1
|
Kuriki Y, Sogawa M, Komatsu T, Kawatani M, Fujioka H, Fujita K, Ueno T, Hanaoka K, Kojima R, Hino R, Ueo H, Ueo H, Kamiya M, Urano Y. Modular Design Platform for Activatable Fluorescence Probes Targeting Carboxypeptidases Based on ProTide Chemistry. J Am Chem Soc 2024; 146:521-531. [PMID: 38110248 DOI: 10.1021/jacs.3c10086] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2023]
Abstract
Carboxypeptidases (CPs) are a family of hydrolases that cleave one or more amino acids from the C-terminal of peptides or proteins and play indispensable roles in various physiological and pathological processes. However, only a few highly activatable fluorescence probes for CPs have been reported, and there is a need for a flexibly tunable molecular design platform to afford a range of fluorescence probes for CPs for biological and medical research. Here, we focused on the unique activation mechanism of ProTide-based prodrugs and established a modular design platform for CP-targeting florescence probes based on ProTide chemistry. In this design, probe properties such as fluorescence emission wavelength, reactivity/stability, and target CP can be readily tuned and optimized by changing the four probe modules: the fluorophore, the substituent on the phosphorus atom, the linker amino acid at the P1 position, and the substrate amino acid at the P1' position. In particular, switching the linker amino acid at position P1 enabled us to precisely optimize the reactivity for target CPs. As a proof-of-concept, we constructed probes for carboxypeptidase M (CPM) and prostate-specific membrane antigen (also known as glutamate carboxypeptidase II). The developed probes were applicable for the imaging of CP activities in live cells and in clinical specimens from patients. This design strategy should be useful in studying CP-related biological and pathological phenomena.
Collapse
Affiliation(s)
- Yugo Kuriki
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Mari Sogawa
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Toru Komatsu
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Minoru Kawatani
- Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
- Department of Life Science and Technology, Tokyo Institute of Technology, 4259, Nagatsuda-cho, Midori-ku, Yokohama, Kanagawa 226-8501, Japan
| | - Hiroyoshi Fujioka
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
- Department of Life Science and Technology, Tokyo Institute of Technology, 4259, Nagatsuda-cho, Midori-ku, Yokohama, Kanagawa 226-8501, Japan
| | - Kyohhei Fujita
- Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Tasuku Ueno
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Kenjiro Hanaoka
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Ryosuke Kojima
- Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Rumi Hino
- Department of Sports and Health Science, Daito Bunka University, 560 Iwadono, Higashimatsuyama, Saitama 355-8501, Japan
| | - Hiroki Ueo
- Ueo Breast Cancer Hospital, 1-3-5 Futamatacho, Oita, Oita 870-0887, Japan
| | - Hiroaki Ueo
- Ueo Breast Cancer Hospital, 1-3-5 Futamatacho, Oita, Oita 870-0887, Japan
| | - Mako Kamiya
- Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
- Department of Life Science and Technology, Tokyo Institute of Technology, 4259, Nagatsuda-cho, Midori-ku, Yokohama, Kanagawa 226-8501, Japan
- Living Systems Materialogy (LiSM) Research Group, International Research Frontiers Initiative (IRFI), Tokyo Institute of Technology, 4259, Nagatsuda-cho, Midori-ku, Yokohama, Kanagawa 226-8501, Japan
| | - Yasuteru Urano
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
- Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| |
Collapse
|
2
|
Role of structural properties of bioactive peptides in their stability during simulated gastrointestinal digestion: A systematic review. Trends Food Sci Technol 2022. [DOI: 10.1016/j.tifs.2022.01.008] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
3
|
Kuriki Y, Kamiya M, Kubo H, Komatsu T, Ueno T, Tachibana R, Hayashi K, Hanaoka K, Yamashita S, Ishizawa T, Kokudo N, Urano Y. Establishment of Molecular Design Strategy To Obtain Activatable Fluorescent Probes for Carboxypeptidases. J Am Chem Soc 2018; 140:1767-1773. [DOI: 10.1021/jacs.7b11014] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
| | - Mako Kamiya
- PRESTO (Japan)
Science
and Technology Agency (JST), 4-1-8
Honcho Kawaguchi-shi, Saitama 332-0012, Japan
| | - Hidemasa Kubo
- Division
of Digestive Surgery, Department of Surgery, Kyoto Prefectural University of Medicine, 465 Kajii-cho, Kamigyo-ku, Kyoto, 602-8566, Japan
| | | | | | | | | | | | | | - Takeaki Ishizawa
- Department
of Gastroenterological Surgery, Cancer Institute Hospital, Japanese Foundation for Cancer Research, 3-8-31 Ariake, Koto-ku, Tokyo 135-8550, Japan
