1
|
Baliova M, Jursky F. Common structural features in some of the sequentially distant neurotransmitter transporters N-termini. J Struct Biol 2024; 216:108137. [PMID: 39426457 DOI: 10.1016/j.jsb.2024.108137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 09/28/2024] [Accepted: 10/16/2024] [Indexed: 10/21/2024]
Abstract
The N-terminal regions of SLC6 transporters are sequentially unrelated, and the majority of such transporters contain only relatively short peptide N-terminal extensions. Currently, it is not clear if a diversity of N-terminal sequences represents diverse functions among the transporters or if there are common functions hidden behind similar, as yet unidentified, structures. Using alignment of amino acid sequences with the hydropathy plot, disorder prediction, and calpain recognition sites, we show that common structural features among the N-termini of some transporters might exist.We previously showed that polymeric neurotransmitter transporter N-termini exhibit very similar profiles of dynamic, time-dependent 465-595-350-750 nm absorbance metachromasia in the Bradford assay. Here we report that under certain mild denaturing conditions, filamentous aggregation of glutathione S-transferase (GST) protein results in similar near-infrared metachromasia. This effect was eliminated by further GST protein denaturation and solubilization. The results suggest that aggregation of partially denatured GST stabilizes Coomassie dye docking sites, producing a near-infrared absorbance shift similar to that observed in the polymeric unstructured N-termini of transporters.
Collapse
Affiliation(s)
- Martina Baliova
- Laboratory of Neurobiology, Institute of Molecular Biology, Slovak Academy of Sciences, Dubravska cesta 21, 845 51 Bratislava, Slovakia.
| | - Frantisek Jursky
- Laboratory of Neurobiology, Institute of Molecular Biology, Slovak Academy of Sciences, Dubravska cesta 21, 845 51 Bratislava, Slovakia.
| |
Collapse
|
2
|
Miranda‐Blancas R, Rodríguez‐Lima O, García‐Gutiérrez P, Flores‐López R, Jiménez L, Zubillaga RA, Rudiño‐Piñera E, Landa A. Biochemical characterization and gene structure analysis of the 24-kDa glutathione transferase sigma from Taenia solium. FEBS Open Bio 2024; 14:726-739. [PMID: 38514457 PMCID: PMC11073501 DOI: 10.1002/2211-5463.13795] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 02/08/2024] [Accepted: 03/11/2024] [Indexed: 03/23/2024] Open
Abstract
Taenia solium can cause human taeniasis and/or cysticercosis. The latter can in some instances cause human neurocysticercosis which is considered a priority in disease-control strategies and the prevention of mental health problems. Glutathione transferases are crucial for the establishment and long-term survival of T. solium; therefore, we structurally analyzed the 24-kDa glutathione transferase gene (Ts24gst) of T. solium and biochemically characterized its product. The gene promoter showed potential binding sites for transcription factors and xenobiotic regulatory elements. The gene consists of a transcription start site, four exons split by three introns, and a polyadenylation site. The gene architecture is conserved in cestodes. Recombinant Ts24GST (rTs24GST) was active and dimeric. Anti-rTs24GST serum showed slight cross-reactivity with human sigma-class GST. A 3D model of Ts24GST enabled identification of putative residues involved in interactions of the G-site with GSH and of the H-site with CDNB and prostaglandin D2. Furthermore, rTs24GST showed optimal activity at 45 °C and pH 9, as well as high structural stability in a wide range of temperatures and pHs. These results contribute to the better understanding of this parasite and the efforts directed to fight taeniasis/cysticercosis.
