1
|
Alcover S, Ramos-Regalado L, Girón G, Muñoz-García N, Vilahur G. HDL-Cholesterol and Triglycerides Dynamics: Essential Players in Metabolic Syndrome. Antioxidants (Basel) 2025; 14:434. [PMID: 40298782 PMCID: PMC12024175 DOI: 10.3390/antiox14040434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2025] [Revised: 03/27/2025] [Accepted: 03/31/2025] [Indexed: 04/30/2025] Open
Abstract
Metabolic syndrome (MetS) is a complex cluster of interrelated metabolic disorders that significantly elevate the risk of cardiovascular disease, making it a pressing public health concern worldwide. Among the key features of MetS, dyslipidemia-characterized by altered levels of high-density lipoprotein cholesterol (HDL-C) and triglycerides (TG)-plays a crucial role in the disorder's progression. This review aims to elucidate the intricate interplay between HDL-C and TG within the context of lipid metabolism and cardiovascular health, while also addressing the detrimental impact of various cardiovascular risk factors and associated comorbidities. The dynamics of HDL-C and TG are explored, highlighting their reciprocal relationship and respective contributions to the pathophysiology of MetS. Elevated levels of TGs are consistently associated with reduced concentrations of HDL-C, resulting in a lipid profile that promotes the development of vascular disease. Specifically, as TG levels rise, the protective cardiovascular effects of HDL-C are diminished, leading to the increased accumulation of pro-atherogenic TG-rich lipoproteins and low-density lipoprotein particles within the vascular wall, contributing to the progression of atheromas, which can ultimately result in significant ischemic cardiovascular events. Ultimately, this paper underscores the significance of HDL and TG as essential targets for therapeutic intervention, emphasizing their potential in effectively managing MetS and reducing cardiovascular risk.
Collapse
Affiliation(s)
- Sebastià Alcover
- Research Institute Sant Pau (IR SANT PAU), 08041 Barcelona, Spain; (S.A.); (L.R.-R.); (G.G.); (N.M.-G.)
- Facultat de Biologia, Universitat de Barcelona, 08028 Barcelona, Spain
| | - Lisaidy Ramos-Regalado
- Research Institute Sant Pau (IR SANT PAU), 08041 Barcelona, Spain; (S.A.); (L.R.-R.); (G.G.); (N.M.-G.)
- Facultat de Biologia, Universitat de Barcelona, 08028 Barcelona, Spain
| | - Gabriela Girón
- Research Institute Sant Pau (IR SANT PAU), 08041 Barcelona, Spain; (S.A.); (L.R.-R.); (G.G.); (N.M.-G.)
- Facultat de Biociències, Universitat Autònoma de Barcelona, 08193 Barcelona, Spain
| | - Natàlia Muñoz-García
- Research Institute Sant Pau (IR SANT PAU), 08041 Barcelona, Spain; (S.A.); (L.R.-R.); (G.G.); (N.M.-G.)
- Facultat de Biologia, Universitat de Barcelona, 08028 Barcelona, Spain
| | - Gemma Vilahur
- Research Institute Sant Pau (IR SANT PAU), 08041 Barcelona, Spain; (S.A.); (L.R.-R.); (G.G.); (N.M.-G.)
- Centro de Investigación Biomédica en Red Enfermedades Cardiovasculares, Instituto de Salud Carlos III, 28029 Madrid, Spain
| |
Collapse
|
2
|
Sasko B, Scharow L, Mueller R, Jaensch M, Dammermann W, Seibert FS, Hillmeister P, Buschmann I, Christ M, Ritter O, Hamdani N, Ukena C, Westhoff TH, Kelesidis T, Pagonas N. Reduced high-density lipoprotein antioxidant function in patients with coronary artery disease and acute coronary syndrome. JCI Insight 2025; 10:e187889. [PMID: 40125555 PMCID: PMC11949010 DOI: 10.1172/jci.insight.187889] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2024] [Accepted: 02/07/2025] [Indexed: 03/25/2025] Open
Abstract
RESULTS Participants with CAD (n = 723) had 12% higher mean relative levels of nHDLox compared with those with invasively excluded CAD (n = 502, P < 0.001). Patients presenting with symptoms of an ACS had the highest nHDLox values when compared with the elective cohort (median 1.35, IQR 0.97 to 1.85, P < 0.001). In multivariate analysis adjusted for age, sex, body mass index, and hypertension, nHDLox was a strong independent predictor of ACS (P < 0.001) but not of CAD (P > 0.05). CONCLUSION HDL antioxidant function is reduced in patients with CAD. nHDLox is strongly associated with ACS. TRIAL REGISTRATION German Clinical Trials Register DRKS00014037. FUNDING Brandenburg Medical School Theodor Fontane, the BIOX Stiftung, and NIH grants R01AG059501 and R03AG059462. BACKGROUND High-density lipoprotein (HDL) function rather than its concentration plays an important role in the pathogenesis of coronary artery disease (CAD). The aim of the present study was to determine whether reduced antioxidant function of HDL is associated with the presence of a stable CAD or acute coronary syndrome (ACS). METHODS HDL function was measured in 2 cohorts: 1225 patients admitted electively for coronary angiography and 196 patients with ACS. A validated cell-free biochemical assay was used to determine reduced HDL antioxidant function, as assessed by increased HDL-lipid peroxide content (HDLox), which was normalized by HDL-C levels and the mean value of a pooled serum control from healthy participants (nHDLox; unitless). Results are expressed as median with interquartile range (IQR).
Collapse
Affiliation(s)
- Benjamin Sasko
- Ruhr-University of Bochum, Medical Department II, Marien Hospital Herne, Bochum, Germany
- Department of Cardiology, University Medical Center Brandenburg an der Havel, Medical School Theodor Fontane, Brandenburg an der Havel, Germany
| | - Linda Scharow
- Department of Cardiology, University Hospital Ruppin-Brandenburg, Medical School Theodor Fontane, Neuruppin, Germany
| | - Rhea Mueller
- Department of Cardiology, University Medical Center Brandenburg an der Havel, Medical School Theodor Fontane, Brandenburg an der Havel, Germany
| | - Monique Jaensch
- Department of Cardiology, University Hospital Ruppin-Brandenburg, Medical School Theodor Fontane, Neuruppin, Germany
- Faculty of Health Sciences, Joint Faculty of the Brandenburg University of Technology Cottbus – Senftenberg, the (MHB) Theodor Fontane and the University of Potsdam, Germany
| | - Werner Dammermann
- Faculty of Health Sciences, Joint Faculty of the Brandenburg University of Technology Cottbus – Senftenberg, the (MHB) Theodor Fontane and the University of Potsdam, Germany
- Center for Internal Medicine II, University Medical Center Brandenburg an der Havel, Medical School Theodor Fontane, Brandenburg an der Havel, Germany
| | - Felix S. Seibert
- Medical Department I, Marien Hospital Herne, Ruhr-University of Bochum, Bochum, Germany
| | - Philipp Hillmeister
- Faculty of Health Sciences, Joint Faculty of the Brandenburg University of Technology Cottbus – Senftenberg, the (MHB) Theodor Fontane and the University of Potsdam, Germany
- Department of Angiology, Brandenburg Medical School Theodor Fontane, Brandenburg an der Havel, Germany
| | - Ivo Buschmann
- Faculty of Health Sciences, Joint Faculty of the Brandenburg University of Technology Cottbus – Senftenberg, the (MHB) Theodor Fontane and the University of Potsdam, Germany
- Department of Angiology, Brandenburg Medical School Theodor Fontane, Brandenburg an der Havel, Germany
| | - Martin Christ
- Department of Cardiology, Knappschaftskrankenhaus Bottrop, Academic Teaching Hospital, University Duisburg-Essen, Germany
| | - Oliver Ritter
- Department of Cardiology, University Medical Center Brandenburg an der Havel, Medical School Theodor Fontane, Brandenburg an der Havel, Germany
- Faculty of Health Sciences, Joint Faculty of the Brandenburg University of Technology Cottbus – Senftenberg, the (MHB) Theodor Fontane and the University of Potsdam, Germany
| | - Nazha Hamdani
- Department of Cellular and Translational Physiology, Institute of Physiology, and
- Institut für Forschung und Lehre (IFL), Molecular and Experimental Cardiology, Ruhr-University Bochum, Bochum, Germany
| | - Christian Ukena
- Ruhr-University of Bochum, Medical Department II, Marien Hospital Herne, Bochum, Germany
| | - Timm H. Westhoff
- Medical Department I, Marien Hospital Herne, Ruhr-University of Bochum, Bochum, Germany
| | - Theodoros Kelesidis
- Department of Medicine, Division of Infectious Diseases and Geographic Medicine, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Nikolaos Pagonas
- Department of Cardiology, University Hospital Ruppin-Brandenburg, Medical School Theodor Fontane, Neuruppin, Germany
- Faculty of Health Sciences, Joint Faculty of the Brandenburg University of Technology Cottbus – Senftenberg, the (MHB) Theodor Fontane and the University of Potsdam, Germany
| |
Collapse
|
3
|
Jakubowski H. The Molecular Bases of Anti-Oxidative and Anti-Inflammatory Properties of Paraoxonase 1. Antioxidants (Basel) 2024; 13:1292. [PMID: 39594433 PMCID: PMC11591180 DOI: 10.3390/antiox13111292] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2024] [Revised: 10/14/2024] [Accepted: 10/21/2024] [Indexed: 11/28/2024] Open
Abstract
The anti-oxidative and anti-inflammatory properties of high-density lipoprotein (HDL) are thought to be mediated by paraoxonase 1 (PON1), a calcium-dependent hydrolytic enzyme carried on a subfraction of HDL that also carries other anti-oxidative and anti-inflammatory proteins. In humans and mice, low PON1 activity is associated with elevated oxidized lipids and homocysteine (Hcy)-thiolactone, as well as proteins that are modified by these metabolites, which can cause oxidative stress and inflammation. PON1-dependent metabolic changes can lead to atherothrombotic cardiovascular disease, Alzheimer's disease, and cancer. The molecular bases underlying these associations are not fully understood. Biochemical, proteomic, and metabolic studies have significantly expanded our understanding of the mechanisms by which low PON1 leads to disease and high PON1 is protective. The studies discussed in this review highlight the changes in gene expression affecting proteostasis as a cause of the pro-oxidative and pro-inflammatory phenotypes associated with attenuated PON1 activity. Accumulating evidence supports the conclusion that PON1 regulates the expression of anti-oxidative and anti-inflammatory proteins, and that the disruption of these processes leads to disease.
Collapse
Affiliation(s)
- Hieronim Jakubowski
- Department of Biochemistry and Biotechnology, University of Life Sciences, 60-637 Poznań, Poland; ; Tel.: +1-973-972-8733; Fax: 973-972-8981
- Department of Microbiology, Biochemistry and Molecular Genetics, International Center for Public Health, New Jersey Medical School, Rutgers University, Newark, NJ 07103, USA
| |
Collapse
|
4
|
Chatterjee A, Sepuri NBV. Methionine sulfoxide reductase 2 regulates Cvt autophagic pathway by altering the stability of Atg19 and Ape1 in Saccharomyces cerevisiae. J Biol Chem 2024; 300:105662. [PMID: 38246354 PMCID: PMC10875273 DOI: 10.1016/j.jbc.2024.105662] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 12/31/2023] [Accepted: 01/08/2024] [Indexed: 01/23/2024] Open
Abstract
The reversible oxidation of methionine plays a crucial role in redox regulation of proteins. Methionine oxidation in proteins causes major structural modifications that can destabilize and abrogate their function. The highly conserved methionine sulfoxide reductases protect proteins from oxidative damage by reducing their oxidized methionines, thus restoring their stability and function. Deletion or mutation in conserved methionine sulfoxide reductases leads to aging and several human neurological disorders and also reduces yeast growth on nonfermentable carbon sources. Despite their importance in human health, limited information about their physiological substrates in humans and yeast is available. For the first time, we show that Mxr2 interacts in vivo with two core proteins of the cytoplasm to vacuole targeting (Cvt) autophagy pathway, Atg19, and Ape1 in Saccharomyces cerevisiae. Deletion of MXR2 induces instability and early turnover of immature Ape1 and Atg19 proteins and reduces the leucine aminopeptidase activity of Ape1 without affecting the maturation process of Ape1. Additonally, Mxr2 interacts with the immature Ape1, dependent on Met17 present within the propeptide of Ape1 as a single substitution mutation of Met17 to Leu abolishes this interaction. Importantly, Ape1 M17L mutant protein resists oxidative stress-induced degradation in WT and mxr2Δ cells. By identifying Atg19 and Ape1 as cytosolic substrates of Mxr2, our study maps the hitherto unexplored connection between Mxr2 and the Cvt autophagy pathway and sheds light on Mxr2-dependent oxidative regulation of the Cvt pathway.
Collapse
Affiliation(s)
- Arpan Chatterjee
- Department of Biochemistry, School of Life Sciences, University of Hyderabad, Hyderabad, Telangana, India
| | - Naresh Babu V Sepuri
- Department of Biochemistry, School of Life Sciences, University of Hyderabad, Hyderabad, Telangana, India.
| |
Collapse
|
5
|
Assessment of Ex Vivo Antioxidative Potential of Murine HDL in Atherosclerosis. METHODS IN MOLECULAR BIOLOGY (CLIFTON, N.J.) 2022; 2419:283-292. [PMID: 35237971 DOI: 10.1007/978-1-0716-1924-7_17] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
This chapter provides details on a simple and reproducible method used to determine the capacity of murine HDL to prevent the oxidation of LDL . The principle of the method is based on the rearrangement of double bonds of polyunsaturated fatty acids that occurs during the oxidation of human LDL , which generates a sigmoidal curve. The shape and length of the curve is modified in the presence of HDL , and such modifications are easily quantifiable by measuring the absorbance of conjugated dienes at 234 nm. The general technique described herein may be applied to evaluate the effect of HDL obtained from different experimental murine models of atherosclerosis.