| | - Norihiro Kokudo
- Department
of Surgery, National Center for Global Health and Medicine, 1-21-1
Toyama, Shinjuku-ku, Tokyo 162-8655, Japan
| | - Yasuteru Urano
- CREST (Japan)
Agency for Medical Research and Development (AMED), 1-7-1 Otemachi, Chiyoda-ku, Tokyo 100-0004, Japan
| |
Collapse
|
4
|
Heinrich V, Simpson WD, Francis EA. Analytical Prediction of the Spatiotemporal Distribution of Chemoattractants around Their Source: Theory and Application to Complement-Mediated Chemotaxis. Front Immunol 2017; 8:578. [PMID: 28603522 PMCID: PMC5445147 DOI: 10.3389/fimmu.2017.00578] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2017] [Accepted: 05/01/2017] [Indexed: 11/13/2022] Open
Abstract
The ability of motile immune cells to detect and follow gradients of chemoattractant is critical to numerous vital functions, including their recruitment to sites of infection and-in emerging immunotherapeutic applications-to malignant tumors. Facilitated by a multitude of chemotactic receptors, the cells navigate a maze of stimuli to home in on their target. Distinct chemotactic processes direct this navigation at particular times and cell-target distances. The expedient coordination of this spatiotemporal hierarchy of chemotactic stages is the central element of a key paradigm of immunotaxis. Understanding this hierarchy is an enormous interdisciplinary challenge that requires, among others, quantitative insight into the shape, range, and dynamics of the profiles of chemoattractants around their sources. We here present a closed-form solution to a diffusion-reaction problem that describes the evolution of the concentration gradient of chemoattractant under various conditions. Our ready-to-use mathematical prescription captures many biological situations reasonably well and can be explored with standard graphing software, making it a valuable resource for every researcher studying chemotaxis. We here apply this mathematical model to characterize the chemoattractant cloud of anaphylatoxins that forms around bacterial and fungal pathogens in the presence of host serum. We analyze the spatial reach, rate of formation, and rate of dispersal of this locator cloud under realistic physiological conditions. Our analysis predicts that simply being small is an effective protective strategy of pathogens against complement-mediated discovery by host immune cells over moderate-to-large distances. Leveraging our predictions against single-cell, pure-chemotaxis experiments that use human immune cells as biosensors, we are able to explain the limited distance over which the cells recognize microbes. We conclude that complement-mediated chemotaxis is a universal, but short-range, homing mechanism by which chemotaxing immune cells can implement a last-minute course correction toward pathogenic microbes. Thus, the integration of theory and experiments provides a sound mechanistic explanation of the primary role of complement-mediated chemotaxis within the hierarchy of immunotaxis, and why other chemotactic processes are required for the successful recruitment of immune cells over large distances.
Collapse
Affiliation(s)
- Volkmar Heinrich
- Department of Biomedical Engineering, University of California at Davis, Davis, CA, United States
| | - Wooten D Simpson
- Department of Biomedical Engineering, University of California at Davis, Davis, CA, United States
| | - Emmet A Francis
- Department of Biomedical Engineering, University of California at Davis, Davis, CA, United States
| |
Collapse
|
5
|
Kasperkiewicz P, Poreba M, Groborz K, Drag M. Emerging challenges in the design of selective substrates, inhibitors and activity-based probes for indistinguishable proteases. FEBS J 2017; 284:1518-1539. [PMID: 28052575 PMCID: PMC7164106 DOI: 10.1111/febs.14001] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2016] [Revised: 12/02/2016] [Accepted: 01/03/2017] [Indexed: 12/31/2022]
Abstract
Proteases are enzymes that hydrolyze the peptide bond of peptide substrates and proteins. Despite significant progress in recent years, one of the greatest challenges in the design and testing of substrates, inhibitors and activity‐based probes for proteolytic enzymes is achieving specificity toward only one enzyme. This specificity is particularly important if the enzyme is present with other enzymes with a similar catalytic mechanism and substrate specificity but completely different functionality. The cross‐reactivity of substrates, inhibitors and activity‐based probes with other enzymes can significantly impair or even prevent investigations of a target protease. In this review, we describe important concepts and the latest challenges, focusing mainly on peptide‐based substrate specificity techniques used to distinguish individual enzymes within major protease families.