Collapse
Affiliation(s)
- Ricardo Miranda‐Blancas
- Departamento de Microbiología y Parasitología, Facultad de MedicinaUniversidad Nacional Autónoma de MéxicoMexico
| | - Oscar Rodríguez‐Lima
- Departamento de Microbiología y Parasitología, Facultad de MedicinaUniversidad Nacional Autónoma de MéxicoMexico
| | | | - Roberto Flores‐López
- Departamento de Microbiología y Parasitología, Facultad de MedicinaUniversidad Nacional Autónoma de MéxicoMexico
- Posgrado en Ciencias Biológicas Unidad de PosgradoUniversidad Nacional Autónoma de MéxicoMexico
| | - Lucía Jiménez
- Departamento de Microbiología y Parasitología, Facultad de MedicinaUniversidad Nacional Autónoma de MéxicoMexico
| | - Rafael A. Zubillaga
- Departamento de QuímicaUniversidad Autónoma Metropolitana‐IztapalapaMexico CityMexico
| | - Enrique Rudiño‐Piñera
- Departamento de Medicina Molecular y Bioprocesos, Instituto de BiotecnologíaUniversidad Nacional Autónoma de MéxicoCuernavacaMexico
| | - Abraham Landa
- Departamento de Microbiología y Parasitología, Facultad de MedicinaUniversidad Nacional Autónoma de MéxicoMexico
| |
Collapse
|
3
|
Padi N, Akumadu BO, Faerch O, Aloke C, Meyer V, Achilonu I. Engineering a Pseudo-26-kDa Schistosoma Glutathione Transferase from bovis/ haematobium for Structure, Kinetics, and Ligandin Studies. Biomolecules 2021; 11:1844. [PMID: 34944488 PMCID: PMC8699318 DOI: 10.3390/biom11121844] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Revised: 11/25/2021] [Accepted: 11/25/2021] [Indexed: 12/25/2022] Open
Abstract
Glutathione transferases (GSTs) are the main detoxification enzymes in schistosomes. These parasitic enzymes tend to be upregulated during drug treatment, with Schistosoma haematobium being one of the species that mainly affect humans. There is a lack of complete sequence information on the closely related bovis and haematobium 26-kDa GST isoforms in any database. Consequently, we engineered a pseudo-26-kDa S. bovis/haematobium GST (Sbh26GST) to understand structure-function relations and ligandin activity towards selected potential ligands. Sbh26GST was overexpressed in Escherichia coli as an MBP-fusion protein, purified to homogeneity and catalyzed 1-chloro-2,4-dinitrobenzene-glutathione (CDNB-GSH) conjugation activity, with a specific activity of 13 μmol/min/mg. This activity decreased by ~95% in the presence of bromosulfophthalein (BSP), which showed an IC50 of 27 µM. Additionally, enzyme kinetics revealed that BSP acts as a non-competitive inhibitor relative to GSH. Spectroscopic studies affirmed that Sbh26GST adopts the canonical GST structure, which is predominantly α-helical. Further extrinsic 8-anilino-1-naphthalenesulfonate (ANS) spectroscopy illustrated that BSP, praziquantel (PZQ), and artemisinin (ART) might preferentially bind at the dimer interface or in proximity to the hydrophobic substrate-binding site of the enzyme. The Sbh26GST-BSP interaction is both enthalpically and entropically driven, with a stoichiometry of one BSP molecule per Sbh26GST dimer. Enzyme stability appeared enhanced in the presence of BSP and GSH. Induced fit ligand docking affirmed the spectroscopic, thermodynamic, and molecular modelling results. In conclusion, BSP is a potent inhibitor of Sbh26GST and could potentially be rationalized as a treatment for schistosomiasis.
Collapse
Affiliation(s)
- Neo Padi
- Protein Structure-Function and Research Unit, School of Molecular and Cell Biology, Faculty of Science, University of the Witwatersrand, Braamfontein, Johannesburg 2050, South Africa; (N.P.); (B.O.A.); (O.F.); (C.A.)
| | - Blessing Oluebube Akumadu
- Protein Structure-Function and Research Unit, School of Molecular and Cell Biology, Faculty of Science, University of the Witwatersrand, Braamfontein, Johannesburg 2050, South Africa; (N.P.); (B.O.A.); (O.F.); (C.A.)
| | - Olga Faerch
- Protein Structure-Function and Research Unit, School of Molecular and Cell Biology, Faculty of Science, University of the Witwatersrand, Braamfontein, Johannesburg 2050, South Africa; (N.P.); (B.O.A.); (O.F.); (C.A.)
| | - Chinyere Aloke
- Protein Structure-Function and Research Unit, School of Molecular and Cell Biology, Faculty of Science, University of the Witwatersrand, Braamfontein, Johannesburg 2050, South Africa; (N.P.); (B.O.A.); (O.F.); (C.A.)
