn VA 20147, United States
| | - Ronald T. Raines
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| |
Collapse
|
11
|
Jørgensen J, Mood EH, Knap ASH, Nielsen SE, Nielsen PE, Żabicka D, Matias C, Domraceva I, Björkling F, Franzyk H. Polymyxins with Potent Antibacterial Activity against Colistin-Resistant Pathogens: Fine-Tuning Hydrophobicity with Unnatural Amino Acids. J Med Chem 2024; 67:1370-1383. [PMID: 38169430 PMCID: PMC10824244 DOI: 10.1021/acs.jmedchem.3c01908] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 11/14/2023] [Accepted: 12/08/2023] [Indexed: 01/05/2024]
Abstract
In view of the increased prevalence of antimicrobial resistance among human pathogens, antibiotics against multidrug-resistant (MDR) bacteria are in urgent demand. In particular, the rapidly emerging resistance to last-resort antibiotic colistin, used for severe Gram-negative MDR infections, is critical. Here, a series of polymyxins containing unnatural amino acids were explored, and some analogues exhibited excellent antibacterial activity against Escherichia coli, Klebsiella pneumoniae, Acinetobacter baumannii, and Pseudomonas aeruginosa. Hydrophobicity of the compounds within this series (as measured by retention in reversed-phase analytical HPLC) exhibited a discernible correlation with their antimicrobial activity. This trend was particularly pronounced for colistin-resistant pathogens. The most active compounds demonstrated competitive activity against a panel of Gram-negative pathogens, while exhibiting low in vitro cytotoxicity. Importantly, most of these hits also retained (or even had increased) potency against colistin-susceptible strains. These findings infer that fine-tuning hydrophobicity may enable the design of polymyxin analogues with favorable activity profiles.
Collapse
Affiliation(s)
- Johan
Storm Jørgensen
- Center
for Peptide-Based Antibiotics, Department of Drug Design and Pharmacology,
Faculty of Health and Medical Sciences, University of Copenhagen, Jagtvej 162, DK-2100 Copenhagen Ø, Denmark
| | - Elnaz Harifi Mood
- Center
for Peptide-Based Antibiotics, Department of Cellular and Molecular
Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, The Panum Building, 3C Blegdamsvej, DK-2200 Copenhagen N, Denmark
| | - Anne Sofie Holst Knap
- Center
for Peptide-Based Antibiotics, Department of Drug Design and Pharmacology,
Faculty of Health and Medical Sciences, University of Copenhagen, Jagtvej 162, DK-2100 Copenhagen Ø, Denmark
| | - Simone Eidnes Nielsen
- Center
for Peptide-Based Antibiotics, Department of Drug Design and Pharmacology,
Faculty of Health and Medical Sciences, University of Copenhagen, Jagtvej 162, DK-2100 Copenhagen Ø, Denmark
| | - Peter E. Nielsen
- Center
for Peptide-Based Antibiotics, Department of Cellular and Molecular
Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, The Panum Building, 3C Blegdamsvej, DK-2200 Copenhagen N, Denmark
| | - Dorota Żabicka
- Department
of Epidemiology and Clinical Microbiology, National Medicines Institute, ul. Chełmska 30/34, 00-725 Warsaw, Poland
| | - Carina Matias
- Department
of Bacteria, Parasites & Fungi, Statens
Serum Institut, Artillerivej 5, DK-2300 Copenhagen S, Denmark
| | - Ilona Domraceva
- Latvian
Institute of Organic Synthesis, Aizkraukles 21, 1006 Riga, Latvia
| | - Fredrik Björkling
- Center
for Peptide-Based Antibiotics, Department of Drug Design and Pharmacology,
Faculty of Health and Medical Sciences, University of Copenhagen, Jagtvej 162, DK-2100 Copenhagen Ø, Denmark
| | - Henrik Franzyk
- Center
for Peptide-Based Antibiotics, Department of Drug Design and Pharmacology,
Faculty of Health and Medical Sciences, University of Copenhagen, Jagtvej 162, DK-2100 Copenhagen Ø, Denmark
| |
Collapse
|
12
|
Gori A, Lodigiani G, Colombarolli SG, Bergamaschi G, Vitali A. Cell Penetrating Peptides: Classification, Mechanisms, Methods of Study, and Applications. ChemMedChem 2023; 18:e202300236. [PMID: 37389978 DOI: 10.1002/cmdc.202300236] [Citation(s) in RCA: 54] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 06/28/2023] [Accepted: 06/28/2023] [Indexed: 07/02/2023]
Abstract
Cell-penetrating peptides (CPPs) encompass a class of peptides that possess the remarkable ability to cross cell membranes and deliver various types of cargoes, including drugs, nucleic acids, and proteins, into cells. For this reason, CPPs are largely investigated in drug delivery applications in the context of many diseases, such as cancer, diabetes, and genetic disorders. While sharing this functionality and some common structural features, such as a high content of positively charged amino acids, CPPs represent an extremely diverse group of elements, which can differentiate under many aspects. In this review, we summarize the most common characteristics of CPPs, introduce their main distinctive features, mechanistic aspects that drive their function, and outline the most widely used techniques for their structural and functional studies. We highlight current gaps and future perspectives in this field, which have the potential to significantly impact the future field of drug delivery and therapeutics.
Collapse
Affiliation(s)
- Alessandro Gori
- SCITEC - Istituto di Scienze e Tecnologie Chimiche "Giulio Natta", National Research Council of Italy, Via Mario Bianco 9, 20131, Milano, Italy
| | - Giulia Lodigiani
- SCITEC - Istituto di Scienze e Tecnologie Chimiche "Giulio Natta", National Research Council of Italy, Via Mario Bianco 9, 20131, Milano, Italy
| | - Stella G Colombarolli
- Istituto di Scienze e Tecnologie Chimiche "Giulio Natta", National Research Council of Italy, L.go F. Vito 1, 00168, Roma, Italy
| | - Greta Bergamaschi
- SCITEC - Istituto di Scienze e Tecnologie Chimiche "Giulio Natta", National Research Council of Italy, Via Mario Bianco 9, 20131, Milano, Italy
| | - Alberto Vitali
- Istituto di Scienze e Tecnologie Chimiche "Giulio Natta", National Research Council of Italy, L.go F. Vito 1, 00168, Roma, Italy
| |
Collapse
|
13
|
Wang JW, Squire HJ, Goh NS, Ni HM, Lien E, Wong C, González-Grandío E, Landry MP. Delivered complementation in planta (DCIP) enables measurement of peptide-mediated protein delivery efficiency in plants. Commun Biol 2023; 6:840. [PMID: 37573467 PMCID: PMC10423278 DOI: 10.1038/s42003-023-05191-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Accepted: 07/28/2023] [Indexed: 08/14/2023] Open
Abstract
Using a fluorescence complementation assay, Delivered Complementation in Planta (DCIP), we demonstrate cell-penetrating peptide-mediated cytosolic delivery of peptides and recombinant proteins in Nicotiana benthamiana. We show that DCIP enables quantitative measurement of protein delivery efficiency and enables functional screening of cell-penetrating peptides for in-planta protein delivery. Finally, we demonstrate that DCIP detects cell-penetrating peptide-mediated delivery of recombinantly expressed proteins such as mCherry and Lifeact into intact leaves. We also demonstrate delivery of a recombinant plant transcription factor, WUSCHEL (AtWUS), into N. benthamiana. RT-qPCR analysis of AtWUS delivery in Arabidopsis seedlings also suggests delivered WUS can recapitulate transcriptional changes induced by overexpression of AtWUS. Taken together, our findings demonstrate that DCIP offers a new and powerful tool for interrogating cytosolic delivery of proteins in plants and highlights future avenues for engineering plant physiology.
Collapse
Affiliation(s)
- Jeffrey W Wang
- Department of Chemical and Biomolecular Engineering, University of California, Berkeley, Berkeley, CA, 94720, USA
| | - Henry J Squire
- Department of Chemical and Biomolecular Engineering, University of California, Berkeley, Berkeley, CA, 94720, USA
| | - Natalie S Goh
- Department of Chemical and Biomolecular Engineering, University of California, Berkeley, Berkeley, CA, 94720, USA
| | - Heyuan Michael Ni
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA, 94720, USA
| | - Edward Lien
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA, 94720, USA
| | - Cerise Wong
- Department of Chemical and Biomolecular Engineering, University of California, Berkeley, Berkeley, CA, 94720, USA
| | - Eduardo González-Grandío
- Plant Molecular Genetics Department, Centro Nacional de Biotecnología-CSIC, Campus Universidad Autónoma de Madrid, Madrid, Spain
| | - Markita P Landry
- Department of Chemical and Biomolecular Engineering, University of California, Berkeley, Berkeley, CA, 94720, USA.
- Innovative Genomics Institute, Berkeley, CA, 94720, USA.
- California Institute for Quantitative Biosciences, University of California, Berkeley, Berkeley, CA, 94720, USA.
- Chan Zuckerberg Biohub, San Francisco, CA, 94063, USA.
| |
Collapse
|
14
|
Horsfall AJ, Chav T, Pederick JL, Kikhtyak Z, Vandborg BC, Kowalczyk W, Scanlon DB, Tilley WD, Hickey TE, Abell AD, Bruning JB. Designing Fluorescent Nuclear Permeable Peptidomimetics to Target Proliferating Cell Nuclear Antigen. J Med Chem 2023; 66:10354-10363. [PMID: 37489955 DOI: 10.1021/acs.jmedchem.3c00471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/26/2023]
Abstract
Human proliferating cell nuclear antigen (PCNA) is a critical mediator of DNA replication and repair, acting as a docking platform for replication proteins. Disrupting these interactions with a peptidomimetic agent presents as a promising avenue to limit proliferation of cancerous cells. Here, a p21-derived peptide was employed as a starting scaffold to design a modular peptidomimetic that interacts with PCNA and is cellular and nuclear permeable. Ultimately, a peptidomimetic was produced which met these criteria, consisting of a fluorescein tag and SV40 nuclear localization signal conjugated to the N-terminus of a p21 macrocycle derivative. Attachment of the fluorescein tag was found to directly affect cellular uptake of the peptidomimetic, with fluorescein being requisite for nuclear permeability. This work provides an important step forward in the development of PCNA targeting peptidomimetics for use as anti-cancer agents or as cancer diagnostics.