Collapse
|
6
|
Stadler JT, Marsche G. Dietary Strategies to Improve Cardiovascular Health: Focus on Increasing High-Density Lipoprotein Functionality. Front Nutr 2021; 8:761170. [PMID: 34881279 PMCID: PMC8646038 DOI: 10.3389/fnut.2021.761170] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Accepted: 10/28/2021] [Indexed: 12/12/2022] Open
Abstract
Cardiovascular disease is one of the leading causes of morbidity and mortality worldwide, with increasing incidence. A cornerstone of cardiovascular disease prevention is lifestyle modification through dietary changes to influence various risk factors such as obesity, hypertension and diabetes. The effects of diet on cardiovascular health are complex. Some dietary components and metabolites directly affect the composition and structure of high-density lipoproteins (HDL) and increase anti-inflammatory and vasoprotective properties. HDLs are composed of distinct subpopulations of particles of varying size and composition that have several dynamic and context-dependent functions. The identification of potential dietary components that improve HDL functionality is currently an important research goal. One of the best-studied diets for cardiovascular health is the Mediterranean diet, consisting of fish, olive oil, fruits, vegetables, whole grains, legumes/nuts, and moderate consumption of alcohol, most commonly red wine. The Mediterranean diet, especially when supplemented with extra virgin olive oil rich in phenolic compounds, has been shown to markedly improve metrics of HDL functionality and reduce the burden, or even prevent the development of cardiovascular disease. Particularly, the phenolic compounds of extra virgin olive oil seem to exert the significant positive effects on HDL function. Moreover, supplementation of anthocyanins as well as antioxidants such as lycopene or the omega-3 fatty acid eicosapentaenoic acid improve parameters of HDL function. In this review, we aim to highlight recent discoveries on beneficial dietary patterns as well as nutritional components and their effects on cardiovascular health, focusing on HDL function.
Collapse
Affiliation(s)
- Julia T. Stadler
- Division of Pharmacology, Otto Loewi Research Center, Medical University of Graz, Graz, Austria
| | - Gunther Marsche
- Division of Pharmacology, Otto Loewi Research Center, Medical University of Graz, Graz, Austria
| |
Collapse
|
7
|
Corona G, Di Gregorio E, Vignoli A, Muraro E, Steffan A, Miolo G. 1H-NMR Plasma Lipoproteins Profile Analysis Reveals Lipid Metabolism Alterations in HER2-Positive Breast Cancer Patients. Cancers (Basel) 2021; 13:5845. [PMID: 34830999 PMCID: PMC8616511 DOI: 10.3390/cancers13225845] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Revised: 11/17/2021] [Accepted: 11/20/2021] [Indexed: 01/06/2023] Open
Abstract
The lipid tumour demand may shape the host metabolism adapting the circulating lipids composition to its growth and progression needs. This study aims to exploit the straightforward 1H-NMR lipoproteins analysis to investigate the alterations of the circulating lipoproteins' fractions in HER2-positive breast cancer and their modulations induced by treatments. The baseline 1H-NMR plasma lipoproteins profiles were measured in 43 HER2-positive breast cancer patients and compared with those of 28 healthy women. In a subset of 32 patients, longitudinal measurements were also performed along neoadjuvant chemotherapy, after surgery, adjuvant treatment, and during the two-year follow-up. Differences between groups were assessed by multivariate PLS-DA and by univariate analyses. The diagnostic power of lipoproteins subfractions was assessed by ROC curve, while lipoproteins time changes along interventions were investigated by ANOVA analysis. The PLS-DA model distinguished HER2-positive breast cancer patients from the control group with a sensitivity of 96.4% and specificity of 90.7%, mainly due to the differential levels of VLDLs subfractions that were significantly higher in the patients' group. Neoadjuvant chemotherapy-induced a significant drop in the HDLs after the first three months of treatment and a specific decrease in the HDL-3 and HDL-4 subfractions were found significantly associated with the pathological complete response achievement. These results indicate that HER2-positive breast cancer is characterized by a significant host lipid mobilization that could be useful for diagnostic purposes. Moreover, the lipoproteins profiles alterations induced by the therapeutic interventions could predict the clinical outcome supporting the application of 1H-NMR lipoproteins profiles analysis for longitudinal monitoring of HER2-positive breast cancer in large clinical studies.
Collapse
Affiliation(s)
- Giuseppe Corona
- Immunopathology and Cancer Biomarkers Unit, IRCCS Centro di Riferimento Oncologico di Aviano (CRO), 33081 Aviano, Italy; (E.D.G.); (E.M.); (A.S.)
| | - Emanuela Di Gregorio
- Immunopathology and Cancer Biomarkers Unit, IRCCS Centro di Riferimento Oncologico di Aviano (CRO), 33081 Aviano, Italy; (E.D.G.); (E.M.); (A.S.)
- Department of Molecular Science and Nano Systems, Ca’ Foscari University of Venice, Via Torino 155, Venezia Mestre, 30172 Venice, Italy
| | - Alessia Vignoli
- Magnetic Resonance Center (CERM), Department of Chemistry “Ugo Schiff”, University of Florence, Via Luigi Sacconi 6, 50019 Sesto Fiorentino, Italy;
- Consorzio Interuniversitario Risonanze Magnetiche di Metallo Proteine, 50019 Sesto Fiorentino, Italy
| | - Elena Muraro
- Immunopathology and Cancer Biomarkers Unit, IRCCS Centro di Riferimento Oncologico di Aviano (CRO), 33081 Aviano, Italy; (E.D.G.); (E.M.); (A.S.)
| | - Agostino Steffan
- Immunopathology and Cancer Biomarkers Unit, IRCCS Centro di Riferimento Oncologico di Aviano (CRO), 33081 Aviano, Italy; (E.D.G.); (E.M.); (A.S.)
| | - Gianmaria Miolo
- Medical Oncology and Cancer Prevention Unit, IRCCS Centro di Riferimento Oncologico di Aviano (CRO), 33081 Aviano, Italy;
| |
Collapse
|
8
|
Kluck GEG, Yoo JA, Sakarya EH, Trigatti BL. Good Cholesterol Gone Bad? HDL and COVID-19. Int J Mol Sci 2021; 22:10182. [PMID: 34638523 PMCID: PMC8507803 DOI: 10.3390/ijms221910182] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 09/15/2021] [Accepted: 09/17/2021] [Indexed: 02/06/2023] Open
Abstract
The transmissible respiratory disease COVID-19, caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), has affected millions of people worldwide since its first reported outbreak in December of 2019 in Wuhan, China. Since then, multiple studies have shown an inverse correlation between the levels of high-density lipoprotein (HDL) particles and the severity of COVID-19, with low HDL levels being associated with an increased risk of severe outcomes. Some studies revealed that HDL binds to SARS-CoV-2 particles via the virus's spike protein and, under certain conditions, such as low HDL particle concentrations, it facilitates SARS-CoV-2 binding to angiotensin-converting enzyme 2 (ACE2) and infection of host cells. Other studies, however, reported that HDL suppressed SARS-CoV-2 infection. In both cases, the ability of HDL to enhance or suppress virus infection appears to be dependent on the expression of the HDL receptor, namely, the Scavenger Receptor Class B type 1 (SR-B1), in the target cells. SR-B1 and HDL represent crucial mediators of cholesterol metabolism. Herein, we review the complex role of HDL and SR-B1 in SARS-CoV-2-induced disease. We also review recent advances in our understanding of HDL structure, properties, and function during SARS-CoV-2 infection and the resulting COVID-19 disease.
Collapse
Affiliation(s)
| | | | | | - Bernardo L. Trigatti
- Thrombosis and Atherosclerosis Research Institute and Department of Biochemistry and Biomedical Sciences, McMaster University and Hamilton Health Sciences, Hamilton, ON L8L 2X2, Canada; (G.E.G.K.); (J.-A.Y.); (E.H.S.)
| |
Collapse
|
9
|
Morris G, Berk M, Walder K, O'Neil A, Maes M, Puri BK. The lipid paradox in neuroprogressive disorders: Causes and consequences. Neurosci Biobehav Rev 2021; 128:35-57. [PMID: 34118292 DOI: 10.1016/j.neubiorev.2021.06.017] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Revised: 04/27/2021] [Accepted: 06/06/2021] [Indexed: 02/07/2023]
Abstract
Chronic systemic inflammation is associated with an increased risk of cardiovascular disease in an environment of low low-density lipoprotein (LDL) and low total cholesterol and with the pathophysiology of neuroprogressive disorders. The causes and consequences of this lipid paradox are explored. Circulating activated neutrophils can release inflammatory molecules such as myeloperoxidase and the pro-inflammatory cytokines interleukin-1 beta, interleukin-6 and tumour necrosis factor-alpha. Since activated neutrophils are associated with atherosclerosis and cardiovascular disease and with major depressive disorder, bipolar disorder and schizophrenia, it seems reasonable to hypothesise that the inflammatory molecules released by them may act as mediators of the link between systemic inflammation and the development of atherosclerosis in neuroprogressive disorders. This hypothesis is tested by considering the association at a molecular level of systemic inflammation with increased LDL oxidation; increased small dense LDL levels; increased lipoprotein (a) concentration; secretory phospholipase A2 activation; cytosolic phospholipase A2 activation; increased platelet activation; decreased apolipoprotein A1 levels and function; decreased paroxonase-1 activity; hyperhomocysteinaemia; and metabolic endotoxaemia. These molecular mechanisms suggest potential therapeutic targets.
Collapse
Affiliation(s)
- Gerwyn Morris
- Deakin University, IMPACT - the Institute for Mental and Physical Health and Clinical Translation, School of Medicine, Barwon Health, Geelong, Australia
| | - Michael Berk
- Deakin University, IMPACT - the Institute for Mental and Physical Health and Clinical Translation, School of Medicine, Barwon Health, Geelong, Australia; Deakin University, CMMR Strategic Research Centre, School of Medicine, Geelong, Victoria, Australia; Orygen, The National Centre of Excellence in Youth Mental Health, the Department of Psychiatry and the Florey Institute for Neuroscience and Mental Health, University of Melbourne, Parkville, Victoria, Australia
| | - Ken Walder
- Deakin University, IMPACT - the Institute for Mental and Physical Health and Clinical Translation, School of Medicine, Barwon Health, Geelong, Australia
| | - Adrienne O'Neil
- Deakin University, IMPACT - the Institute for Mental and Physical Health and Clinical Translation, School of Medicine, Barwon Health, Geelong, Australia
| | - Michael Maes
- Deakin University, IMPACT - the Institute for Mental and Physical Health and Clinical Translation, School of Medicine, Barwon Health, Geelong, Australia; Department of Psychiatry, King Chulalongkorn University Hospital, Bangkok, Thailand
| | | |
Collapse
|
10
|
Stadler JT, Wadsack C, Marsche G. Fetal High-Density Lipoproteins: Current Knowledge on Particle Metabolism, Composition and Function in Health and Disease. Biomedicines 2021; 9:biomedicines9040349. [PMID: 33808220 PMCID: PMC8067099 DOI: 10.3390/biomedicines9040349] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Revised: 03/24/2021] [Accepted: 03/25/2021] [Indexed: 12/20/2022] Open
Abstract
Cholesterol and other lipids carried by lipoproteins play an indispensable role in fetal development. Recent evidence suggests that maternally derived high-density lipoprotein (HDL) differs from fetal HDL with respect to its proteome, size, and function. Compared to the HDL of adults, fetal HDL is the major carrier of cholesterol and has a unique composition that implies other physiological functions. Fetal HDL is enriched in apolipoprotein E, which binds with high affinity to the low-density lipoprotein receptor. Thus, it appears that a primary function of fetal HDL is the transport of cholesterol to tissues as is accomplished by low-density lipoproteins in adults. The fetal HDL-associated bioactive sphingolipid sphingosine-1-phosphate shows strong vasoprotective effects at the fetoplacental vasculature. Moreover, lipoprotein-associated phospholipase A2 carried by fetal-HDL exerts anti-oxidative and athero-protective functions on the fetoplacental endothelium. Notably, the mass and activity of HDL-associated paraoxonase 1 are about 5-fold lower in the fetus, accompanied by an attenuation of anti-oxidative activity of fetal HDL. Cholesteryl ester transfer protein activity is reduced in fetal circulation despite similar amounts of the enzyme in maternal and fetal serum. This review summarizes the current knowledge on fetal HDL as a potential vasoprotective lipoprotein during fetal development. We also provide an overview of whether and how the protective functionalities of HDL are impaired in pregnancy-related syndromes such as pre-eclampsia or gestational diabetes mellitus.
Collapse
Affiliation(s)
- Julia T. Stadler
- Division of Pharmacology, Otto Loewi Research Center, Medical University of Graz, Universitätsplatz 4, 8010 Graz, Austria
- Correspondence: (J.T.S.); (G.M.); Tel.: +43-316-385-74115 (J.T.S.); +43-316-385-74128 (G.M.)
| | - Christian Wadsack
- Department of Obstetrics and Gynecology, Medical University of Graz, Auenbruggerplatz 14, 8036 Graz, Austria;
| | - Gunther Marsche
- Division of Pharmacology, Otto Loewi Research Center, Medical University of Graz, Universitätsplatz 4, 8010 Graz, Austria
- Correspondence: (J.T.S.); (G.M.); Tel.: +43-316-385-74115 (J.T.S.); +43-316-385-74128 (G.M.)
| |
Collapse
|
11
|
Morris G, Puri BK, Bortolasci CC, Carvalho A, Berk M, Walder K, Moreira EG, Maes M. The role of high-density lipoprotein cholesterol, apolipoprotein A and paraoxonase-1 in the pathophysiology of neuroprogressive disorders. Neurosci Biobehav Rev 2021; 125:244-263. [PMID: 33657433 DOI: 10.1016/j.neubiorev.2021.02.037] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Revised: 01/29/2021] [Accepted: 02/23/2021] [Indexed: 12/11/2022]
Abstract
Lowered high-density lipoprotein (HDL) cholesterol has been reported in major depressive disorder, bipolar disorder, first episode of psychosis, and schizophrenia. HDL, its major apolipoprotein component, ApoA1, and the antioxidant enzyme paraoxonase (PON)1 (which is normally bound to ApoA1) all have anti-atherogenic, antioxidant, anti-inflammatory, and immunomodulatory roles, which are discussed in this paper. The paper details the pathways mediating the anti-inflammatory effects of HDL, ApoA1 and PON1 and describes the mechanisms leading to compromised HDL and PON1 levels and function in an environment of chronic inflammation. The molecular mechanisms by which changes in HDL, ApoA1 and PON1 might contribute to the pathophysiology of the neuroprogressive disorders are explained. Moreover, the anti-inflammatory actions of ApoM-mediated sphingosine 1-phosphate (S1P) signalling are reviewed as well as the deleterious effects of chronic inflammation and oxidative stress on ApoM/S1P signalling. Finally, therapeutic interventions specifically aimed at improving the levels and function of HDL and PON1 while reducing levels of inflammation and oxidative stress are considered. These include the so-called Mediterranean diet, extra virgin olive oil, polyphenols, flavonoids, isoflavones, pomegranate juice, melatonin and the Mediterranean diet combined with the ketogenic diet.