| | - Vanessa Meyer
- Functional Genomics and Immunogenetics Laboratory, School of Molecular and Cell Biology, Faculty of Science, University of the Witwatersrand, Braamfontein, Johannesburg 2050, South Africa;
| | - Ikechukwu Achilonu
- Protein Structure-Function and Research Unit, School of Molecular and Cell Biology, Faculty of Science, University of the Witwatersrand, Braamfontein, Johannesburg 2050, South Africa; (N.P.); (B.O.A.); (O.F.); (C.A.)
| |
Collapse
|
4
|
Li J, Chen Y, Yang J, Hua Z. Thermal- and urea-induced unfolding processes of glutathione S-transferase by molecular dynamics simulation. Biopolymers 2015; 103:247-59. [DOI: 10.1002/bip.22589] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2014] [Revised: 11/09/2014] [Accepted: 11/10/2014] [Indexed: 11/09/2022]
Affiliation(s)
- Jiahuang Li
- The State Key Laboratory of Pharmaceutical Biotechnology; College of Life Science; Nanjing University; Nanjing 210093 China
- The State Key Laboratory of Analytical Chemistry for Life Science; Nanjing University; Nanjing 210093 China
| | - Yuan Chen
- The State Key Laboratory of Pharmaceutical Biotechnology; College of Life Science; Nanjing University; Nanjing 210093 China
| | - Jie Yang
- The State Key Laboratory of Pharmaceutical Biotechnology; College of Life Science; Nanjing University; Nanjing 210093 China
| | - Zichun Hua
- The State Key Laboratory of Pharmaceutical Biotechnology; College of Life Science; Nanjing University; Nanjing 210093 China
| |
Collapse
|
5
|
Irreversible denaturation of maltodextrin glucosidase studied by differential scanning calorimetry, circular dichroism, and turbidity measurements. PLoS One 2014; 9:e115877. [PMID: 25548918 PMCID: PMC4280130 DOI: 10.1371/journal.pone.0115877] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2014] [Accepted: 12/02/2014] [Indexed: 01/28/2023] Open
Abstract
Thermal denaturation of Escherichia coli maltodextrin glucosidase was studied by differential scanning calorimetry, circular dichroism (230 nm), and UV-absorption measurements (340 nm), which were respectively used to monitor heat absorption, conformational unfolding, and the production of solution turbidity. The denaturation was irreversible, and the thermal transition recorded at scan rates of 0.5–1.5 K/min was significantly scan-rate dependent, indicating that the thermal denaturation was kinetically controlled. The absence of a protein-concentration effect on the thermal transition indicated that the denaturation was rate-limited by a mono-molecular process. From the analysis of the calorimetric thermograms, a one-step irreversible model well represented the thermal denaturation of the protein. The calorimetrically observed thermal transitions showed excellent coincidence with the turbidity transitions monitored by UV-absorption as well as with the unfolding transitions monitored by circular dichroism. The thermal denaturation of the protein was thus rate-limited by conformational unfolding, which was followed by a rapid irreversible formation of aggregates that produced the solution turbidity. It is thus important to note that the absence of the protein-concentration effect on the irreversible thermal denaturation does not necessarily means the absence of protein aggregation itself. The turbidity measurements together with differential scanning calorimetry in the irreversible thermal denaturation of the protein provided a very effective approach for understanding the mechanisms of the irreversible denaturation. The Arrhenius-equation parameters obtained from analysis of the thermal denaturation were compared with those of other proteins that have been reported to show the one-step irreversible thermal denaturation. Maltodextrin glucosidase had sufficiently high kinetic stability with a half-life of 68 days at a physiological temperature (37°C).