Collapse
Affiliation(s)
- Aimee J Horsfall
- Institute of Photonics and Advanced Sensing (IPAS), The University of Adelaide, Adelaide, South Australia 5005, Australia
- School of Physical Sciences, The University of Adelaide, Adelaide, South Australia 5005, Australia
- Australian Research Council Centre of Excellence for Nanoscale BioPhotonics (CNBP), Adelaide, South Australia 5005, Australia
| | - Theresa Chav
- Institute of Photonics and Advanced Sensing (IPAS), The University of Adelaide, Adelaide, South Australia 5005, Australia
- School of Physical Sciences, The University of Adelaide, Adelaide, South Australia 5005, Australia
- Australian Research Council Centre of Excellence for Nanoscale BioPhotonics (CNBP), Adelaide, South Australia 5005, Australia
| | - Jordan L Pederick
- Institute of Photonics and Advanced Sensing (IPAS), The University of Adelaide, Adelaide, South Australia 5005, Australia
- School of Biological Sciences, The University of Adelaide, Adelaide, South Australia 5005, Australia
| | - Zoya Kikhtyak
- Dame Roma Mitchell Cancer Research Laboratories, Adelaide Medical School, Faculty of Health and Medical Sciences, University of Adelaide, Adelaide, South Australia 5005, Australia
| | - Bethiney C Vandborg
- Institute of Photonics and Advanced Sensing (IPAS), The University of Adelaide, Adelaide, South Australia 5005, Australia
- School of Biological Sciences, The University of Adelaide, Adelaide, South Australia 5005, Australia
| | | | - Denis B Scanlon
- Institute of Photonics and Advanced Sensing (IPAS), The University of Adelaide, Adelaide, South Australia 5005, Australia
- School of Physical Sciences, The University of Adelaide, Adelaide, South Australia 5005, Australia
| | - Wayne D Tilley
- Dame Roma Mitchell Cancer Research Laboratories, Adelaide Medical School, Faculty of Health and Medical Sciences, University of Adelaide, Adelaide, South Australia 5005, Australia
| | - Theresa E Hickey
- Dame Roma Mitchell Cancer Research Laboratories, Adelaide Medical School, Faculty of Health and Medical Sciences, University of Adelaide, Adelaide, South Australia 5005, Australia
| | - Andrew D Abell
- Institute of Photonics and Advanced Sensing (IPAS), The University of Adelaide, Adelaide, South Australia 5005, Australia
- School of Physical Sciences, The University of Adelaide, Adelaide, South Australia 5005, Australia
- Australian Research Council Centre of Excellence for Nanoscale BioPhotonics (CNBP), Adelaide, South Australia 5005, Australia
| | - John B Bruning
- Institute of Photonics and Advanced Sensing (IPAS), The University of Adelaide, Adelaide, South Australia 5005, Australia
- School of Biological Sciences, The University of Adelaide, Adelaide, South Australia 5005, Australia
| |
Collapse
|
15
|
Birch D, Sayers EJ, Christensen MV, Jones AT, Franzyk H, Nielsen HM. Stereoisomer-Dependent Membrane Association and Capacity for Insulin Delivery Facilitated by Penetratin. Pharmaceutics 2023; 15:1672. [PMID: 37376119 DOI: 10.3390/pharmaceutics15061672] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 05/08/2023] [Accepted: 05/26/2023] [Indexed: 06/29/2023] Open
Abstract
Cell-penetrating peptides (CPPs), such as penetratin, are often investigated as drug delivery vectors and incorporating d-amino acids, rather than the natural l-forms, to enhance proteolytic stability could improve their delivery efficiency. The present study aimed to compare membrane association, cellular uptake, and delivery capacity for all-l and all-d enantiomers of penetratin (PEN) by using different cell models and cargos. The enantiomers displayed widely different distribution patterns in the examined cell models, and in Caco-2 cells, quenchable membrane binding was evident for d-PEN in addition to vesicular intracellular localization for both enantiomers. The uptake of insulin in Caco-2 cells was equally mediated by the two enantiomers, and while l-PEN did not increase the transepithelial permeation of any of the investigated cargo peptides, d-PEN increased the transepithelial delivery of vancomycin five-fold and approximately four-fold for insulin at an extracellular apical pH of 6.5. Overall, while d-PEN was associated with the plasma membrane to a larger extent and was superior in mediating the transepithelial delivery of hydrophilic peptide cargoes compared to l-PEN across Caco-2 epithelium, no enhanced delivery of the hydrophobic cyclosporin was observed, and intracellular insulin uptake was induced to a similar degree by the two enantiomers.
Collapse
Affiliation(s)
- Ditlev Birch
- Center for Biopharmaceuticals and Biobarriers in Drug Delivery (BioDelivery), Department of Pharmacy, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, 2100 Copenhagen, Denmark
| | - Edward J Sayers
- Cardiff School of Pharmacy and Pharmaceutical Sciences, Cardiff University, Cardiff CF10 3NB, UK
| | - Malene V Christensen
- Cancer and Infectious Diseases, Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, 2100 Copenhagen, Denmark
| | - Arwyn T Jones
- Cardiff School of Pharmacy and Pharmaceutical Sciences, Cardiff University, Cardiff CF10 3NB, UK
| | - Henrik Franzyk
- Cancer and Infectious Diseases, Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, 2100 Copenhagen, Denmark
| | - Hanne M Nielsen
- Center for Biopharmaceuticals and Biobarriers in Drug Delivery (BioDelivery), Department of Pharmacy, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, 2100 Copenhagen, Denmark
| |
Collapse
|
16
|
Þorgeirsdóttir DÝ, Andersen JH, Perch-Nielsen M, Møller LH, Grønbæk-Thorsen F, Kolberg HG, Gammelgaard B, Kristensen M. Selenomethionine as alternative label to the fluorophore TAMRA when exploiting cell-penetrating peptides as blood-brain barrier shuttles to better mimic the physicochemical properties of the non-labelled peptides. Eur J Pharm Sci 2023; 183:106400. [PMID: 36750148 DOI: 10.1016/j.ejps.2023.106400] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 01/11/2023] [Accepted: 02/03/2023] [Indexed: 02/07/2023]
Abstract
The cell-penetrating peptides (CPPs) Tat and penetratin are frequently explored as shuttles for drug delivery across the blood-brain barrier (BBB). CPPs are often labelled with fluorophores for analytical purposes, with 5(6)-carboxytetramethylrhodamine (TAMRA) being a popular choice. However, TAMRA labelling affects the physicochemical properties of the resulting fluorophore-CPP construct when compared to the CPP alone. Selenomethionine (MSe) may be introduced as alternative label, which, due to its small size and amino acid nature, likely results in minimal alterations of the peptide physicochemical properties. With this study we compared, head-to-head, the effect of MSe and TAMRA labelling of Tat and penetratin with respect to their physicochemical properties, and investigated effects hereof on brain capillary endothelial cell (BCEC) models. TAMRA labelling positively affected the ability of the peptides to adhere to the cell membranes as well being internalized into the BCECs when compared to MSe labelling. TAMRA labelling of penetratin added toxicity to the BCECs to a higher extent than TAMRA labelling of Tat, whereas MSe labelling did not affect the cellular viability. Both TAMRA and MSe labelling of penetratin decreased the barrier integrity of BCEC monolayers, but not to an extent that improved transport of the paracellular marker 14C-mannitol. In conclusion, MSe labelling of Tat and penetratin adds minimal alterations to the physicochemical properties of these CPPs and their resulting effects on BCECs, and thereby represents a preferred alternative to TAMRA for peptide quantification purposes.
Collapse
Affiliation(s)
- Dagmar Ýr Þorgeirsdóttir
- CNS Drug Delivery and Barrier Modelling, Department of Pharmacy, University of Copenhagen, DK-2100 Copenhagen Ø, Denmark
| | - Jeppe Hofman Andersen
- CNS Drug Delivery and Barrier Modelling, Department of Pharmacy, University of Copenhagen, DK-2100 Copenhagen Ø, Denmark
| | - Marcus Perch-Nielsen
- CNS Drug Delivery and Barrier Modelling, Department of Pharmacy, University of Copenhagen, DK-2100 Copenhagen Ø, Denmark
| | - Laura Hyrup Møller
- Pharmaceutical Physical and Analytical Chemistry, Department of Pharmacy, University of Copenhagen, DK-2100 Copenhagen Ø, Denmark
| | - Freja Grønbæk-Thorsen
- Pharmaceutical Physical and Analytical Chemistry, Department of Pharmacy, University of Copenhagen, DK-2100 Copenhagen Ø, Denmark
| | - Hannah Grønbech Kolberg
- CNS Drug Delivery and Barrier Modelling, Department of Pharmacy, University of Copenhagen, DK-2100 Copenhagen Ø, Denmark
| | - Bente Gammelgaard
- Pharmaceutical Physical and Analytical Chemistry, Department of Pharmacy, University of Copenhagen, DK-2100 Copenhagen Ø, Denmark
| | - Mie Kristensen
- CNS Drug Delivery and Barrier Modelling, Department of Pharmacy, University of Copenhagen, DK-2100 Copenhagen Ø, Denmark.
| |
Collapse
|
17
|
Serulla M, Anees P, Hallaj A, Trofimenko E, Kalia T, Krishnan Y, Widmann C. Plasma membrane depolarization reveals endosomal escape incapacity of cell-penetrating peptides. Eur J Pharm Biopharm 2023; 184:116-124. [PMID: 36709921 DOI: 10.1016/j.ejpb.2023.01.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Revised: 12/12/2022] [Accepted: 01/23/2023] [Indexed: 01/27/2023]
Abstract
Cell-penetrating peptides (CPPs) are short (<30 amino acids), generally cationic, peptides that deliver diverse cargos into cells. CPPs access the cytosol either by direct translocation through the plasma membrane or via endocytosis followed by endosomal escape. Both direct translocation and endosomal escape can occur simultaneously, making it non-trivial to specifically study endosomal escape alone. Here we depolarize the plasma membrane and showed that it inhibits the direct translocation of several CPPs but does not affect their uptake into endosomes. Despite good endocytic uptake many CPPs previously considered to access the cytosol via endosomal escape, failed to access the cytosol once direct translocation was abrogated. Even CPPs designed for enhanced endosomal escape actually showed negligible endosomal escape into the cytosol. Our data reveal that cytosolic localization of CPPs occurs mainly by direct translocation across the plasma membrane. Cell depolarization represents a simple manipulation to stringently test the endosomal escape capacity of CPPs.
Collapse
Affiliation(s)
- Marc Serulla
- Department of Biomedical Sciences, University of Lausanne, 1005 Lausanne, Switzerland
| | - Palapuravan Anees
- Department of Chemistry, The University of Chicago, Chicago, IL 60637, USA; Grossman Institute of Neuroscience, Quantitative Biology and Human Behavior, The University of Chicago, Chicago, IL 60637, USA
| | - Ali Hallaj
- Department of Biomedical Sciences, University of Lausanne, 1005 Lausanne, Switzerland
| | - Evgeniya Trofimenko
- Department of Biomedical Sciences, University of Lausanne, 1005 Lausanne, Switzerland
| | - Tara Kalia
- Department of Chemistry, The University of Chicago, Chicago, IL 60637, USA
| | - Yamuna Krishnan
- Department of Chemistry, The University of Chicago, Chicago, IL 60637, USA; Grossman Institute of Neuroscience, Quantitative Biology and Human Behavior, The University of Chicago, Chicago, IL 60637, USA
| | - Christian Widmann
- Department of Biomedical Sciences, University of Lausanne, 1005 Lausanne, Switzerland.
| |
Collapse
|
18
|
Hadjicharalambous A, Bournakas N, Newman H, Skynner MJ, Beswick P. Antimicrobial and Cell-Penetrating Peptides: Understanding Penetration for the Design of Novel Conjugate Antibiotics. Antibiotics (Basel) 2022; 11:1636. [PMID: 36421280 PMCID: PMC9686638 DOI: 10.3390/antibiotics11111636] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 11/11/2022] [Accepted: 11/15/2022] [Indexed: 08/27/2023] Open
Abstract
Antimicrobial peptides (AMPs) are short oligopeptides that can penetrate the bacterial inner and outer membranes. Together with cell-penetrating peptides (CPPs), they are called membrane active peptides; peptides which can translocate across biological membranes. Over the last fifty years, attempts have been made to understand the molecular features that drive the interactions of membranes with membrane active peptides. This review examines the features of a membrane these peptides exploit for translocation, as well as the physicochemical characteristics of membrane active peptides which are important for translocation. Moreover, it presents examples of how these features have been used in recent years to create conjugates consisting of a membrane active peptide, called a "vector", attached to either a current or novel antibiotic, called a "cargo" or "payload". In addition, the review discusses what properties may contribute to an ideal peptide vector able to deliver cargoes across the bacterial outer membrane as the rising issue of antimicrobial resistance demands new strategies to be employed to combat this global public health threat.
Collapse
Affiliation(s)
- Andreas Hadjicharalambous
- Department of Biochemistry, University of Cambridge, Cambridge CB2 1QN, UK
- BicycleTx Limited, Portway Building, Granta Park, Cambridge CB21 6GS, UK
| | - Nikolaos Bournakas
- BicycleTx Limited, Portway Building, Granta Park, Cambridge CB21 6GS, UK
| | - Hector Newman
- BicycleTx Limited, Portway Building, Granta Park, Cambridge CB21 6GS, UK
- School of Life Sciences, University of Warwick, Coventry CV4 7AL, UK
| | - Michael J. Skynner
- BicycleTx Limited, Portway Building, Granta Park, Cambridge CB21 6GS, UK
| | - Paul Beswick
- BicycleTx Limited, Portway Building, Granta Park, Cambridge CB21 6GS, UK
| |
Collapse
|
19
|
Porosk L, Langel Ü. Approaches for evaluation of novel CPP-based cargo delivery systems. Front Pharmacol 2022; 13:1056467. [PMID: 36339538 PMCID: PMC9634181 DOI: 10.3389/fphar.2022.1056467] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Accepted: 10/10/2022] [Indexed: 08/05/2023] Open
Abstract
Cell penetrating peptides (CPPs) can be broadly defined as relatively short synthetic, protein derived or chimeric peptides. Their most remarkable property is their ability to cross cell barriers and facilitate the translocation of cargo, such as drugs, nucleic acids, peptides, small molecules, dyes, and many others across the plasma membrane. Over the years there have been several approaches used, adapted, and developed for the evaluation of CPP efficacies as delivery systems, with the fluorophore attachment as the most widely used approach. It has become progressively evident, that the evaluation method, in order to lead to successful outcome, should concede with the specialties of the delivery. For characterization and assessment of CPP-cargo a combination of research tools of chemistry, physics, molecular biology, engineering, and other fields have been applied. In this review, we summarize the diverse, in silico, in vitro and in vivo approaches used for evaluation and characterization of CPP-based cargo delivery systems.