Collapse
Affiliation(s)
- Gerwyn Morris
- Deakin University, IMPACT - The Institute for Mental and Physical Health and Clinical Translation, School of Medicine, Barwon Health, Geelong, Australia
| | | | - Chiara C Bortolasci
- Deakin University, IMPACT - The Institute for Mental and Physical Health and Clinical Translation, School of Medicine, Barwon Health, Geelong, Australia; Deakin University, CMMR Strategic Research Centre, School of Medicine, Geelong, Victoria, Australia.
| | - Andre Carvalho
- Deakin University, IMPACT - The Institute for Mental and Physical Health and Clinical Translation, School of Medicine, Barwon Health, Geelong, Australia; Department of Psychiatry, University of Toronto, Toronto, ON, Canada; Centre for Addiction and Mental Health (CAMH), Toronto, ON, Canada
| | - Michael Berk
- Deakin University, IMPACT - The Institute for Mental and Physical Health and Clinical Translation, School of Medicine, Barwon Health, Geelong, Australia; Orygen, The National Centre of Excellence in Youth Mental Health, The Department of Psychiatry and The Florey Institute for Neuroscience and Mental Health, University of Melbourne, Parkville, Victoria, Australia
| | - Ken Walder
- Deakin University, IMPACT - The Institute for Mental and Physical Health and Clinical Translation, School of Medicine, Barwon Health, Geelong, Australia; Deakin University, CMMR Strategic Research Centre, School of Medicine, Geelong, Victoria, Australia
| | - Estefania G Moreira
- Post-Graduation Program in Health Sciences, State University of Londrina, Londrina, PR, Brazil
| | - Michael Maes
- Deakin University, IMPACT - The Institute for Mental and Physical Health and Clinical Translation, School of Medicine, Barwon Health, Geelong, Australia; Department of Psychiatry, King Chulalongkorn University Hospital, Bangkok, Thailand; Department of Psychiatry, Medical University of Plovdiv, Plovdiv, Bulgaria
| |
Collapse
|
12
|
Stadler JT, Marsche G. Obesity-Related Changes in High-Density Lipoprotein Metabolism and Function. Int J Mol Sci 2020; 21:E8985. [PMID: 33256096 PMCID: PMC7731239 DOI: 10.3390/ijms21238985] [Citation(s) in RCA: 107] [Impact Index Per Article: 21.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Revised: 11/23/2020] [Accepted: 11/24/2020] [Indexed: 02/07/2023] Open
Abstract
In obese individuals, atherogenic dyslipidemia is a very common and important factor in the increased risk of cardiovascular disease. Adiposity-associated dyslipidemia is characterized by low high-density lipoprotein cholesterol (HDL-C) levels and an increase in triglyceride-rich lipoproteins. Several factors and mechanisms are involved in lowering HDL-C levels in the obese state and HDL quantity and quality is closely related to adiponectin levels and the bioactive lipid sphingosine-1-phosphate. Recent studies have shown that obesity profoundly alters HDL metabolism, resulting in altered HDL subclass distribution, composition, and function. Importantly, weight loss through gastric bypass surgery and Mediterranean diet, especially when enriched with virgin olive oil, is associated with increased HDL-C levels and significantly improved metrics of HDL function. A thorough understanding of the underlying mechanisms is crucial for a better understanding of the impact of obesity on lipoprotein metabolism and for the development of appropriate therapeutic approaches. The objective of this review article was to summarize the newly identified changes in the metabolism, composition, and function of HDL in obesity and to discuss possible pathophysiological consequences.
Collapse
Affiliation(s)
- Julia T. Stadler
- Otto Loewi Research Center, Division of Pharmacology, Medical University of Graz, 8010 Graz, Austria
| | - Gunther Marsche
- Otto Loewi Research Center, Division of Pharmacology, Medical University of Graz, 8010 Graz, Austria
| |
Collapse
|
13
|
Xu Y, Li F, Zhao X, Tan C, Wang B, Chen Y, Cao J, Wu D, Yu H. Methionine sulfoxide reductase A attenuates atherosclerosis via repairing dysfunctional HDL in scavenger receptor class B type I deficient mice. FASEB J 2020; 34:3805-3819. [PMID: 31975555 DOI: 10.1096/fj.201902429r] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2019] [Revised: 12/18/2019] [Accepted: 12/20/2019] [Indexed: 01/10/2023]
Abstract
High-density lipoprotein (HDL), a well-known atheroprotective factor, can be converted to proatherogenic particles in chronic inflammation. HDL-targeted therapeutic strategy for atherosclerotic cardiovascular disease (CVD) is currently under development. This study aims to assess the role of methionine sulfoxide reductase A (MsrA) in abnormal HDL and its related disorders in scavenger receptor class B type I deficient (SR-BI-/- ) mice. First, we demonstrated that MsrA overexpression attenuated ROS level and inflammation in HepG2 cells. For the in vivo study, SR-BI-/- mice were intravenously injected with lentivirus to achieve hepatic MsrA overexpression. High-level hepatic MsrA significantly reduced the plasma free cholesterol contents, improved HDL functional proteins apolipoprotein A-I (apoAI), apoE, paraoxonase1 (PON1), and lecithin:cholesterol acyltransferase (LCAT), while decreased the pro-inflammatory property of dysfunctional HDL, contributing to reduced atherosclerosis and hepatic steatosis in Western diet-fed mice. Furthermore, the study revealed that hepatic MsrA altered the expression of several genes controlling HDL biogenesis, cholesterol esterification, cholesterol uptake mediated by low-density lipoprotein receptor (LDLR) and biliary excretion, as well as suppressed nuclear factor κB (NF-κB) signaling pathway, which largely relied on liver X receptor alpha (LXRα)-upregulation. These results provide original evidence that MsrA may be a promising target for the therapy of dysfunctional HDL-related CVD.
Collapse
Affiliation(s)
- Yanyong Xu
- Department of Biochemistry and Molecular Biology, Hubei Provincial Key Laboratory of Developmentally Originated Disease, Wuhan University School of Basic Medical Sciences, Wuhan, China
| | - Feifei Li
- Department of Biochemistry and Molecular Biology, Hubei Provincial Key Laboratory of Developmentally Originated Disease, Wuhan University School of Basic Medical Sciences, Wuhan, China
| | - Xiaojie Zhao
- Department of Biochemistry and Molecular Biology, Hubei Provincial Key Laboratory of Developmentally Originated Disease, Wuhan University School of Basic Medical Sciences, Wuhan, China
| | - Chenkun Tan
- Department of Biochemistry and Molecular Biology, Hubei Provincial Key Laboratory of Developmentally Originated Disease, Wuhan University School of Basic Medical Sciences, Wuhan, China
| | - Binyi Wang
- Department of Biochemistry and Molecular Biology, Hubei Provincial Key Laboratory of Developmentally Originated Disease, Wuhan University School of Basic Medical Sciences, Wuhan, China
| | - Yiyong Chen
- Department of Biochemistry and Molecular Biology, Hubei Provincial Key Laboratory of Developmentally Originated Disease, Wuhan University School of Basic Medical Sciences, Wuhan, China
| | - Jia Cao
- Department of Biochemistry and Molecular Biology, Hubei Provincial Key Laboratory of Developmentally Originated Disease, Wuhan University School of Basic Medical Sciences, Wuhan, China
| | - Dongfang Wu
- Department of Pharmacy, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Hong Yu
- Department of Biochemistry and Molecular Biology, Hubei Provincial Key Laboratory of Developmentally Originated Disease, Wuhan University School of Basic Medical Sciences, Wuhan, China
| |
Collapse
|
14
|
Antioxidant activities of Se-MPS: A selenopeptide identified from selenized brown rice protein hydrolysates. Lebensm Wiss Technol 2019. [DOI: 10.1016/j.lwt.2019.05.076] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
15
|
Sartore G, Chilelli NC, Seraglia R, Ragazzi E, Marin R, Roverso M, Cosma C, Vaccaro O, Burlina S, Lapolla A. Long-term effect of pioglitazone vs glimepiride on lipoprotein oxidation in patients with type 2 diabetes: a prospective randomized study. Acta Diabetol 2019; 56:505-513. [PMID: 30740640 DOI: 10.1007/s00592-018-01278-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/13/2018] [Accepted: 12/14/2018] [Indexed: 01/07/2023]
Abstract
AIMS Type 2 diabetes (DM2) is associated to oxidative modifications of high-density lipoproteins (HDL), which can interfere with their function. Pioglitazone has proved effective in raising HDL cholesterol (HDL-C) and lowering small dense low-density lipoprotein (LDL), but no clinical studies have examined its effect on lipoprotein oxidation in patients with DM2. METHODS We assessed the effect of pioglitazone vs glimepiride after 1 year on HDL oxidation, expressed as relative abundance of peptides containing Met112O in ApoA-I (oxApoA-I) estimated by mass spectrometry (MALDI/TOF/TOF), in 95 patients with DM2. The oxLDL and AGE were quantified by ELISA. RESULTS Patients receiving pioglitazone showed a significant increase in the concentration of ApoA-I (Δ = 7.2 ± 14.8 mg/dL, p < 0.02) and a reduction in oxApoA-I (Δ = - 1.0 ± 2.6%, p < 0.02); this reduction was not significantly different from glimepiride. oxLDL showed a slight, but not significant increase in both treatment groups. Regression analysis showed a correlation between ΔoxApoA-I and ΔAGE (r = 0.30; p = 0.007) in all patients, while both of these parameters were unrelated to changes in HbA1c, HDL-C, duration of illness, or use of statins. CONCLUSIONS Long-term treatment with pioglitazone was effective in reducing the oxidation of HDL, but not LDL in patients with DM2, while glimepiride didn't. This finding seems to be associated to the change of glyco-oxidation status, not to any improvement in glycemic control or lipid profile. TRIAL REGISTRATION NCT00700856, ClinicalTrials.gov Registered June 18, 2008.
Collapse
Affiliation(s)
- Giovanni Sartore
- Diabetology and Dietetics, Department of Medicine (DIMED), University of Padova, via Giustiniani, 2, 35100, Padua, Italy
| | - Nino Cristiano Chilelli
- Diabetology and Dietetics, Department of Medicine (DIMED), University of Padova, via Giustiniani, 2, 35100, Padua, Italy.
| | - Roberta Seraglia
- National Research Council-Institute for Energy and Interphases, Padua, Italy
| | - Eugenio Ragazzi
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, Padua, Italy
| | - Raffaella Marin
- Lipid Laboratory, Department of Medicine (DIMED), University of Padova, Padua, Italy
| | - Marco Roverso
- National Research Council-Institute for Energy and Interphases, Padua, Italy
| | - Chiara Cosma
- Department of Laboratory Medicine, University of Padova, Padua, Italy
| | - Olga Vaccaro
- Department of Clinical Medicine and Surgery, Federico II University, Naples, Italy
| | - Silvia Burlina
- Diabetology and Dietetics, Department of Medicine (DIMED), University of Padova, via Giustiniani, 2, 35100, Padua, Italy
| | - Annunziata Lapolla
- Diabetology and Dietetics, Department of Medicine (DIMED), University of Padova, via Giustiniani, 2, 35100, Padua, Italy
| |
Collapse
|
16
|
Untersteller K, Meissl S, Trieb M, Emrich IE, Zawada AM, Holzer M, Knuplez E, Fliser D, Heine GH, Marsche G. HDL functionality and cardiovascular outcome among nondialysis chronic kidney disease patients. J Lipid Res 2018; 59:1256-1265. [PMID: 29789355 PMCID: PMC6027904 DOI: 10.1194/jlr.p085076] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2018] [Revised: 05/07/2018] [Indexed: 01/11/2023] Open
Abstract
CVD remains the leading cause of morbidity and mortality in patients with chronic kidney disease (CKD). CKD profoundly affects HDL composition and functionality, but whether abnormal HDL independently contributes to cardiovascular events in CKD patients remains elusive. In the present study, we assessed whether compositional and functional properties of HDL predict cardiovascular outcome among 526 nondialysis CKD patients who participate in the CARE FOR HOMe study. We measured HDL cholesterol, the content of HDL-associated proinflammatory serum amyloid A (SAA), and activities of the HDL enzymes paraoxonase and lipoprotein-associated phospholipase A2 (Lp-PLA2). In addition, we assessed the antioxidative activity of apoB-depleted serum. During a mean follow-up of 5.1 ± 2.1 years, 153 patients reached the predefined primary endpoint, a composite of atherosclerotic cardiovascular events including cardiovascular mortality and death of any cause. In univariate Cox regression analyses, lower HDL-cholesterol levels, higher HDL-associated SAA content, and lower paraoxonase activity predicted cardiovascular outcome, while Lp-PLA2 activity and antioxidative capacity did not. HDL-cholesterol and HDL-paraoxonase activity lost their association with cardiovascular outcome after adjustment for traditional cardiovascular and renal risk factors, while SAA lost its association after further adjustment for C-reactive protein. In conclusion, our data suggest that neither HDL quantity nor HDL composition or function independently predict cardiovascular outcome among nondialysis CKD patients.