Collapse
Affiliation(s)
- Paulina Kasperkiewicz
- Department of Bioorganic Chemistry, Faculty of Chemistry, Wroclaw University of Science and Technology, Poland
| | - Marcin Poreba
- Department of Bioorganic Chemistry, Faculty of Chemistry, Wroclaw University of Science and Technology, Poland
| | - Katarzyna Groborz
- Department of Bioorganic Chemistry, Faculty of Chemistry, Wroclaw University of Science and Technology, Poland
| | - Marcin Drag
- Department of Bioorganic Chemistry, Faculty of Chemistry, Wroclaw University of Science and Technology, Poland
| |
Collapse
|
6
|
Tanco S, Lorenzo J, Garcia-Pardo J, Degroeve S, Martens L, Aviles FX, Gevaert K, Van Damme P. Proteome-derived peptide libraries to study the substrate specificity profiles of carboxypeptidases. Mol Cell Proteomics 2013; 12:2096-110. [PMID: 23620545 DOI: 10.1074/mcp.m112.023234] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Through processing peptide and protein C termini, carboxypeptidases participate in the regulation of various biological processes. Few tools are however available to study the substrate specificity profiles of these enzymes. We developed a proteome-derived peptide library approach to study the substrate preferences of carboxypeptidases. Our COFRADIC-based approach takes advantage of the distinct chromatographic behavior of intact peptides and the proteolytic products generated by the action of carboxypeptidases, to enrich the latter and facilitate its MS-based identification. Two different peptide libraries, generated either by chymotrypsin or by metalloendopeptidase Lys-N, were used to determine the substrate preferences of human metallocarboxypeptidases A1 (hCPA1), A2 (hCPA2), and A4 (hCPA4). In addition, our approach allowed us to delineate the substrate specificity profile of mouse mast cell carboxypeptidase (MC-CPA or mCPA3), a carboxypeptidase suggested to function in innate immune responses regulation and mast cell granule homeostasis, but which thus far lacked a detailed analysis of its substrate preferences. mCPA3 was here shown to preferentially remove bulky aromatic amino acids, similar to hCPA2. This was also shown by a hierarchical cluster analysis, grouping hCPA1 close to hCPA4 in terms of its P1 primed substrate specificity, whereas hCPA2 and mCPA3 cluster separately. The specificity profile of mCPA3 may further aid to elucidate the function of this mast cell carboxypeptidase and its biological substrate repertoire. Finally, we used this approach to evaluate the substrate preferences of prolylcarboxypeptidase, a serine carboxypeptidase shown to cleave C-terminal amino acids linked to proline and alanine.
Collapse
Affiliation(s)
- Sebastian Tanco
- Institut de Biotecnologia i de Biomedicina and Departament de Bioquímica i de Biologia Molecular, Universitat Autònoma de Barcelona, Bellaterra, Barcelona, Spain
| | | | | | | | | | | | | | | |
Collapse
|
7
|
Timofeev VI, Kuznetsov SA, Akparov VK, Chestukhina GG, Kuranova IP. Three-dimensional structure of carboxypeptidase T from Thermoactinomyces vulgaris in complex with N-BOC-L-leucine. BIOCHEMISTRY (MOSCOW) 2013; 78:252-9. [PMID: 23586718 DOI: 10.1134/s0006297913030061] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
The 3D structure of recombinant bacterial carboxypeptidase T (CPT) in complex with N-BOC-L-leucine was determined at 1.38 Å resolution. Crystals for the X-ray study were grown in microgravity using the counter-diffusion technique. N-BOC-L-leucine and SO4(2-) ion bound in the enzyme active site were localized in the electron density map. Location of the leucine side chain in CPT-N-BOC-L-leucine complex allowed identification of the S1 subsite of the enzyme, and its structure was determined. Superposition of the structures of CPT-N-BOC-L-leucine complex and complexes of pancreatic carboxypeptidases A and B with substrate and inhibitors was carried out, and similarity of the S1 subsites in these three carboxypeptidases was revealed. It was found that SO4(2-) ion occupies the same position in the S1' subsite as the C-terminal carboxy group of the substrate.
Collapse
Affiliation(s)
- V I Timofeev
- Shubnikov Institute of Crystallography, Russian Academy of Sciences, Moscow, Russia.
| | | | | | | | | |
Collapse
|
8
|
Wu SP, Smith DE. Impact of intestinal PepT1 on the kinetics and dynamics of N-formyl-methionyl-leucyl-phenylalanine, a bacterially-produced chemotactic peptide. Mol Pharm 2013; 10:677-84. [PMID: 23259992 DOI: 10.1021/mp300477w] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
The primary purpose of this study was to evaluate the intestinal permeability (P(eff)) of N-formyl-methionyl-leucyl-phenylalanine (fMet-Leu-Phe), a bacterially derived chemotactic tripeptide, in the duodenum, jejunum, ileum, and colon of wild-type and PepT1 knockout mice. A secondary purpose was to determine if the presence of intestinal PepT1 translated into fMet-Leu-Phe directed neutrophil migration in these animals. Using an in situ single pass perfusion technique, the P(eff) of [(3)H]fMet-Leu-Phe was substantially reduced in the duodenum, jejunum, and ileum of PepT1 knockout mice as compared to wild-type animals. In contrast, the P(eff) of [(3)H]fMet-Leu-Phe in colon was unchanged between genotypes and about 5% of that in small intestine. Jejunal uptake of [(3)H]fMet-Leu-Phe was specific for PepT1 and saturable with an intrinsic K(0.5) of 1.6 mM. The peptide/histidine transporters PhT1 and PhT2 were not involved in [(3)H]fMet-Leu-Phe uptake. Myeloperoxidase activity (a measure of neutrophil migration) was significantly increased following 4 h perfusions of 10 μM fMet-Leu-Phe in the jejunum of wild-type mice and was abolished by 50 mM glycylglycine; no change was observed in the jejunum of PepT1 knockout mice. Likewise, fMet-Leu-Phe perfusions had no effect on myeloperoxidase activity in the colon of either genotype. In conclusion, these findings demonstrated that PepT1 had a major influence on the permeability of fMet-Leu-Phe in duodenum, jejunum, and ileum in wild-type mice and on inflammatory response in intestinal regions that expressed PepT1.