Collapse
Affiliation(s)
- Ly Porosk
- Laboratory of Drug Delivery, Institute of Technology, Faculty of Science and Technology, University of Tartu, Tartu, Estonia
| | - Ülo Langel
- Laboratory of Drug Delivery, Institute of Technology, Faculty of Science and Technology, University of Tartu, Tartu, Estonia
- Department of Biochemistry and Biophysics, Stockholm University, Stockholm, Sweden
| |
Collapse
|
20
|
García-Mouton C, Parra-Ortiz E, Malmsten M, Cruz A, Pérez-Gil J. Pulmonary surfactant and drug delivery: vehiculization of a tryptophan-tagged antimicrobial peptide over the air-liquid interfacial highway. Eur J Pharm Biopharm 2022; 180:33-47. [PMID: 36154903 DOI: 10.1016/j.ejpb.2022.09.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Revised: 08/31/2022] [Accepted: 09/18/2022] [Indexed: 11/04/2022]
Abstract
This work evaluates interaction of pulmonary surfactant (PS) and antimicrobial peptides (AMPs) in order to investigate (i) if PS can be used to transport AMPs, and (ii) to what extent PS interferes with AMP function and vice versa. This, in turn, is motivated by a need to find new strategies to treat bacterial infections in the airways. Low respiratory tract infections (LRTIs) are a leading cause of illness and death worldwide that, together with the problem of multidrug-resistant (MDR) bacteria, bring to light the necessity of developing effective therapies that ensure high bioavailability of the drug at the site of infection and display a potent antimicrobial effect. Here, we propose the combination of AMPs with PS to improve their delivery, exemplified for the hydrophobically end-tagged AMP, GRR10W4 (GRRPRPRPRPWWWW-NH2), with previously demonstrated potent antimicrobial activity against a broad spectrum of bacteria under various conditions. Experiments using model systems emulating the respiratory interface and an operating alveolus, based on surface balances and bubble surfactometry, served to demonstrate that a fluorescently labelled version of GRR10W4 (GRR10W4-F), was able to interact and insert into PS membranes without affecting its biophysical function. Therefore, vehiculization of the peptide along air-liquid interfaces was enabled, even for interfaces previously occupied by surfactants layers. Furthermore, breathing-like compression-expansion dynamics promoted the interfacial release of GRR10W4-F after its delivery, which could further allow the peptide to perform its antimicrobial function. PS/GRR10W4-F formulations displayed greater antimicrobial effects and reduced toxicity on cultured airway epithelial cells compared to that of the peptide alone. Taken together, these results open the door to the development of novel delivery strategies for AMPs in order to increase the bioavailability of these molecules at the infection site via inhaled therapies.
Collapse
Affiliation(s)
- Cristina García-Mouton
- Department of Biochemistry and Molecular Biology, Faculty of Biology, and Research Institute "Hospital 12 de Octubre (imas12)", Complutense University, 28040 Madrid, Spain
| | - Elisa Parra-Ortiz
- Department of Pharmacy, University of Copenhagen, DK-2100 Copenhagen, Denmark
| | - Martin Malmsten
- Department of Pharmacy, University of Copenhagen, DK-2100 Copenhagen, Denmark; Department of Physical Chemistry 1, University of Lund, SE-22100 Lund, Sweden
| | - Antonio Cruz
- Department of Biochemistry and Molecular Biology, Faculty of Biology, and Research Institute "Hospital 12 de Octubre (imas12)", Complutense University, 28040 Madrid, Spain
| | - Jesús Pérez-Gil
- Department of Biochemistry and Molecular Biology, Faculty of Biology, and Research Institute "Hospital 12 de Octubre (imas12)", Complutense University, 28040 Madrid, Spain.
| |
Collapse
|
21
|
Zsila F. Chiroptical detection of self-aggregating fluorescent rhodamine conjugates: mistakes and prospects. J Pept Sci 2022; 28:e3442. [PMID: 35796259 DOI: 10.1002/psc.3442] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Accepted: 07/05/2022] [Indexed: 11/10/2022]
Abstract
Fluorescent conjugation can be considered as the chromophoric derivatization of the target and as such it may provide additional, structure-related information quickly available by using circular dichroism (CD) spectroscopy. In this essay, peculiar CD spectroscopic data reported earlier for thyroid hormone-rhodamine conjugates have been re-evaluated. Contrary to the original proposal of the intramolecular folding of the labeled hormone, the bisignate motif in the CD spectrum is a clear evidence of dye-dye, intermolecular chiral exciton coupling indicating supramolecular self-association of the conjugates. This anomalous solution behaviour undermines the credibility of experimental results reported with such conjugates still being used in the laboratory practice. The extension of routine far-UV CD spectroscopic scans of chiral fluorophore conjugates into the near-UV and visible spectral region is strongly recommended.
Collapse
|
22
|
Abstract
AbstractBiophysical studies have a very high impact on the understanding of internalization, molecular mechanisms, interactions, and localization of CPPs and CPP/cargo conjugates in live cells or in vivo. Biophysical studies are often first carried out in test-tube set-ups or in vitro, leading to the complicated in vivo systems. This review describes recent studies of CPP internalization, mechanisms, and localization. The multiple methods in these studies reveal different novel and important aspects and define the rules for CPP mechanisms, hopefully leading to their improved applicability to novel and safe therapies.
Collapse
Affiliation(s)
- Matjaž Zorko
- University of Ljubljana, Medical Faculty, Institute of Biochemistry and Molecular Genetics, Vrazov trg 2, 1000Ljubljana, Slovenia,
| | - Ülo Langel
- University of Stockholm, Department of Biochemistry and Biophysics, Svante Arrhenius väg 16, 106 91 Stockholm, Sweden, , and Institute of Technology, University of Tartu, Nooruse 1, Tartu, Estonia, 50411
| |
Collapse
|
23
|
Far-UV circular dichroism signatures indicate fluorophore labeling induced conformational changes of penetratin. Amino Acids 2022; 54:1109-1113. [PMID: 35301594 PMCID: PMC9217886 DOI: 10.1007/s00726-022-03149-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Accepted: 03/02/2022] [Indexed: 11/29/2022]
Abstract
Fluorescent labeling is a broadly utilized approach to assess in vitro and in vivo behavior of biologically active, especially cell-penetrating and antimicrobial peptides. In this communication, far-UV circular dichroism (CD) spectra of penetratin (PEN) fluorophore conjugates reported previously have been re-evaluated. Compared to the intrinsically disordered native peptide, rhodamine B and carboxyfluorescein derivatives of free and membrane-bound PEN exhibit extrinsic CD features. Potential sources of these signals displayed above 220 nm are discussed suggesting the contributions of both intra- and intermolecular chiral exciton coupling mechanisms. Careful evaluation of the CD spectra of fluorophore-labeled peptides is a valuable tool for early detection of labeling-provoked structural alterations which in turn may modify the membrane binding and cellular uptake compared to the unconjugated form.
Collapse
|
24
|
Jeon H, Cremers C, Le D, Abell J, Han J. Multi-dimensional-double-spiral (MDDS) inertial microfluidic platform for sperm isolation directly from the raw semen sample. Sci Rep 2022; 12:4212. [PMID: 35273303 PMCID: PMC8913683 DOI: 10.1038/s41598-022-08042-1] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Accepted: 03/01/2022] [Indexed: 12/19/2022] Open
Abstract
Here, we propose a fully-automated platform using a spiral inertial microfluidic device for standardized semen preparation that can process patient-derived semen samples with diverse fluidic conditions without any pre-washing steps. We utilized the multi-dimensional double spiral (MDDS) device to effectively isolate sperm cells from other non-sperm seminal cells (e.g., leukocytes) in the semen sample. The recirculation platform was employed to minimize sample dependency and achieve highly purified and concentrated (up to tenfold) sperm cells in a rapid and fully-automated manner (~ 10 min processing time for 50 mL of diluted semen sample). The clinical (raw) semen samples obtained from healthy donors were directly used without any pre-washing step to evaluate the developed separation platform, which showed excellent performance with ~ 80% of sperm cell recovery, and > 99.95% and > 98% removal of 10-μm beads (a surrogate for leukocytes) from low-viscosity and high-viscosity semen samples, respectively. We expect that the novel platform will be an efficient and automated tool to achieve purified sperm cells directly from raw semen samples for assisted reproductive technologies (ARTs) as an alternative to density centrifugation or swim-up methods, which often suffer from the low recovery of sperm cells and labor-intensive steps.
Collapse
Affiliation(s)
- Hyungkook Jeon
- Research Laboratory of Electronics, Massachusetts Institute of Technology (MIT), Cambridge, MA, 02139, USA
| | - Claudia Cremers
- Ohana Biosciences, 20 Acorn Park Dr, Cambridge, MA, 02140, USA
| | - Doris Le
- Ohana Biosciences, 20 Acorn Park Dr, Cambridge, MA, 02140, USA
| | - Justin Abell
- Ohana Biosciences, 20 Acorn Park Dr, Cambridge, MA, 02140, USA
| | - Jongyoon Han
- Research Laboratory of Electronics, Massachusetts Institute of Technology (MIT), Cambridge, MA, 02139, USA. .,Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology (MIT), Cambridge, MA, 02139, USA. .,Department of Biological Engineering, Massachusetts Institute of Technology (MIT), Cambridge, MA, 02139, USA.
| |
Collapse
|
25
|
Sebák F, Horváth LB, Kovács D, Szolomájer J, Tóth GK, Babiczky Á, Bősze S, Bodor A. Novel Lysine-Rich Delivery Peptides of Plant Origin ERD and Human S100: The Effect of Carboxyfluorescein Conjugation, Influence of Aromatic and Proline Residues, Cellular Internalization, and Penetration Ability. ACS OMEGA 2021; 6:34470-34484. [PMID: 34963932 PMCID: PMC8697381 DOI: 10.1021/acsomega.1c04637] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Accepted: 10/25/2021] [Indexed: 06/14/2023]
Abstract
The need for novel drug delivery peptides is an important issue of the modern pharmaceutical research. Here, we test K-rich peptides from plant dehydrin ERD14 (ERD-A, ERD-B, and ERD-C) and the C-terminal CPP-resembling region of S100A4 (S100) using the 5(6)-carboxyfluorescein (Cf) tag at the N-terminus. Via a combined pH-dependent NMR and fluorescence study, we analyze the effect of the Cf conjugation/modification on the structural behavior, separately investigating the (5)-Cf and (6)-Cf forms. Flow cytometry results show that all peptides internalize; however, there is a slight difference between the cellular internalization of (5)- and (6)-Cf-peptides. We indicate the possible importance of residues with an aromatic sidechain and proline. We prove that ERD-A localizes mostly in the cytosol, ERD-B and S100 have partial colocalization with lysosomal staining, and ERD-C mainly localizes within vesicle-like compartments, while the uptake mechanism mainly occurs through energy-dependent paths.