Collapse
Affiliation(s)
- Kathrin Untersteller
- Internal Medicine IV-Nephrology and Hypertension, Saarland University Medical Center, Homburg, Germany
| | - Sabine Meissl
- Otto Loewi Research Center, Division of Pharmacology, Medical University of Graz, Graz, Austria
| | - Markus Trieb
- Otto Loewi Research Center, Division of Pharmacology, Medical University of Graz, Graz, Austria
- BioTechMed-Graz, Graz, Austria
| | - Insa E Emrich
- Internal Medicine IV-Nephrology and Hypertension, Saarland University Medical Center, Homburg, Germany
| | - Adam M Zawada
- Internal Medicine IV-Nephrology and Hypertension, Saarland University Medical Center, Homburg, Germany
| | - Michael Holzer
- Otto Loewi Research Center, Division of Pharmacology, Medical University of Graz, Graz, Austria
- BioTechMed-Graz, Graz, Austria
| | - Eva Knuplez
- Otto Loewi Research Center, Division of Pharmacology, Medical University of Graz, Graz, Austria
| | - Danilo Fliser
- Internal Medicine IV-Nephrology and Hypertension, Saarland University Medical Center, Homburg, Germany
| | - Gunnar H Heine
- Internal Medicine IV-Nephrology and Hypertension, Saarland University Medical Center, Homburg, Germany
| | - Gunther Marsche
- Otto Loewi Research Center, Division of Pharmacology, Medical University of Graz, Graz, Austria
- BioTechMed-Graz, Graz, Austria
| |
Collapse
|
17
|
Antioxidative activity of high-density lipoprotein (HDL): Mechanistic insights into potential clinical benefit. BBA CLINICAL 2017; 8:66-77. [PMID: 28936395 PMCID: PMC5597817 DOI: 10.1016/j.bbacli.2017.07.002] [Citation(s) in RCA: 157] [Impact Index Per Article: 19.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/07/2017] [Revised: 07/21/2017] [Accepted: 07/24/2017] [Indexed: 12/29/2022]
Abstract
Uptake of low-density lipoprotein (LDL) particles by macrophages represents a key step in the development of atherosclerotic plaques, leading to the foam cell formation. Chemical modification of LDL is however necessary to induce this process. Proatherogenic LDL modifications include aggregation, enzymatic digestion and oxidation. LDL oxidation by one-electron (free radicals) and two-electron oxidants dramatically increases LDL affinity to macrophage scavenger receptors, leading to rapid LDL uptake and fatty streak formation. Circulating high-density lipoprotein (HDL) particles, primarily small, dense, protein-rich HDL3, provide potent protection of LDL from oxidative damage by free radicals, resulting in the inhibition of the generation of pro-inflammatory oxidized lipids. HDL-mediated inactivation of lipid hydroperoxides involves their initial transfer from LDL to HDL and subsequent reduction to inactive hydroxides by redox-active Met residues of apolipoprotein A-I. Several HDL-associated enzymes are present at elevated concentrations in HDL3 relative to large, light HDL2 and can be involved in the inactivation of short-chain oxidized phospholipids. Therefore, HDL represents a multimolecular complex capable of acquiring and inactivating proatherogenic lipids. Antioxidative function of HDL can be impaired in several metabolic and inflammatory diseases. Structural and compositional anomalies in the HDL proteome and lipidome underlie such functional deficiency. Concomitant normalization of the metabolism, circulating levels, composition and biological activities of HDL particles, primarily those of small, dense HDL3, can constitute future therapeutic target.
Collapse
|
18
|
Cukier AMO, Therond P, Didichenko SA, Guillas I, Chapman MJ, Wright SD, Kontush A. Structure-function relationships in reconstituted HDL: Focus on antioxidative activity and cholesterol efflux capacity. Biochim Biophys Acta Mol Cell Biol Lipids 2017; 1862:890-900. [PMID: 28529180 DOI: 10.1016/j.bbalip.2017.05.010] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2016] [Revised: 05/12/2017] [Accepted: 05/17/2017] [Indexed: 01/28/2023]
Abstract
AIMS High-density lipoprotein (HDL) contains multiple components that endow it with biological activities. Apolipoprotein A-I (apoA-I) and surface phospholipids contribute to these activities; however, structure-function relationships in HDL particles remain incompletely characterised. METHODS Reconstituted HDLs (rHDLs) were prepared from apoA-I and soy phosphatidylcholine (PC) at molar ratios of 1:50, 1:100 and 1:150. Oxidative status of apoA-I was varied using controlled oxidation of Met112 residue. HDL-mediated inactivation of PC hydroperoxides (PCOOH) derived from mildly pre-oxidized low-density lipoprotein (LDL) was evaluated by HPLC with chemiluminescent detection in HDL+LDL mixtures and re-isolated LDL. Cellular cholesterol efflux was characterised in RAW264.7 macrophages. RESULTS rHDL inactivated LDL-derived PCOOH in a dose- and time-dependent manner. The capacity of rHDL to both inactivate PCOOH and efflux cholesterol via ATP-binding cassette transporter A1 (ABCA1) increased with increasing apoA-I/PC ratio proportionally to the apoA-I content in rHDL. Controlled oxidation of apoA-I Met112 gradually decreased PCOOH-inactivating capacity of rHDL but increased ABCA1-mediated cellular cholesterol efflux. CONCLUSIONS Increasing apoA-I content in rHDL enhanced its antioxidative activity towards oxidized LDL and cholesterol efflux capacity via ABCA1, whereas oxidation of apoA-I Met112 decreased the antioxidative activity but increased the cholesterol efflux. These findings provide important considerations in the design of future HDL therapeutics. Non-standard abbreviations and acronyms: AAPH, 2,2'-azobis(-amidinopropane) dihydrochloride; ABCA1, ATP-binding cassette transporter A1; apoA-I, apolipoprotein A-I; BHT, butylated hydroxytoluene; CV, cardiovascular; EDTA, ethylenediaminetetraacetic acid; HDL-C, high-density lipoprotein cholesterol; LOOH, lipid hydroperoxides; Met(O), methionine sulfoxide; Met112, methionine 112 residue; Met86, methionine 86 residue; oxLDL, oxidized low-density lipoprotein; PBS, phosphate-buffered saline; PC, phosphatidylcholine; PL, phospholipid; PCOOH, phosphatidylcholine hydroperoxide; PLOOH, phospholipid hydroperoxide.
Collapse
Affiliation(s)
- Alexandre M O Cukier
- National Institute for Health and Medical Research (INSERM), INSERM UMR 1166 ICAN, Paris, France; University of Pierre and Marie Curie-Paris 6, Paris, France; AP-HP, Groupe Hospitalier Pitié Salpétrière, Paris, France
| | - Patrice Therond
- AP-HP, HUPS Hôpital de Bicêtre, Le Kremlin-Bicêtre, France; Lip(Sys)(2) Athérosclérose: homéostasie et trafic du cholestérol des macrophages, University Paris-Sud, University Paris-Saclay, 92296 Châtenay-Malabry. France
| | | | - Isabelle Guillas
- National Institute for Health and Medical Research (INSERM), INSERM UMR 1166 ICAN, Paris, France; University of Pierre and Marie Curie-Paris 6, Paris, France; AP-HP, Groupe Hospitalier Pitié Salpétrière, Paris, France
| | - M John Chapman
- National Institute for Health and Medical Research (INSERM), INSERM UMR 1166 ICAN, Paris, France; University of Pierre and Marie Curie-Paris 6, Paris, France; AP-HP, Groupe Hospitalier Pitié Salpétrière, Paris, France
| | | | - Anatol Kontush
- National Institute for Health and Medical Research (INSERM), INSERM UMR 1166 ICAN, Paris, France; University of Pierre and Marie Curie-Paris 6, Paris, France; AP-HP, Groupe Hospitalier Pitié Salpétrière, Paris, France.
| |
Collapse
|
19
|
Sartore G, Seraglia R, Burlina S, Bolis A, Marin R, Manzato E, Ragazzi E, Traldi P, Lapolla A. High-density lipoprotein oxidation in type 2 diabetic patients and young patients with premature myocardial infarction. Nutr Metab Cardiovasc Dis 2015; 25:418-425. [PMID: 25636381 DOI: 10.1016/j.numecd.2014.12.004] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/10/2014] [Revised: 12/10/2014] [Accepted: 12/12/2014] [Indexed: 11/22/2022]
Abstract
BACKGROUND AND AIMS ApoA-I can undergo oxidative changes that reduce anti-atherogenic role of HDL. The aim of this study was to seek any significant differences in methionine sulfoxide (MetO) content in the ApoA-I of HDL isolated from young patients with coronary heart disease (CHD), type 2 diabetics and healthy subjects. METHODS AND RESULTS We evaluated the lipid profile of 21 type 2 diabetic patients, 23 young patients with premature MI and 21 healthy volunteers; we determined in all patients the MetO content of ApoA-I in by MALDI/TOF/TOF technique. The typical MALDI spectra of the tryptic digest obtained from HDL plasma fractions all patients showed a relative abundance of peptides containing Met(112)O in ApoA-I in type 2 diabetic and CHD patients. This relative abundance is given as percentages of oxidized ApoA-I (OxApoA-I). OxApoA-I showed no significant correlations with lipoproteins in all patients studied, while a strong correlation emerged between the duration of diabetic disease and OxApoA-I levels in type 2 diabetic patients. CONCLUSIONS The most remarkable finding of our study lies in the evidence it produced of an increased HDL oxidation in patients highly susceptible to CHD. Levels of MetO residues in plasma ApoA-I, measured using an accurate, specific method, should be investigated and considered in prospective future studies to assess their role in CHD.
Collapse
Affiliation(s)
- G Sartore
- Department of Medicine - DIMED, University of Padova, Italy
| | | | - S Burlina
- Department of Medicine - DIMED, University of Padova, Italy.
| | - A Bolis
- Department of Medicine - DIMED, University of Padova, Italy
| | - R Marin
- Department of Medicine - DIMED, University of Padova, Italy
| | - E Manzato
- Department of Medicine - DIMED, University of Padova, Italy
| | - E Ragazzi
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, Italy
| | | | - A Lapolla
- Department of Medicine - DIMED, University of Padova, Italy
| |
Collapse
|
20
|
Hellwig M, Löbmann K, Orywol T. Peptide backbone cleavage by α
-amidation is enhanced at methionine residues. J Pept Sci 2014; 21:17-23. [DOI: 10.1002/psc.2713] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2014] [Revised: 09/16/2014] [Accepted: 10/19/2014] [Indexed: 12/21/2022]
Affiliation(s)
- Michael Hellwig
- Institute of Food Chemistry; Technische Universität Dresden; D-01062 Dresden Germany
| | - Katja Löbmann
- Institute of Food Chemistry; Technische Universität Dresden; D-01062 Dresden Germany
| | - Tom Orywol
- Institute of Food Chemistry; Technische Universität Dresden; D-01062 Dresden Germany
| |
Collapse
|
21
|
Aluganti Narasimhulu C, Selvarajan K, Brown M, Parthasarathy S. Cationic peptides neutralize Ox-LDL, prevent its uptake by macrophages, and attenuate inflammatory response. Atherosclerosis 2014; 236:133-41. [PMID: 25036240 DOI: 10.1016/j.atherosclerosis.2014.06.020] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/17/2014] [Revised: 06/11/2014] [Accepted: 06/19/2014] [Indexed: 01/27/2023]
Abstract
OBJECTIVE Apolipoprotein A1 (ApoA1) and apolipoprotein E (ApoE) mimetic peptides have attracted attention due to their ability to reduce atherosclerosis and exhibit antioxidant, anti-inflammatory, and hypolipidemic properties. In this study, we tested whether three distinct and unrelated cationic peptides would inhibit the oxidation of lipoproteins and whether they would counteract and neutralize the negatively charged modified lipoproteins, inhibit their uptake and inflammation by macrophages. METHODS AND RESULTS 5F-mimetic peptide of ApoA1, LL27 derived from the anti-microbial peptide hCAP, and a human glycodelin derived peptide were commercially synthesized. We noted that these three distinct cationic lysine-rich peptides, two of which were unrelated to any known apolipoproteins, inhibited copper-mediated oxidation of lipoproteins and reduced lipid peroxides in a lysine dependent manner. The peptides also retarded the electrophoretic mobility of previously oxidized LDL and acetylated LDL by virtue of their net positive charge. Pre-incubation of peptides with modified lipoproteins reduced the uptake of the latter by macrophages, thus preventing the formation of foam cells. The cationic peptides inhibited oxidized LDL (Ox-LDL)-induced inflammatory response both in vitro and in vivo. CONCLUSION Based on these results, we suggest that in addition to the well known mimetic peptides, other suitable cationic peptides may be of use for controlling Ox-LDL mediated inflammation and atherosclerotic progression.
Collapse
Affiliation(s)
| | - Krithika Selvarajan
- Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, FL 32827, USA
| | - Matthew Brown
- Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, FL 32827, USA
| | - Sampath Parthasarathy
- Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, FL 32827, USA.
| |
Collapse
|
22
|
Borges CR, Rehder DS, Jensen S, Schaab MR, Sherma ND, Yassine H, Nikolova B, Breburda C. Elevated plasma albumin and apolipoprotein A-I oxidation under suboptimal specimen storage conditions. Mol Cell Proteomics 2014; 13:1890-9. [PMID: 24736286 DOI: 10.1074/mcp.m114.038455] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
S-cysteinylated albumin and methionine-oxidized apolipoprotein A-I (apoA-I) have been posed as candidate markers of diseases associated with oxidative stress. Here, a dilute-and-shoot form of LC-electrospray ionization-MS requiring half a microliter of blood plasma was employed to simultaneously quantify the relative abundance of these oxidized proteoforms in samples stored at -80 °C, -20 °C, and room temperature and exposed to multiple freeze-thaw cycles and other adverse conditions in order to assess the possibility that protein oxidation may occur as a result of poor sample storage or handling. Samples from a healthy donor and a participant with poorly controlled type 2 diabetes started at the same low level of protein oxidation and behaved similarly; significant increases in albumin oxidation via S-cysteinylation were found to occur within hours at room temperature and days at -20 °C. Methionine oxidation of apoA-I took place on a longer time scale, setting in after albumin oxidation reached a plateau. Freeze-thaw cycles had a minimal effect on protein oxidation. In matched collections, protein oxidation in serum was the same as that in plasma. Albumin and apoA-I oxidation were not affected by sample headspace or the degree to which vials were sealed. ApoA-I, however, was unexpectedly found to oxidize faster in samples with lower surface-area-to-volume ratios. An initial survey of samples from patients with inflammatory conditions normally associated with elevated oxidative stress-including acute myocardial infarction and prostate cancer-demonstrated a lack of detectable apoA-I oxidation. Albumin S-cysteinylation in these samples was consistent with known but relatively brief exposures to temperatures above -30 °C (the freezing point of blood plasma). Given their properties and ease of analysis, these oxidized proteoforms, once fully validated, may represent the first markers of blood plasma specimen integrity based on direct measurement of oxidative molecular damage that can occur under suboptimal storage conditions.
