1
|
Caliskan M, Poschmann G, Gudzuhn M, Waldera-Lupa D, Molitor R, Strunk CH, Streit WR, Jaeger KE, Stühler K, Kovacic F. Pseudomonas aeruginosa responds to altered membrane phospholipid composition by adjusting the production of two-component systems, proteases and iron uptake proteins. Biochim Biophys Acta Mol Cell Biol Lipids 2023; 1868:159317. [PMID: 37054907 DOI: 10.1016/j.bbalip.2023.159317] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2022] [Revised: 03/16/2023] [Accepted: 03/21/2023] [Indexed: 04/15/2023]
Abstract
Membrane protein and phospholipid (PL) composition changes in response to environmental cues and during infections. To achieve these, bacteria use adaptation mechanisms involving covalent modification and remodelling of the acyl chain length of PLs. However, little is known about bacterial pathways regulated by PLs. Here, we investigated proteomic changes in the biofilm of P. aeruginosa phospholipase mutant (∆plaF) with altered membrane PL composition. The results revealed profound alterations in the abundance of many biofilm-related two-component systems (TCSs), including accumulation of PprAB, a key regulator of the transition to biofilm. Furthermore, a unique phosphorylation pattern of transcriptional regulators, transporters and metabolic enzymes, as well as differential production of several proteases, in ∆plaF, indicate that PlaF-mediated virulence adaptation involves complex transcriptional and posttranscriptional response. Moreover, proteomics and biochemical assays revealed the depletion of pyoverdine-mediated iron uptake pathway proteins in ∆plaF, while proteins from alternative iron-uptake systems were accumulated. These suggest that PlaF may function as a switch between different iron-acquisition pathways. The observation that PL-acyl chain modifying and PL synthesis enzymes were overproduced in ∆plaF reveals the interconnection of degradation, synthesis and modification of PLs for proper membrane homeostasis. Although the precise mechanism by which PlaF simultaneously affects multiple pathways remains to be elucidated, we suggest that alteration of PL composition in ∆plaF plays a role for the global adaptive response in P. aeruginosa mediated by TCSs and proteases. Our study revealed the global regulation of virulence and biofilm by PlaF and suggests that targeting this enzyme may have therapeutic potential.
Collapse
Affiliation(s)
- Muttalip Caliskan
- Institute of Molecular Enzyme Technology, Heinrich Heine University Düsseldorf, Jülich, Germany
| | - Gereon Poschmann
- Institute of Molecular Medicine, Proteome Research, University Hospital and Medical Faculty, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Mirja Gudzuhn
- Department of Microbiology and Biotechnology, University of Hamburg, Ohnhorststr. 18, 22609 Hamburg, Germany
| | - Daniel Waldera-Lupa
- Institute of Molecular Medicine, Proteome Research, University Hospital and Medical Faculty, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Rebecka Molitor
- Institute of Molecular Enzyme Technology, Heinrich Heine University Düsseldorf, Jülich, Germany
| | | | - Wolfgang R Streit
- Department of Microbiology and Biotechnology, University of Hamburg, Ohnhorststr. 18, 22609 Hamburg, Germany
| | - Karl-Erich Jaeger
- Institute of Molecular Enzyme Technology, Heinrich Heine University Düsseldorf, Jülich, Germany; Institute of Bio- and Geosciences IBG-1: Biotechnology, Forschungszentrum Jülich GmbH, Jülich, Germany
| | - Kai Stühler
- Institute of Molecular Medicine, Proteome Research, University Hospital and Medical Faculty, Heinrich Heine University Düsseldorf, Düsseldorf, Germany; Molecular Proteomics Laboratory, Biologisch-Medizinisches Forschungszentrum, Heinrich-Heine-University, Düsseldorf, Düsseldorf, Germany
| | - Filip Kovacic
- Institute of Molecular Enzyme Technology, Heinrich Heine University Düsseldorf, Jülich, Germany.