Collapse
Affiliation(s)
- Shu-Pei Wu
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Michigan , Ann Arbor, Michigan 48109, United States
| | | |
Collapse
|
9
|
Denis CJ, Lambeir AM. The potential of carboxypeptidase M as a therapeutic target in cancer. Expert Opin Ther Targets 2013; 17:265-79. [PMID: 23294303 DOI: 10.1517/14728222.2012.741122] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
INTRODUCTION In the recent literature, carboxypeptidase M (CPM) emerged as a potential cancer biomarker. CPM modulates receptor signaling of kinins, anaphylatoxins, and chemokines. These CPM substrates affect proliferation, angiogenesis, and apoptosis of cancer cells. What is the evidence that CPM is a drug target for cancer therapy? AREAS COVERED The literature was searched using PubMed with the search terms "carboxypeptidase M" and/or "chromosome 12q13-15" eventually combined with general terms related to cancer. Information was retrieved from the GEO database and material of gene expression and proteomic studies. EXPERT OPINION CPM is a part of the molecular signature of many cancers. There is good evidence that it is useful for the discrimination and stratification of cancer types, possibly in combination with other markers such as EGFR and MDM2. Whether it is also a drug target remains to be determined. Lung, kidney, brain, and the reproductive system contain relatively high levels of CPM, but its functions in those tissues are largely unknown. CPM is expressed on tumor-associated macrophages. To facilitate the investigation of CPM in tumor-associated inflammation and in the other aspects of tumor biology, it is necessary to develop potent and selective CPM inhibitors.
Collapse
Affiliation(s)
- Catherine J Denis
- University of Antwerp, Pharmaceutical Sciences, Laboratory of Medical Biochemistry, Universiteitsplein 1, Antwerp, B-2610, Belgium
| | | |
Collapse
|
10
|
Abstract
This review covers carboxypeptidase M (CPM) research that appeared in the literature since 2009. The focus is on aspects that are new or interesting from a clinical perspective. Available research tools are discussed as well as their pitfalls and limitations. Evidence is provided to suggest the potential involvement of CPM in apoptosis, adipogenesis and cancer. This evidence derives from the expression pattern of CPM and its putative substrates in cells and tissues. In recent years CPM emerged as a potential cancer biomarker, in well differentiated liposarcoma where the CPM gene is co-amplified with the oncogene MDM2; and in lung adenocarcinoma where coexpression with EGFR correlates with poor prognosis. The available data call for extended investigation of the function of CPM in tumor cells, tumor-associated macrophages, stromal cells and tumor neovascularisation. Such experiments could be instrumental to validate CPM as a therapeutic target.
Collapse
|
11
|
A link between interferon and augmented plasmin generation in exocrine gland damage in Sjögren's syndrome. J Autoimmun 2012; 40:122-33. [PMID: 23110742 DOI: 10.1016/j.jaut.2012.09.003] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2012] [Revised: 09/26/2012] [Accepted: 09/30/2012] [Indexed: 11/23/2022]
Abstract
Sjögren's syndrome is an autoimmune disease that targets exocrine glands, but often exhibits systemic manifestations. Infiltration of the salivary and lacrimal glands by lymphoid and myeloid cells orchestrates a perpetuating immune response leading to exocrine gland damage and dysfunction. Th1 and Th17 lymphocyte populations and their products recruit additional lymphocytes, including B cells, but also large numbers of macrophages, which accumulate with disease progression. In addition to cytokines, chemokines, chitinases, and lipid mediators, macrophages contribute to a proteolytic milieu, underlying tissue destruction, inappropriate repair, and compromised glandular functions. Among the proteases enhanced in this local environment are matrix metalloproteases (MMP) and plasmin, generated by plasminogen activation, dependent upon plasminogen activators, such as tissue plasminogen activator (tPA). Not previously associated with salivary gland pathology, our evidence implicates enhanced tPA in the context of inflamed salivary glands revolving around lymphocyte-mediated activation of macrophages. Tracking down the mechanism of macrophage plasmin activation, the cytokines IFNγ and to a lesser extent, IFNα, via Janus kinase (JAK) and signal transducer and activator of transcription (STAT) activation, were found to be pivotal for driving the plasmin cascade of proteolytic events culminating in perpetuation of the inflammation and tissue damage, and suggesting intervention strategies to blunt irreversible tissue destruction.