Collapse
Affiliation(s)
- Chad R Borges
- From the ‡Department of Chemistry & Biochemistry, Arizona State University, Tempe, Arizona 85287; §Biodesign Institute at Arizona State University, Tempe, Arizona 85287;
| | - Douglas S Rehder
- §Biodesign Institute at Arizona State University, Tempe, Arizona 85287
| | - Sally Jensen
- From the ‡Department of Chemistry & Biochemistry, Arizona State University, Tempe, Arizona 85287
| | - Matthew R Schaab
- §Biodesign Institute at Arizona State University, Tempe, Arizona 85287
| | - Nisha D Sherma
- §Biodesign Institute at Arizona State University, Tempe, Arizona 85287
| | - Hussein Yassine
- ‖Department of Medicine, University of Southern California, Los Angeles, California 90033
| | | | - Christian Breburda
- **Maricopa Integrated Health Systems, Phoenix, Arizona 85008; ‡‡College of Medicine, University of Arizona, Phoenix, Arizona 85004
| |
Collapse
|
23
|
Brindisi MC, Duvillard L, Monier S, Vergès B, Perségol L. Deleterious effect of glycation on the ability of HDL to counteract the inhibitory effect of oxidized LDL on endothelium-dependent vasorelaxation. Diabetes Metab Res Rev 2013; 29:618-23. [PMID: 23908137 DOI: 10.1002/dmrr.2434] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/08/2012] [Revised: 05/07/2013] [Accepted: 06/28/2013] [Indexed: 11/06/2022]
Abstract
BACKGROUND Contrary to high-density lipoprotein (HDL) from normolipidaemic and normoglycaemic subjects, HDL from diabetic patients loses its ability to reverse the inhibition of vasorelaxation induced by oxidized low-density lipoprotein (LDL). The aim of this study was to analyze the role of glycation, a major abnormality observed in diabetes, on the impairment of the vasorelaxant effect of HDL. METHODS HDL from healthy subjects was glycated in vitro by incubation in glucose 200 mmol/L for 3 days. Vasoreactivity was evaluated by the relaxation response to acetylcholine of rabbit aorta rings pre-contracted with noradrenaline, before and after 2 h incubation with or without different lipoprotein fractions (Krebs buffer, oxidized LDL, normal or glycated HDL alone and with oxidized LDL). RESULT The fructosamine/apolipoprotein AI ratio was significantly increased in glycated HDL compared with native HDL (53.63 ± 7.91 vs 18.51 ± 4.10 µmol/g; p < 0.05). Oxidized LDL inhibited endothelium-dependent vasodilation compared with Krebs buffer [maximal relaxation (Emax) = 53.15 ± 6.50 vs 98.67 ± 2.07%, p < 0.001]. Native HDL was able to counteract the oxidized LDL-induced inhibition of vasorelaxation (Emax = 76.93 ± 5.41 vs 53.15 ± 6.50%, p < 0.001). On the other hand, glycated HDL had no effect on oxidized LDL-induced inhibition of endothelium vasorelaxation compared with incubation with oxidized LDL alone (Emax = 52.98 ± 2.07 vs 53.15 ± 6.50%, not significant). CONCLUSION Glycation of HDL induces the loss of the ability of HDL to counteract the inhibitory effect of oxidized LDL on endothelium-dependent vasorelaxation, this is likely contributing to the impairment of antiatherogenic properties of HDL in diabetic patients.
Collapse
Affiliation(s)
- M C Brindisi
- INSERM Research Center 866, Dijon, France; University of Burgundy, IFR100, Dijon, France; Service de Diabétologie, Endocrinologie, Maladies Metabolique, CHU du Bocage, Dijon, France
| | | | | | | | | |
Collapse
|
24
|
Rosenson RS, Brewer HB, Ansell B, Barter P, Chapman MJ, Heinecke JW, Kontush A, Tall AR, Webb NR. Translation of High-Density Lipoprotein Function Into Clinical Practice. Circulation 2013; 128:1256-67. [DOI: 10.1161/circulationaha.113.000962] [Citation(s) in RCA: 164] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Robert S. Rosenson
- From the Cardiovascular Institute, Icahn School of Medicine at Mount Sinai, New York, NY (R.S.R.); Cardiovascular Research Institute, MedStar Research Institute, Washington Hospital Center, Washington, DC (H.B.B.); Atherosclerosis Research Unit, Division of Cardiology, David Geffen School of Medicine at UCLA, Los Angeles, CA (B.A.); Centre for Vascular Research at the University of New South Wales, Sydney, Australia (P.B.); Dyslipidemia, Atherosclerosis and Inflammation Research Unit 939, National
| | - H. Bryan Brewer
- From the Cardiovascular Institute, Icahn School of Medicine at Mount Sinai, New York, NY (R.S.R.); Cardiovascular Research Institute, MedStar Research Institute, Washington Hospital Center, Washington, DC (H.B.B.); Atherosclerosis Research Unit, Division of Cardiology, David Geffen School of Medicine at UCLA, Los Angeles, CA (B.A.); Centre for Vascular Research at the University of New South Wales, Sydney, Australia (P.B.); Dyslipidemia, Atherosclerosis and Inflammation Research Unit 939, National
| | - Benjamin Ansell
- From the Cardiovascular Institute, Icahn School of Medicine at Mount Sinai, New York, NY (R.S.R.); Cardiovascular Research Institute, MedStar Research Institute, Washington Hospital Center, Washington, DC (H.B.B.); Atherosclerosis Research Unit, Division of Cardiology, David Geffen School of Medicine at UCLA, Los Angeles, CA (B.A.); Centre for Vascular Research at the University of New South Wales, Sydney, Australia (P.B.); Dyslipidemia, Atherosclerosis and Inflammation Research Unit 939, National
| | - Philip Barter
- From the Cardiovascular Institute, Icahn School of Medicine at Mount Sinai, New York, NY (R.S.R.); Cardiovascular Research Institute, MedStar Research Institute, Washington Hospital Center, Washington, DC (H.B.B.); Atherosclerosis Research Unit, Division of Cardiology, David Geffen School of Medicine at UCLA, Los Angeles, CA (B.A.); Centre for Vascular Research at the University of New South Wales, Sydney, Australia (P.B.); Dyslipidemia, Atherosclerosis and Inflammation Research Unit 939, National
| | - M. John Chapman
- From the Cardiovascular Institute, Icahn School of Medicine at Mount Sinai, New York, NY (R.S.R.); Cardiovascular Research Institute, MedStar Research Institute, Washington Hospital Center, Washington, DC (H.B.B.); Atherosclerosis Research Unit, Division of Cardiology, David Geffen School of Medicine at UCLA, Los Angeles, CA (B.A.); Centre for Vascular Research at the University of New South Wales, Sydney, Australia (P.B.); Dyslipidemia, Atherosclerosis and Inflammation Research Unit 939, National
| | - Jay W. Heinecke
- From the Cardiovascular Institute, Icahn School of Medicine at Mount Sinai, New York, NY (R.S.R.); Cardiovascular Research Institute, MedStar Research Institute, Washington Hospital Center, Washington, DC (H.B.B.); Atherosclerosis Research Unit, Division of Cardiology, David Geffen School of Medicine at UCLA, Los Angeles, CA (B.A.); Centre for Vascular Research at the University of New South Wales, Sydney, Australia (P.B.); Dyslipidemia, Atherosclerosis and Inflammation Research Unit 939, National
| | - Anatol Kontush
- From the Cardiovascular Institute, Icahn School of Medicine at Mount Sinai, New York, NY (R.S.R.); Cardiovascular Research Institute, MedStar Research Institute, Washington Hospital Center, Washington, DC (H.B.B.); Atherosclerosis Research Unit, Division of Cardiology, David Geffen School of Medicine at UCLA, Los Angeles, CA (B.A.); Centre for Vascular Research at the University of New South Wales, Sydney, Australia (P.B.); Dyslipidemia, Atherosclerosis and Inflammation Research Unit 939, National
| | - Alan R. Tall
- From the Cardiovascular Institute, Icahn School of Medicine at Mount Sinai, New York, NY (R.S.R.); Cardiovascular Research Institute, MedStar Research Institute, Washington Hospital Center, Washington, DC (H.B.B.); Atherosclerosis Research Unit, Division of Cardiology, David Geffen School of Medicine at UCLA, Los Angeles, CA (B.A.); Centre for Vascular Research at the University of New South Wales, Sydney, Australia (P.B.); Dyslipidemia, Atherosclerosis and Inflammation Research Unit 939, National
| | - Nancy R. Webb
- From the Cardiovascular Institute, Icahn School of Medicine at Mount Sinai, New York, NY (R.S.R.); Cardiovascular Research Institute, MedStar Research Institute, Washington Hospital Center, Washington, DC (H.B.B.); Atherosclerosis Research Unit, Division of Cardiology, David Geffen School of Medicine at UCLA, Los Angeles, CA (B.A.); Centre for Vascular Research at the University of New South Wales, Sydney, Australia (P.B.); Dyslipidemia, Atherosclerosis and Inflammation Research Unit 939, National
| |
Collapse
|
25
|
Yassine H, Borges CR, Schaab MR, Billheimer D, Stump C, Reaven P, Lau SS, Nelson R. Mass spectrometric immunoassay and MRM as targeted MS-based quantitative approaches in biomarker development: potential applications to cardiovascular disease and diabetes. Proteomics Clin Appl 2013; 7:528-40. [PMID: 23696124 DOI: 10.1002/prca.201200028] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2012] [Revised: 02/04/2013] [Accepted: 03/30/2013] [Indexed: 12/29/2022]
Abstract
Type 2 diabetes mellitus (T2DM) is an important risk factor for cardiovascular disease (CVD)--the leading cause of death in the United States. Yet not all subjects with T2DM are at equal risk for CVD complications; the challenge lies in identifying those at greatest risk. Therapies directed toward treating conventional risk factors have failed to significantly reduce this residual risk in T2DM patients. Thus newer targets and markers are needed for the development and testing of novel therapies. Herein we review two complementary MS-based approaches--mass spectrometric immunoassay (MSIA) and MS/MS as MRM--for the analysis of plasma proteins and PTMs of relevance to T2DM and CVD. Together, these complementary approaches allow for high-throughput monitoring of many PTMs and the absolute quantification of proteins near the low picomolar range. In this review article, we discuss the clinical relevance of the high density lipoprotein (HDL) proteome and Apolipoprotein A-I PTMs to T2DM and CVD as well as provide illustrative MSIA and MRM data on HDL proteins from T2DM patients to provide examples of how these MS approaches can be applied to gain new insight regarding cardiovascular risk factors. Also discussed are the reproducibility, interpretation, and limitations of each technique with an emphasis on their capacities to facilitate the translation of new biomarkers into clinical practice.
Collapse
Affiliation(s)
- Hussein Yassine
- Department of Medicine, University of Southern California, Los Angeles, CA, USA
| | | | | | | | | | | | | | | |
Collapse
|
26
|
Kotosai M, Shimada S, Kanda M, Matsuda N, Sekido K, Shimizu Y, Tokumura A, Nakamura T, Murota K, Kawai Y, Terao J. Plasma HDL reduces nonesterified fatty acid hydroperoxides originating from oxidized LDL: a mechanism for its antioxidant ability. Lipids 2013; 48:569-78. [PMID: 23494578 PMCID: PMC3663256 DOI: 10.1007/s11745-013-3779-1] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2012] [Accepted: 02/15/2013] [Indexed: 01/12/2023]
Abstract
The antioxidant property of plasma high-density lipoprotein (HDL) is thought to be involved in potential anti-atherogenic effects but the exact mechanism is not known. We aimed to reveal the contribution of HDL on the elimination of lipid hydroperoxides (LOOH) derived from oxidized low-density lipoprotein (LDL). Oxidized LDL prepared by copper ion-induced oxidation contained nonesterified fatty acid hydroperoxides (FFA-OOH) and lysophosphatidylcholine (lysoPtdCho), in addition to cholesteryl ester hydroperoxides (CE-OOH) and phosphatidylcholine hydroperoxides (PtdCho-OOH). A platelet-activating factor-acetylhydrolase (PAF-AH) inhibitor suppressed formation of FFA-OOH and lysoPtdCho in oxidized LDL. Among LOOH species, FFA-OOH was preferentially reduced by incubating oxidized LDL with HDL. HDL exhibited selective FFA-OOH reducing ability if it was mixed with a liposomal solution containing FFA-OOH, CE-OOH and PtdCho-OOH. Two-electron reduction of the hydroperoxy group to the hydroxy group was confirmed by the formation of 13-hydroxyoctadecadienoic acid from 13-hydroperoxyoctadecadienoic acid in HPLC analyses. This reducing effect was also found in apolipoprotein A-1 (apoA-1). FFA-OOH released from PtdCho-OOH due to PAF-AH activity in oxidized LDL undergo two-electron reduction by the reducing ability of apoA1 in HDL. This preferential reduction of FFA-OOH may participate in the mechanism of the antioxidant property of HDL.
Collapse
Affiliation(s)
- Mari Kotosai
- Department of Food Science, Institute of Health Biosciences, University of Tokushima Graduate School, Kuramoto-cho 3-18-15, Tokushima 770-8503, Japan
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Vaisar T. Proteomics investigations of HDL: challenges and promise. Curr Vasc Pharmacol 2012; 10:410-21. [PMID: 22339300 DOI: 10.2174/157016112800812755] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2011] [Revised: 09/01/2011] [Accepted: 11/06/2011] [Indexed: 02/02/2023]
Abstract
High density lipoprotein (HDL) is recognized as the major negative risk factor of cardiovascular disease and number of anti-atherogenic functions has been ascribed to HDL. HDL is an assembly of a neutral lipid core and an outer shell consisting of polar lipids and proteins. It has been defined many different ways based on various distinct properties including density flotation, protein composition, molecular size, and electrophoretic migration. Overall the studies characterizing HDL clearly demonstrate that it is a complex heterogeneous mixture of particles. Furthermore several studies convincingly demonstrated that certain populations of HDL particles have a distinct functionality suggesting that HDL may serve as a platform for assembly of protein complexes with very specific biological functions. Indeed recent proteomics studies described over 100 proteins associated with HDL. Here we review approaches to isolation and proteomic analysis of HDL and discuss potential problems associated with isolation methods which may confound our understanding of the relation of the HDL composition and its biological function.