Collapse
Affiliation(s)
- Fanni Sebák
- Institute
of Chemistry, ELTE−Eötvös
Loránd University, Pázmány Péter sétány 1/a, H-1117 Budapest, Hungary
- Doctoral
School of Pharmaceutical Sciences, Semmelweis
University, Üllői
út 26, H-1085 Budapest, Hungary
| | - Lilla Borbála Horváth
- ELKH-ELTE
Research Group of Peptide Chemistry, Eötvös Loránd
Research Network, Eötvös Loránd
University, Pázmány Péter sétány 1/a, H-1117 Budapest, Hungary
- National
Public Health Center, Albert Flórián út 2-6, Budapest H-1097, Hungary
- Hevesy
György PhD School of Chemistry, ELTE
Eötvös Loránd University, Pázmány Péter sétány
1/a, H-1117 Budapest, Hungary
| | - Dániel Kovács
- Institute
of Chemistry, ELTE−Eötvös
Loránd University, Pázmány Péter sétány 1/a, H-1117 Budapest, Hungary
- Hevesy
György PhD School of Chemistry, ELTE
Eötvös Loránd University, Pázmány Péter sétány
1/a, H-1117 Budapest, Hungary
| | - János Szolomájer
- Department
of Medical Chemistry, University of Szeged, Dóm tér 8, H-6720 Szeged, Hungary
| | - Gábor K. Tóth
- Department
of Medical Chemistry, University of Szeged, Dóm tér 8, H-6720 Szeged, Hungary
| | - Ákos Babiczky
- Institute
of Cognitive Neuroscience and Psychology, Research Centre for Natural Sciences, Magyar tudósok körútja 2, H-1117 Budapest, Hungary
- Doctoral
School of Psychology/Cognitive Science, Budapest University of Technology and Economics, Műegyetem rakpart 3, H-1111 Budapest, Hungary
| | - Szilvia Bősze
- ELKH-ELTE
Research Group of Peptide Chemistry, Eötvös Loránd
Research Network, Eötvös Loránd
University, Pázmány Péter sétány 1/a, H-1117 Budapest, Hungary
- National
Public Health Center, Albert Flórián út 2-6, Budapest H-1097, Hungary
| | - Andrea Bodor
- Institute
of Chemistry, ELTE−Eötvös
Loránd University, Pázmány Péter sétány 1/a, H-1117 Budapest, Hungary
| |
Collapse
|
26
|
Lützenburg T, Burdina N, Scholz MS, Neundorf I. Improving Membrane Activity and Cargo Delivery Efficacy of a Cell-Penetrating Peptide by Loading with Carboranes. Pharmaceutics 2021; 13:2075. [PMID: 34959356 PMCID: PMC8709211 DOI: 10.3390/pharmaceutics13122075] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Revised: 11/17/2021] [Accepted: 12/01/2021] [Indexed: 01/15/2023] Open
Abstract
Cell-penetrating peptides (CPPs) have emerged as versatile tools to increase the intracellular accumulation of different kinds of cargoes. For an efficient cellular uptake and drug delivery, their organization into a distinct and stable secondary structure at the outer surface of the plasma membrane is a hallmark and supports optimal lipid-peptide interactions. Incorporation of hydrophobic moieties, such as carboranes (CBs), has the potential to increase the lipophilicity of peptides, and thus, to facilitate the formation of secondary structures. Herein, we present synthesis and biophysical as well as biological characterization of carborane-CPP conjugates having incorporated one or more CB clusters. Our results highlight the possibility to modulate the secondary structure of CPPs by the addition of CB's leading to constructs with altered membrane activity and promising use in terms of nucleic acid delivery.
Collapse
Affiliation(s)
- Tamara Lützenburg
- Institute for Biochemistry, Department of Chemistry, University of Cologne, Zülpicher Str. 47a, 50674 Cologne, Germany; (T.L.); (N.B.)
| | - Nele Burdina
- Institute for Biochemistry, Department of Chemistry, University of Cologne, Zülpicher Str. 47a, 50674 Cologne, Germany; (T.L.); (N.B.)
| | - Matthias S. Scholz
- Pharmaceutical Chemistry I & II, Pharmaceutical Institute, Faculty of Mathematics and Natural Sciences, University of Bonn, An der Immenburg 4, 53121 Bonn, Germany;
| | - Ines Neundorf
- Institute for Biochemistry, Department of Chemistry, University of Cologne, Zülpicher Str. 47a, 50674 Cologne, Germany; (T.L.); (N.B.)
| |
Collapse
|
27
|
Volarić J, Szymanski W, Simeth NA, Feringa BL. Molecular photoswitches in aqueous environments. Chem Soc Rev 2021; 50:12377-12449. [PMID: 34590636 PMCID: PMC8591629 DOI: 10.1039/d0cs00547a] [Citation(s) in RCA: 189] [Impact Index Per Article: 47.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Indexed: 12/17/2022]
Abstract
Molecular photoswitches enable dynamic control of processes with high spatiotemporal precision, using light as external stimulus, and hence are ideal tools for different research areas spanning from chemical biology to smart materials. Photoswitches are typically organic molecules that feature extended aromatic systems to make them responsive to (visible) light. However, this renders them inherently lipophilic, while water-solubility is of crucial importance to apply photoswitchable organic molecules in biological systems, like in the rapidly emerging field of photopharmacology. Several strategies for solubilizing organic molecules in water are known, but there are not yet clear rules for applying them to photoswitchable molecules. Importantly, rendering photoswitches water-soluble has a serious impact on both their photophysical and biological properties, which must be taken into consideration when designing new systems. Altogether, these aspects pose considerable challenges for successfully applying molecular photoswitches in aqueous systems, and in particular in biologically relevant media. In this review, we focus on fully water-soluble photoswitches, such as those used in biological environments, in both in vitro and in vivo studies. We discuss the design principles and prospects for water-soluble photoswitches to inspire and enable their future applications.
Collapse
Affiliation(s)
- Jana Volarić
- Centre for Systems Chemistry, Stratingh Institute for Chemistry, Faculty for Science and Engineering, University of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands.
| | - Wiktor Szymanski
- Centre for Systems Chemistry, Stratingh Institute for Chemistry, Faculty for Science and Engineering, University of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands.
- Department of Radiology, Medical Imaging Center, University of Groningen, University Medical Centre Groningen, Hanzeplein 1, 9713 GZ Groningen, The Netherlands
| | - Nadja A Simeth
- Centre for Systems Chemistry, Stratingh Institute for Chemistry, Faculty for Science and Engineering, University of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands.
- Institute for Organic and Biomolecular Chemistry, University of Göttingen, Tammannstr. 2, 37077 Göttingen, Germany
| | - Ben L Feringa
- Centre for Systems Chemistry, Stratingh Institute for Chemistry, Faculty for Science and Engineering, University of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands.
| |
Collapse
|
28
|
Challenges and Methods for the Study of CPP Translocation Mechanisms. Methods Mol Biol 2021; 2383:143-152. [PMID: 34766287 DOI: 10.1007/978-1-0716-1752-6_9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/06/2023]
Abstract
Fluorescence-based methods are widely used to detect crossing of peptides across model or biological membranes. For membrane-active peptides, i.e., peptides that have strong membrane tropism, fluorescence experiments must be accompanied by relevant controls, otherwise they can lead to inconsistent interpretation and underestimation of their limitations. Here we describe how to prepare samples to study fluorescent peptide crossing droplet interface bilayer (model membrane) or cell membrane (biological membrane) and the pitfalls that can affect observational qualitative and quantitative data.
Collapse
|
29
|
Wu Y, Bertran MT, Rowley J, Calder EDD, Joshi D, Walport LJ. Fluorescent Amino Acid Initiated de novo Cyclic Peptides for the Label-Free Assessment of Cell Permeability*. ChemMedChem 2021; 16:3185-3188. [PMID: 34236771 PMCID: PMC8597039 DOI: 10.1002/cmdc.202100315] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Indexed: 11/11/2022]
Abstract
The major obstacle in applying peptides to intracellular targets is their low inherent cell permeability. Standard approaches to attach a fluorophore (e. g. FITC, TAMRA) can change the physicochemical properties of the parent peptide and influence their ability to penetrate and localize in cells. We report a label-free strategy for evaluating the cell permeability of cyclic peptide leads. Fluorescent tryptophan analogues 4-cyanotryptophan (4CNW) and β-(1-azulenyl)-L-alanine (AzAla) were incorporated into in vitro translated macrocyclic peptides by initiator reprogramming. We then demonstrate these efficient blue fluorescent emitters are good tools for monitoring peptide penetration into cells.
Collapse
Affiliation(s)
- Yuteng Wu
- Protein-Protein Interaction LaboratoryThe Francis Crick InstituteLondonNW1 1ATUK
- Department of ChemistryMolecular Sciences Research HubImperial College LondonLondonW12 0BZUK
| | - M. Teresa Bertran
- Protein-Protein Interaction LaboratoryThe Francis Crick InstituteLondonNW1 1ATUK
| | - James Rowley
- Protein-Protein Interaction LaboratoryThe Francis Crick InstituteLondonNW1 1ATUK
- Department of ChemistryMolecular Sciences Research HubImperial College LondonLondonW12 0BZUK
| | - Ewen D. D. Calder
- Protein-Protein Interaction LaboratoryThe Francis Crick InstituteLondonNW1 1ATUK
- Department of ChemistryMolecular Sciences Research HubImperial College LondonLondonW12 0BZUK
| | - Dhira Joshi
- Peptide ChemistryThe Francis Crick InstituteLondonNW1 1ATUK
| | - Louise J. Walport
- Protein-Protein Interaction LaboratoryThe Francis Crick InstituteLondonNW1 1ATUK
- Department of ChemistryMolecular Sciences Research HubImperial College LondonLondonW12 0BZUK
| |
Collapse
|
30
|
Larsen JB, Taebnia N, Dolatshahi-Pirouz A, Eriksen AZ, Hjørringgaard C, Kristensen K, Larsen NW, Larsen NB, Marie R, Mündler AK, Parhamifar L, Urquhart AJ, Weller A, Mortensen KI, Flyvbjerg H, Andresen TL. Imaging therapeutic peptide transport across intestinal barriers. RSC Chem Biol 2021; 2:1115-1143. [PMID: 34458827 PMCID: PMC8341777 DOI: 10.1039/d1cb00024a] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Accepted: 06/09/2021] [Indexed: 12/14/2022] Open
Abstract
Oral delivery is a highly preferred method for drug administration due to high patient compliance. However, oral administration is intrinsically challenging for pharmacologically interesting drug classes, in particular pharmaceutical peptides, due to the biological barriers associated with the gastrointestinal tract. In this review, we start by summarizing the pharmacological performance of several clinically relevant orally administrated therapeutic peptides, highlighting their low bioavailabilities. Thus, there is a strong need to increase the transport of peptide drugs across the intestinal barrier to realize future treatment needs and further development in the field. Currently, progress is hampered by a lack of understanding of transport mechanisms that govern intestinal absorption and transport of peptide drugs, including the effects of the permeability enhancers commonly used to mediate uptake. We describe how, for the past decades, mechanistic insights have predominantly been gained using functional assays with end-point read-out capabilities, which only allow indirect study of peptide transport mechanisms. We then focus on fluorescence imaging that, on the other hand, provides opportunities to directly visualize and thus follow peptide transport at high spatiotemporal resolution. Consequently, it may provide new and detailed mechanistic understanding of the interplay between the physicochemical properties of peptides and cellular processes; an interplay that determines the efficiency of transport. We review current methodology and state of the art in the field of fluorescence imaging to study intestinal barrier transport of peptides, and provide a comprehensive overview of the imaging-compatible in vitro, ex vivo, and in vivo platforms that currently are being developed to accelerate this emerging field of research.