Collapse
|
6
|
Asn112 in Plasmodium falciparum glutathione S-transferase is essential for induced reversible tetramerization by phosphate or pyrophosphate. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2014; 1844:1427-36. [DOI: 10.1016/j.bbapap.2014.04.017] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2014] [Revised: 04/04/2014] [Accepted: 04/22/2014] [Indexed: 11/22/2022]
|
7
|
Roncarati D, Danielli A, Scarlato V. The HrcA repressor is the thermosensor of the heat-shock regulatory circuit in the human pathogen Helicobacter pylori. Mol Microbiol 2014; 92:910-20. [PMID: 24698217 DOI: 10.1111/mmi.12600] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/31/2014] [Indexed: 01/03/2023]
Abstract
Bacteria exploit different strategies to perceive and rapidly respond to sudden changes of temperature. In Helicobacter pylori the response to thermic stress is transcriptionally controlled by a regulatory circuit that involves two repressors, HspR and HrcA. Here we report that HrcA acts as a protein thermometer. We demonstrate that temperature specifically modulates HrcA binding to DNA, with a complete and irreversible temperature-dependent loss of DNA binding activity at 42°C. Intriguingly, although the reduction of HrcA binding capability is not reversible in vitro, transcriptional analysis showed that HrcA exerts its repressive influence in vivo, even when the de novo repressor synthesis is blocked after the temperature challenge. Accordingly, we demonstrate the central role of the chaperonine GroESL in restoring the HrcA binding activity, lost upon heat challenge. Together our results establish HrcA as a rare example of intrinsic temperature sensing transcriptional regulator, whose activity is post-transcriptionally modulated by the GroESL chaperonine.
Collapse
Affiliation(s)
- Davide Roncarati
- Department of Pharmacy and Biotechnology (FaBiT), University of Bologna, Bologna, Italy
| | | | | |
Collapse
|
8
|
Carvalho JWP, Carvalho FA, Santiago PS, Tabak M. Thermal denaturation and aggregation of hemoglobin of Glossoscolex paulistus in acid and neutral media. Int J Biol Macromol 2013. [DOI: 10.1016/j.ijbiomac.2012.11.022] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
9
|
Lea WA, Simeonov A. Differential scanning fluorometry signatures as indicators of enzyme inhibitor mode of action: case study of glutathione S-transferase. PLoS One 2012; 7:e36219. [PMID: 22558390 PMCID: PMC3340335 DOI: 10.1371/journal.pone.0036219] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2011] [Accepted: 03/29/2012] [Indexed: 01/02/2023] Open
Abstract
Differential scanning fluorometry (DSF), also referred to as fluorescence thermal shift, is emerging as a convenient method to evaluate the stabilizing effect of small molecules on proteins of interest. However, its use in the mechanism of action studies has received far less attention. Herein, the ability of DSF to report on inhibitor mode of action was evaluated using glutathione S-transferase (GST) as a model enzyme that utilizes two distinct substrates and is known to be subject to a range of inhibition modes. Detailed investigation of the propensity of small molecule inhibitors to protect GST from thermal denaturation revealed that compounds with different inhibition modes displayed distinct thermal shift signatures when tested in the presence or absence of the enzyme's native co-substrate glutathione (GSH). Glutathione-competitive inhibitors produced dose-dependent thermal shift trendlines that converged at high compound concentrations. Inhibitors acting via the formation of glutathione conjugates induced a very pronounced stabilizing effect toward the protein only when GSH was present. Lastly, compounds known to act as noncompetitive inhibitors exhibited parallel concentration-dependent trends. Similar effects were observed with human GST isozymes A1-1 and M1-1. The results illustrate the potential of DSF as a tool to differentiate diverse classes of inhibitors based on simple analysis of co-substrate dependency of protein stabilization.