Collapse
Affiliation(s)
- Tomáš Vaisar
- Diabetes and Obesity Center of Excellence, Department of Medicine, University of Washington, 815 Mercer St, Seattle, WA 98109, USA.
| |
Collapse
|
28
|
Hui SP, Taguchi Y, Takeda S, Ohkawa F, Sakurai T, Yamaki S, Jin S, Fuda H, Kurosawa T, Chiba H. Quantitative determination of phosphatidylcholine hydroperoxides during copper oxidation of LDL and HDL by liquid chromatography/mass spectrometry. Anal Bioanal Chem 2012; 403:1831-40. [DOI: 10.1007/s00216-012-5833-x] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2011] [Revised: 02/02/2012] [Accepted: 02/02/2012] [Indexed: 11/30/2022]
|
29
|
Shao B. Site-specific oxidation of apolipoprotein A-I impairs cholesterol export by ABCA1, a key cardioprotective function of HDL. Biochim Biophys Acta Mol Cell Biol Lipids 2011; 1821:490-501. [PMID: 22178192 DOI: 10.1016/j.bbalip.2011.11.011] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2011] [Revised: 11/18/2011] [Accepted: 11/20/2011] [Indexed: 12/11/2022]
Abstract
The mechanisms that deprive HDL of its cardioprotective properties are poorly understood. One potential pathway involves oxidative damage of HDL proteins by myeloperoxidase (MPO) a heme enzyme secreted by human artery wall macrophages. Mass spectrometric analysis demonstrated that levels of 3-chlorotyrosine and 3-nitrotyrosine - two characteristic products of MPO - are elevated in HDL isolated from patients with established cardiovascular disease. When apolipoprotein A-I (apoA-I), the major HDL protein, is oxidized by MPO, its ability to promote cellular cholesterol efflux by the membrane-associated ATP-binding cassette transporter A1 (ABCA1) pathway is diminished. Biochemical studies revealed that oxidation of specific tyrosine and methionine residues in apoA-I contributes to this loss of ABCA1 activity. Another potential mechanism for generating dysfunctional HDL involves covalent modification of apoA-I by reactive carbonyls, which have been implicated in atherogenesis and diabetic vascular disease. Indeed, modification of apoA-I by malondialdehyde (MDA) or acrolein also markedly impaired the lipoprotein's ability to promote cellular cholesterol efflux by the ABCA1 pathway. Tandem mass spectrometric analyses revealed that these reactive carbonyls target specific Lys residues in the C-terminus of apoA-I. Importantly, immunochemical analyses showed that levels of MDA-protein adducts are elevated in HDL isolated from human atherosclerotic lesions. Also, apoA-I co-localized with acrolein adducts in such lesions. Thus, lipid peroxidation products might specifically modify HDL in vivo. Our observations support the hypotheses that MPO and reactive carbonyls might generate dysfunctional HDL in humans. This article is part of a Special Issue entitled Advances in High Density Lipoprotein Formation and Metabolism: A Tribute to John F. Oram (1945-2010).
Collapse
Affiliation(s)
- Baohai Shao
- Division of Metabolism, Endocrinology and Nutrition, Diabetes and Obesity Center of Excellence, Department of Medicine, University of Washington, Seattle, WA 98109, USA.
| |
Collapse
|
30
|
Camont L, Chapman J, Kontush A. Functionality of HDL particles: Heterogeneity and relationships to cardiovascular disease. ARCHIVES OF CARDIOVASCULAR DISEASES SUPPLEMENTS 2011. [DOI: 10.1016/s1878-6480(11)70784-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
|
31
|
Shao B, Heinecke JW. Impact of HDL oxidation by the myeloperoxidase system on sterol efflux by the ABCA1 pathway. J Proteomics 2011; 74:2289-99. [PMID: 21501700 DOI: 10.1016/j.jprot.2011.04.001] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2011] [Revised: 03/30/2011] [Accepted: 04/02/2011] [Indexed: 12/15/2022]
Abstract
Protein oxidation by phagocytic white blood cells is implicated in tissue injury during inflammation. One important target might be high-density lipoprotein (HDL), which protects against atherosclerosis by removing excess cholesterol from artery wall macrophages. In the human artery wall, cholesterol-laden macrophages are a rich source of myeloperoxidase (MPO), which uses hydrogen peroxide for oxidative reactions in the extracellular milieu. Levels of two characteristic products of MPO-chlorotyrosine and nitrotyrosine-are markedly elevated in HDL from human atherosclerotic lesions. Here, we describe how MPO-dependent chlorination impairs the ability of apolipoprotein A-I (apoA-I), HDL's major protein, to transport cholesterol by the ATP-binding cassette transporter A1 (ABCA1) pathway. Faulty interactions between apoA-I and ABCA1 are involved. Tandem mass spectrometry and investigations of mutated forms of apoA-I demonstrate that tyrosine residues in apoA-I are chlorinated in a site-specific manner by chloramine intermediates on suitably juxtaposed lysine residues. Plasma HDL isolated from subjects with coronary artery disease (CAD) also contains higher levels of chlorinated and nitrated tyrosine residues than HDL from healthy subjects. Thus, the presence of chlorinated HDL might serve as a marker of CAD risk. Because HDL damaged by MPO in vitro becomes dysfunctional, inhibiting MPO in vivo might be cardioprotective.
Collapse
Affiliation(s)
- Baohai Shao
- Division of Metabolism, Endocrinology and Nutrition, Diabetes and Obesity Center of Excellence, Department of Medicine, University of Washington, Seattle, WA 98109, USA.
| | | |
Collapse
|
32
|
Lapolla A, Manzato E, Sartore G, Marin R, Cosma C, Bolis A, Seraglia R, Traldi P. Evaluation of methionine sulphoxide content of ApoA-I in type 2 diabetic patients and young coronaropathic subjects: a preliminary study. RAPID COMMUNICATIONS IN MASS SPECTROMETRY : RCM 2011; 25:391-394. [PMID: 21192035 DOI: 10.1002/rcm.4861] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
|
33
|
Abstract
Oxidative stress, an emerging risk factor for premature atherosclerosis and cardiovascular disease, mediates the formation of proinflammatory, pro-atherogenic oxidized low-density lipoprotein (oxLDL) in the arterial intima. Circulating HDL particles, and particularly small, dense, protein-rich HDL3, may provide potent protection of LDL in vivo from oxidative damage by free radicals in the arterial intima, resulting in the inhibition of the generation of proinflammatory oxidized lipids, primarily lipid hydroperoxides (LOOH) but also short-chain oxidized phospholipids (oxPL). HDL-mediated inactivation of LOOH involves initial transfer of phospholipid hydroperoxides (PLOOH) from LDL to HDL3, which is governed by the rigidity of the surface monolayer of HDL, and subsequent reduction of PLOOH by redox-active Met residues of apolipoprotein A-I (apoA-I) with the formation of phospholipid hydroxides (PLOH) and methionine sulphoxides. HDL-associated enzymes may in turn contribute to the hydrolytic inactivation of short-chain oxPL. Mounting evidence suggests that the integrated antioxidative activity of HDL appear to be defective in atherogenic dyslipidaemias involving low HDL-cholesterol levels; anomalies in the proteome and lipidome of HDL particles in dyslipidaemic patients may underlie such functional deficiency. Pharmacological normalization of HDL metabolism concomitantly with correction of circulating levels, composition and biological activities of HDL particles, with enrichment in apoA-I and reduction in HDL surface rigidity, may constitute an efficacious therapeutic approach to attenuate atherosclerosis in dyslipidaemic patients at high cardiovascular risk.
Collapse
Affiliation(s)
- Anatol Kontush
- National Institute for Health and Medical Research (INSERM), Dyslipidemia, Inflammation and Atherosclerosis Research Unit (UMR 939), Paris, France.
| | | |
Collapse
|
34
|
Shao B, Oda MN, Oram JF, Heinecke JW. Myeloperoxidase: an oxidative pathway for generating dysfunctional high-density lipoprotein. Chem Res Toxicol 2010; 23:447-54. [PMID: 20043647 DOI: 10.1021/tx9003775] [Citation(s) in RCA: 138] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Accumulation of low-density lipoprotein (LDL)-derived cholesterol by artery wall macrophages triggers atherosclerosis, the leading cause of cardiovascular disease. Conversely, high-density lipoprotein (HDL) retards atherosclerosis by promoting cholesterol efflux from macrophages by the membrane-associated ATP-binding cassette transporter A1 (ABCA1) pathway. HDL has been proposed to lose its cardioprotective effects in subjects with atherosclerosis, but the underlying mechanisms are poorly understood. One potential pathway involves oxidative damage by myeloperoxidase (MPO), a heme enzyme secreted by human artery wall macrophages. We used mass spectrometry to demonstrate that HDL isolated from patients with established cardiovascular disease contains elevated levels of 3-chlorotyrosine and 3-nitrotyrosine, two characteristic products of MPO. When apolipoprotein A-I (apoA-I), the major HDL protein, was oxidized by MPO, its ability to promote cellular cholesterol efflux by ABCA1 was impaired. Moreover, oxidized apoA-I was unable to activate lecithin:cholesterol acyltransferase (LCAT), which rapidly converts free cholesterol to cholesteryl ester, a critical step in HDL maturation. Biochemical studies implicated tyrosine chlorination and methionine oxygenation in the loss of ABCA1 and LCAT activity by oxidized apoA-I. Oxidation of specific residues in apoA-I inhibited two key steps in cholesterol efflux from macrophages, raising the possibility that MPO initiates a pathway for generating dysfunctional HDL in humans.
Collapse
Affiliation(s)
- Baohai Shao
- Department of Medicine, University of Washington, 815 Mercer Street, Seattle, Washington 98109, USA.
| | | | | | | |
Collapse
|
35
|
Haynes V, Traaseth NJ, Elfering S, Fujisawa Y, Giulivi C. Nitration of specific tyrosines in FoF1 ATP synthase and activity loss in aging. Am J Physiol Endocrinol Metab 2010; 298:E978-87. [PMID: 20159857 PMCID: PMC2867368 DOI: 10.1152/ajpendo.00739.2009] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
It has been reported that C-nitration of proteins occurs under nitrative/oxidative stress; however, its role in pathophysiological situations is not fully understood. In this study, we determined that nitration of Tyr(345) and Tyr(368) in the beta-subunit of the mitochondrial F(o)F(1)-ATPase is a major target for nitrative stress in rat liver under in vivo conditions. The chemical characteristics of these Tyr make them suitable for a facilitated nitration (solvent accessibility, consensus sequence, and pK(a)). Moreover, beta-subunit nitration increased significantly with the age of the rats (from 4 to 80 weeks old) and correlated with decreased ATP hydrolysis and synthesis rates. Although its affinity for ATP binding was unchanged, maximal ATPase activity decreased between young and old rats by a factor of two. These changes directly impacted the available ATP concentration in vivo, and it was expected that they would affect multiple cellular ATP-dependent processes. For instance, at least 50% of available [ATP] in the liver of older rats would have to be committed to sustain maximal Na(+)-K(+)-ATPase activity, whereas only 30% would be required for young rats. If this requirement was not fulfilled, the osmoregulation and Na(+)-nutrient cotransport in liver of older rats would be compromised. On the basis of our studies, we propose that targeted nitration of the beta-subunit is an early marker for nitrative stress and aging.
Collapse
Affiliation(s)
- Virginia Haynes
- University of California, Davis, Department of Molecular Biosciences, 1120 Haring Hall, One Shields Ave., Davis, CA 95616, USA
| | | | | | | | | |
Collapse
|
36
|
Vaisar T, Mayer P, Nilsson E, Zhao XQ, Knopp R, Prazen BJ. HDL in humans with cardiovascular disease exhibits a proteomic signature. Clin Chim Acta 2010; 411:972-9. [PMID: 20307520 DOI: 10.1016/j.cca.2010.03.023] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2010] [Revised: 03/09/2010] [Accepted: 03/15/2010] [Indexed: 02/02/2023]
Abstract
BACKGROUND Alterations in protein composition and oxidative damage of high density lipoprotein (HDL) have been proposed to impair the cardioprotective properties of HDL. We tested whether relative levels of proteins in HDL(2) could be used as biomarkers for coronary artery disease (CAD). METHODS Twenty control and eighteen CAD subjects matched for HDL-cholesterol, age, and sex were studied. HDL(2) isolated from plasma was digested with trypsin and analyzed by high-resolution matrix-assisted laser desorption ionization mass spectrometry (MALDI-MS) and pattern recognition analysis. RESULTS Partial least squares discriminant analysis (PLS-DA) of mass spectra clearly differentiated CAD from control subjects with area under the receiver operating characteristic curve (ROC(AUC)) of 0.94. Targeted tandem mass spectrometric analysis of the model's significant features revealed that HDL(2) of CAD subjects contained oxidized methionine residues of apolipoprotein A-I and elevated levels of apolipoprotein C-III. A proteomic signature composed of MALDI-MS signals from apoA-I, apoC-III, Lp(a) and apoC-I accurately classified CAD and control subjects (ROC(AUC)=0.82). CONCLUSIONS HDL(2) of CAD subjects carries a distinct protein cargo and that protein oxidation helps generate dysfunctional HDL. Moreover, models based on selected identified peptides in MALDI-TOF mass spectra of the HDL may have diagnostic potential.
