1
|
Zavala E, Dansereau S, Burke MJ, Lipchock JM, Maschietto F, Batista V, Loria JP. A salt bridge of the C-terminal carboxyl group regulates PHPT1 substrate affinity and catalytic activity. Protein Sci 2024; 33:e5009. [PMID: 38747379 PMCID: PMC11094782 DOI: 10.1002/pro.5009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 04/12/2024] [Accepted: 04/16/2024] [Indexed: 05/19/2024]
Abstract
PHPT1 is a histidine phosphatase that modulates signaling in eukaryotes through its catalytic activity. Here, we present an analysis of the structure and dynamics of PHPT1 through a combination of solution NMR, molecular dynamics, and biochemical experiments. We identify a salt bridge formed between the R78 guanidinium moiety and the C-terminal carboxyl group on Y125 that is critical for ligand binding. Disruption of the salt bridge by appending a glycine residue at the C-terminus (G126) leads to a decrease in catalytic activity and binding affinity for the pseudo substrate, para-nitrophenylphosphate (pNPP), as well as the active site inhibitor, phenylphosphonic acid (PPA). We show through NMR chemical shift, 15N relaxation measurements, and analysis of molecular dynamics trajectories, that removal of this salt bridge results in an active site that is altered both structurally and dynamically thereby significantly impacting enzymatic function and confirming the importance of this electrostatic interaction.
Collapse
Affiliation(s)
- Erik Zavala
- Department of Molecular Biophysics and BiochemistryYale UniversityNew HavenConnecticutUSA
| | | | | | - James M. Lipchock
- Department of Chemical and Biological SciencesMontgomery CollegeGermantownMarylandUSA
| | | | - Victor Batista
- Department of ChemistryYale UniversityNew HavenConnecticutUSA
| | - J. Patrick Loria
- Department of Molecular Biophysics and BiochemistryYale UniversityNew HavenConnecticutUSA
- Department of ChemistryYale UniversityNew HavenConnecticutUSA
| |
Collapse
|
2
|
Yu Y, Liu Q, Ran Q, Cao F. Overexpression of PPM1B inhibited chemoresistance to temozolomide and proliferation in glioma cells. Cell Biol Int 2024; 48:143-153. [PMID: 37798941 DOI: 10.1002/cbin.12092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2022] [Revised: 08/02/2023] [Accepted: 09/16/2023] [Indexed: 10/07/2023]
Abstract
Protein phosphatase magnesium-dependent 1B (PPM1B) functions as IKKβ phosphatases to terminate nuclear factor kappa B (NF-κB) signaling. NF-κB signaling was constitutively activated in glioma cells. At present, little is known about the role of PPM1B in glioma. In the current study, we found that the expression of PPM1B was reduced in glioma tissues and cells, and decreased expression of PPM1B was related to poor overall survival of patients. Overexpression of PPM1B inhibited the proliferation and promoted apoptosis of glioma cells. Moreover, PPM1B overexpression reduced the phosphorylation of IKKβ and inhibited the nuclear localization of NF-κBp65. PDTC, an inhibitor of NF-κB signaling, reversed PPM1B-knockdown-induced cell proliferation. Furthermore, overexpression of PPM1B enhanced the sensitivity of glioma cells to temozolomide. In vivo experiments showed that overexpression of PPM1B could inhibit tumor growth, improve the survival rate of nude mice, and enhance the sensitivity to temozolomide. In conclusion, PPM1B suppressed glioma cell proliferation and the IKKβ-NF-κB signaling pathway, and enhanced temozolomide sensitivity of glioma cells.
Collapse
Affiliation(s)
- Yunhu Yu
- Neurosurgery Department, People's Hospital of Honghuagang District of Zunyi, Zunyi, China
- Department of Neurosurgery, The Third Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Qian Liu
- Department of Neurosurgery, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Qishan Ran
- Department of Neurosurgery, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Fang Cao
- Department of Neurosurgery, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| |
Collapse
|
3
|
Bruna RE, Casal A, Bercovich B, Gramajo H, Rodríguez E, García Véscovi E. A natural product from Streptomyces targets PhoP and exerts antivirulence action against Salmonella enterica. J Antimicrob Chemother 2022; 77:3050-3063. [PMID: 35972206 DOI: 10.1093/jac/dkac278] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Accepted: 07/19/2022] [Indexed: 11/12/2022] Open
Abstract
BACKGROUND The overprescription and misuse of classical antimicrobial compounds to treat gastrointestinal or systemic salmonellosis have been accelerating the surge of antibiotic-recalcitrant bacterial populations, posing a major public health challenge. Therefore, alternative therapeutic approaches to treat Salmonella infections are urgently required. OBJECTIVES To identify and characterize actinobacterial secreted compounds with inhibitory properties against the Salmonella enterica PhoP/PhoQ signal transduction system, crucial for virulence regulation. METHODS The methodology was based on a combination of the measurement of the activity of PhoP/PhoQ-dependent and -independent reporter genes and bioguided assays to screen for bioactive inhibitory metabolites present in culture supernatants obtained from a collection of actinobacterial isolates. Analogues of azomycin were used to analyse the functional groups required for the detected bioactivity and Salmonella mutants and complemented strains helped to dissect the azomycin mechanism of action. The tetrazolium dye colorimetric assay was used to investigate azomycin potential cytotoxicity on cultured macrophages. Salmonella intramacrophage replication capacity upon azomycin treatment was assessed using the gentamicin protection assay. RESULTS Sublethal concentrations of azomycin, a nitroheterocyclic compound naturally produced by Streptomyces eurocidicus, repressed the Salmonella PhoP/PhoQ system activity by targeting PhoP and inhibiting its transcriptional activity in a PhoQ- and aspartate phosphorylation-independent manner. Sublethal, non-cytotoxic concentrations of azomycin prevented Salmonella intramacrophage replication. CONCLUSIONS Azomycin selectively inhibits the activity of the Salmonella virulence regulator PhoP, a new activity described for this nitroheterocyclic compound that can be repurposed to develop novel anti-Salmonella therapeutic approaches.