Collapse
Affiliation(s)
- Wendy A Lea
- NIH Chemical Genomics Center, National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland, USA
| | | |
Collapse
|
10
|
Hamed RR, Maharem TM, Abdel-Meguid N, Sabry GM, Abdalla AM, Guneidy RA. Purification and biochemical characterization of glutathione S-transferase from Down syndrome and normal children erythrocytes: a comparative study. RESEARCH IN DEVELOPMENTAL DISABILITIES 2011; 32:1470-1482. [PMID: 21377322 DOI: 10.1016/j.ridd.2011.01.013] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2010] [Revised: 01/10/2011] [Accepted: 01/11/2011] [Indexed: 05/30/2023]
Abstract
Down syndrome (DS) is the phenotypic manifestation of trisomy 21. Our study was concerned with the characterization and purification of glutathione S-transferase enzyme (GST) from normal and Down syndrome (DS) erythrocytes to illustrate the difference in the role of this enzyme in the cell. Glutathione S-transferase and glutathione (GSH) was determined in ten DS and ten healthy children matched for age (3-10 years). DS group exhibited significantly lower GST value (2.7 units/gHb) as compared to controls (6.6 units/gHb) (40.9%). GST activity was significantly decreased to 40.9% in the DS group as compared to controls. Also GSH concentration was significantly decreased to 60.6% in the DS group compared to the controls. Glutathione transferase was purified from erythrocytes of normal and DS pooled blood samples by affinity chromatography with specific activity of 23.7% and 7.9%, respectively. The effect of freezing and thawing, storage time of freezing and GSH concentration on the stability of the enzyme were examined. Normal GST exhibited a pH optimum at pH 7 followed by sharp decrease, however DS GST exhibited pH optimum between pH 7.5 and 8. The Km values for 1-chloro-2,4-dinitrobenzene (CDNB) and GSH were 0.205 mM and 0.786 mM, respectively, for normal GST, and 0.318 mM and 1.307 mM, respectively for DS GST. The activation energy (Ea) was calculated to be 2.25 and 4.25 cal/mol for normal GST and 3.8 cal/mol for DS GST. Normal and DS GST were inhibited by the same inhibitors (hematin, bromosulfophthalein and cibacron blue), but with different degree. On kinetic basis, the individuals with lower overall GST activity and slight differences in some kinetic characters are at greater risk from xenobiotic contamination as compared to those with higher overall GST activity observed in normal individuals.
Collapse
Affiliation(s)
- Ragaa R Hamed
- Department of Molecular Biology, National Research Center, Dokki, Cairo, Egypt
| | | | | | | | | | | |
Collapse
|
11
|
|
12
|
Quesada-Soriano I, Parker LJ, Primavera A, Casas-Solvas JM, Vargas-Berenguel A, Barón C, Morton CJ, Mazzetti AP, Lo Bello M, Parker MW, García-Fuentes L. Influence of the H-site residue 108 on human glutathione transferase P1-1 ligand binding: structure-thermodynamic relationships and thermal stability. Protein Sci 2010; 18:2454-70. [PMID: 19780048 DOI: 10.1002/pro.253] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
The effect of the Y108V mutation of human glutathione S-transferase P1-1 (hGST P1-1) on the binding of the diuretic drug ethacrynic acid (EA) and its glutathione conjugate (EASG) was investigated by calorimetric, spectrofluorimetric, and crystallographic studies. The mutation Tyr 108 --> Val resulted in a 3D-structure very similar to the wild type (wt) enzyme, where both the hydrophobic ligand binding site (H-site) and glutathione binding site (G-site) are unchanged except for the mutation itself. However, due to a slight increase in the hydrophobicity of the H-site, as a consequence of the mutation, an increase in the entropy was observed. The Y108V mutation does not affect the affinity of EASG for the enzyme, which has a higher affinity (K(d) approximately 0.5 microM) when compared with those of the parent compounds, K(d) (EA) approximately 13 microM, K(d) (GSH) approximately 25 microM. The EA moiety of the conjugate binds in the H-site of Y108V mutant in a fashion completely different to those observed in the crystal structures of the EA or EASG wt complex structures. We further demonstrate that the Delta C(p) values of binding can also be correlated with the potential stacking interactions between ligand and residues located in the binding sites as predicted from crystal structures. Moreover, the mutation does not significantly affect the global stability of the enzyme. Our results demonstrate that calorimetric measurements maybe useful in determining the preference of binding (the binding mode) for a drug to a specific site of the enzyme, even in the absence of structural information.