Collapse
|
12
|
Zhang X, Lowry JL, Brovkovych V, Skidgel RA. Characterization of dual agonists for kinin B1 and B2 receptors and their biased activation of B2 receptors. Cell Signal 2012; 24:1619-31. [PMID: 22522052 DOI: 10.1016/j.cellsig.2012.04.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2011] [Revised: 04/03/2012] [Accepted: 04/04/2012] [Indexed: 01/14/2023]
Abstract
Kinin B1 and B2 receptors (kB1R and kB2R) play important roles in many physiological and pathological processes. In some cases, kB1R or kB2R activation can have overlapping or complementary beneficial effects, thus an activator of both receptors might be advantageous. We found that replacement of the C-terminal Arg in the natural kB2R activators bradykinin (BK) or kallidin (KD) with Lys (K(9)-BK or K(10)-KD) resulted in agonists that effectively stimulate the downstream signaling of both the kB1R and kB2R as measured by increased inositol turnover, intracellular calcium, ERK1/2 phosphorylation, arachidonic acid release and NO production. However, K(9)-BK and K(10)-KD displayed some characteristics of biased agonism for kB2Rs as indicated by the rapid kinetics of ERK1/2 phosphorylation induced by K(9)-BK or K(10)-KD compared with the prolonged response mediated by BK or KD. In contrast, kinetics of ERK phosphorylation stimulated by K(10)-KD activation of the kB1R was the same as that induced by known kB1R agonist des-Arg(10)-KD. Furthermore, the endocytosis of kB2Rs mediated by K(9)-BK and K(10)-KD was remarkably less than that induced by BK and KD respectively. K(10)-KD stimulated kB1R and kB2R-dependent calcium responses and ERK1/2 phosphorylation in bovine endothelial cells. In cytokine-treated human endothelial cells, K(10)-KD stimulated ERK1/2 phosphorylation and a transient peak of NO production that was primarily kB2R-dependent. K(10)-KD also stimulated prolonged NO production that was both kB1R and kB2R-dependent. These data provide the first examples of dual agonists of kB1R and kB2R, and a biased agonist of kB2R and may provide useful clues for developing dual modulators of kB1Rs and kB2Rs for potential therapeutic use.
Collapse
Affiliation(s)
- Xianming Zhang
- Department of Pharmacology, University of Illinois at Chicago, College of Medicine, Chicago, IL 60612, United States
| | | | | | | |
Collapse
|
13
|
Denis C, Deiteren K, Mortier A, Tounsi A, Fransen E, Proost P, Renauld JC, Lambeir AM. C-terminal clipping of chemokine CCL1/I-309 enhances CCR8-mediated intracellular calcium release and anti-apoptotic activity. PLoS One 2012; 7:e34199. [PMID: 22479563 PMCID: PMC3313992 DOI: 10.1371/journal.pone.0034199] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2011] [Accepted: 02/23/2012] [Indexed: 11/19/2022] Open
Abstract
Carboxypeptidase M (CPM) targets the basic amino acids arginine and lysine present at the C-terminus of peptides or proteins. CPM is thought to be involved in inflammatory processes. This is corroborated by CPM-mediated trimming and modulation of inflammatory factors, and expression of the protease in inflammatory environments. Since the function of CPM in and beyond inflammation remains mainly undefined, the identification of natural substrates can aid in discovering the (patho)physiological role of CPM. CCL1/I-309, with its three C-terminal basic amino acids, forms a potential natural substrate for CPM. CCL1 plays a role not only in inflammation but also in apoptosis, angiogenesis and tumor biology. Enzymatic processing differently impacts the biological activity of chemokines thereby contributing to the complex regulation of the chemokine system. The aim of the present study was to investigate whether (i) CCL1/I-309 is prone to trimming by CPM, and (ii) the biological activity of CCL1 is altered after C-terminal proteolytic processing. CCL1 was identified as a novel substrate for CPM in vitro using mass spectrometry. C-terminal clipping of CCL1 augmented intracellular calcium release mediated by CCR8 but reduced the binding of CCL1 to CCR8. In line with the higher intracellular calcium release, a pronounced increase of the anti-apoptotic activity of CCL1 was observed in the BW5147 cellular model. CCR8 signaling, CCR8 binding and anti-apoptotic activity were unaffected when CPM was exposed to the carboxypeptidase inhibitor DL-2-mercaptomethyl-3-guanidino-ethylthiopropanoic acid. The results of this study suggest that CPM is a likely candidate for the regulation of biological processes relying on the CCL1-CCR8 system.