Collapse
Affiliation(s)
- Tomás Vaisar
- Department of Medicine, School of Medicine, University of Washington, Seattle, Washington 98195, USA.
| | | | | | | | | | | |
Collapse
|
37
|
Methionine oxidation induces amyloid fibril formation by full-length apolipoprotein A-I. Proc Natl Acad Sci U S A 2010; 107:1977-82. [PMID: 20133843 DOI: 10.1073/pnas.0910136107] [Citation(s) in RCA: 76] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Apolipoprotein A-I (apoA-I) is the major protein component of HDL, where it plays an important role in cholesterol transport. The deposition of apoA-I derived amyloid is associated with various hereditary systemic amyloidoses and atherosclerosis; however, very little is known about the mechanism of apoA-I amyloid formation. Methionine residues in apoA-I are oxidized via several mechanisms in vivo to form methionine sulfoxide (MetO), and significant levels of methionine oxidized apoA-I (MetO-apoA-I) are present in normal human serum. We investigated the effect of methionine oxidation on the structure, stability, and aggregation of full-length, lipid-free apoA-I. Circular dichrosim spectroscopy showed that oxidation of all three methionine residues in apoA-I caused partial unfolding of the protein and decreased its thermal stability, reducing the melting temperature (T(m)) from 58.7 degrees C for native apoA-I to 48.2 degrees C for MetO-apoA-I. Analytical ultracentrifugation revealed that methionine oxidation inhibited the native self association of apoA-I to form dimers and tetramers. Incubation of MetO-apoA-I for extended periods resulted in aggregation of the protein, and these aggregates bound Thioflavin T and Congo Red. Inspection of the aggregates by electron microscopy revealed fibrillar structures with a ribbon-like morphology, widths of approximately 11 nm, and lengths of up to several microns. X-ray fibre diffraction studies of the fibrils revealed a diffraction pattern with orthogonal peaks at spacings of 4.64 A and 9.92 A, indicating a cross-beta amyloid structure. This systematic study of fibril formation by full-length apoA-I represents the first demonstration that methionine oxidation can induce amyloid fibril formation.
Collapse
|
38
|
Szuchman-Sapir AJ, Pattison DI, Davies MJ, Witting PK. Site-specific hypochlorous acid-induced oxidation of recombinant human myoglobin affects specific amino acid residues and the rate of cytochrome b5-mediated heme reduction. Free Radic Biol Med 2010; 48:35-46. [PMID: 19800968 DOI: 10.1016/j.freeradbiomed.2009.09.023] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/15/2009] [Revised: 08/12/2009] [Accepted: 09/23/2009] [Indexed: 12/16/2022]
Abstract
Myeloperoxidase catalyzes the reaction of chloride ions with H(2)O(2) to yield hypochlorous acid (HOCl), which can damage proteins. Human myoglobin (HMb) differs from other Mbs by the presence of a cysteine residue at position 110 (Cys110). This study has (i) compared wild-type and a Cys110Ala variant of HMb to assess the influence of Cys110 on HOCl-induced amino acid modification and (ii) determined whether HOCl oxidation of HMb affects the rate of ferric heme reduction by cytochrome b(5). For wild-type HMb (HOCl:Mb ratio of 5:1 mol:mol), Cys110 was preferentially oxidized to a homodimeric or cysteic acid product-sulfenic/sulfinic acids were not detected. At a HOCl:Mb ratio 10:1 mol:mol, methionine (Met) oxidation was detected, and this was enhanced in the Cys110Ala variant. Tryptophan (Trp) oxidation was detected only in the Cys110Ala variant at the highest HOCl dose tested, with oxidation susceptibility following the order Cys>Met>Trp. Tyrosine chlorination was evident only in reactions between HOCl and the Cys110Ala variant and at a longer incubation time (24 h), consistent with the formation via chlorine-transfer reactions from preformed chloramines. HOCl-mediated oxidation of wild-type HMb resulted in a dose-dependent decrease in the observed rate constant for ferric heme reduction (approx two-fold at HOCl:Mb of 10:1 mol:mol). These data indicate that Cys110 influences the oxidation of HMb by HOCl and that oxidation of Cys, Met, and Trp residues is associated with a decrease in the one-electron reduction of ferric HMb by other proteins; such heme-Fe(3+) reduction is critical to the maintenance of function as an oxygen storage protein in tissues.
Collapse
Affiliation(s)
- Andrea J Szuchman-Sapir
- Vascular Biology Group, ANZAC Research Institute, Concord Repatriation General Hospital, Concord, NSW 2139, Australia
| | | | | | | |
Collapse
|
39
|
Zerrad-Saadi A, Therond P, Chantepie S, Couturier M, Rye KA, Chapman MJ, Kontush A. HDL3-Mediated Inactivation of LDL-Associated Phospholipid Hydroperoxides Is Determined by the Redox Status of Apolipoprotein A-I and HDL Particle Surface Lipid Rigidity. Arterioscler Thromb Vasc Biol 2009; 29:2169-75. [DOI: 10.1161/atvbaha.109.194555] [Citation(s) in RCA: 124] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Objectives—
Small dense HDL3 particles of defined lipidome and proteome potently protect atherogenic LDL against free radical-induced oxidation; the molecular determinants of such antioxidative activity in these atheroprotective, antiinflammatory particles remain indeterminate.
Methods and Results—
Formation of redox-active phosphatidylcholine hydroperoxides (PCOOH) and redox-inactive phosphatidylcholine hydroxides (PCOH) was initiated in LDL by free radical-induced oxidation. Human HDL3 inactivated LDL-derived PCOOH (−62%,
P
<0.01) and enhanced accumulation of PCOH (2.1-fold,
P
<0.05); in parallel, HDL3 accumulated minor amounts of PCOOH. Enzyme-deficient reconstituted dense HDL potently inactivated PCOOH (−43%,
P
<0.01). HDL3-mediated reduction of PCOOH to PCOH occurred concomitantly with oxidation of methionine residues in HDL3-apolipoprotein AI (apoAI). Preoxidation of methionine residues by chloramine T markedly attenuated PCOOH inactivation (−35%); by contrast, inhibition of HDL3-associated enzymes was without effect. PCOOH transfer rates from oxidized LDL to phospholipid liposomes progressively decreased with increment in the rigidity of the phospholipid monolayer.
Conclusions—
The redox status of apoAI and surface lipid rigidity represent major determinants of the potent HDL3-mediated protection of LDL against free radical-induced oxidation. Initial transfer of PCOOH to HDL3 is modulated by the surface rigidity of HDL3 particles with subsequent reduction of PCOOH to PCOH by methionine residues of apoAI.
Collapse
Affiliation(s)
- Amal Zerrad-Saadi
- From the Dyslipidemia and Atherosclerosis Research Unit (UMRS 939) (A.Z.-S., S.C., M.C., M.J.C., A.K.), National Institute for Health and Medical Research (INSERM), Hôpital de la Pitié; UPMC Paris 6 (A.Z.-S., S.C., M.C., M.J.C., A.K.); and the Department of Biochemistry (A.Z.-S., P.T., M.C.), University Paris Descartes, France; and the Heart Research Institute (K.-A.R.), Sydney, Australia
| | - Patrice Therond
- From the Dyslipidemia and Atherosclerosis Research Unit (UMRS 939) (A.Z.-S., S.C., M.C., M.J.C., A.K.), National Institute for Health and Medical Research (INSERM), Hôpital de la Pitié; UPMC Paris 6 (A.Z.-S., S.C., M.C., M.J.C., A.K.); and the Department of Biochemistry (A.Z.-S., P.T., M.C.), University Paris Descartes, France; and the Heart Research Institute (K.-A.R.), Sydney, Australia
| | - Sandrine Chantepie
- From the Dyslipidemia and Atherosclerosis Research Unit (UMRS 939) (A.Z.-S., S.C., M.C., M.J.C., A.K.), National Institute for Health and Medical Research (INSERM), Hôpital de la Pitié; UPMC Paris 6 (A.Z.-S., S.C., M.C., M.J.C., A.K.); and the Department of Biochemistry (A.Z.-S., P.T., M.C.), University Paris Descartes, France; and the Heart Research Institute (K.-A.R.), Sydney, Australia
| | - Martine Couturier
- From the Dyslipidemia and Atherosclerosis Research Unit (UMRS 939) (A.Z.-S., S.C., M.C., M.J.C., A.K.), National Institute for Health and Medical Research (INSERM), Hôpital de la Pitié; UPMC Paris 6 (A.Z.-S., S.C., M.C., M.J.C., A.K.); and the Department of Biochemistry (A.Z.-S., P.T., M.C.), University Paris Descartes, France; and the Heart Research Institute (K.-A.R.), Sydney, Australia
| | - Kerry-Anne Rye
- From the Dyslipidemia and Atherosclerosis Research Unit (UMRS 939) (A.Z.-S., S.C., M.C., M.J.C., A.K.), National Institute for Health and Medical Research (INSERM), Hôpital de la Pitié; UPMC Paris 6 (A.Z.-S., S.C., M.C., M.J.C., A.K.); and the Department of Biochemistry (A.Z.-S., P.T., M.C.), University Paris Descartes, France; and the Heart Research Institute (K.-A.R.), Sydney, Australia
| | - M. John Chapman
- From the Dyslipidemia and Atherosclerosis Research Unit (UMRS 939) (A.Z.-S., S.C., M.C., M.J.C., A.K.), National Institute for Health and Medical Research (INSERM), Hôpital de la Pitié; UPMC Paris 6 (A.Z.-S., S.C., M.C., M.J.C., A.K.); and the Department of Biochemistry (A.Z.-S., P.T., M.C.), University Paris Descartes, France; and the Heart Research Institute (K.-A.R.), Sydney, Australia
| | - Anatol Kontush
- From the Dyslipidemia and Atherosclerosis Research Unit (UMRS 939) (A.Z.-S., S.C., M.C., M.J.C., A.K.), National Institute for Health and Medical Research (INSERM), Hôpital de la Pitié; UPMC Paris 6 (A.Z.-S., S.C., M.C., M.J.C., A.K.); and the Department of Biochemistry (A.Z.-S., P.T., M.C.), University Paris Descartes, France; and the Heart Research Institute (K.-A.R.), Sydney, Australia
| |
Collapse
|
40
|
Minniti AN, Cataldo R, Trigo C, Vasquez L, Mujica P, Leighton F, Inestrosa NC, Aldunate R. Methionine sulfoxide reductase A expression is regulated by the DAF-16/FOXO pathway in Caenorhabditis elegans. Aging Cell 2009; 8:690-705. [PMID: 19747232 DOI: 10.1111/j.1474-9726.2009.00521.x] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
The methionine sulfoxide reductase system has been implicated in aging and protection against oxidative stress. This conserved system reverses the oxidation of methionine residues within proteins. We analyzed one of the components of this system, the methionine sulfoxide reductase A gene, in Caenorhabditis elegans. We found that the msra-1 gene is expressed in most tissues, particularly in the intestine and the nervous system. Worms carrying a deletion of the msra-1 gene are more sensitive to oxidative stress, show chemotaxis and locomotory defects, and a 30% decrease in median survival. We established that msra-1 expression decreases during aging and is regulated by the DAF-16/FOXO3a transcription factor. The absence of this enzyme decreases median survival and affects oxidative stress resistance of long lived daf-2 worms. A similar effect of MSRA-1 absence in wild-type and daf-2 (where most antioxidant enzymes are activated) backgrounds, suggests that the lack of this member of the methionine repair system cannot be compensated by the general antioxidant response. Moreover, FOXO3a directly activates the human MsrA promoter in a cell culture system, implying that this could be a conserved mechanism of MsrA regulation. Our results suggest that repair of oxidative damage in proteins influences the rate at which tissues age. This repair mechanism, rather than the general decreased of radical oxygen species levels, could be one of the main determinants of organisms' lifespan.
Collapse
Affiliation(s)
- Alicia N Minniti
- Centro de Envejecimiento y Regeneración, Centro de Regulación Celular y Patología Joaquin V. Luco, Santiago, Chile
| | | | | | | | | | | | | | | |
Collapse
|
41
|
Sorci-Thomas MG, Bhat S, Thomas MJ. Activation of lecithin:cholesterol acyltransferase by HDL ApoA-I central helices. CLINICAL LIPIDOLOGY 2009; 4:113-124. [PMID: 20582235 PMCID: PMC2891274 DOI: 10.2217/17584299.4.1.113] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Lecithin:cholesterol acyltransferase (LCAT) is an enzyme that first hydrolyzes the sn-2 position of phospholipids, preferentially a diacylphosphocholine, and then transfers the fatty acid to cholesterol to yield a cholesteryl ester. HDL ApoA-I is the principal catalytic activator for LCAT. Activity of LCAT on nascent or lipid-poor HDL particles composed of phospholipid, cholesterol and ApoA-I allows the maturation of HDL particles into lipid-rich spherical particles that contain a core of cholesteryl ester surrounded by phospholipid and ApoA-I on the surface. This article reviews the recent progress in elucidating structural aspects of the interaction between LCAT and ApoA-I. In the last decade, there has been considerable progress in understanding the structure of ApoA-I and the central helices 5, 6, and 7 that are known to activate LCAT. However, much less information has been forthcoming describing the 3D structure and conformation of LCAT required to catalyze two separate reactions within a single monomeric peptide.
Collapse
Affiliation(s)
- Mary G Sorci-Thomas
- Department of Pathology, Wake Forest University School of Medicine, Medical Center Blvd, Winston-Salem, NC 27157-1016, USA, Tel.: +1 336 716 2147, Fax: +1 336 716 6279,
| | - Shaila Bhat
- Department of Pathology, Lipid Sciences Research Center, Wake Forest University School of Medicine, Winston-Salem, NC 27157, USA, Tel.: +1 336 716 6062, Fax: +1 336 716 6279,
| | - Michael J Thomas
- Department of Biochemistry, Wake Forest University School of Medicine, Winston-Salem, NC 27157, USA, Tel.: +1 336 716 2313, Fax: +1 336 716 6279,
| |
Collapse
|
42
|
Association between both lipid and protein oxidation and the risk of fatal or non-fatal coronary heart disease in a human population. Clin Sci (Lond) 2008; 116:53-60. [DOI: 10.1042/cs20070404] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The role of oxidative damage in the aetiology of coronary disease remains controversial, as clinical trials investigating the effect of antioxidants have not generally been positive. In the present study, 227 coronary cases, identified from a cohort study, were matched, by age and gender, with 420 controls in a nested case-control design. Stored plasma samples were analysed for F2-isoprostanes by stable isotope dilution MS, and specifically oxidized forms of apoA-I (apolipoprotein A-I) by HPLC of HDL (high-density lipoprotein). Median values of F2-isoprostanes were higher in plasma samples that contained oxidized apoA-I compared with samples with undetectable oxidized apoA-I (1542 compared with 1165 pmol/l). F2-Isoprostanes were significantly correlated with variants of non-oxidized apoA-II (r=−0.15) and were associated with HDL-cholesterol (P<0.0001). F2-Isoprostanes in cases (median, 1146 pmol/l) were not different from controls (1250 pmol/l); the odds ratio (95% confidence interval) for a 1 S.D. increase in F2-isoprostanes was 1.08 (0.91–1.29). Similarly, there was no independent association between the presence of oxidized apoA-I, detected in approx. 20% of the samples, and coronary risk. In conclusion, we found no evidence of associations between markers of lipid (F2-isoprostanes) and protein (oxidized apoA-I) oxidation and the risk of fatal or non-fatal coronary heart disease in a general population. This may be due to a true lack of association or insufficient power.