Collapse
Affiliation(s)
- Indalecio Quesada-Soriano
- Physical Chemistry, Faculty of Experimental Sciences, University of Almería, La Cañada de San Urbano, 04120 Almería, Spain
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Guzzi R, Sportelli L, Sato K, Cannistraro S, Dennison C. Thermal unfolding studies of a phytocyanin. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2008; 1784:1997-2003. [DOI: 10.1016/j.bbapap.2008.07.005] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2008] [Revised: 07/03/2008] [Accepted: 07/03/2008] [Indexed: 10/21/2022]
|
14
|
Quesada-Soriano I, Leal I, Casas-Solvas JM, Vargas-Berenguel A, Barón C, Ruiz-Pérez LM, González-Pacanowska D, García-Fuentes L. Kinetic and thermodynamic characterization of dUTP hydrolysis by Plasmodium falciparum dUTPase. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2008; 1784:1347-55. [PMID: 18586121 DOI: 10.1016/j.bbapap.2008.05.014] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2008] [Revised: 05/23/2008] [Accepted: 05/27/2008] [Indexed: 11/27/2022]
Abstract
Deoxyuridine 5'-triphosphate nucleotidohydrolase (dUTPase) catalyzes the hydrolysis of dUTP to dUMP and pyrophosphate and plays an important role in nucleotide metabolism and DNA replication controlling relative cellular levels of dTTP/dUTP, both of which can be incorporated into DNA. Isothermal titration calorimetry has been applied to the determination of the kinetic and thermodynamic parameters of the trimeric Plasmodium falciparum dUTPase, a potential drug target against malaria. The role of divalent ions in binding, and inhibition by different uridine derivatives has been assessed. When dUTP hydrolysis in the presence of EDTA was evaluated, a 105-fold decrease and a 12-fold increase of the k(cat) and Km values, respectively, were observed when compared with the dUTP.Mg2+ complex. Calculation of the activation energy, E(a), and the thermodynamic activation parameters showed that the energetic barrier was approximately 4-fold higher when Mg2+ was depleted. Other divalent ions such as Co2+ or Mn2+ can substitute the physiological cofactor, however the k(cat) was significantly reduced compared to dUTP.Mg2+. Binding and inhibition by dU, dUMP, dUDP, and alpha,beta-imido-dUTP were analysed by ITC and compared with data obtained by spectrophotometric methods and binding equilibrium studies. Product inhibition (Kip dUMP: 99.34 microM) was insignificant yet Ki values for dUDP and alpha,beta-imido-dUTP were in the low micromolar range. The effect of ionic strength on protein stability was also monitored. DSC analysis evidenced a slight increase in the unfolding temperature, Tm, with increasing salt concentrations. Moreover, the thermal unfolding pathway in the presence of salt fits adequately to an irreversible two-state model (N3-->3D).
Collapse
Affiliation(s)
- Indalecio Quesada-Soriano
- Area de Química Física, Facultad de Ciencias Experimentales, Universidad de Almería, La Cañada de San Urbano, 04120 Almería, Spain
| | | | | | | | | | | | | | | |
Collapse
|
15
|
Regulation of membrane proteins by dietary lipids: effects of cholesterol and docosahexaenoic acid acyl chain-containing phospholipids on rhodopsin stability and function. Biophys J 2008; 95:1206-16. [PMID: 18424497 DOI: 10.1529/biophysj.107.122788] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Purified bovine rhodopsin was reconstituted into vesicles consisting of 1-stearoyl-2-oleoyl phosphatidylcholine or 1-stearoyl-2-docosahexaenoyl phosphatidylcholine with and without 30 mol % cholesterol. Rhodopsin stability was examined using differential scanning calorimetry (DSC). The thermal unfolding transition temperature (T(m)) of rhodopsin was scan rate-dependent, demonstrating the presence of a rate-limited component of denaturation. The activation energy of this kinetically controlled process (E(a)) was determined from DSC thermograms by four separate methods. Both T(m) and E(a) varied with bilayer composition. Cholesterol increased the T(m) both the presence and absence of docosahexaenoic acid acyl chains (DHA). In contrast, cholesterol lowered E(a) in the absence of DHA, but raised E(a) in the presence of 20 mol % DHA-containing phospholipid. The relative acyl chain packing order was determined from measurements of diphenylhexatriene fluorescence anisotropy decay. The T(m) for thermal unfolding was inversely related to acyl chain packing order. Rhodopsin kinetic stability (E(a)) was reduced in highly ordered or disordered membranes. Maximal kinetic stability was found within the range of acyl chain order found in native bovine rod outer segment disk membranes. The results demonstrate that membrane composition has distinct effects on the thermal versus kinetic stabilities of membrane proteins, and suggests that a balance between membrane constituents with opposite effects on acyl chain packing, such as DHA and cholesterol, may be required for maximum protein stability.
Collapse
|