Collapse
Affiliation(s)
- Catherine Denis
- Laboratory of Medical Biochemistry, Department of Pharmaceutical Sciences, University of Antwerp, Antwerp, Belgium
| | - Kathleen Deiteren
- Laboratory of Medical Biochemistry, Department of Pharmaceutical Sciences, University of Antwerp, Antwerp, Belgium
| | - Anneleen Mortier
- Laboratory of Molecular Immunology, Department of Microbiology and Immunology, Rega Institute, K.U. Leuven, Leuven, Belgium
| | - Amel Tounsi
- Ludwig Institute for Cancer Research, Brussels Branch, Université catholique de Louvain, Brussels, Belgium
- Experimental Medicine Unit, de Duve Institute, Université catholique de Louvain, Brussels, Belgium
| | - Erik Fransen
- StatUa Center for Statistics, University of Antwerp, Edegem, Belgium
| | - Paul Proost
- Laboratory of Molecular Immunology, Department of Microbiology and Immunology, Rega Institute, K.U. Leuven, Leuven, Belgium
| | - Jean-Christophe Renauld
- Ludwig Institute for Cancer Research, Brussels Branch, Université catholique de Louvain, Brussels, Belgium
- Experimental Medicine Unit, de Duve Institute, Université catholique de Louvain, Brussels, Belgium
| | - Anne-Marie Lambeir
- Laboratory of Medical Biochemistry, Department of Pharmaceutical Sciences, University of Antwerp, Antwerp, Belgium
- * E-mail:
| |
Collapse
|
14
|
Abstract
Carboxypeptidase A6 (CPA6) is an extracellular matrix-bound metallocarboxypeptidase (CP) that has been implicated in Duane syndrome, a neurodevelopmental disorder in which the lateral rectus extraocular muscle is not properly innervated. Consistent with a role in Duane syndrome, CPA6 is expressed in a number of chondrocytic and nervous tissues during embryogenesis. To better characterize the enzymatic function and specificity of CPA6 and to compare this with other CPs, CPA6 was expressed in HEK293 cells and purified. Kinetic parameters were determined using a panel of synthetic carboxypeptidase substrates, indicating a preference of CPA6 for large hydrophobic C-terminal amino acids and only very weak activity toward small amino acids and histidine. A quantitative peptidomics approach using a mixture of peptides representative of the neuropeptidome allowed the characterization of CPA6 preferences at the P1 substrate position and suggested that small and acidic P1 residues significantly inhibit CPA6 cleavage. Finally, a comparison of available kinetic data for CPA enzymes shows a gradient of specificity across the subfamily, from the very restricted specificity of CPA2 to the very broad activity of CPA4. Structural data and modeling for all CPA/B subfamily members suggests the structural basis for the unique specificities observed for each member of the CPA/B subfamily of metallocarboxypeptidases.
Collapse
Affiliation(s)
- Peter J Lyons
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, New York 10461, USA
| | | |
Collapse
|
15
|
Tanco S, Arolas JL, Guevara T, Lorenzo J, Avilés FX, Gomis-Rüth FX. Structure-function analysis of the short splicing variant carboxypeptidase encoded by Drosophila melanogaster silver. J Mol Biol 2010; 401:465-77. [PMID: 20600119 PMCID: PMC7089606 DOI: 10.1016/j.jmb.2010.06.035] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2010] [Revised: 06/16/2010] [Accepted: 06/17/2010] [Indexed: 11/30/2022]
Abstract
Drosophila melanogaster silver gene is the ortholog of the coding gene of mammalian carboxypeptidase D (CPD). The silver gene gives rise to eight different splicing variants of differing length that can contain up to three homologous repeats. Among the protein variants encoded, the short form 1B alias DmCPD1Bs (D. melanogaster CPD variant 1B short) is necessary and sufficient for viability of the fruit fly. It has one single repeat, it is active against standard peptide substrates, and it is localized to the secretory pathway. In this work, the enzyme was found as a monomer in solution and as a homodimer in the crystal structure, which features a protomer with an N-terminal 311-residue catalytic domain of α/β-hydrolase fold and a C-terminal 84-residue all-β transthyretin-like domain. Overall, DmCPD1Bs conforms to the structure of N/E-type funnelins/M14B metallopeptidases, but it has two unique structural elements potentially involved in regulation of its activity: (i) two contiguous surface cysteines that may become palmitoylated and target the enzyme to membranes, thus providing control through localization, and (ii) a surface hot spot targetable by peptidases that would provide a regulatory mechanism through proteolytic inactivation. Given that the fruit fly possesses orthologs of only two out of the five proteolytically competent N/E-type funnelins found in higher vertebrates, DmCPD1Bs may represent a functional analog of at least one of the missing mammalian CPs.