Collapse
Affiliation(s)
- Roberto E Bruna
- Instituto de Biología Molecular y Celular de Rosario, Consejo Nacional de Investigaciones Científicas y Tecnológicas, Universidad Nacional de Rosario, Rosario, Santa Fe, Argentina
| | - Alejo Casal
- Instituto de Biología Molecular y Celular de Rosario, Consejo Nacional de Investigaciones Científicas y Tecnológicas, Universidad Nacional de Rosario, Rosario, Santa Fe, Argentina
| | - Bárbara Bercovich
- Instituto de Biología Molecular y Celular de Rosario, Consejo Nacional de Investigaciones Científicas y Tecnológicas, Universidad Nacional de Rosario, Rosario, Santa Fe, Argentina
| | - Hugo Gramajo
- Instituto de Biología Molecular y Celular de Rosario, Consejo Nacional de Investigaciones Científicas y Tecnológicas, Universidad Nacional de Rosario, Rosario, Santa Fe, Argentina
| | - Eduardo Rodríguez
- Instituto de Biología Molecular y Celular de Rosario, Consejo Nacional de Investigaciones Científicas y Tecnológicas, Universidad Nacional de Rosario, Rosario, Santa Fe, Argentina
| | - Eleonora García Véscovi
- Instituto de Biología Molecular y Celular de Rosario, Consejo Nacional de Investigaciones Científicas y Tecnológicas, Universidad Nacional de Rosario, Rosario, Santa Fe, Argentina
| |
Collapse
|
4
|
Han Y, Zhong L, Ren F. A simple method for the preparation of positive samples to preliminarily determine the quality of phosphorylation-specific antibody. PLoS One 2022; 17:e0272138. [PMID: 35877775 PMCID: PMC9312364 DOI: 10.1371/journal.pone.0272138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2022] [Accepted: 07/13/2022] [Indexed: 11/18/2022] Open
Abstract
Protein phosphorylation is one of the most common and important post-translational modifications and is involved in many biological processes, including DNA damage repair, transcriptional regulation, signal transduction, and apoptosis regulation. The use of antibodies targeting phosphorylated protein is a convenient method to detect protein phosphorylation. Therefore, high-quality antibodies are essential, and uniform and effective standards are urgently needed to evaluate the quality of these phosphorylation-specific antibodies. In this study, we established a simple, broad-spectrum system for the preparation of phosphorylation-positive samples. The positive samples for evaluation of phosphorylation-specific antibodies were then validated in cells from different species and tissues, and also been proven effectively in western blot, enzyme-linked immunosorbent assays, LC-MS/MS and immunofluorescence analysis. Overall, our findings established a novel approach for evaluation of the quality of phosphorylation-specific antibodies and may have applications in various biomedical fields.
Collapse
Affiliation(s)
- Yang Han
- Center for Translational Medicine, Wuhan Jinyintan Hospital, Wuhan, Hubei, China
- State Key Laboratory of Virology, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences (CAS), Wuhan, Hubei, China
- * E-mail:
| | - Lin Zhong
- Department of Analysis and Reporting, Pfizer (Wuhan) Research and Development Co. LTD, Hubei, China
| | - Fuli Ren
- Center for Translational Medicine, Wuhan Jinyintan Hospital, Wuhan, Hubei, China
- State Key Laboratory of Virology, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences (CAS), Wuhan, Hubei, China
| |
Collapse
|
5
|
Liu S, Gao W, Lu Y, Zhou Q, Su R, Hasegawa T, Du J, Li M. As a Novel Tumor Suppressor, LHPP Promotes Apoptosis by Inhibiting the PI3K/AKT Signaling Pathway in Oral Squamous Cell Carcinoma. Int J Biol Sci 2022; 18:491-506. [PMID: 35002505 PMCID: PMC8741864 DOI: 10.7150/ijbs.66841] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Accepted: 11/15/2021] [Indexed: 01/09/2023] Open
Abstract
Oral squamous cell carcinoma (OSCC) refers to the malignant tumor of the head and neck with a highest morbidity. It exhibits a poor prognosis and unsatisfactory treatment partially attributed to delayed diagnosis. As indicated from existing reports, the protein histidine phosphatase LHPP acts as a vital factor in tumorigenesis in liver, lung, bladder, breast and pancreatic tumor tissues. Thus far, the functional mechanism of LHPP in OSCC remains unclear. DGE analysis, OSCC cell lines and OSCC cases were found that LHPP was down-regulated in OSCC tissues and cells compared with that in normal oral mucosa tissues and cells, and was closely related to OSCC differentiation. Cell counting Kit 8 test, EdU proliferation test, scratches test, invasion test, monoclonal formation test, mouse xenograft tumor model, HE staining and immunohistochemistry showed that LHPP inhibited OSCC growth, proliferation and migration in vivo and in vitro. GO and KEGG enrichment analysis, LHPP transcription factor analysis and flow cytometry found that LHPP promotes the apoptosis of OSCC by decreasing the transcriptional activity of p-PI3K and p-Akt. Finally, our results suggested that LHPP inhibited the progression of OSCC through the PI3K/AKT signaling pathway, indicating that LHPP may be a new target for the treatment of OSCC.