| |
Collapse
|
2
|
Yung YP, McGill SL, Chen H, Park H, Carlson RP, Hanley L. Reverse diauxie phenotype in Pseudomonas aeruginosa biofilm revealed by exometabolomics and label-free proteomics. NPJ Biofilms Microbiomes 2019; 5:31. [PMID: 31666981 PMCID: PMC6814747 DOI: 10.1038/s41522-019-0104-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2019] [Accepted: 09/25/2019] [Indexed: 12/17/2022] Open
Abstract
Microorganisms enhance fitness by prioritizing catabolism of available carbon sources using a process known as carbon catabolite repression (CCR). Planktonically grown Pseudomonas aeruginosa is known to prioritize the consumption of organic acids including lactic acid over catabolism of glucose using a CCR strategy termed "reverse diauxie." P. aeruginosa is an opportunistic pathogen with well-documented biofilm phenotypes that are distinct from its planktonic phenotypes. Reverse diauxie has been described in planktonic cultures, but it has not been documented explicitly in P. aeruginosa biofilms. Here a combination of exometabolomics and label-free proteomics was used to analyze planktonic and biofilm phenotypes for reverse diauxie. P. aeruginosa biofilm cultures preferentially consumed lactic acid over glucose, and in addition, the cultures catabolized the substrates completely and did not exhibit the acetate secreting "overflow" metabolism that is typical of many model microorganisms. The biofilm phenotype was enabled by changes in protein abundances, including lactate dehydrogenase, fumarate hydratase, GTP cyclohydrolase, L-ornithine N(5)-monooxygenase, and superoxide dismutase. These results are noteworthy because reverse diauxie-mediated catabolism of organic acids necessitates a terminal electron acceptor like O2, which is typically in low supply in biofilms due to diffusion limitation. Label-free proteomics identified dozens of proteins associated with biofilm formation including 16 that have not been previously reported, highlighting both the advantages of the methodology utilized here and the complexity of the proteomic adaptation for P. aeruginosa biofilms. Documenting the reverse diauxic phenotype in P. aeruginosa biofilms is foundational for understanding cellular nutrient and energy fluxes, which ultimately control growth and virulence.
Collapse
Affiliation(s)
- Yeni P. Yung
- Department of Chemistry, University of Illinois at Chicago, Chicago, IL 60607 USA
| | - S. Lee McGill
- Center for Biofilm Engineering, Montana State University, Bozeman, MT 59717 USA
| | - Hui Chen
- Research Resources Center, University of Illinois at Chicago, Chicago, IL 60607 USA
| | - Heejoon Park
- Center for Biofilm Engineering, Montana State University, Bozeman, MT 59717 USA
| | - Ross P. Carlson
- Center for Biofilm Engineering, Montana State University, Bozeman, MT 59717 USA
| | - Luke Hanley
- Department of Chemistry, University of Illinois at Chicago, Chicago, IL 60607 USA
| |
Collapse
|
3
|
Chakravarty S, Massé E. RNA-Dependent Regulation of Virulence in Pathogenic Bacteria. Front Cell Infect Microbiol 2019; 9:337. [PMID: 31649894 PMCID: PMC6794450 DOI: 10.3389/fcimb.2019.00337] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2019] [Accepted: 09/18/2019] [Indexed: 12/19/2022] Open
Abstract
During infection, bacterial pathogens successfully sense, respond and adapt to a myriad of harsh environments presented by the mammalian host. This exquisite level of adaptation requires a robust modulation of their physiological and metabolic features. Additionally, virulence determinants, which include host invasion, colonization and survival despite the host's immune responses and antimicrobial therapy, must be optimally orchestrated by the pathogen at all times during infection. This can only be achieved by tight coordination of gene expression. A large body of evidence implicate the prolific roles played by bacterial regulatory RNAs in mediating gene expression both at the transcriptional and post-transcriptional levels. This review describes mechanistic and regulatory aspects of bacterial regulatory RNAs and highlights how these molecules increase virulence efficiency in human pathogens. As illustrative examples, Staphylococcus aureus, Listeria monocytogenes, the uropathogenic strain of Escherichia coli, Helicobacter pylori, and Pseudomonas aeruginosa have been selected.