Collapse
Affiliation(s)
- Jannik Bruun Larsen
- Center for Intestinal Absorption and Transport of Biopharmaceuticals, Department of Health Technology, Technical University of Denmark DK-2800, Kgs. Lyngby Denmark
| | - Nayere Taebnia
- Center for Intestinal Absorption and Transport of Biopharmaceuticals, Department of Health Technology, Technical University of Denmark DK-2800, Kgs. Lyngby Denmark
| | - Alireza Dolatshahi-Pirouz
- Center for Intestinal Absorption and Transport of Biopharmaceuticals, Department of Health Technology, Technical University of Denmark DK-2800, Kgs. Lyngby Denmark
| | - Anne Zebitz Eriksen
- Center for Intestinal Absorption and Transport of Biopharmaceuticals, Department of Health Technology, Technical University of Denmark DK-2800, Kgs. Lyngby Denmark
| | - Claudia Hjørringgaard
- Center for Intestinal Absorption and Transport of Biopharmaceuticals, Department of Health Technology, Technical University of Denmark DK-2800, Kgs. Lyngby Denmark
| | - Kasper Kristensen
- Center for Intestinal Absorption and Transport of Biopharmaceuticals, Department of Health Technology, Technical University of Denmark DK-2800, Kgs. Lyngby Denmark
| | - Nanna Wichmann Larsen
- Center for Intestinal Absorption and Transport of Biopharmaceuticals, Department of Health Technology, Technical University of Denmark DK-2800, Kgs. Lyngby Denmark
| | - Niels Bent Larsen
- Center for Intestinal Absorption and Transport of Biopharmaceuticals, Department of Health Technology, Technical University of Denmark DK-2800, Kgs. Lyngby Denmark
| | - Rodolphe Marie
- Center for Intestinal Absorption and Transport of Biopharmaceuticals, Department of Health Technology, Technical University of Denmark DK-2800, Kgs. Lyngby Denmark
| | - Ann-Kathrin Mündler
- Center for Intestinal Absorption and Transport of Biopharmaceuticals, Department of Health Technology, Technical University of Denmark DK-2800, Kgs. Lyngby Denmark
| | - Ladan Parhamifar
- Center for Intestinal Absorption and Transport of Biopharmaceuticals, Department of Health Technology, Technical University of Denmark DK-2800, Kgs. Lyngby Denmark
| | - Andrew James Urquhart
- Center for Intestinal Absorption and Transport of Biopharmaceuticals, Department of Health Technology, Technical University of Denmark DK-2800, Kgs. Lyngby Denmark
| | - Arjen Weller
- Center for Intestinal Absorption and Transport of Biopharmaceuticals, Department of Health Technology, Technical University of Denmark DK-2800, Kgs. Lyngby Denmark
| | - Kim I Mortensen
- Center for Intestinal Absorption and Transport of Biopharmaceuticals, Department of Health Technology, Technical University of Denmark DK-2800, Kgs. Lyngby Denmark
| | - Henrik Flyvbjerg
- Center for Intestinal Absorption and Transport of Biopharmaceuticals, Department of Health Technology, Technical University of Denmark DK-2800, Kgs. Lyngby Denmark
| | - Thomas Lars Andresen
- Center for Intestinal Absorption and Transport of Biopharmaceuticals, Department of Health Technology, Technical University of Denmark DK-2800, Kgs. Lyngby Denmark
| |
Collapse
|
31
|
Kougioumtzi A, Chatziathanasiadou MV, Vrettos EI, Sayyad N, Sakka M, Stathopoulos P, Mantzaris MD, Ganai AM, Karpoormath R, Vartholomatos G, Tsikaris V, Lazarides T, Murphy C, Tzakos AG. Development of novel GnRH and Tat 48-60 based luminescent probes with enhanced cellular uptake and bioimaging profile. Dalton Trans 2021; 50:9215-9224. [PMID: 34125130 DOI: 10.1039/d1dt00060h] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
There is a clear need to develop photostable chromophores for bioimaging with respect to the classically utilized green fluorescent dye fluorescein. Along these lines, we utilized a phosphorescent carboxy-substituted ruthenium(ii) polypyridyl [Ru(bipy)2(mcb)]2+ (bipy = 2,2'-bipyridyl and mcb = 4-carboxy-4'-methyl-2,2'-bipyridyl) complex. We developed two luminescent peptide conjugates of the cell-penetrating peptide Tat48-60 consisting of either [Ru(bipy)2(mcb)]2+ or 5(6)-carboxyfluorescein (5(6)-FAM) tethered on the Lys50 of the peptide through amide bond. We confirmed the efficient cellular uptake of both bioconjugates in HeLa cells by confocal microscopy and flow cytometry and proved that the ruthenium-based chromophore possesses enhanced photostability compared to a 5(6)-FAM-based peptide, after continuous laser scanning. Furthermore, we designed and developed a luminescent agent with high photostability, based on the ruthenium core, that could be selectively localized in cancer cells overexpressing the GnRH receptor (GnRH-R). To achieve this, we took advantage of the tumor-homing character of d-Lys6-GnRH which selectively recognizes the GnRH-R. The [Ru(bipy)2(mcb)]2+-d-Lys6-GnRH peptide conjugate was synthesized, and its cellular uptake was evaluated through flow cytometric analysis and live-cell imaging in HeLa and T24 bladder cancer cells as negative and positive controls of GnRH-R, respectively. Besides the selective targeting that the specific conjugate could offer, we also recorded high internalization levels in T24 bladder cancer cells. The ruthenium(ii) polypyridyl peptide-based conjugates we developed is an intriguing approach that offers targeted cell imaging in the Near Infrared region, and simultaneously paves the way for further advancements in the dynamic studies on cellular imaging.
Collapse
Affiliation(s)
- Anastasia Kougioumtzi
- Institute of Molecular Biology & Biotechnology, Foundation of Research and Technology-Hellas, Department of Biomedical Research, University Campus, 45110 Ioannina, Greece
| | - Maria V Chatziathanasiadou
- University of Ioannina, Department of Chemistry, Section of Organic Chemistry and Biochemistry, 45110, Ioannina, Greece.
| | - Eirinaios I Vrettos
- University of Ioannina, Department of Chemistry, Section of Organic Chemistry and Biochemistry, 45110, Ioannina, Greece.
| | - Nisar Sayyad
- University of Ioannina, Department of Chemistry, Section of Organic Chemistry and Biochemistry, 45110, Ioannina, Greece.
| | - Mariana Sakka
- University of Ioannina, Department of Chemistry, Section of Organic Chemistry and Biochemistry, 45110, Ioannina, Greece.
| | - Panagiotis Stathopoulos
- University of Ioannina, Department of Chemistry, Section of Organic Chemistry and Biochemistry, 45110, Ioannina, Greece.
| | - Michalis D Mantzaris
- Institute of Molecular Biology & Biotechnology, Foundation of Research and Technology-Hellas, Department of Biomedical Research, University Campus, 45110 Ioannina, Greece
| | - Ab Majeed Ganai
- Department of Pharmaceutical Chemistry, Discipline of Pharmaceutical Sciences, College of Health Sciences, University of KwaZulu-Natal (Westville), Durban 4000, South Africa
| | - Rajshekhar Karpoormath
- Department of Pharmaceutical Chemistry, Discipline of Pharmaceutical Sciences, College of Health Sciences, University of KwaZulu-Natal (Westville), Durban 4000, South Africa
| | - Georgios Vartholomatos
- Hematology Laboratory, Unit of Molecular Biology, University Hospital of Ioannina, Ioannina, 45110 Greece
| | - Vassilios Tsikaris
- University of Ioannina, Department of Chemistry, Section of Organic Chemistry and Biochemistry, 45110, Ioannina, Greece.
| | - Theodore Lazarides
- Laboratory of Inorganic Chemistry, Department of Chemistry, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
| | - Carol Murphy
- Institute of Molecular Biology & Biotechnology, Foundation of Research and Technology-Hellas, Department of Biomedical Research, University Campus, 45110 Ioannina, Greece
| | - Andreas G Tzakos
- University of Ioannina, Department of Chemistry, Section of Organic Chemistry and Biochemistry, 45110, Ioannina, Greece. and University Research Center of Ioannina (URCI), Institute of Materials Science and Computing, Ioannina, Greece
| |
Collapse
|
32
|
Translocation of the nonlabeled antimicrobial peptide PGLa across lipid bilayers and its entry into vesicle lumens without pore formation. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2021; 1863:183680. [PMID: 34153295 DOI: 10.1016/j.bbamem.2021.183680] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Revised: 06/09/2021] [Accepted: 06/11/2021] [Indexed: 01/25/2023]
Abstract
Fluorescent-probe-labeled peptides are used to study the interactions of peptides with cells and lipid vesicles but labeling peptides with fluorescent probes can significantly change these interactions. We recently developed a new method to detect the entry of nonlabeled peptides into the lumen of single giant unilamellar vesicles (GUVs). Here we applied this method to examine the interaction of the antimicrobial peptide PGLa with single GUVs to elucidate whether PGLa can enter the GUV lumen without pore formation. First, we examined the interaction of nonlabeled PGLa with single GUVs comprising dioleoylphosphatidylglycerol (DOPG) and dioleoylphosphatidylcholine (DOPC) (4/6) whose lumens contain the fluorescent probe AF647 and DOPG/DOPC (8/2)-large unilamellar vesicles encapsulating a high concentration of calcein. After a large lag period from starting the interaction with PGLa, the fluorescence intensity of the GUV lumen due to calcein (Icalcein) increased gradually without leakage of AF647, indicating that PGLa enters the GUV lumen without pore formation in the GUV membrane. The fraction of entry of PGLa increased with increasing PGLa concentration. Simultaneous measurement of the fractional area change of the GUV membrane (δ) and PGLa-induced increase in Icalcein showed that the entry of PGLa occurs only during the second increase in δ, indicating that PGLa enters the lumen during its translocation from the outer leaflet to the inner leaflet. The fraction of entry of PGLa without pore formation increased with increasing membrane tension. Based on these results, we discuss the elementary processes and the mechanism of the entry of PGLa into the GUV lumen.
Collapse
|
33
|
Horsfall AJ, McDougal DP, Scanlon DB, Bruning JB, Abell AD. Approaches to Introduce Helical Structure in Cysteine-Containing Peptides with a Bimane Group. Chembiochem 2021; 22:2711-2720. [PMID: 34107164 DOI: 10.1002/cbic.202100241] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Revised: 06/08/2021] [Indexed: 01/01/2023]
Abstract
An i-i+4 or i-i+3 bimane-containing linker was introduced into a peptide known to target Estrogen Receptor alpha (ERα), in order to stabilise an α-helical geometry. These macrocycles were studied by CD and NMR to reveal the i-i+4 constrained peptide adopts a 310 -helical structure in solution, and an α-helical conformation on interaction with the ERα coactivator recruitment surface in silico. An acyclic bimane-modified peptide is also helical, when it includes a tryptophan or tyrosine residue; but is significantly less helical with a phenylalanine or alanine residue, which indicates such a bimane modification influences peptide structure in a sequence dependent manner. The fluorescence intensity of the bimane appears influenced by peptide conformation, where helical peptides displayed a fluorescence increase when TFE was added to phosphate buffer, compared to a decrease for less helical peptides. This study presents the bimane as a useful modification to influence peptide structure as an acyclic peptide modification, or as a side-chain constraint to give a macrocycle.