Collapse
Affiliation(s)
- Shanshan Liu
- Department of Bone Metabolism, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University and Shandong Key Laboratory of Oral Tissue Regeneration and Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration, Jinan 250012, China
| | - Wenzhen Gao
- Department of Bone Metabolism, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University and Shandong Key Laboratory of Oral Tissue Regeneration and Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration, Jinan 250012, China
| | - Yupu Lu
- Department of Bone Metabolism, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University and Shandong Key Laboratory of Oral Tissue Regeneration and Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration, Jinan 250012, China
| | - Qin Zhou
- Department of Bone Metabolism, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University and Shandong Key Laboratory of Oral Tissue Regeneration and Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration, Jinan 250012, China
| | - Rongjian Su
- Life Science Institute of Jinzhou Medical University, College of Basic Medicine of Jinzhou Medical University, Cell Biology and Genetic Department of Jinzhou Medical University, Key Lab of Molecular and Cellular Biology of the Education Department of Liaoning Province, Jinzhou 121001, China
| | - Tomoka Hasegawa
- Department of Developmental Biology of Hard Tissue, Graduate School of Dental Medicine, Hokkaido University, Sapporo, 060-8586, Japan
| | - Juan Du
- Department of Bone Metabolism, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University and Shandong Key Laboratory of Oral Tissue Regeneration and Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration, Jinan 250012, China.,Department of Oral and Maxillofacial Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan 250021, China
| | - Minqi Li
- Department of Bone Metabolism, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University and Shandong Key Laboratory of Oral Tissue Regeneration and Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration, Jinan 250012, China
| |
Collapse
|
6
|
Liao L, Duan D, Liu Y, Chen L. LHPP inhibits hepatocellular carcinoma cell growth and metastasis. Cell Cycle 2020; 19:1846-1854. [PMID: 32578511 DOI: 10.1080/15384101.2020.1783472] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Hepatocellular carcinoma (HCC) has a poor prognosis, owing to its high potential for growth and metastasis. In this study, we aimed to investigate the roles of Phospholysine Phosphohistidine Inorganic Pyrophosphate Phosphatase (LHPP)in human HCCcell growth and metastasis. We analyzed the LHPP expression level in human HCC tissues paired normal tissues in the Oncomine database, and assessed the relationship between the LHPP expression levels with HCC patient's overall survival and the prognostic value of LHPP in human HCC by Kaplan-Meier survival analysis. Real-time PCR and Western Blot were used to examine the expression levels of LHPP in normal liver cell line (LO2) and human HCC cell lines (SMCC-7721, HepG2, Huh7, MHCC-97 H, and LM3). Through lentivirus infection, we established human HCC stable cell lines (Huh7 and LM3) overexpressing LHPP. Then, we detected these cell viability, colony , and invasion. Subsequently, we performed the gene set enrichment analysis (GSEA) for the RNA-seq data of HCC patients from TCGA. Finally, we examined the expression level of several oncogenes, including CCNB1, PKM2, MMP7, and MMP9, in these cells via real-time PCR assay. Here, we found thatLHPPis significantly downregulated in the human HCC tissues paired normal tissues. Furthermore, the high expression level of LHPP is associated with better clinical outcomes in human HCC. Overexpression of LHPPinhibitscell growth and metastasis in human HCC cells, and LHPP expression levels negatively correlate with cell cycle and metastasis in HCC tissues. Moreover, the level of LHPP is negatively correlated with CCNB1, PKM2, MMP7, and MMP9 in human HCC cells and HCC tissues. These findings highlight a novel tumor suppressor in human HCC growth and metastasis, and provide a promising diagnostic and prognostic factor for humanHCC.
Collapse
Affiliation(s)
- Lijuan Liao
- Shenzhen Laboratory of Tumor Cell Biology, Institute of Biomedicine and Biotechnology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences , Shenzhen, P. R. China.,University of Chinese Academy of Sciences , Beijing, P. R. China
| | - Deyu Duan
- Department of Clinical Laboratory, The Seventh Affiliated Hospital of Sun Yat-Sen University , Shenzhen, Guangdong, China
| | - Yanfeng Liu
- Stem Cell Research Center, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University , Shanghai, China
| | - Liang Chen
- Shenzhen Laboratory of Tumor Cell Biology, Institute of Biomedicine and Biotechnology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences , Shenzhen, P. R. China.,University of Chinese Academy of Sciences , Beijing, P. R. China
| |
Collapse
|
7
|
Yang J, Moraga A, Xu J, Zhao Y, Luo P, Lao KH, Margariti A, Zhao Q, Ding W, Wang G, Zhang M, Zheng L, Zhang Z, Hu Y, Wang W, Shen L, Smith A, Shah AM, Wang Q, Zeng L. A histone deacetylase 7-derived peptide promotes vascular regeneration via facilitating 14-3-3γ phosphorylation. Stem Cells 2020; 38:556-573. [PMID: 31721359 PMCID: PMC7187271 DOI: 10.1002/stem.3122] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2019] [Accepted: 10/25/2019] [Indexed: 12/12/2022]
Abstract
Histone deacetylase 7 (HDAC7) plays a pivotal role in the maintenance of the endothelium integrity. In this study, we demonstrated that the intron-containing Hdac7 mRNA existed in the cytosol and that ribosomes bound to a short open reading frame (sORF) within the 5'-terminal noncoding area of this Hdac7 mRNA in response to vascular endothelial growth factor (VEGF) stimulation in the isolated stem cell antigen-1 positive (Sca1+ ) vascular progenitor cells (VPCs). A 7-amino acid (7A) peptide has been demonstrated to be translated from the sORF in Sca1+ -VPCs in vitro and in vivo. The 7A peptide was shown to receive phosphate group from the activated mitogen-activated protein kinase MEKK1 and transfer it to 14-3-3 gamma protein, forming an MEKK1-7A-14-3-3γ signal pathway downstream VEGF. The exogenous synthetic 7A peptide could increase Sca1+ -VPCs cell migration, re-endothelialization in the femoral artery injury, and angiogenesis in hind limb ischemia. A Hd7-7sFLAG transgenic mice line was generated as the loss-of-function model, in which the 7A peptide was replaced by a FLAG-tagged scrabbled peptide. Loss of the endogenous 7A impaired Sca1+ -VPCs cell migration, re-endothelialization of the injured femoral artery, and angiogenesis in ischemic tissues, which could be partially rescued by the addition of the exogenous 7A/7Ap peptide. This study provides evidence that sORFs can be alternatively translated and the derived peptides may play an important role in physiological processes including vascular remodeling.