Collapse
Affiliation(s)
- Shubham Chakravarty
- RNA Group, Department of Biochemistry, Faculty of Medicine and Health Sciences, CRCHUS, University of Sherbrooke, Sherbrooke, QC, Canada
| | - Eric Massé
- RNA Group, Department of Biochemistry, Faculty of Medicine and Health Sciences, CRCHUS, University of Sherbrooke, Sherbrooke, QC, Canada
| |
Collapse
|
4
|
Turkina MV, Vikström E. Bacteria-Host Crosstalk: Sensing of the Quorum in the Context of Pseudomonas aeruginosa Infections. J Innate Immun 2018; 11:263-279. [PMID: 30428481 DOI: 10.1159/000494069] [Citation(s) in RCA: 70] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2018] [Accepted: 09/24/2018] [Indexed: 12/11/2022] Open
Abstract
Cell-to-cell signaling via small molecules is an essential process to coordinate behavior in single species within a community, and also across kingdoms. In this review, we discuss the quorum sensing (QS) systems used by the opportunistic pathogen Pseudomonas aeruginosa to sense bacterial population density and fitness, and regulate virulence, biofilm development, metabolite acquisition, and mammalian host defense. We also focus on the role of N-acylhomoserine lactone-dependent QS signaling in the modulation of innate immune responses connected together via calcium signaling, homeostasis, mitochondrial and cytoskeletal dynamics, and governing transcriptional and proteomic responses of host cells. A future perspective emphasizes the need for multidisciplinary efforts to bring current knowledge of QS into a more detailed understanding of the communication between bacteria and host, as well as into strategies to prevent and treat P. aeruginosa infections and reduce the rate of antibiotic resistance.
Collapse
Affiliation(s)
- Maria V Turkina
- Department of Clinical and Experimental Medicine, Faculty of Medicine and Health Sciences, Linköping University, Linköping, Sweden
| | - Elena Vikström
- Department of Clinical and Experimental Medicine, Faculty of Medicine and Health Sciences, Linköping University, Linköping, Sweden,
| |
Collapse
|
5
|
Gaviard C, Jouenne T, Hardouin J. Proteomics ofPseudomonas aeruginosa: the increasing role of post-translational modifications. Expert Rev Proteomics 2018; 15:757-772. [DOI: 10.1080/14789450.2018.1516550] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Affiliation(s)
- Charlotte Gaviard
- Normandie Univ, UNIROUEN, INSA Rouen, CNRS, PBS, 76000, Rouen, France
- PISSARO proteomic facility, IRIB, 76821 Mont-Saint-Aignan, France
| | - Thierry Jouenne
- Normandie Univ, UNIROUEN, INSA Rouen, CNRS, PBS, 76000, Rouen, France
- PISSARO proteomic facility, IRIB, 76821 Mont-Saint-Aignan, France
| | - Julie Hardouin
- Normandie Univ, UNIROUEN, INSA Rouen, CNRS, PBS, 76000, Rouen, France
- PISSARO proteomic facility, IRIB, 76821 Mont-Saint-Aignan, France
| |
Collapse
|
6
|
An age-dependent model to analyse the evolutionary stability of bacterial quorum sensing. J Theor Biol 2016; 405:104-15. [PMID: 26796220 DOI: 10.1016/j.jtbi.2015.12.021] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2015] [Revised: 12/07/2015] [Accepted: 12/16/2015] [Indexed: 01/13/2023]
Abstract
Bacterial communication is enabled through the collective release and sensing of signalling molecules in a process called quorum sensing. Cooperative processes can easily be destabilized by the appearance of cheaters, who contribute little or nothing at all to the production of common goods. This especially applies for planktonic cultures. In this study, we analyse the dynamics of bacterial quorum sensing and its evolutionary stability under two levels of cooperation, namely signal and enzyme production. The model accounts for mutation rates and switches between planktonic and biofilm state of growth. We present a mathematical approach to model these dynamics using age-dependent colony models. We explore the conditions under which cooperation is stable and find that spatial structuring can lead to long-term scenarios such as coexistence or bistability, depending on the non-linear combination of different parameters like death rates and production costs.