Collapse
|
43
|
Wang XS, Shao B, Oda MN, Heinecke JW, Mahler S, Stocker R. A sensitive and specific ELISA detects methionine sulfoxide-containing apolipoprotein A-I in HDL. J Lipid Res 2008; 50:586-594. [PMID: 18832772 DOI: 10.1194/jlr.d800042-jlr200] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Oxidized HDL has been proposed to play a key role in atherogenesis. A wide range of reactive intermediates oxidizes methionine residues to methionine sulfoxide (MetO) in apolipoprotein A-I (apoA-I), the major HDL protein. These reactive species include those produced by myeloperoxidase, an enzyme implicated in atherogenesis. The aim of the present study was to develop a sensitive and specific ELISA for detecting MetO residues in HDL. We therefore immunized mice with HPLC-purified human apoA-I containing MetO(86) and MetO(112) (termed apoA-I(+32)) to generate a monoclonal antibody termed MOA-I. An ELISA using MOA-I detected lipid-free apoA-I(+32), apoA-I modified by 2e-oxidants (hydrogen peroxide, hypochlorous acid, peroxynitrite), and HDL oxidized by 1e- or 2e-oxidants and present in buffer or human plasma. Detection was concentration dependent, reproducible, and exhibited a linear response over a physiologically plausible range of concentrations of oxidized HDL. In contrast, MOA-I failed to recognize native apoA-I, native apoA-II, apoA-I modified by hydroxyl radical or metal ions, or LDL and methionine-containing proteins other than apoA-I modified by 2e-oxidants. Because the ELISA we have developed specifically detects apoA-I containing MetO in HDL and plasma, it should provide a useful tool for investigating the relationship between oxidized HDL and coronary artery disease.
Collapse
Affiliation(s)
- Xiao Suo Wang
- Centre for Vascular Research, School of Medical Sciences (Pathology) and Bosch Institute, The University of Sydney, Sydney, Australia
| | - Baohai Shao
- Department of Medicine, University of Washington, Seattle
| | - Michael N Oda
- Children's Hospital Oakland Research Institute, Oakland, CA 94609
| | - Jay W Heinecke
- Department of Medicine, University of Washington, Seattle
| | - Stephen Mahler
- Australian Institute for Bioengineering and Nanotechnology, University of Queensland, Brisbane, Australia
| | - Roland Stocker
- Centre for Vascular Research, School of Medical Sciences (Pathology) and Bosch Institute, The University of Sydney, Sydney, Australia.
| |
Collapse
|
44
|
Elias RJ, Kellerby SS, Decker EA. Antioxidant Activity of Proteins and Peptides. Crit Rev Food Sci Nutr 2008; 48:430-41. [DOI: 10.1080/10408390701425615] [Citation(s) in RCA: 720] [Impact Index Per Article: 42.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
45
|
Vaisar T, Shao B, Green PS, Oda MN, Oram JF, Heinecke JW. Myeloperoxidase and inflammatory proteins: pathways for generating dysfunctional high-density lipoprotein in humans. Curr Atheroscler Rep 2008; 9:417-24. [PMID: 18001626 DOI: 10.1007/s11883-007-0054-z] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
High-density lipoprotein (HDL) inhibits atherosclerosis by removing cholesterol from artery wall macrophages. Additionally, HDL is anti-inflammatory in animal studies, suggesting that this property might also be important for its cardioprotective effects. Recent studies in subjects with established cardiovascular disease (CVD) demonstrate that myeloperoxidase targets HDL for oxidation and blocks the lipoprotein's ability to remove excess cholesterol from cells, raising the possibility that the enzyme provides a specific mechanism for generating dysfunctional HDL in humans. Shotgun proteomic analysis of HDL identified multiple complement regulatory proteins, protease inhibitors, and acute-phase response proteins, supporting a central role for HDL in inflammation. Mass spectrometry and biochemical analyses demonstrated that HDL(3) from CVD subjects was selectively enriched in apolipoprotein E, suggesting that it carries a unique cargo of proteins in humans with clinically significant CVD. Thus, oxidative modifications to HDL and changes in its protein composition might be useful biomarkers-and perhaps mediators-of CVD.
Collapse
Affiliation(s)
- Tomás Vaisar
- Department of Medicine, HSB-BB512, Box 356426, University of Washington, 1959 NE Pacific Street, Seattle, WA 98195, USA
| | | | | | | | | | | |
Collapse
|
46
|
Brock JWC, Jenkins AJ, Lyons TJ, Klein RL, Yim E, Lopes-Virella M, Carter RE, Thorpe SR, Baynes JW. Increased methionine sulfoxide content of apoA-I in type 1 diabetes. J Lipid Res 2008; 49:847-55. [PMID: 18202432 DOI: 10.1194/jlr.m800015-jlr200] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Cardiovascular disease is a major cause of morbidity and premature mortality in diabetes. HDL plays an important role in limiting vascular damage by removing cholesterol and cholesteryl ester hydroperoxides from oxidized low density lipoprotein and foam cells. Methionine (Met) residues in apolipoprotein A-I (apoA-I), the major apolipoprotein of HDL, reduce peroxides in HDL lipids, forming methionine sulfoxide [Met(O)]. We examined the extent and sites of Met(O) formation in apoA-I of HDL isolated from plasma of healthy control and type 1 diabetic subjects to assess apoA-I exposure to lipid peroxides and the status of oxidative stress in the vascular compartment in diabetes. Three tryptic peptides of apoA-I contain Met residues: Q(84)-M(86)-K(88), W(108)-M(112)-R(116), and L(144)-M(148)-R(149). These peptides and their Met(O) analogs were identified and quantified by mass spectrometry. Relative to controls, Met(O) formation was significantly increased at all three locations (Met(86), Met(112), and Met(148)) in diabetic patients. The increase in Met(O) in the diabetic group did not correlate with other biomarkers of oxidative stress, such as N(epsilon)-malondialdehyde-lysine or N(epsilon)-(carboxymethyl)lysine, in plasma or lipoproteins. The higher Met(O) content in apoA-I from diabetic patients is consistent with increased levels of lipid peroxidation products in plasma in diabetes. Using the methods developed here, future studies can address the relationship between Met(O) in apoA-I and the risk, development, or progression of the vascular complications of diabetes.
Collapse
Affiliation(s)
- Jonathan W C Brock
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, SC, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Shao B, Oda MN, Oram JF, Heinecke JW. Myeloperoxidase: an inflammatory enzyme for generating dysfunctional high density lipoprotein. Curr Opin Cardiol 2008; 21:322-8. [PMID: 16755201 DOI: 10.1097/01.hco.0000231402.87232.aa] [Citation(s) in RCA: 101] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
PURPOSE OF REVIEW Evidence indicates that high density lipoprotein (HDL) is cardioprotective and that several mechanisms are involved. One important pathway is a membrane-associated ATP-binding cassette transporter, ABCA1, that clears cholesterol from macrophage foam cells. Anti-inflammatory and antioxidant properties also might contribute to HDL's ability to inhibit atherosclerosis. RECENT FINDINGS Myeloperoxidase targets HDL for oxidation, raising the possibility that the enzyme provides a specific mechanism for generating dysfunctional HDL in humans. Myeloperoxidase-dependent oxidation of apolipoprotein A-I, the major protein in HDL, blocks HDL's ability to remove excess cholesterol from cells by the ABCA1 pathway. Analysis of mutated forms of apoA-I and oxidized apoA-I treated with methionine sulfoxide reductase implicate oxidation of specific tyrosine and methionine residues in impairing the ABCA1 transport activity of apoA-I. The crystal structure of lipid-free apoA-I suggests that such oxidative damage might disrupt negatively charged regions on the protein's surface or alter its remodeling, resulting in conformations that fail to interact with ABCA1. SUMMARY Oxidation of HDL by myeloperoxidase may represent a specific molecular mechanism for converting the cardioprotective lipoprotein into a dysfunctional form, raising the possibility that the enzyme represents a potential therapeutic target for preventing vascular disease in humans. Moreover, oxidized HDL might prove useful as a blood marker for clinically significant cardiovascular disease in humans.
Collapse
Affiliation(s)
- Baohai Shao
- Department of Medicine, University of Washington, Seattle, 98195, USA
| | | | | | | |
Collapse
|
48
|
Abstract
Advanced lipoxidation end-products (ALEs) are formed by reaction of protein with lipid-derived reactive peroxyl and carbonyl compounds produced during food processing and cooking. There is concern that ALEs may induce damage in the gastrointestinal tract, affecting gut health, or enter the body and promote vascular inflammation and tissue damage. However, there is no direct evidence that ALE-proteins are a source of damage in the intestines or that they are transported into the circulation and cause pathology. Modification of proteins by ALEs impedes their digestion, and reactive ALEs released by gastrointestinal proteases would react with proteins or peptides in the gut, limiting their absorption. There are also potent enzymatic mechanisms for detoxifying ALEs or their precursors prior to their entry into the circulation. If ALEs gain access to the circulation, a battery of protective enzymes in tissue provides a second level of defense. These enzymes may be induced in intestinal epithelia and liver by low doses of ALEs, and adaptive responses would provide enhanced protection against future exposure to ALEs. Overall, except in persons with compromised organ function, e. g., vascular, hepatic, or renal diseases, there is little evidence that food ALEs will have any significant pathological effects.
Collapse
Affiliation(s)
- John W Baynes
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia 29208, USA.
| |
Collapse
|
49
|
Gao X, Jayaraman S, Gursky O. Mild oxidation promotes and advanced oxidation impairs remodeling of human high-density lipoprotein in vitro. J Mol Biol 2007; 376:997-1007. [PMID: 18190928 DOI: 10.1016/j.jmb.2007.12.030] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2007] [Revised: 12/12/2007] [Accepted: 12/12/2007] [Indexed: 01/10/2023]
Abstract
High-density lipoproteins (HDLs) prevent atherosclerosis by removing cholesterol from macrophages and by exerting antioxidant and anti-inflammatory effects. Oxidation is thought to impair HDL functions, yet certain oxidative modifications may be advantageous; thus, mild oxidation reportedly enhances cell cholesterol uptake by HDL whereas extensive oxidation impairs it. To elucidate the underlying energetic and structural basis, we analyzed the effects of copper and hypochlorite (which preferentially oxidize lipids and proteins, respectively) on thermal stability of plasma spherical HDL. Circular dichroism, light scattering, calorimetry, gel electrophoresis, and electron microscopy showed that mild oxidation destabilizes HDL and accelerates protein dissociation and lipoprotein fusion, while extensive oxidation inhibits these reactions; this inhibition correlates with massive protein cross-linking and with lipolysis. We propose that mild oxidation lowers kinetic barriers for HDL remodeling due to diminished apolipoprotein affinity for lipids resulting from oxidation of methionine and aromatic residues in apolipoproteins A-I and A-II followed by protein cross-linking into dimers and/or trimers. In contrast, advanced oxidation inhibits protein dissociation and HDL fusion due to lipid redistribution from core to surface upon lipolysis and to massive protein cross-linking. Our results help reconcile the apparent controversy in the studies of oxidized HDL and suggest that mild oxidation may benefit HDL functions.
Collapse
Affiliation(s)
- Xuan Gao
- Department of Physiology and Biophysics, W329, Boston University School of Medicine, 715 Albany Street, Boston, MA 02118, USA
| | | | | |
Collapse
|
50
|
Abstract
Numerous reports on the molecular mechanism of atherogenesis indicate an increase in oxidative stress, formation of advanced glycoxidation end products (AGEs), chronic inflammation, and activated cellular response particularly in diabetic patients. To elucidate the initiating and early accelerating events this review will focus on the molecular causes of the induction of these stress factors, their interactions, and their contribution to atherogenesis. Metabolic factors such as elevated free fatty acids, high glucose levels or AGEs induce reactive oxygen species (ROS) in vascular cells leading to ongoing AGE formation and to gene induction of proinflammatory cytokines. Vice versa, numerous cytokines found elevated in obesity and diabetes may also induce oxidative stress thus a circulus vitious may be initiated and accelerated. Increased production of ROS, mainly from mitochondria and NAD(P)H oxidase, stimulates signaling cascades including protein kinase C and mitogen-activated protein kinase pathway leading to nuclear translocation of transcription factors such as nuclear factor-kappaB (NF-kappaB), activator protein 1, and specificity protein 1. Subsequently, the expression of numerous genes including cytokines is rapidly induced, which, in turn, may act on vascular cells promoting the deleterious effects. From animal models of accelerated atherosclerosis a causal role of NAD(P)H oxidase and the AGE/RAGE/NF-kappaB axis to atherogenesis is suggested. Because all factors involved form a highly interwoven network of interactions, the blockade of ROS or AGE formation at different sites may interrupt the vicious cycle. Promising candidate agents are, currently on trial. Most important to clinical practice, a number of drugs commonly used in the treatment of diabetes, hypertension, or cardiovascular disease, such as angiotensin-converting enzyme inhibitors, AT(1) receptor blockers, 3-hydroxy-3-methyl-glutaryl-CoA reductase inhibitors (statins), and thiazolidindiones have shown promising 'preventive' intracellular antioxidant activity in addition to their primary pharmacological actions.
Collapse
Affiliation(s)
- E Schleicher
- Department for Internal Medicine IV, Clinical Chemistry (Central Laboratory), University of Tuebingen, Tuebingen, Germany.
| | | |
Collapse
|