Collapse
Affiliation(s)
- Junyao Yang
- School of Cardiovascular Medicine and Sciences, King's College - London British Heart Foundation Centre of Excellence, Faculty of Life Science and Medicine, King's College London, London, UK.,Department of Clinical Laboratory, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China
| | - Ana Moraga
- School of Cardiovascular Medicine and Sciences, King's College - London British Heart Foundation Centre of Excellence, Faculty of Life Science and Medicine, King's College London, London, UK
| | - Jing Xu
- Institute of Bioengineering, Queen Mary University of London, London, UK
| | - Yue Zhao
- School of Cardiovascular Medicine and Sciences, King's College - London British Heart Foundation Centre of Excellence, Faculty of Life Science and Medicine, King's College London, London, UK
| | - Peiyi Luo
- School of Cardiovascular Medicine and Sciences, King's College - London British Heart Foundation Centre of Excellence, Faculty of Life Science and Medicine, King's College London, London, UK
| | - Ka Hou Lao
- School of Cardiovascular Medicine and Sciences, King's College - London British Heart Foundation Centre of Excellence, Faculty of Life Science and Medicine, King's College London, London, UK
| | - Andriana Margariti
- Centre for Experimental Medicine, Queen's University Belfast, Belfast, UK
| | - Qiang Zhao
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Bioactive Materials, Ministry of Education, College of Life Sciences, Nankai University, Tianjin, People's Republic of China
| | - Wei Ding
- Institute of Bioengineering, Queen Mary University of London, London, UK
| | - Gang Wang
- Department of Emergency Medicine, The Second Affiliated Hospital, Xi'an Jiaotong University, Xi'an, People's Republic of China
| | - Min Zhang
- School of Cardiovascular Medicine and Sciences, King's College - London British Heart Foundation Centre of Excellence, Faculty of Life Science and Medicine, King's College London, London, UK
| | - Lei Zheng
- Southern Medical University, Guangzhou, People's Republic of China
| | - Zhongyi Zhang
- School of Cardiovascular Medicine and Sciences, King's College - London British Heart Foundation Centre of Excellence, Faculty of Life Science and Medicine, King's College London, London, UK
| | - Yanhua Hu
- School of Cardiovascular Medicine and Sciences, King's College - London British Heart Foundation Centre of Excellence, Faculty of Life Science and Medicine, King's College London, London, UK
| | - Wen Wang
- Institute of Bioengineering, Queen Mary University of London, London, UK
| | - Lisong Shen
- Department of Clinical Laboratory, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China
| | - Alberto Smith
- School of Cardiovascular Medicine and Sciences, King's College - London British Heart Foundation Centre of Excellence, Faculty of Life Science and Medicine, King's College London, London, UK
| | - Ajay M Shah
- School of Cardiovascular Medicine and Sciences, King's College - London British Heart Foundation Centre of Excellence, Faculty of Life Science and Medicine, King's College London, London, UK
| | - Qian Wang
- Southern Medical University, Guangzhou, People's Republic of China
| | - Lingfang Zeng
- School of Cardiovascular Medicine and Sciences, King's College - London British Heart Foundation Centre of Excellence, Faculty of Life Science and Medicine, King's College London, London, UK
| |
Collapse
|
8
|
Pereira MS, Murta B, Oliveira TCF, Manfredi AM, Nome F, Hengge AC, Brandão TAS. Mechanistic Aspects of Phosphate Diester Cleavage Assisted by Imidazole. A Template Reaction for Obtaining Aryl Phosphoimidazoles. J Org Chem 2016; 81:8663-8672. [PMID: 27392322 DOI: 10.1021/acs.joc.6b01358] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Phosphoimidazole-containing compounds are versatile players in biological and chemical processes. We explore catalytic and mechanistic criteria for the efficient formation of cyclic aryl phosphoimidazoles in aqueous solution, viewed as a template reaction for the in situ synthesis of related compounds. To provide a detailed analysis for this reaction a series of o-(2'-imidazolyl)naphthyl (4-nitrophenyl) phosphate isomers were examined to provide a basis for analysis of both mechanism and the influence of structural factors affecting the nucleophilic attack of the imidazolyl group on the phosphorus center of the substrate. Formation of the cyclic aryl phosphoimidazoles was probed by NMR and ESI-MS techniques. Kinetic experiments show that cyclization is faster under alkaline conditions, with an effective molarity up to 2900 M for the imidazolyl group, ruling out competition from external nucleophiles. Heavy atom isotope effect and computational studies show that the reaction occurs through a SN2(P)-type mechanism involving a pentacoordinated phosphorus TS, with apical positions occupied by the incoming imidazolyl nucleophile and the p-nitrophenolate leaving group. The P-O bond to the leaving group is about 50-60% broken in the transition state.
Collapse
Affiliation(s)
- Mozart S Pereira
- Department of Chemistry, ICEX, Federal University of Minas Gerais , Belo Horizonte, MG 31270-901, Brazil
| | - Bárbara Murta
- Department of Chemistry, ICEX, Federal University of Minas Gerais , Belo Horizonte, MG 31270-901, Brazil
| | - Thaís C F Oliveira
- Department of Chemistry, ICEX, Federal University of Minas Gerais , Belo Horizonte, MG 31270-901, Brazil
| | - Alex M Manfredi
- Department of Chemistry, Federal University of Santa Catarina , Florianópolis, SC 88040-900, Brazil
| | - Faruk Nome
- Department of Chemistry, Federal University of Santa Catarina , Florianópolis, SC 88040-900, Brazil
| | - Alvan C Hengge
- Department of Chemistry and Biochemistry, Utah State University , Logan, Utah 84322-0300, United States
| | - Tiago A S Brandão
- Department of Chemistry, ICEX, Federal University of Minas Gerais , Belo Horizonte, MG 31270-901, Brazil
| |
Collapse
|
9
|
Shen H, Yang P, Liu Q, Tian Y. Nuclear expression and clinical significance of phosphohistidine phosphatase 1 in clear-cell renal cell carcinoma. J Int Med Res 2015; 43:747-57. [PMID: 26537769 DOI: 10.1177/0300060515587576] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2014] [Accepted: 04/25/2015] [Indexed: 01/17/2023] Open
Abstract
OBJECTIVE To explore expression and clinical relevance of phosphohistidine phosphatase 1 (PHPT1) in clear-cell renal cell carcinoma. METHODS Patients with clear-cell renal cell carcinoma who underwent radical or nephron-sparing nephrectomy were enrolled. Correlations between PHPT1 expression and demographic and clinical characteristics were analysed prospectively. RESULTS In total, 122 patients (78 male/44 female) were included. In normal kidney tissue, PHPT1 expression was observed only in the proximal tubule. High PHPT1 expression levels were associated with larger tumour size, higher Fuhrman nuclear grade and advanced pathological tumour-node-metastasis (pTNM) stage compared with low PHPT1 expression levels. Patients with low PHPT1 expression showed better overall survival and progression-free survival compared with those with high PHPT1 expression. In addition, multivariate analysis showed that nuclear grade and pTNM stage were independent predictors of progression-free survival and overall survival in patients with clear-cell renal cell carcinoma. PHPT1 expression was also an independent predictor of overall survival but not progression-free survival. CONCLUSIONS PHPT1 was expressed in the epithelium of proximal tubuli and nuclei of clear-cell renal cell carcinoma tissue samples. High levels of 14 kDa phosphohistidine phosphatase protein were negatively associated with overall survival and progression-free survival in patients with clear-cell renal cell carcinoma.