Collapse
Affiliation(s)
- Aimee J Horsfall
- ARC Centre of Excellence for Nanoscale Biophotonics (CNBP), University of Adelaide, Adelaide, SA 5005, Australia.,Department of Chemistry, University of Adelaide, Adelaide, SA 5005, Australia.,The Institute for Photonics & Advanced Sensing (IPAS), University of Adelaide, Adelaide, SA 5005, Australia
| | - Daniel P McDougal
- The Institute for Photonics & Advanced Sensing (IPAS), University of Adelaide, Adelaide, SA 5005, Australia.,School of Biological Sciences, University of Adelaide, Adelaide, SA 5005, Australia
| | - Denis B Scanlon
- Department of Chemistry, University of Adelaide, Adelaide, SA 5005, Australia.,The Institute for Photonics & Advanced Sensing (IPAS), University of Adelaide, Adelaide, SA 5005, Australia
| | - John B Bruning
- The Institute for Photonics & Advanced Sensing (IPAS), University of Adelaide, Adelaide, SA 5005, Australia.,School of Biological Sciences, University of Adelaide, Adelaide, SA 5005, Australia
| | - Andrew D Abell
- ARC Centre of Excellence for Nanoscale Biophotonics (CNBP), University of Adelaide, Adelaide, SA 5005, Australia.,Department of Chemistry, University of Adelaide, Adelaide, SA 5005, Australia.,The Institute for Photonics & Advanced Sensing (IPAS), University of Adelaide, Adelaide, SA 5005, Australia
| |
Collapse
|
34
|
Streck S, Bohr SSR, Birch D, Rades T, Hatzakis NS, McDowell A, Mørck Nielsen H. Interactions of Cell-Penetrating Peptide-Modified Nanoparticles with Cells Evaluated Using Single Particle Tracking. ACS APPLIED BIO MATERIALS 2021; 4:3155-3165. [DOI: 10.1021/acsabm.0c01563] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Sarah Streck
- School of Pharmacy, University of Otago, Dunedin 9016, New Zealand
| | - Søren S.-R. Bohr
- Department of Chemistry & Nano-science Center, University of Copenhagen, DK-2100 Copenhagen, Denmark
- Novo Nordisk Foundation Center for Protein Research, University of Copenhagen, DK-2100 Copenhagen, Denmark
- Center for Biopharmaceuticals and Biobarriers in Drug Delivery, Department of Pharmacy, Faculty of Health and Medical Sciences, University of Copenhagen, DK-2100 Copenhagen, Denmark
| | - Ditlev Birch
- Center for Biopharmaceuticals and Biobarriers in Drug Delivery, Department of Pharmacy, Faculty of Health and Medical Sciences, University of Copenhagen, DK-2100 Copenhagen, Denmark
| | - Thomas Rades
- Department of Pharmacy, Faculty of Health and Medical Sciences, University of Copenhagen, DK-2100 Copenhagen, Denmark
| | - Nikos S. Hatzakis
- Department of Chemistry & Nano-science Center, University of Copenhagen, DK-2100 Copenhagen, Denmark
- Novo Nordisk Foundation Center for Protein Research, University of Copenhagen, DK-2100 Copenhagen, Denmark
- Center for Biopharmaceuticals and Biobarriers in Drug Delivery, Department of Pharmacy, Faculty of Health and Medical Sciences, University of Copenhagen, DK-2100 Copenhagen, Denmark
| | - Arlene McDowell
- School of Pharmacy, University of Otago, Dunedin 9016, New Zealand
| | - Hanne Mørck Nielsen
- Center for Biopharmaceuticals and Biobarriers in Drug Delivery, Department of Pharmacy, Faculty of Health and Medical Sciences, University of Copenhagen, DK-2100 Copenhagen, Denmark
| |
Collapse
|
35
|
Ida H, Takahashi Y, Kumatani A, Shiku H, Murayama T, Hirose H, Futaki S, Matsue T. Nanoscale Visualization of Morphological Alteration of Live-Cell Membranes by the Interaction with Oligoarginine Cell-Penetrating Peptides. Anal Chem 2021; 93:5383-5393. [PMID: 33769789 DOI: 10.1021/acs.analchem.0c04097] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The interactions between the cell membrane and biomolecules remain poorly understood. For example, arginine-rich cell-penetrating peptides (CPPs), including octaarginines (R8), are internalized by interactions with cell membranes. However, during the internalization process, the exact membrane dynamics introduced by these CPPs are still unknown. Here, we visualize arginine-rich CPPs and cell-membrane interaction-induced morphological changes using a system that combines scanning ion-conductance microscopy and spinning-disk confocal microscopy, using fluorescently labeled R8. This system allows time-dependent, nanoscale visualization of structural dynamics in live-cell membranes. Various types of membrane remodeling caused by arginine-rich CPPs are thus observed. The induction of membrane ruffling and the cup closure are observed as a process of endocytic uptake of the peptide. Alternatively suggested is the concave structural formation accompanied by direct peptide translocation through cell membranes. Studies using R8 without fluorescent labeling also demonstrate a non-negligible effect of the fluorescent moiety on membrane structural alteration.
Collapse
Affiliation(s)
- Hiroki Ida
- The Frontier Research Institute for Interdisciplinary Sciences, Tohoku University, Sendai, Miyagi 980-8578, Japan.,Precursory Research for Embryonic Science and Technology, Science and Technology Agency (JST), Saitama 332-0012, Japan.,Advanced Institute for Materials Research, Tohoku University, Sendai, Miyagi 980-8577, Japan.,Graduate School of Environmental Studies, Tohoku University, Sendai, Miyagi 980-8579, Japan
| | - Yasufumi Takahashi
- Precursory Research for Embryonic Science and Technology, Science and Technology Agency (JST), Saitama 332-0012, Japan.,WPI Nano Life Science Institute (WPI NanoLSI), Kanazawa University, Kanazawa, Ishikawa 920-1192, Japan
| | - Akichika Kumatani
- Advanced Institute for Materials Research, Tohoku University, Sendai, Miyagi 980-8577, Japan.,Graduate School of Environmental Studies, Tohoku University, Sendai, Miyagi 980-8579, Japan.,International Center for Materials Nanoarchitectonics, National Institute for Materials Science (NIMS), Tsukuba, Ibaraki 305-0044, Japan.,Center for Science and Innovation in Spintronics (CSIS), Tohoku University, Sendai, Miyagi 980-8577 Japan
| | - Hitoshi Shiku
- Graduate School of Environmental Studies, Tohoku University, Sendai, Miyagi 980-8579, Japan
| | - Tomo Murayama
- Institute for Chemical Research, Kyoto University, Kyoto 611-0011, Japan
| | - Hisaaki Hirose
- Institute for Chemical Research, Kyoto University, Kyoto 611-0011, Japan
| | - Shiroh Futaki
- Institute for Chemical Research, Kyoto University, Kyoto 611-0011, Japan
| | - Tomokazu Matsue
- Graduate School of Environmental Studies, Tohoku University, Sendai, Miyagi 980-8579, Japan
| |
Collapse
|
36
|
Lima HVD, Dos Santos TMC, de Sousa Silva MMA, da Silva Albuquerque JV, Melo LM, de Figueirêdo Freitas VJ, Rádis-Baptista G. The Rhodamine B-encrypted vipericidin peptide, RhoB-Ctn[1-9], displays in vitro antimicrobial activity against opportunistic bacteria and yeasts. Curr Pharm Biotechnol 2021; 23:172-179. [PMID: 33749557 DOI: 10.2174/1389201022666210322123903] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Revised: 01/05/2021] [Accepted: 02/09/2021] [Indexed: 11/22/2022]
Abstract
BACKGROUND Crotalicidin (Ctn), a snake venom cathelicidin-related antimicrobial peptide, is a 34-residue-long linear lysine-rich vipericidin obtained from the South American rattlesnake, Crotalus durissus terrificus. Ctn contains tandem repeats of nine amino acid residues (1KRFKKFFKK9 and 16KRLKKIFKK24; consensus: 1KRhKKhFKK9, h = hydrophobic amino acid) as an integral part of its structure. OBJECTIVE The aim of this study was to evaluate the antimicrobial activity of the encrypted vipericidin nonapeptide KRFKKFFKK, designated as Ctn[1-9], and its structural analogue, rhodamine-B‒conjugated Ctn[1-9], designated as RhoB-Ctn[1-9]. METHOD The susceptibility of representative pathogenic bacteria and yeasts to antimicrobial agents was determined using the broth microdilution minimum inhibitory concentration (MIC) method. Cytotoxicity was estimated using a hemolytic assay. The accumulation of RhoB-Ctn[1-9] in microbial cells was observed by fluorescence microscopy. The antimicrobial synergism of RhoB-Ctn[1-9] with antimicrobials was evaluated using a checkerboard analysis. RESULTS RhoB-conjugated Ctn[1-9] displayed selective antimicrobial activity against infectious gram-negative bacteria such as Escherichia coli, Pseudomonas aeruginosa, and pathogenic species of Candida with low hemolytic effects on human erythrocytes which was not observed with unconjugated Ctn[1-9]. RhoB-Ctn[1-9] could permeate cell membranes and accumulate intracellularly in microbial cells. RhoB-Ctn[1-9] exhibits synergistic effects when used with antibiotics or antifungal agents and reduced the MICs of the peptide and antimicrobials. CONCLUSION These findings indicate the potential of crotalicidin-related short peptides as structural motifs for the diversification of biological functionalities. Further, they set the stage to investigate the molecular mechanisms by which chemically modified vipericidin repeats modulate cell fate.
Collapse
Affiliation(s)
- Hilania Valeria Doudou Lima
- Laboratory of Biochemistry and Biotechnology, Institute of Marine Science, Federal University of Ceará (UFC), Fortaleza-CE. Brazil
| | - Thales Márcio Cabral Dos Santos
- Laboratory of Physiology and Control of Reproduction, Faculty of Veterinary, State University of Ceará (UECE), Fortaleza-CE. Brazil
| | | | - João Victor da Silva Albuquerque
- Laboratory of Physiology and Control of Reproduction, Faculty of Veterinary, State University of Ceará (UECE), Fortaleza-CE. Brazil
| | - Luciana Magalhães Melo
- Laboratory of Physiology and Control of Reproduction, Faculty of Veterinary, State University of Ceará (UECE), Fortaleza-CE. Brazil
| | | | - Gandhi Rádis-Baptista
- Laboratory of Biochemistry and Biotechnology, Institute of Marine Science, Federal University of Ceará (UFC), Fortaleza-CE. Brazil
| |
Collapse
|
37
|
Baranyai Z, Biri-Kovács B, Krátký M, Szeder B, Debreczeni ML, Budai J, Kovács B, Horváth L, Pári E, Németh Z, Cervenak L, Zsila F, Méhes E, Kiss É, Vinšová J, Bősze S. Cellular Internalization and Inhibition Capacity of New Anti-Glioma Peptide Conjugates: Physicochemical Characterization and Evaluation on Various Monolayer- and 3D-Spheroid-Based in Vitro Platforms. J Med Chem 2021; 64:2982-3005. [PMID: 33719423 DOI: 10.1021/acs.jmedchem.0c01399] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Most therapeutic agents used for treating brain malignancies face hindered transport through the blood-brain barrier (BBB) and poor tissue penetration. To overcome these problems, we developed peptide conjugates of conventional and experimental anticancer agents. SynB3 cell-penetrating peptide derivatives were applied that can cross the BBB. Tuftsin derivatives were used to target the neuropilin-1 transport system for selectivity and better tumor penetration. Moreover, SynB3-tuftsin tandem compounds were synthesized to combine the beneficial properties of these peptides. Most of the conjugates showed high and selective efficacy against glioblastoma cells. SynB3 and tandem derivatives demonstrated superior cellular internalization. The penetration profile of the conjugates was determined on a lipid monolayer and Transwell co-culture system with noncontact HUVEC-U87 monolayers as simple ex vivo and in vitro BBB models. Importantly, in 3D spheroids, daunomycin-peptide conjugates possessed a better tumor penetration ability than daunomycin. These conjugates are promising tools for the delivery systems with tunable features.
Collapse
Affiliation(s)
- Zsuzsa Baranyai
- Eötvös Loránd Research Network, Research Group of Peptide Chemistry, Eötvös Loránd University, Pázmány Péter Sétány 1/A, H-1117 Budapest, Hungary
| | - Beáta Biri-Kovács
- Eötvös Loránd Research Network, Research Group of Peptide Chemistry, Eötvös Loránd University, Pázmány Péter Sétány 1/A, H-1117 Budapest, Hungary.,Institute of Chemistry, Eötvös Loránd University, Pázmány Péter Sétány 1/A, H-1117 Budapest, Hungary
| | - Martin Krátký
- Department of Organic and Bioorganic Chemistry, Faculty of Pharmacy in Hradec Králové, Charles University, Akademika Heyrovského 1203, 500 05 Hradec Králové, Czech Republic
| | - Bálint Szeder
- Institute of Enzymology, Research Centre for Natural Sciences, Magyar Tudósok Körútja 2, H-1117 Budapest, Hungary
| | - Márta L Debreczeni
- 3rd Department of Medicine Research Laboratory, Semmelweis University, Kútvölgyi út 4, H-1125 Budapest, Hungary
| | - Johanna Budai
- Eötvös Loránd Research Network, Research Group of Peptide Chemistry, Eötvös Loránd University, Pázmány Péter Sétány 1/A, H-1117 Budapest, Hungary
| | - Bence Kovács
- Centre for Ecological Research, Institute of Ecology and Botany, Alkotmány u. 2-4, H-2163 Vácrátót, Hungary
| | - Lilla Horváth
- Eötvös Loránd Research Network, Research Group of Peptide Chemistry, Eötvös Loránd University, Pázmány Péter Sétány 1/A, H-1117 Budapest, Hungary
| | - Edit Pári
- Laboratory of Interfaces and Nanostructures, Institute of Chemistry, Eötvös Loránd University, Pázmány Péter Sétány 1/A, H-1117 Budapest, Hungary
| | - Zsuzsanna Németh
- 3rd Department of Medicine Research Laboratory, Semmelweis University, Kútvölgyi út 4, H-1125 Budapest, Hungary
| | - László Cervenak
- 3rd Department of Medicine Research Laboratory, Semmelweis University, Kútvölgyi út 4, H-1125 Budapest, Hungary
| | - Ferenc Zsila
- Institute of Materials and Environmental Chemistry, Research Centre for Natural Sciences, Magyar Tudósok Körútja 2, H-1117 Budapest, Hungary
| | - Előd Méhes
- Department of Biological Physics, Institute of Physics, Eötvös Loránd University, Pázmány Péter Sétány 1/A, H-1117 Budapest, Hungary
| | - Éva Kiss
- Laboratory of Interfaces and Nanostructures, Institute of Chemistry, Eötvös Loránd University, Pázmány Péter Sétány 1/A, H-1117 Budapest, Hungary
| | - Jarmila Vinšová
- Department of Organic and Bioorganic Chemistry, Faculty of Pharmacy in Hradec Králové, Charles University, Akademika Heyrovského 1203, 500 05 Hradec Králové, Czech Republic
| | - Szilvia Bősze
- Eötvös Loránd Research Network, Research Group of Peptide Chemistry, Eötvös Loránd University, Pázmány Péter Sétány 1/A, H-1117 Budapest, Hungary
| |
Collapse
|
38
|
Portelinha J, Duay SS, Yu SI, Heilemann K, Libardo MDJ, Juliano SA, Klassen JL, Angeles-Boza AM. Antimicrobial Peptides and Copper(II) Ions: Novel Therapeutic Opportunities. Chem Rev 2021; 121:2648-2712. [PMID: 33524257 DOI: 10.1021/acs.chemrev.0c00921] [Citation(s) in RCA: 57] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
The emergence of new pathogens and multidrug resistant bacteria is an important public health issue that requires the development of novel classes of antibiotics. Antimicrobial peptides (AMPs) are a promising platform with great potential for the identification of new lead compounds that can combat the aforementioned pathogens due to their broad-spectrum antimicrobial activity and relatively low rate of resistance emergence. AMPs of multicellular organisms made their debut four decades ago thanks to ingenious researchers who asked simple questions about the resistance to bacterial infections of insects. Questions such as "Do fruit flies ever get sick?", combined with pioneering studies, have led to an understanding of AMPs as universal weapons of the immune system. This review focuses on a subclass of AMPs that feature a metal binding motif known as the amino terminal copper and nickel (ATCUN) motif. One of the metal-based strategies of hosts facing a pathogen, it includes wielding the inherent toxicity of copper and deliberately trafficking this metal ion into sites of infection. The sudden increase in the concentration of copper ions in the presence of ATCUN-containing AMPs (ATCUN-AMPs) likely results in a synergistic interaction. Herein, we examine common structural features in ATCUN-AMPs that exist across species, and we highlight unique features that deserve additional attention. We also present the current state of knowledge about the molecular mechanisms behind their antimicrobial activity and the methods available to study this promising class of AMPs.