Collapse
Affiliation(s)
- Sebastián Tanco
- Departament de Bioquímica i Biologia Molecular, Institut de Biotecnologia i de Biomedicina, Universitat Autònoma de Barcelona, E-08193 Bellaterra, Spain
| | | | | | | | | | | |
Collapse
|
16
|
Epoetin delta reduces oxidative stress in primary human renal tubular cells. J Biomed Biotechnol 2010; 2010:395785. [PMID: 20454536 PMCID: PMC2864893 DOI: 10.1155/2010/395785] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2009] [Revised: 02/17/2010] [Accepted: 02/17/2010] [Indexed: 02/07/2023] Open
Abstract
Erythropoietin (EPO) exerts (renal) tissue protective effects. Since it is unclear whether this is a direct effect of EPO on the kidney or not, we investigated whether EPO is able to protect human renal tubular epithelial cells (hTECs) from oxidative stress and if so which pathways are involved. EPO (epoetin delta) could protect hTECs against oxidative stress by a dose-dependent inhibition of reactive oxygen species formation. This protective effect is possibly related to the membranous expression of the EPO receptor (EPOR) since our data point to the membranous EPOR expression as a prerequisite for this protective effect. Oxidative stress reduction went along with the upregulation of renoprotective genes. Whilst three of these, heme oxygenase-1 (HO-1), aquaporin-1 (AQP-1), and B-cell CLL/lymphoma 2 (Bcl-2) have already been associated with EPO-induced renoprotection, this study for the first time suggests carboxypeptidase M (CPM), dipeptidyl peptidase IV (DPPIV), and cytoglobin (Cygb) to play a role in this process.
Collapse
|
17
|
Nakajima E, David LL, Riviere MA, Azuma M, Shearer TR. Human and monkey lenses cultured with calcium ionophore form alphaB-crystallin lacking the C-terminal lysine, a prominent feature of some human cataracts. Invest Ophthalmol Vis Sci 2009; 50:5828-36. [PMID: 19608539 DOI: 10.1167/iovs.09-4015] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
PURPOSE Elevation of lens calcium occurs in both human and experimental animal cataracts, and opacification may result from calcium-activated proteolysis. The purpose of the present study was to determine whether calcium accumulation in cultured human and Macaca mulatta lenses results in proteolysis of crystallins, the major lens proteins. METHODS Two-dimensional electrophoresis and mass spectrometry were used to construct detailed maps of human and monkey lens crystallins so that proteolysis after calcium accumulation could be monitored and the altered crystallins identified. Human and macaque lenses cultured in A23187 showed elevated lenticular calcium and superficial cortical opacities. The carboxypeptidase E (CPE) gene is expressed in human lens, and its presence in lens fibers was demonstrated by Western blot. To investigate whether CPE could cause similar truncation, purified alphaB-crystallin and CPE were incubated in vitro. RESULTS The major change observed in the crystallins of these cultured lenses was the accumulation of alphaB(1-174)-crystallin resulting from the loss of a C-terminal lysine. This result was significant, because similar appearance of alphaB(1-174) is a prominent change in some human cataracts. alphaB-crystallin and CPE incubation result in the formation of alphaB(1-174)-crystallin. This truncation was specific to alphaB(1-174)-crystallin, since other crystallins were not proteolyzed. Although a weaker activator than zinc, calcium activated CPE in vitro. CONCLUSIONS Since zinc concentrations did not increase during culture in A23187, calcium uptake in the lens may be responsible for CPE activation and alphaB(1-174) formation during cataract.
Collapse
Affiliation(s)
- Emi Nakajima
- Laboratory of Ocular Sciences, Senju Pharmaceutical Corporation Limited, Beaverton, Oregon 97006, USA.
| | | | | | | | | |
Collapse
|
18
|
Carboxypeptidase M: Multiple alliances and unknown partners. Clin Chim Acta 2009; 399:24-39. [DOI: 10.1016/j.cca.2008.10.003] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2008] [Revised: 10/02/2008] [Accepted: 10/02/2008] [Indexed: 01/25/2023]
|
19
|
Marquez-Curtis L, Jalili A, Deiteren K, Shirvaikar N, Lambeir AM, Janowska-Wieczorek A. Carboxypeptidase M expressed by human bone marrow cells cleaves the C-terminal lysine of stromal cell-derived factor-1alpha: another player in hematopoietic stem/progenitor cell mobilization? Stem Cells 2008; 26:1211-20. [PMID: 18292211 DOI: 10.1634/stemcells.2007-0725] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Carboxypeptidase M (CPM) is a membrane-bound zinc-dependent protease that cleaves C-terminal basic residues, such as arginine or lysine, from peptides/proteins. We examined whether CPM is expressed by hematopoietic and stromal cells and could degrade stromal cell-derived factor (SDF)-1alpha, a potent chemoattractant for hematopoietic stem/progenitor cells (HSPC). We found that (a) CPM transcript is expressed by bone marrow (BM) and mobilized peripheral blood CD34(+) cells, myeloid, erythroid, and megakaryocytic cell progenitors, mononuclear cells (MNC), polymorphonuclear cells (PMN), and stromal cells, including mesenchymal stem cells; and that (b) granulocyte-colony-stimulating factor (G-CSF) significantly increases its expression at the gene and protein levels in MNC and PMN. Moreover, we found that recombinant CPM cleaves full-length SDF-1alpha (1-68) rapidly, removing the C-terminal lysine and yielding des-lys SDF-1alpha (1-67). We demonstrated that such CPM treatment of SDF-1alpha reduced the in vitro chemotaxis of HSPC, which, however, was preserved when the CPM was exposed to the carboxypeptidase inhibitor dl-2-mercaptomethyl-3-guanidino-ethylthiopropanoic acid. Thus, we present evidence that CPM is expressed by cells occurring in the BM microenvironment and that the mobilizing agent G-CSF strongly upregulates it in MNC and PMN. We suggest that cleavage of the C-terminal lysine residue of SDF-1alpha by CPM leads to attenuated chemotactic responses and could facilitate G-CSF-induced mobilization of HSPC from BM to peripheral blood.