Collapse
Affiliation(s)
- Hongliang Shen
- Department of Urology, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Peiqian Yang
- Department of Urology, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Qingjun Liu
- Department of Urology, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Ye Tian
- Department of Urology, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
10
|
Transplantation of prokaryotic two-component signaling pathways into mammalian cells. Proc Natl Acad Sci U S A 2014; 111:15705-10. [PMID: 25331891 DOI: 10.1073/pnas.1406482111] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Signaling pathway engineering is a promising route toward synthetic biological circuits. Histidine-aspartate phosphorelays are thought to have evolved in prokaryotes where they form the basis for two-component signaling. Tyrosine-serine-threonine phosphorelays, exemplified by MAP kinase cascades, are predominant in eukaryotes. Recently, a prokaryotic two-component pathway was implemented in a plant species to sense environmental trinitrotoluene. We reasoned that "transplantation" of two-component pathways into mammalian host could provide an orthogonal and diverse toolkit for a variety of signal processing tasks. Here we report that two-component pathways could be partially reconstituted in mammalian cell culture and used for programmable control of gene expression. To enable this reconstitution, coding sequences of histidine kinase (HK) and response regulator (RR) components were codon-optimized for human cells, whereas the RRs were fused with a transactivation domain. Responsive promoters were furnished by fusing DNA binding sites in front of a minimal promoter. We found that coexpression of HKs and their cognate RRs in cultured mammalian cells is necessary and sufficient to strongly induce gene expression even in the absence of pathways' chemical triggers in the medium. Both loss-of-function and constitutive mutants behaved as expected. We further used the two-component signaling pathways to implement two-input logical AND, NOR, and OR gene regulation. Thus, two-component systems can be applied in different capacities in mammalian cells and their components can be used for large-scale synthetic gene circuits.
Collapse
|
11
|
Han SX, Wang LJ, Zhao J, Zhang Y, Li M, Zhou X, Wang J, Zhu Q. 14-kDa Phosphohistidine phosphatase plays an important role in hepatocellular carcinoma cell proliferation. Oncol Lett 2012. [PMID: 23205079 DOI: 10.3892/ol.2012.802] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
14-kDa Phosphohistidine phosphatase (PHP14), the first histidine phosphatase protein identified in vertebrates, was recently revealed to play an essential role in lung cancer. The function of this gene in other tumors is unclear; however, in this study, we demonstrate that PHP14 is highly expressed in hepatocellular carcinoma (HCC) tissues and cell lines compared with adjacent non-cancerous human liver tissues and cells (P<0.05). We used lentivirus-mediated delivery of small interfering RNA (siRNA) to knockdown the expression of PHP14 in an HCC cell line and investigate the effects of PHP14 on cell growth in vitro. Cell proliferation was inhibited and cell apoptosis was significantly increased. PHP14-siRNA affected the cell cycle and promoted G1→S phase transition in HCC cells. These results demonstrate that the knockdown of PHP14 expression by lentivirus-delivered siRNA may be a useful therapeutic approach for the treatment of HCC.
Collapse
Affiliation(s)
- Su-Xia Han
- Department of Oncology, The First Affiliated Hospital, College of Medicine, Xi'an Jiaotong University, Xi'an, Shaanxi 710061, P.R. China
| | | | | | | | | | | | | | | |
Collapse
|
12
|
Gomez-Concha C, Flores-Herrera O, Olvera-Sanchez S, Espinosa-Garcia MT, Martinez F. Progesterone synthesis by human placental mitochondria is sensitive to PKA inhibition by H89. Int J Biochem Cell Biol 2011; 43:1402-11. [PMID: 21689781 DOI: 10.1016/j.biocel.2011.06.005] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2011] [Revised: 05/27/2011] [Accepted: 06/06/2011] [Indexed: 11/24/2022]
Abstract
The transfer of cholesterol to mitochondria, which might involve the phosphorylation of proteins, is the rate-limiting step in human placental steroidogenesis. Protein kinase A (PKA) activity and its role in progesterone synthesis by human placental mitochondria were assessed in this study. The results showed that PKA and phosphotyrosine phosphatase D1 are associated with syncytiotrophoblast mitochondrial membrane by an anchoring kinase cAMP protein-121. The ³²P-labeled of four major proteins was analyzed. The specific inhibitor of PKA, H89, decreased progesterone synthesis in mitochondria while in mitochondrial steroidogenic contact sites protein-phosphorylation was diminished, suggesting that PKA plays a role in placental hormone synthesis. In isolated mitochondria, PKA activity was unaffected by the addition of cAMP suggesting a constant activity of this kinase in the syncytiotrophoblast. The presence of PKA and phosphotyrosine phosphatase D1 anchored to mitochondria by an anchoring kinase cAMP protein-121 indicated that syncytiotrophoblast mitochondria contain a full phosphorylation/dephosphorylation system.
Collapse
Affiliation(s)
- Cuauhtemoc Gomez-Concha
- Departamento de Bioquimica, Facultad de Medicina, Universidad Nacional Autónoma de México, Apartado Postal 70-159, Coyoacan 04510, Mexico, D.F., Mexico
| | | | | | | | | |
Collapse
|
13
|
Trost M, Bridon G, Desjardins M, Thibault P. Subcellular phosphoproteomics. MASS SPECTROMETRY REVIEWS 2010; 29:962-90. [PMID: 20931658 DOI: 10.1002/mas.20297] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/15/2023]
Abstract
Protein phosphorylation represents one of the most extensively studied post-translational modifications, primarily due to the emergence of sensitive methods enabling the detection of this modification both in vitro and in vivo. The availability of enrichment methods combined with sensitive mass spectrometry instrumentation has played a crucial role in uncovering the dynamic changes and the large expanding repertoire of this reversible modification. The structural changes imparted by the phosphorylation of specific residues afford exquisite mechanisms for the regulation of protein functions by modulating new binding sites on scaffold proteins or by abrogating protein-protein interactions. However, the dynamic interplay of protein phosphorylation is not occurring randomly within the cell but is rather finely orchestrated by specific kinases and phosphatases that are unevenly distributed across subcellular compartments. This spatial separation not only regulates protein phosphorylation but can also control the activity of other enzymes and the transfer of other post-translational modifications. While numerous large-scale phosphoproteomics studies highlighted the extent and diversity of phosphoproteins present in total cell lysates, the further understanding of their regulation and biological activities require a spatio-temporal resolution only achievable through subcellular fractionation. This review presents a first account of the emerging field of subcellular phosphoproteomics where cell fractionation approaches are combined with sensitive mass spectrometry methods to facilitate the identification of low abundance proteins and to unravel the intricate regulation of protein phosphorylation.