Collapse
Affiliation(s)
- Jasmin Portelinha
- Department of Chemistry, University of Connecticut, 55 North Eagleville Road, Storrs, Connecticut 06269, United States
| | - Searle S Duay
- Department of Chemistry, University of Connecticut, 55 North Eagleville Road, Storrs, Connecticut 06269, United States.,Chemistry Department, Adamson University, 900 San Marcelino Street, Ermita, Manila 1000, Philippines
| | - Seung I Yu
- Department of Molecular and Cell Biology, University of Connecticut, 91 North Eagleville Road, Storrs, Connecticut 06269, United States
| | - Kara Heilemann
- Department of Chemistry, University of Connecticut, 55 North Eagleville Road, Storrs, Connecticut 06269, United States
| | - M Daben J Libardo
- Department of Chemistry, University of Connecticut, 55 North Eagleville Road, Storrs, Connecticut 06269, United States
| | - Samuel A Juliano
- Department of Chemistry, University of Connecticut, 55 North Eagleville Road, Storrs, Connecticut 06269, United States
| | - Jonathan L Klassen
- Department of Molecular and Cell Biology, University of Connecticut, 91 North Eagleville Road, Storrs, Connecticut 06269, United States
| | - Alfredo M Angeles-Boza
- Department of Chemistry, University of Connecticut, 55 North Eagleville Road, Storrs, Connecticut 06269, United States.,Institute of Material Science, University of Connecticut, 55 North Eagleville Road, Storrs, Connecticut 06269, United States
| |
Collapse
|
39
|
Kim GC, Cheon DH, Lee Y. Challenge to overcome current limitations of cell-penetrating peptides. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2021; 1869:140604. [PMID: 33453413 DOI: 10.1016/j.bbapap.2021.140604] [Citation(s) in RCA: 84] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Revised: 12/21/2020] [Accepted: 01/11/2021] [Indexed: 12/14/2022]
Abstract
The penetration of biological membranes is a prime obstacle for the delivery of pharmaceutical drugs. Cell-penetrating peptide (CPP) is an efficient vehicle that can deliver various cargos across the biological membranes. Since the discovery, CPPs have been rigorously studied to unveil the underlying penetrating mechanism as well as to exploit CPPs for various biomedical applications. This review will focus on the various strategies to overcome current limitations regarding stability, selectivity, and efficacy of CPPs.
Collapse
Affiliation(s)
- Gyu Chan Kim
- Department of Chemistry, Seoul National University, Seoul 151-742, Republic of Korea
| | - Dae Hee Cheon
- Department of Chemistry, Seoul National University, Seoul 151-742, Republic of Korea
| | - Yan Lee
- Department of Chemistry, Seoul National University, Seoul 151-742, Republic of Korea.
| |
Collapse
|
40
|
Xiong Y, Shi C, Li L, Tang Y, Zhang X, Liao S, Zhang B, Sun C, Ren C. A review on recent advances in amino acid and peptide-based fluorescence and its potential applications. NEW J CHEM 2021. [DOI: 10.1039/d1nj02230j] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Fluorescence is widely used to detect functional groups and ions, and peptides are used in various fields due to their excellent biological activity.
Collapse
Affiliation(s)
- Yingshuo Xiong
- School of Chemistry and Materials Science, Ludong University, Yantai 264025, China
| | - Changxin Shi
- School of Chemistry and Materials Science, Ludong University, Yantai 264025, China
| | - Lingyi Li
- School of Chemistry and Materials Science, Ludong University, Yantai 264025, China
| | - Yuanhan Tang
- School of Chemistry and Materials Science, Ludong University, Yantai 264025, China
| | - Xin Zhang
- School of Chemistry and Materials Science, Ludong University, Yantai 264025, China
| | - Sisi Liao
- School of Chemistry and Materials Science, Ludong University, Yantai 264025, China
| | - Beibei Zhang
- School of Chemistry and Materials Science, Ludong University, Yantai 264025, China
| | - Changmei Sun
- School of Chemistry and Materials Science, Ludong University, Yantai 264025, China
| | - Chunguang Ren
- Yantai Institute of Materia Medica, Yantai 264000, China
| |
Collapse
|
41
|
Horsfall AJ, Abell AD. An Inherently Fluorescent Peptide Constraint to Define Secondary Structure: Moving Away from Auxiliary Tags. Aust J Chem 2021. [DOI: 10.1071/ch21169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
42
|
Ohgita T, Takechi-Haraya Y, Okada K, Matsui S, Takeuchi M, Saito C, Nishitsuji K, Uchimura K, Kawano R, Hasegawa K, Sakai-Kato K, Akaji K, Izutsu KI, Saito H. Enhancement of direct membrane penetration of arginine-rich peptides by polyproline II helix structure. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2020; 1862:183403. [DOI: 10.1016/j.bbamem.2020.183403] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2020] [Revised: 05/29/2020] [Accepted: 06/19/2020] [Indexed: 02/06/2023]
|
43
|
Deprey K, Batistatou N, Kritzer JA. A critical analysis of methods used to investigate the cellular uptake and subcellular localization of RNA therapeutics. Nucleic Acids Res 2020; 48:7623-7639. [PMID: 32644123 PMCID: PMC7430645 DOI: 10.1093/nar/gkaa576] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Revised: 06/17/2020] [Accepted: 06/24/2020] [Indexed: 12/21/2022] Open
Abstract
RNA therapeutics are a promising strategy to treat genetic diseases caused by the overexpression or aberrant splicing of a specific protein. The field has seen major strides in the clinical efficacy of this class of molecules, largely due to chemical modifications and delivery strategies that improve nuclease resistance and enhance cell penetration. However, a major obstacle in the development of RNA therapeutics continues to be the imprecise, difficult, and often problematic nature of most methods used to measure cell penetration. Here, we review these methods and clearly distinguish between those that measure total cellular uptake of RNA therapeutics, which includes both productive and non-productive uptake, and those that measure cytosolic/nuclear penetration, which represents only productive uptake. We critically analyze the benefits and drawbacks of each method. Finally, we use key examples to illustrate how, despite rigorous experimentation and proper controls, our understanding of the mechanism of gymnotic uptake of RNA therapeutics remains limited by the methods commonly used to analyze RNA delivery.
Collapse
Affiliation(s)
- Kirsten Deprey
- Department of Chemistry, Tufts University, 62 Talbot Ave, Medford, MA 02155, USA
| | - Nefeli Batistatou
- Department of Chemistry, Tufts University, 62 Talbot Ave, Medford, MA 02155, USA
| | - Joshua A Kritzer
- Department of Chemistry, Tufts University, 62 Talbot Ave, Medford, MA 02155, USA
| |
Collapse
|
44
|
Cavaco M, Pérez-Peinado C, Valle J, Silva RDM, Correia JDG, Andreu D, Castanho MARB, Neves V. To What Extent Do Fluorophores Bias the Biological Activity of Peptides? A Practical Approach Using Membrane-Active Peptides as Models. Front Bioeng Biotechnol 2020; 8:552035. [PMID: 33015016 PMCID: PMC7509492 DOI: 10.3389/fbioe.2020.552035] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Accepted: 08/18/2020] [Indexed: 12/25/2022] Open
Abstract
The characterization of biologically active peptides relies heavily on the study of their efficacy, toxicity, mechanism of action, cellular uptake, or intracellular location, using both in vitro and in vivo studies. These studies frequently depend on the use of fluorescence-based techniques. Since most peptides are not intrinsically fluorescent, they are conjugated to a fluorophore. The conjugation may interfere with peptide properties, thus biasing the results. The selection of the most suitable fluorophore is highly relevant. Here, a comprehensive study with blood-brain barrier (BBB) peptide shuttles (PepH3 and PepNeg) and antimicrobial peptides (AMPs) (vCPP2319 and Ctn[15-34]), tested as anticancer peptides (ACPs), having different fluorophores, namely 5(6)-carboxyfluorescein (CF), rhodamine B (RhB), quasar 570 (Q570), or tide fluor 3 (TF3) attached is presented. The goal is the evaluation of the impact of the selected fluorophores on peptide performance, applying routinely used techniques to assess cytotoxicity/toxicity, secondary structure, BBB translocation, and cellular internalization. Our results show that some fluorophores significantly modulate peptide activity when compared with unlabeled peptides, being more noticeable in hydrophobic and charged fluorophores. This study highlights the need for a careful experimental design for fluorescently labeled molecules, such as peptides.