Collapse
|
7
|
Zhou G, Shi QS, Huang XM, Xie XB. Proteome responses of Citrobacter werkmanii BF-6 planktonic cells and biofilms to calcium chloride. J Proteomics 2016; 133:134-143. [DOI: 10.1016/j.jprot.2015.12.019] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2015] [Revised: 11/24/2015] [Accepted: 12/14/2015] [Indexed: 11/27/2022]
|
8
|
Khemiri A, Jouenne T, Cosette P. Proteomics dedicated to biofilmology: What have we learned from a decade of research? Med Microbiol Immunol 2015; 205:1-19. [PMID: 26068406 DOI: 10.1007/s00430-015-0423-0] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2014] [Accepted: 06/03/2015] [Indexed: 12/31/2022]
Abstract
Advances in proteomics techniques over the past decade, closely integrated with genomic and physicochemical approach, have played a great role in developing knowledge of the biofilm lifestyle of bacteria. Despite bacterial proteome versatility, many studies have demonstrated the ability of proteomics approaches to elucidating the biofilm phenotype. Though these investigations have been largely used for biofilm studies in the last decades, they represent, however, a very low percentage of proteomics works performed up to now. Such approaches have offered new targets for combating microbial biofilms by providing a comprehensive quantitative and qualitative overview of their protein cell content. Herein, we summarized the state of the art in knowledge about biofilm physiology after one decade of proteomic analysis. In a second part, we highlighted missing research tracks for the next decade, emphasizing the emergence of posttranslational modifications in proteomic studies stemming from recent advances in mass spectrometry-based proteomics.
Collapse
Affiliation(s)
- Arbia Khemiri
- CNRS, UMR 6270, Laboratory "Polymères, Biopolymères, Surfaces", 76820, Mont-Saint-Aignan, France.
- University of Normandy, UR, Mont-Saint-Aignan, France.
- PISSARO Proteomic Facility, IRIB, 76820, Mont-Saint-Aignan, France.
| | - Thierry Jouenne
- CNRS, UMR 6270, Laboratory "Polymères, Biopolymères, Surfaces", 76820, Mont-Saint-Aignan, France
- University of Normandy, UR, Mont-Saint-Aignan, France
- PISSARO Proteomic Facility, IRIB, 76820, Mont-Saint-Aignan, France
| | - Pascal Cosette
- CNRS, UMR 6270, Laboratory "Polymères, Biopolymères, Surfaces", 76820, Mont-Saint-Aignan, France
- University of Normandy, UR, Mont-Saint-Aignan, France
- PISSARO Proteomic Facility, IRIB, 76820, Mont-Saint-Aignan, France
| |
Collapse
|
9
|
Affiliation(s)
- Dirk Benndorf
- Department of Bioprocess Engineering; Otto von Guericke University Magdeburg; Magdeburg Germany
| | - Udo Reichl
- Department of Bioprocess Engineering; Otto von Guericke University Magdeburg; Magdeburg Germany
- Department of Bioprocess Engineering; Max Planck Institute for Dynamics of Complex Technical Systems; Magdeburg Germany
| |
Collapse
|
10
|
Lecoutere E, Verleyen P, Haenen S, Vandersteegen K, Noben JP, Robben J, Schoofs L, Ceyssens PJ, Volckaert G, Lavigne R. A theoretical and experimental proteome map of Pseudomonas aeruginosa PAO1. Microbiologyopen 2012; 1:169-81. [PMID: 22950023 PMCID: PMC3426416 DOI: 10.1002/mbo3.21] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2011] [Revised: 01/13/2012] [Accepted: 01/24/2012] [Indexed: 11/10/2022] Open
Abstract
A total proteome map of the Pseudomonas aeruginosa PAO1 proteome is presented, generated by a combination of two-dimensional gel electrophoresis and protein identification by mass spectrometry. In total, 1128 spots were visualized, and 181 protein spots were characterized, corresponding to 159 different protein entries. In particular, protein chaperones and enzymes important in energy conversion and amino acid biosynthesis were identified. Spot analysis always resulted in the identification of a single protein, suggesting sufficient spot resolution, although the same protein may be detected in two or more neighboring spots, possibly indicating posttranslational modifications. Comparison to the theoretical proteome revealed an underrepresentation of membrane proteins, though the identified proteins cover all predicted subcellular localizations and all functional classes. These data provide a basis for subsequent comparative studies of the biology and metabolism of P. aeruginosa, aimed at unraveling global regulatory networks.