Collapse
Affiliation(s)
- Matthias Trost
- Institute for Research in Immunology and Cancer, Université de Montréal, P.O. Box 6128, Station Centre-ville, Montréal, Québec, Canada H3C 3J7
| | | | | | | |
Collapse
|
14
|
Ruela-de-Sousa RR, Queiroz KCS, Peppelenbosch MP, Fuhler GM. Reversible phosphorylation in haematological malignancies: potential role for protein tyrosine phosphatases in treatment? Biochim Biophys Acta Rev Cancer 2010; 1806:287-303. [PMID: 20659529 DOI: 10.1016/j.bbcan.2010.07.007] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2010] [Revised: 07/16/2010] [Accepted: 07/20/2010] [Indexed: 01/12/2023]
Abstract
Most aspects of leukocyte physiology are under the control of reversible tyrosine phosphorylation. It is clear that excessive phosphorylation of signal transduction elements is a pivotal element of many different pathologies including haematological malignancies and accordingly, strategies that target such phosphorylation have clinically been proven highly successful for treatment of multiple types of leukemias and lymphomas. Cellular phosphorylation status is dependent on the resultant activity of kinases and phosphatases. The cell biology of the former is now well understood; for most cellular phosphoproteins we now know the kinases responsible for their phosphorylation and we understand the principles of their aberrant activity in disease. With respect to phosphatases, however, our knowledge is much patchier. Although the sequences of whole genomes allow us to identify phosphatases using in silico methodology, whereas transcription profiling allows us to understand how phosphatase expression is regulated during disease, most functional questions as to substrate specificity, dynamic regulation of phosphatase activity and potential for therapeutic intervention are still to a large degree open. Nevertheless, recent studies have allowed us to make meaningful statements on the role of tyrosine phosphatase activity in the three major signaling pathways that are commonly affected in leukemias, i.e. the Ras-Raf-ERK1/2, the Jak-STAT and the PI3K-PKB-mTOR pathways. Lessons learned from these pathways may well be applicable elsewhere in leukocyte biology as well.
Collapse
Affiliation(s)
- Roberta R Ruela-de-Sousa
- Center for Experimental and Molecular Medicine, Academic Medical Center, Meibergdreef 9 1105 AZ Amsterdam, The Netherlands
| | | | | | | |
Collapse
|
15
|
Ruman T, Długopolska K, Jurkiewicz A, Rut D, Frączyk T, Cieśla J, Leś A, Szewczuk Z, Rode W. Thiophosphorylation of free amino acids and enzyme protein by thiophosphoramidate ions. Bioorg Chem 2010; 38:74-80. [DOI: 10.1016/j.bioorg.2009.11.002] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2009] [Revised: 11/18/2009] [Accepted: 11/19/2009] [Indexed: 11/25/2022]
|
16
|
Chemical phosphorylation of histidine-containing peptides based on the sequence of histone H4 and their dephosphorylation by protein histidine phosphatase. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2010; 1804:199-205. [DOI: 10.1016/j.bbapap.2009.10.007] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2009] [Revised: 09/09/2009] [Accepted: 10/05/2009] [Indexed: 01/05/2023]
|
17
|
Klumpp S, Ma NT, Bäumer N, Bechmann G, Krieglstein J. Relevance of glycine and cysteine residues as well as N- and C-terminals for the activity of protein histidine phosphatase. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2010; 1804:206-11. [DOI: 10.1016/j.bbapap.2009.10.008] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2009] [Revised: 10/02/2009] [Accepted: 10/07/2009] [Indexed: 01/08/2023]
|
18
|
Solution structure and catalytic mechanism of human protein histidine phosphatase 1. Biochem J 2009; 418:337-44. [DOI: 10.1042/bj20081571] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Protein histidine phosphorylation exists widely in vertebrates, and it plays important roles in signal transduction and other cellular functions. However, knowledge about eukaryotic PHPT (protein histidine phosphatase) is still very limited. To date, only one vertebrate PHPT has been discovered, and two crystal structures of hPHPT1 (human PHPT1) have been solved. However, these two structures gave different ligand-binding sites and co-ordination patterns. In the present paper, we have solved the solution structures of hPHPT1 in both Pi-free and Pi-bound states. Through comparison of the structures, along with a mutagenesis study, we have determined the active site of hPHPT1. In contrast with previous results, our results indicate that the active site is located between helix α1 and loop L5. His53 was identified to be the catalytic residue, and the NH groups of residues His53, Ala54 and Ala96 and the OH group of Ser94 should act as anchors of Pi or substrate by forming H-bonds with Pi. On the basis of our results, a catalytic mechanism is proposed for hPHPT1: the imidazole ring of His53 serves as a general base to activate a water molecule, and the activated water would attack the substrate as a nucleophile in the catalysis; the positively charged side chain of Lys21 can help stabilize the transition state. No similar catalytic mechanism can be found in the EzCatDB database.