Collapse
Affiliation(s)
- Marco Cavaco
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Lisbon, Portugal
- Proteomics and Protein Chemistry Unit, Department of Experimental and Health Sciences, Pompeu Fabra University, Barcelona, Spain
| | - Clara Pérez-Peinado
- Proteomics and Protein Chemistry Unit, Department of Experimental and Health Sciences, Pompeu Fabra University, Barcelona, Spain
| | - Javier Valle
- Proteomics and Protein Chemistry Unit, Department of Experimental and Health Sciences, Pompeu Fabra University, Barcelona, Spain
| | - Rúben D. M. Silva
- Centro de Ciências e Tecnologias Nucleares and Departamento de Engenharia e Ciências Nucleares, Instituto Superior Técnico, Universidade de Lisboa, Lisbon, Portugal
| | - João D. G. Correia
- Centro de Ciências e Tecnologias Nucleares and Departamento de Engenharia e Ciências Nucleares, Instituto Superior Técnico, Universidade de Lisboa, Lisbon, Portugal
| | - David Andreu
- Proteomics and Protein Chemistry Unit, Department of Experimental and Health Sciences, Pompeu Fabra University, Barcelona, Spain
| | - Miguel A. R. B. Castanho
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Lisbon, Portugal
| | - Vera Neves
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Lisbon, Portugal
| |
Collapse
|
45
|
Kristensen M, Kucharz K, Felipe Alves Fernandes E, Strømgaard K, Schallburg Nielsen M, Cederberg Helms HC, Bach A, Ulrikkaholm Tofte-Hansen M, Irene Aldana Garcia B, Lauritzen M, Brodin B. Conjugation of Therapeutic PSD-95 Inhibitors to the Cell-Penetrating Peptide Tat Affects Blood-Brain Barrier Adherence, Uptake, and Permeation. Pharmaceutics 2020; 12:E661. [PMID: 32674358 PMCID: PMC7408072 DOI: 10.3390/pharmaceutics12070661] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Revised: 07/06/2020] [Accepted: 07/10/2020] [Indexed: 02/06/2023] Open
Abstract
Novel stroke therapies are needed. Inhibition of the interaction between the postsynaptic density-95 (PSD-95)/disc large/ZO-1 (PDZ) domains of PSD-95 and the N-methyl-D-aspartate (NMDA) receptor has been suggested as a strategy for relieving neuronal damage. The peptides NR2B9c and N-dimer have been designed to hinder this interaction; they are conjugated to the cell-penetrating peptide Tat to facilitate blood-brain barrier (BBB) permeation and neuronal uptake. Tat-N-dimer exhibits 1000-fold better target affinity than Tat-NR2B9c, but the same magnitude of improvement is not observed in terms of therapeutic effect. Differences in BBB permeation by Tat-NR2B9c and Tat-N-dimer may explain this difference, but studies providing a direct comparison of Tat-NR2B9c and Tat-N-dimer are lacking. The aim of the present study was therefore to compare the BBB uptake and permeation of Tat-NR2B9c and Tat-N-dimer. The peptides were conjugated to the fluorophore TAMRA and their chemical stability assessed. Endothelial membrane association and cell uptake, and transendothelial permeation were estimated using co-cultures of primary bovine brain capillary endothelial cells and rat astrocytes. In vivo BBB permeation was demonstrated in mice using two-photon microscopy imaging. Tissue distribution was evaluated in mice demonstrating brain accumulation of TAMRA-Tat (0.4% ID/g), TAMRA-Tat-NR2B9c (0.3% ID/g), and TAMRA-Tat-N-dimer (0.25% ID/g). In conclusion, we demonstrate that attachment of NR2B9c or N-dimer to Tat affects both the chemical stability and the ability of the resulting construct to interact with and permeate the BBB.
Collapse
Affiliation(s)
- Mie Kristensen
- Department of Pharmacy, University of Copenhagen, Universitetsparken 2, DK-2100 Copenhagen Ø, Denmark; (H.C.C.H.); (B.B.)
| | - Krzysztof Kucharz
- Department of Neuroscience and Pharmacology, University of Copenhagen, DK-2200 Copenhagen N, Denmark; (K.K.); (M.L.)
| | - Eduardo Felipe Alves Fernandes
- Department of Drug Design and Pharmacology, University of Copenhagen, DK-2100 Copenhagen Ø, Denmark; (E.F.A.F.); (K.S.); (A.B.); (M.U.T.-H.); (B.I.A.G.)
| | - Kristian Strømgaard
- Department of Drug Design and Pharmacology, University of Copenhagen, DK-2100 Copenhagen Ø, Denmark; (E.F.A.F.); (K.S.); (A.B.); (M.U.T.-H.); (B.I.A.G.)
| | | | - Hans Christian Cederberg Helms
- Department of Pharmacy, University of Copenhagen, Universitetsparken 2, DK-2100 Copenhagen Ø, Denmark; (H.C.C.H.); (B.B.)
| | - Anders Bach
- Department of Drug Design and Pharmacology, University of Copenhagen, DK-2100 Copenhagen Ø, Denmark; (E.F.A.F.); (K.S.); (A.B.); (M.U.T.-H.); (B.I.A.G.)
| | - Malte Ulrikkaholm Tofte-Hansen
- Department of Drug Design and Pharmacology, University of Copenhagen, DK-2100 Copenhagen Ø, Denmark; (E.F.A.F.); (K.S.); (A.B.); (M.U.T.-H.); (B.I.A.G.)
| | - Blanca Irene Aldana Garcia
- Department of Drug Design and Pharmacology, University of Copenhagen, DK-2100 Copenhagen Ø, Denmark; (E.F.A.F.); (K.S.); (A.B.); (M.U.T.-H.); (B.I.A.G.)
| | - Martin Lauritzen
- Department of Neuroscience and Pharmacology, University of Copenhagen, DK-2200 Copenhagen N, Denmark; (K.K.); (M.L.)
| | - Birger Brodin
- Department of Pharmacy, University of Copenhagen, Universitetsparken 2, DK-2100 Copenhagen Ø, Denmark; (H.C.C.H.); (B.B.)
| |
Collapse
|
46
|
Sun G, Teng Y, Zhao Z, Cheow LF, Yu H, Chen CH. Functional Stem Cell Sorting via Integrative Droplet Synchronization. Anal Chem 2020; 92:7915-7923. [DOI: 10.1021/acs.analchem.0c01312] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Guoyun Sun
- Department of Biomedical Engineering, National University of Singapore, 4 Engineering Drive 3, 04-08, Singapore
| | - Yao Teng
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, 2 Medical Drive, MD9, Singapore
| | - Zixuan Zhao
- Mechanobiology Institute, National University of Singapore, 5A Engineering Drive 1, 04-08 Singapore
| | - Lih Feng Cheow
- Department of Biomedical Engineering, National University of Singapore, 4 Engineering Drive 3, 04-08, Singapore
| | - Hanry Yu
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, 2 Medical Drive, MD9, Singapore
- Mechanobiology Institute, National University of Singapore, 5A Engineering Drive 1, 04-08 Singapore
- Institute of Bioengineering and Nanotechnology, A*STAR, 31 Biopolis Way, The Nanos 07-01, Singapore
- CAMP, Singapore-MIT Alliance for Research and Technology, 1 CREATE Way, 04-01, Singapore
| | - Chia-Hung Chen
- Department of Biomedical Engineering, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon Tong, Hong Kong SAR China
| |
Collapse
|
47
|
Deprey K, Kritzer JA. Quantitative measurement of cytosolic penetration using the chloroalkane penetration assay. Methods Enzymol 2020; 641:277-309. [PMID: 32713526 PMCID: PMC7872221 DOI: 10.1016/bs.mie.2020.03.003] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
A major barrier for drug development is ensuring molecules can access intracellular targets. This is especially true for biomolecules, which are notoriously difficult to deliver to the cytosol. Many current methods for measuring the internalization of therapeutic biomolecules are largely indirect and qualitative, and they do not offer information about subcellular localization. We recently reported a new assay, called the ChloroAlkane Penetration Assay (CAPA), that addresses some of the drawbacks of existing methods. CAPA is high-throughput, quantitative, and compartment-specific, and can be used to monitor cytosolic penetration over time and under a variety of culture conditions. We have used CAPA to investigate the cytosolic localization of peptides, proteins, and oligonucleotides. In this chapter, we discuss the materials, protocols, and troubleshooting necessary to perform CAPA and appropriately analyze the data. We end with a discussion about the applications and limitations of CAPA, and we speculate on the potential of the assay and its variations.
Collapse
Affiliation(s)
- Kirsten Deprey
- Department of Chemistry, Tufts University, Medford, MA, United States
| | - Joshua A Kritzer
- Department of Chemistry, Tufts University, Medford, MA, United States.
| |
Collapse
|
48
|
Flon V, Bénard M, Schapman D, Galas L, Renard PY, Sabot C. Fluorophore-Assisted Click Chemistry through Copper(I) Complexation. Biomolecules 2020; 10:biom10040619. [PMID: 32316290 PMCID: PMC7225998 DOI: 10.3390/biom10040619] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Revised: 04/06/2020] [Accepted: 04/10/2020] [Indexed: 12/31/2022] Open
Abstract
The copper-catalyzed alkyne-azide cycloaddition (CuAAC) is one of the most powerful chemical strategies for selective fluorescent labeling of biomolecules in in vitro or biological systems. In order to accelerate the ligation process and ensure efficient formation of conjugates under diluted conditions, external copper(I) ligands or sophisticated copper(I)-chelating azides are used. This latter strategy, however, increases the bulkiness of the triazole linkage, thus perturbing the biological function or dynamic behavior of the conjugates. In a proof-of-concept study, we investigated the use of an extremely compact fluorophore-based copper(I) chelating azide in order to accelerate the CuAAC with concomitant fluorescence labeling; in our strategy, the fluorophore is able to complex copper(I) species while retaining its photophysical properties. It is believed that this unprecedented approach which was applied for the labeling of a short peptide molecule and the fluorescent labeling of live cells, could be extended to other families of nitrogen-based fluorophores in order to tune both the reaction rate and photophysical characteristics.
Collapse
Affiliation(s)
- Victor Flon
- Normandie Univ, CNRS, UNIROUEN, INSA Rouen, COBRA (UMR 6014), 76000 Rouen, France; (V.F.); (P.-Y.R.)
| | - Magalie Bénard
- Normandie Univ, UNIROUEN, INSERM, PRIMACEN, 76000 Rouen, France; (M.B.); (D.S.); (L.G.)
| | - Damien Schapman
- Normandie Univ, UNIROUEN, INSERM, PRIMACEN, 76000 Rouen, France; (M.B.); (D.S.); (L.G.)
| | - Ludovic Galas
- Normandie Univ, UNIROUEN, INSERM, PRIMACEN, 76000 Rouen, France; (M.B.); (D.S.); (L.G.)
| | - Pierre-Yves Renard
- Normandie Univ, CNRS, UNIROUEN, INSA Rouen, COBRA (UMR 6014), 76000 Rouen, France; (V.F.); (P.-Y.R.)
| | - Cyrille Sabot
- Normandie Univ, CNRS, UNIROUEN, INSA Rouen, COBRA (UMR 6014), 76000 Rouen, France; (V.F.); (P.-Y.R.)
- Correspondence:
| |
Collapse
|
49
|
Shuma ML, Moghal MMR, Yamazaki M. Detection of the Entry of Nonlabeled Transportan 10 into Single Vesicles. Biochemistry 2020; 59:1780-1790. [DOI: 10.1021/acs.biochem.0c00102] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Madhabi Lata Shuma
- Integrated Bioscience Section, Graduate School of Science and Technology, Shizuoka University, Shizuoka 422-8529, Japan
| | - Md. Mizanur Rahman Moghal
- Integrated Bioscience Section, Graduate School of Science and Technology, Shizuoka University, Shizuoka 422-8529, Japan
| | - Masahito Yamazaki
- Integrated Bioscience Section, Graduate School of Science and Technology, Shizuoka University, Shizuoka 422-8529, Japan
- Nanomaterials Research Division, Research Institute of Electronics, Shizuoka University, Shizuoka 422-8529, Japan
- Department of Physics, Faculty of Science, Shizuoka University, Shizuoka 422-8529, Japan
| |
Collapse
|
50
|
EJP18 peptide derived from the juxtamembrane domain of epidermal growth factor receptor represents a novel membrane-active cell-penetrating peptide. Biochem J 2020; 477:45-60. [DOI: 10.1042/bcj20190452] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2019] [Revised: 12/05/2019] [Accepted: 12/10/2019] [Indexed: 01/18/2023]
Abstract
Membrane-active peptides have been extensively studied to probe protein–membrane interactions, to act as antimicrobial agents and cell-penetrating peptides (CPPs) for the delivery of therapeutic agents to cells. Hundreds of membrane-active sequences acting as CPPs have now been described including bioportides that serve as single entity modifiers of cell physiology at the intracellular level. Translation of promising CPPs in pre-clinical studies have, however, been disappointing as only few identified delivery systems have progressed to clinical trials. To search for novel membrane-active peptides a sequence from the EGFR juxtamembrane region was identified (named EJP18), synthesised, and examined in its L- and D-form for its ability to mediate the delivery of a small fluorophore and whole proteins to cancer cell lines. Initial studies identified the peptide as being highly membrane-active causing extensive and rapid plasma membrane reorganisation, blebbing, and toxicity. At lower, non-toxic concentrations the peptides outperformed the well-characterised CPP octaarginine in cellular delivery capacity for a fluorophore or proteins that were associated with the peptide covalently or via ionic interactions. EJP18 thus represents a novel membrane-active peptide that may be used as a naturally derived model for biophysical protein–membrane interactions or for delivery of cargo into cells for therapeutic or diagnostic applications.
Collapse
|