Collapse
Affiliation(s)
- Elke Lecoutere
- Faculty of Bioscience Engineering,, Division of Gene Technology, Department of Biosystems, Katholieke Universiteit LeuvenBelgium
| | - Peter Verleyen
- Research Group of Functional Genomics and Proteomics, Katholieke Universiteit LeuvenBelgium
| | - Steven Haenen
- Research Group of Functional Genomics and Proteomics, Katholieke Universiteit LeuvenBelgium
| | - Katrien Vandersteegen
- Faculty of Bioscience Engineering,, Division of Gene Technology, Department of Biosystems, Katholieke Universiteit LeuvenBelgium
| | | | - Johan Robben
- Biomedical Research Institute, UHasseltBelgium
- Present address: Department of Biochemistry, Molecular and Structural Biology, Katholieke Universiteit LeuvenBelgium
| | - Liliane Schoofs
- Research Group of Functional Genomics and Proteomics, Katholieke Universiteit LeuvenBelgium
| | - Pieter-Jan Ceyssens
- Faculty of Bioscience Engineering,, Division of Gene Technology, Department of Biosystems, Katholieke Universiteit LeuvenBelgium
| | - Guido Volckaert
- Faculty of Bioscience Engineering,, Division of Gene Technology, Department of Biosystems, Katholieke Universiteit LeuvenBelgium
| | - Rob Lavigne
- Faculty of Bioscience Engineering,, Division of Gene Technology, Department of Biosystems, Katholieke Universiteit LeuvenBelgium
| |
Collapse
|
11
|
Phillips NJ, Steichen CT, Schilling B, Post DMB, Niles RK, Bair TB, Falsetta ML, Apicella MA, Gibson BW. Proteomic analysis of Neisseria gonorrhoeae biofilms shows shift to anaerobic respiration and changes in nutrient transport and outermembrane proteins. PLoS One 2012; 7:e38303. [PMID: 22701624 PMCID: PMC3368942 DOI: 10.1371/journal.pone.0038303] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2012] [Accepted: 05/03/2012] [Indexed: 02/07/2023] Open
Abstract
Neisseria gonorrhoeae, the causative agent of gonorrhea, can form biofilms in vitro and in vivo. In biofilms, the organism is more resistant to antibiotic treatment and can serve as a reservoir for chronic infection. We have used stable isotope labeling by amino acids in cell culture (SILAC) to compare protein expression in biofilm and planktonic organisms. Two parallel populations of N. gonorrhoeae strain 1291, which is an arginine auxotroph, were grown for 48 h in continuous-flow chambers over glass, one supplemented with (13)C(6)-arginine for planktonic organisms and the other with unlabeled arginine for biofilm growth. The biofilm and planktonic cells were harvested and lysed separately, and fractionated into three sequential protein extracts. Corresponding heavy (H) planktonic and light (L) biofilm protein extracts were mixed and separated by 1D SDS-PAGE gels, and samples were extensively analyzed by liquid chromatography-mass spectrometry. Overall, 757 proteins were identified, and 152 unique proteins met a 1.5-fold cutoff threshold for differential expression with p-values <0.05. Comparing biofilm to planktonic organisms, this set included 73 upregulated and 54 downregulated proteins. Nearly a third of the upregulated proteins were involved in energy metabolism, with cell envelope proteins making up the next largest group. Of the downregulated proteins, the largest groups were involved in protein synthesis and energy metabolism. These proteomics results were compared with our previously reported results from transcriptional profiling of gonococcal biofilms using microarrays. Nitrite reductase and cytochrome c peroxidase, key enzymes required for anaerobic growth, were detected as highly upregulated in both the proteomic and transcriptomic datasets. These and other protein expression changes observed in the present study were consistent with a shift to anaerobic respiration in gonococcal biofilms, although changes in membrane proteins not explicitly related to this shift may have other functions.