Collapse
|
19
|
Klumpp S, Faber D, Fischer D, Litterscheid S, Krieglstein J. Role of protein histidine phosphatase for viability of neuronal cells. Brain Res 2008; 1264:7-12. [PMID: 19138678 DOI: 10.1016/j.brainres.2008.12.052] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2008] [Revised: 10/31/2008] [Accepted: 12/14/2008] [Indexed: 11/19/2022]
Abstract
We recently found protein histidine phosphatase (PHP) in eukaryotes and identified ATP-citrate lyase (ACL) and the beta-subunit of G-proteins as its substrates. The aim of the present study was to get information on the significance of PHP for cellular function and viability. PHP was overexpressed by a viral vector in SH-SY5Y cells, a human neuroblastoma cell line, and in primary cultures of cortical neurons from embryonic (E19) rats. Furthermore, PHP was downregulated by siRNA in SH-SY5Y cells. We could demonstrate that overexpression of PHP decreased the phosphorylation state of ACL. Accordingly, the activity of ACL seemed to be reduced and subsequently, the viability of the cells was diminished. On the other hand, downregulation of PHP did not clearly influence phosphorylation and activity of ACL as well as viability of the cells. The results suggest that an increased activity of PHP impairs cellular function whereas downregulation of PHP does not.
Collapse
Affiliation(s)
- Susanne Klumpp
- Institut fuer Pharmazeutische und Medizinische Chemie, Westfaelische Wilhelms-Universitaet, Hittorfstr. 58-62, D-48149 Muenster, Germany.
| | | | | | | | | |
Collapse
|
20
|
Protein histidine phosphatase 1 negatively regulates CD4 T cells by inhibiting the K+ channel KCa3.1. Proc Natl Acad Sci U S A 2008; 105:14442-6. [PMID: 18796614 DOI: 10.1073/pnas.0803678105] [Citation(s) in RCA: 89] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
The calcium activated K(+) channel KCa3.1 plays an important role in T lymphocyte Ca(2+) signaling by helping to maintain a negative membrane potential, which provides an electrochemical gradient to drive Ca(2+) influx. We previously showed that nucleoside diphosphate kinase beta (NDPK-B), a mammalian histidine kinase, is required for KCa3.1 channel activation in human CD4 T lymphocytes. We now show that the mammalian protein histidine phosphatase (PHPT-1) directly binds and inhibits KCa3.1 by dephosphorylating histidine 358 on KCa3.1. Overexpression of wild-type, but not a phosphatase dead, PHPT-1 inhibited KCa3.1 channel activity. Decreased expression of PHPT-1 by siRNA in human CD4 T cells resulted in an increase in KCa3.1 channel activity and increased Ca(2+) influx and proliferation after T cell receptor (TCR) activation, indicating that endogenous PHPT-1 functions to negatively regulate CD4 T cells. Our findings provide a previously unrecognized example of a mammalian histidine phosphatase negatively regulating TCR signaling and are one of the few examples of histidine phosphorylation/dephosphorylation influencing a biological process in mammals.
Collapse
|
21
|
Wilkes JM, Doerig C. The protein-phosphatome of the human malaria parasite Plasmodium falciparum. BMC Genomics 2008; 9:412. [PMID: 18793411 PMCID: PMC2559854 DOI: 10.1186/1471-2164-9-412] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2008] [Accepted: 09/15/2008] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Malaria, caused by the parasitic protist Plasmodium falciparum, represents a major public health problem in the developing world. The P. falciparum genome has been sequenced, which provides new opportunities for the identification of novel drug targets. We report an exhaustive analysis of the P. falciparum genomic database (PlasmoDB) aimed at identifying and classifying all protein phosphatases (PP) in this organism. RESULTS Using a variety of bioinformatics tools, we identified 27 malarial putative PP sequences within the four major established PP families, plus 7 sequences that we predict to dephosphorylate "non-protein" substrates. We constructed phylogenetic trees to position these sequences relative to PPs from other organisms representing all major eukaryotic phyla except Cercozoans (for which no full genome sequence is available). Predominant observations were: (i) P. falciparum possessed the smallest phosphatome of any of the organisms investigated in this study; (ii) no malarial PP clustered with the tyrosine-specific subfamily of the PTP group (iii) a cluster of 7 closely related members of the PPM/PP2C family is present, and (iv) some P. falciparum protein phosphatases are present in clades lacking any human homologue. CONCLUSION The considerable phylogenetic distance between Apicomplexa and other Eukaryotes is reflected by profound divergences between the phosphatome of malaria parasites and those of representative organisms from all major eukaryotic phyla, which might be exploited in the context of efforts for the discovery of novel targets for antimalarial chemotherapy.
Collapse
Affiliation(s)
- Jonathan M Wilkes
- INSERM U609, Wellcome Centre for Molecular Parasitology, University of Glasgow, Glasgow, Scotland, UK.
| | | |
Collapse
|
22
|
Feng J, Zhu M, Schaub MC, Gehrig P, Roschitzki B, Lucchinetti E, Zaugg M. Phosphoproteome analysis of isoflurane-protected heart mitochondria: phosphorylation of adenine nucleotide translocator-1 on Tyr194 regulates mitochondrial function. Cardiovasc Res 2008; 80:20-9. [PMID: 18558627 DOI: 10.1093/cvr/cvn161] [Citation(s) in RCA: 82] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
AIMS Reversible phosphorylation of mitochondrial proteins is essential in the regulation of respiratory function, energy metabolism, and mitochondrion-mediated cell death. We hypothesized that mitochondrial protein phosphorylation plays a critical role in cardioprotection during pre and postconditioning, two of the most efficient anti-ischaemic therapies. METHODS AND RESULTS Using phosphoproteomic approaches, we investigated the profiles of phosphorylated proteins in Wistar rat heart mitochondria protected by pharmacological pre and postconditioning elicited by isoflurane. Sixty-one spots were detected by two-dimensional blue-native gel electrophoresis-coupled Western blotting using a phospho-Ser/Thr/Tyr-specific antibody, and 45 of these spots were identified by matrix-assisted laser desorption/ionization-time of flight mass spectrometry. Eleven protein spots related to oxidative phosphorylation, energy metabolism, chaperone, and carrier functions exhibited significant changes in their phosphorylation state when protected mitochondria were compared with unprotected. Using a phosphopeptide enrichment protocol followed by liquid chromatography-MS/MS, 26 potential phosphorylation sites were identified in 19 proteins. Among these, a novel phosphorylation site was detected in adenine nucleotide translocator-1 (ANT1) at residue Tyr(194). Changes in ANT phosphorylation between protected and unprotected mitochondria were confirmed by immunoprecipitation. The biological significance of ANT phosphorylation at Tyr(194) was further tested with site-directed mutagenesis in yeast. Substitution of Tyr(194) with Phe, mimicking the non-phosphorylated state, resulted in the inhibition of yeast growth on non-fermentable carbon sources, implying a critical role of phosphorylation at this residue in regulating ANT function and cellular respiration. CONCLUSIONS Our analysis emphasizes the regulatory functions of the phosphoproteome in heart mitochondria and reveals a novel, potential link between bioenergetics and cardioprotection.