Collapse
Affiliation(s)
- Leah Marquez-Curtis
- Research and Development, Canadian Blood Services, Edmonton, Alberta, Canada
| | | | | | | | | | | |
Collapse
|
20
|
Matthiessen HP, Willemse J, Weber A, Turecek PL, Deiteren K, Hendriks D, Ehrlich HJ, Schwarz HP. Ethanol dependence of alpha 1-antitrypsin C-terminal Lys truncation mediated by basic carboxypeptidases. Transfusion 2008; 48:314-20. [PMID: 18028276 DOI: 10.1111/j.1537-2995.2007.01525.x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
BACKGROUND Patients with hereditary emphysema are treated with alpha 1-antitrypsin (alpha 1-proteinase inhibitor [A1PI]) concentrates. High-resolution isoelectric focusing (IEF) analysis of A1PI shows that commercial A1PI products have different glycoisoform band patterns predominantly caused by varying degrees of C-terminal Lys truncation at position 394 from the A1PI molecule. Basic carboxypeptidases (CPs) are a group of enzymes that specifically cleave C-terminal basic amino acids (Arg or Lys) from peptides and proteins. STUDY DESIGN AND METHODS In this study, whether A1PI is a substrate for basic CPs was investigated. CPN and CPU, two CPs present in plasma, and CPM, a GPI-anchored membrane protein highly expressed in lung tissues, were included. RESULTS Basic CPs are able to mediate the C-terminal Lys truncation of A1PI although with a very low efficiency. However, presence of ethanol, for example, during Cohn fractionation, renders A1PI highly susceptible to cleavage by CP with the extent of Lys truncation depending on the ethanol concentration. This ethanol concentration dependence elegantly explains the varying amounts of des-Lys A1PI present in commercial preparations purified from different Cohn fractions. CONCLUSIONS The cause of C-terminal truncation of A1PI present in products used for augmentation therapy has been identified, and it has been shown that A1PI becomes a substrate for CPs, specifically CPN, because of the presence of ethanol during Cohn fractionation.
Collapse
|
21
|
Willemse JL, Polla M, Olsson T, Hendriks DF. Comparative substrate specificity study of carboxypeptidase U (TAFIa) and carboxypeptidase N: development of highly selective CPU substrates as useful tools for assay development. Clin Chim Acta 2007; 387:158-60. [PMID: 17949701 DOI: 10.1016/j.cca.2007.09.013] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2007] [Revised: 09/18/2007] [Accepted: 09/18/2007] [Indexed: 11/30/2022]
Abstract
BACKGROUND Measurement of procarboxypeptidase U (TAFI) in plasma by activity-based assays is complicated by the presence of plasma carboxypeptidase N (CPN). Accurate blank measurements, correcting for this interfering CPN activity, should therefore be performed. A selective CPU substrate will make proCPU determination much less time-consuming. METHODS We searched for selective and sensitive CPU substrates by kinetic screening of different Bz-Xaa-Arg (Xaa=a naturally occurring amino acid) substrates using a novel kinetic assay. RESULTS The presence of an aromatic amino acid (Phe, Tyr, Trp) resulted in a fairly high selectivity for CPU which was most pronounced with Bz-Trp-Arg showing a 56-fold higher k(cat)/K(m) value for CPU compared to CPN. Next we performed chemical modifications on the structure of those aromatic amino acids. This approach resulted in a fully selective CPU substrate with a 2.5-fold increase in k(cat) value compared to the commonly used Hip-Arg (Bz-Gly-Arg). DISCUSSION We demonstrated significant differences in substrate specificity between CPU and CPN that were previously not fully appreciated. The selective CPU substrate presented in this paper will allow straightforward determination of proCPU in plasma in the future.
Collapse
Affiliation(s)
- Johan L Willemse
- Laboratory of Medical Biochemistry, University of Antwerp, Antwerp, Belgium
| | | | | | | |
Collapse
|