Collapse
Affiliation(s)
- Nancy J. Phillips
- Department of Pharmaceutical Chemistry, University of California San Francisco, San Francisco, California, United States of America
| | - Christopher T. Steichen
- Department of Microbiology, College of Medicine, The University of Iowa, Iowa City, Iowa, United States of America
| | - Birgit Schilling
- Buck Institute for Research on Aging, Novato, California, United States of America
| | - Deborah M. B. Post
- Buck Institute for Research on Aging, Novato, California, United States of America
| | - Richard K. Niles
- Department of Obstetrics, Gynecology, and Reproductive Biology, University of California San Francisco, San Francisco, California, United States of America
| | - Thomas B. Bair
- Department of Microbiology, College of Medicine, The University of Iowa, Iowa City, Iowa, United States of America
| | - Megan L. Falsetta
- Department of Microbiology, College of Medicine, The University of Iowa, Iowa City, Iowa, United States of America
| | - Michael A. Apicella
- Department of Microbiology, College of Medicine, The University of Iowa, Iowa City, Iowa, United States of America
| | - Bradford W. Gibson
- Department of Pharmaceutical Chemistry, University of California San Francisco, San Francisco, California, United States of America
- Buck Institute for Research on Aging, Novato, California, United States of America
- * E-mail:
| |
Collapse
|
12
|
Koerdt A, Orell A, Pham TK, Mukherjee J, Wlodkowski A, Karunakaran E, Biggs CA, Wright PC, Albers SV. Macromolecular fingerprinting of sulfolobus species in biofilm: a transcriptomic and proteomic approach combined with spectroscopic analysis. J Proteome Res 2011; 10:4105-19. [PMID: 21761944 PMCID: PMC3166137 DOI: 10.1021/pr2003006] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
![]()
Microorganisms in nature often live in surface-associated sessile communities, encased in a self-produced matrix, referred to as biofilms. Biofilms have been well studied in bacteria but in a limited way for archaea. We have recently characterized biofilm formation in three closely related hyperthermophilic crenarchaeotes: Sulfolobus acidocaldarius, S. solfataricus, and S. tokodaii. These strains form different communities ranging from simple carpet structures in S. solfataricus to high density tower-like structures in S. acidocaldarius under static condition. Here, we combine spectroscopic, proteomic, and transcriptomic analyses to describe physiological and regulatory features associated with biofilms. Spectroscopic analysis reveals that in comparison to planktonic life-style, biofilm life-style has distinctive influence on the physiology of each Sulfolobus spp. Proteomic and transcriptomic data show that biofilm-forming life-style is strain specific (eg ca. 15% of the S. acidocaldarius genes were differently expressed, S. solfataricus and S. tokodaii had ∼3.4 and ∼1%, respectively). The -omic data showed that regulated ORFs were widely distributed in basic cellular functions, including surface modifications. Several regulated genes are common to biofilm-forming cells in all three species. One of the most striking common response genes include putative Lrs14-like transcriptional regulators, indicating their possible roles as a key regulatory factor in biofilm development. S. acidocaldarius, S. solfataricus, and S. tokodaii strains were grown independently as biofilms. Comparison between planktonic and biofilm cell popupations of all three strains was performed by spectroscopic analysis (FTIR and XPS), iTRAQ proteomics, and RNA microarrays. To highlight common features in biofilm formation among the Sulfolobus strains, the data is presented as a comparative analysis. One of the most striking common response genes include putative Lrs14-like transcriptional regulators, suggesting their roles as key regulatory factor in biofilm development.
Collapse
Affiliation(s)
- Andrea Koerdt
- Molecular Biology of Archaea, Max Planck Institute for Terrestrial Microbiology, Karl-von-Frisch-Strasse, 35043 Marburg, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Furusawa G, Dziewanowska K, Stone H, Settles M, Hartzell P. Global analysis of phase variation in Myxococcus xanthus. Mol Microbiol 2011; 81:784-804. [PMID: 21722202 PMCID: PMC3192537 DOI: 10.1111/j.1365-2958.2011.07732.x] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Myxococcus xanthus can vary its phenotype or 'phase' to produce colonies that contain predominantly yellow or tan cells that differ greatly in their abilities to swarm, survive and develop. Yellow variants are proficient at swarming (++) and tend to lyse in liquid during stationary phase. In contrast, tan variants are deficient in swarming (+) and persist beyond stationary phase. The phenotypes and transcriptomes of yellow and tan variants were compared with mutants affected in phase variation. Thirty-seven genes were upregulated specifically in yellow variants including those for production of the yellow pigment, DKxanthene. A mutant in DKxanthene synthesis produced non-pigmented (tan) colonies but still phase varied for swarming suggesting that pigmentation is not the cause of phase variation. Disruption of a gene encoding a HTH-Xre-like regulator, highly expressed in yellow variants, abolished pigment production and blocked the ability of cells to switch from a swarm ++ to a swarm (+) phenotype, showing that HTH-Xre regulates phase variation. Among the four genes whose expression was increased in tan variants was pkn14, which encodes a serine-threonine kinase that regulates programmed cell death in Myxococcus via the MrpC-MazF toxin-antitoxin complex. High levels of phosphorylated Pkn14 may explain why tan cells enjoy enhanced survival.