Collapse
Affiliation(s)
- Jianhua Feng
- Cardiovascular Anesthesia Research Laboratory, Institute of Anesthesiology, E-HOF, University Hospital Zurich, Switzerland
| | | | | | | | | | | | | |
Collapse
|
23
|
Puttick J, Baker EN, Delbaere LTJ. Histidine phosphorylation in biological systems. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2007; 1784:100-5. [PMID: 17728195 DOI: 10.1016/j.bbapap.2007.07.008] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2007] [Revised: 07/14/2007] [Accepted: 07/17/2007] [Indexed: 10/23/2022]
Abstract
Histidine phosphorylation is important in prokaryotes and occurs to the extent of 6% of total phosphorylation in eukaryotes. Nevertheless phosphohistidine residues are not normally observed in proteins due to rapid hydrolysis of the phosphoryl group under acidic conditions. Many rapid processes employ phosphohistidines, including the bacterial phosphoenolpyruvate:sugar phosphotransferase system (PTS), the bacterial two-component systems and reactions catalyzed by enzymes such as nucleoside diphosphate kinase and succinyl-CoA synthetase. In the PTS, the NMR structure of the phosphohistidine moiety of the phosphohistidine-containing protein was determined but no X-ray structures of phosphohistidine forms of PTS proteins have been elucidated. There have been crystal structures of a few phosphohistidine-containing proteins determined: nucleoside diphosphate kinase, succinyl-CoA synthetase, a cofactor-dependent phosphoglycerate mutase and the protein PAE2307 from the hyperthermophilic archaeon Pyrobaculum aerophilum. A common theme for these stable phosphohistidines is the occurrence of ion-pair hydrogen bonds (salt bridges) involving the non-phosphorylated nitrogen atom of the histidine imidazole ring with an acidic amino acid side chain.
Collapse
Affiliation(s)
- Jennifer Puttick
- Department of Biochemistry, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | | | | |
Collapse
|
24
|
Eyster KM. New paradigms in signal transduction. Biochem Pharmacol 2007; 73:1511-9. [PMID: 17097069 DOI: 10.1016/j.bcp.2006.10.006] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2006] [Revised: 10/05/2006] [Accepted: 10/09/2006] [Indexed: 12/24/2022]
Abstract
Signal transduction is a dynamic field in which established pathways evolve and new pathways emerge. The purpose of this commentary is to highlight new paradigms of signal transduction that have developed over the past few years. This discussion proposes a third member of the generic models of membrane receptors in addition to the 7-transmembrane pass receptor and the enzyme-linked receptor: the non-enzymatic nucleating receptor. Also discussed are the new paradigms of signal transduction by proteolysis which includes signaling by Notch, signaling through the Hedgehog and Wnt pathways, signaling through histidine phosphorylation, and reactive oxygen species in signal transduction.
Collapse
Affiliation(s)
- Kathleen M Eyster
- Sanford School of Medicine of the University of South Dakota, Division of Basic Biomedical Sciences, Vermillion, SD 57069, USA.
| |
Collapse
|
25
|
Attwood PV, Piggott MJ, Zu XL, Besant PG. Focus on phosphohistidine. Amino Acids 2006; 32:145-56. [PMID: 17103118 DOI: 10.1007/s00726-006-0443-6] [Citation(s) in RCA: 145] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2006] [Accepted: 09/09/2006] [Indexed: 10/23/2022]
Abstract
Phosphohistidine has been identified as an enzymic intermediate in numerous biochemical reactions and plays a functional role in many regulatory pathways. Unlike the phosphoester bond of its cousins (phosphoserine, phosphothreonine and phosphotyrosine), the phosphoramidate (P-N) bond of phosphohistidine has a high DeltaG degrees of hydrolysis and is unstable under acidic conditions. This acid-lability has meant that the study of protein histidine phosphorylation and the associated protein kinases has been slower to progress than other protein phosphorylation studies. Histidine phosphorylation is a crucial component of cell signalling in prokaryotes and lower eukaryotes. It is also now becoming widely reported in mammalian signalling pathways and implicated in certain human disease states. This review covers the chemistry of phosphohistidine in terms of its isomeric forms and chemical derivatives, how they can be synthesized, purified, identified and the relative stabilities of each of these forms. Furthermore, we highlight how this chemistry relates to the role of phosphohistidine in its various biological functions.
Collapse
Affiliation(s)
- P V Attwood
- School of Biomedical, Biomolecular and Chemical Sciences, The University of Western Australia, Perth, Australia
| | | | | | | |
Collapse
|
26
|
Busam RD, Thorsell AG, Flores A, Hammarström M, Persson C, Hallberg BM. First structure of a eukaryotic phosphohistidine phosphatase. J Biol Chem 2006; 281:33830-4. [PMID: 16990267 DOI: 10.1074/jbc.c600231200] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Phosphatases are a diverse group of enzymes that regulate numerous cellular processes. Much of what is known relates to the tyrosine, threonine, and serine phosphatases, whereas the histidine phosphatases have not been studied as much. The structure of phosphohistidine phosphatase (PHPT1), the first identified eukaryotic-protein histidine phosphatase, has been determined to a resolution of 1.9A using multiple-wavelength anomalous dispersion methods. This enzyme can dephosphorylate a variety of proteins (e.g. ATP-citrate lyase and the beta-subunit of G proteins). A putative active site has been identified by its electrostatic character, ion binding, and conserved protein residues. Histidine 53 is proposed to play a major role in histidine dephosphorylation based on these observations and previous mutational studies. Models of peptide binding are discussed to suggest possible mechanisms for substrate recognition.
Collapse
Affiliation(s)
- Robert D Busam
- Structural Genomics Consortium, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, SE-17177 Stockholm, Sweden
| | | | | | | | | | | |
Collapse
|