Collapse
Affiliation(s)
- Gou Furusawa
- Department of Biological Sciences, University of Idaho, Moscow, ID 83844-3052
| | | | - Hannah Stone
- Program in Microbiology, Molecular Biology, and Biochemistry, University of Idaho, Moscow, ID 83844-3052
| | - Matthew Settles
- Department of Biological Sciences, University of Idaho, Moscow, ID 83844-3052
| | - Patricia Hartzell
- Department of Biological Sciences, University of Idaho, Moscow, ID 83844-3052
- Program in Microbiology, Molecular Biology, and Biochemistry, University of Idaho, Moscow, ID 83844-3052
| |
Collapse
|
14
|
Trevors JT. Viable but non-culturable (VBNC) bacteria: Gene expression in planktonic and biofilm cells. J Microbiol Methods 2011; 86:266-73. [PMID: 21616099 DOI: 10.1016/j.mimet.2011.04.018] [Citation(s) in RCA: 93] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2011] [Revised: 04/21/2011] [Accepted: 04/27/2011] [Indexed: 12/24/2022]
Abstract
Viable but non-culturable (VBNC) bacteria are common in nutrient poor and/or stressed environments as planktonic cells and biofilms. This article discusses approaches to researching VBNC bacteria to obtain knowledge that is lacking on their gene expression while in the VBNC state, and when they enter into and then recover from this state, when provided with the necessary nutrients and environmental conditions to support growth and cell division. Two-dimensional gel electrophoresis of proteins, global gene expression, reverse-transcription polymerase chain reaction (PCR) analysis and sequencing by synthesis coupled with data on cell numbers, viability and species present are central to understanding the VBNC state.
Collapse
Affiliation(s)
- J T Trevors
- Laboratory of Microbiology, School of Environmental Sciences, Rm. 3320 Bovey Building, University of Guelph, 50 Stone Rd., East, Guelph, Ontario, Canada N1G 2W1.
| |
Collapse
|
15
|
Eberl L, Riedel K. Mining quorum sensing regulated proteins - Role of bacterial cell-to-cell communication in global gene regulation as assessed by proteomics. Proteomics 2011; 11:3070-85. [PMID: 21548094 DOI: 10.1002/pmic.201000814] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2010] [Revised: 01/20/2011] [Accepted: 02/17/2011] [Indexed: 12/31/2022]
Affiliation(s)
- Leo Eberl
- Department of Microbiology, Institute of Plant Biology, University of Zürich, Zurich, Switzerland
| | | |
Collapse
|
16
|
van Alen T, Claus H, Zahedi RP, Groh J, Blazyca H, Lappann M, Sickmann A, Vogel U. Comparative proteomic analysis of biofilm and planktonic cells of Neisseria meningitidis. Proteomics 2010; 10:4512-21. [PMID: 21136603 DOI: 10.1002/pmic.201000267] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Neisseria meningitidis is a commensal of the human nasopharynx occasionally causing invasive disease. In vitro biofilms have been employed to model meningococcal carriage. A proteomic analysis of meningococcal biofilms was conducted and metabolic changes related to oxygen and nutrient limitation and upregulation of proteins involved in ROS defense were observed. The upregulated MntC which protects against ROS was shown to be required for meningococcal biofilm formation, but not for planktonic growth. ROS-induced proteomic changes might train the biofilm to cope with immune effectors.
Collapse
Affiliation(s)
- Tessa van Alen
- Institute for Hygiene and Microbiology, University of Würzburg, Würzburg, Germany
| | | | | | | | | | | | | | | |
Collapse
|