1
|
Møller MS. Impact of Modular Architecture on Activity of Glycoside Hydrolase Family 5 Subfamily 8 Mannanases. Molecules 2022; 27:1915. [PMID: 35335278 PMCID: PMC8952944 DOI: 10.3390/molecules27061915] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 03/08/2022] [Accepted: 03/14/2022] [Indexed: 11/25/2022] Open
Abstract
Glycoside hydrolase family 5 subfamily 8 (GH5_8) mannanases belong to Firmicutes, Actinomycetia, and Proteobacteria. The presence or absence of carbohydrate-binding modules (CBMs) present a striking difference. While various GH5_8 mannanases need a CBM for binding galactomannans, removal of the CBM did not affect activity of some, whereas it in other cases reduced the catalytic efficiency due to increased KM. Here, monomodular GH5_8 mannanases from Eubacterium siraeum (EsGH5_8) and Xanthomonas citri pv. aurantifolii (XcGH5_8) were produced and characterized to clarify if GH5_8 mannanases from Firmicutes and Proteobacteria without CBM(s) possess distinct properties. EsGH5_8 showed a remarkably high temperature optimum of 55 °C, while XcGH5_8 had an optimum at 30 °C. Both enzymes were highly active on carob galactomannan and konjac glucomannan. Notably, EsGH5_8 was equally active on both substrates, whereas XcGH5_8 preferred galactomannan. The KM values were comparable with those of catalytic domains of truncated GH5_8s, while the turn-over numbers (kcat) were in the higher end. Notably, XcGH5_8 bound to but did not degrade insoluble ivory nut mannan. The findings support the hypothesis that GH5_8 mannanases with CBMs target insoluble mannans found in plant cell walls and seeds, while monomodular GH5_8 members have soluble mannans and mannooligosaccharides as primary substrates.
Collapse
Affiliation(s)
- Marie Sofie Møller
- Applied Molecular Enzyme Chemistry, Department of Biotechnology and Biomedicine, Technical University of Denmark, DK-2800 Kgs. Lyngby, Denmark
| |
Collapse
|
2
|
Collet L, Vander Wauven C, Oudjama Y, Galleni M, Dutoit R. Highlighting the factors governing transglycosylation in the GH5_5 endo-1,4-β-glucanase RBcel1. Acta Crystallogr D Struct Biol 2022; 78:278-289. [PMID: 35234142 PMCID: PMC8900817 DOI: 10.1107/s2059798321013541] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Accepted: 12/22/2021] [Indexed: 11/11/2022] Open
Abstract
Transglycosylating glycoside hydrolases (GHs) offer great potential for the enzymatic synthesis of oligosaccharides. Although knowledge is progressing, there is no unique strategy to improve the transglycosylation yield. Obtaining efficient enzymatic tools for glycan synthesis with GHs remains dependent on an improved understanding of the molecular factors governing the balance between hydrolysis and transglycosylation. This enzymatic and structural study of RBcel1, a transglycosylase from the GH5_5 subfamily isolated from an uncultured bacterium, aims to unravel such factors. The size of the acceptor and donor sugars was found to be critical since transglycosylation is efficient with oligosaccharides at least the size of cellotetraose as the donor and cellotriose as the acceptor. The reaction pH is important in driving the balance between hydrolysis and transglycosylation: hydrolysis is favored at pH values below 8, while transglycosylation becomes the major reaction at basic pH. Solving the structures of two RBcel1 variants, RBcel1_E135Q and RBcel1_Y201F, in complex with ligands has brought to light some of the molecular factors behind transglycosylation. The structure of RBcel1_E135Q in complex with cellotriose allowed a +3 subsite to be defined, in accordance with the requirement for cellotriose as a transglycosylation acceptor. The structure of RBcel1_Y201F has been obtained with several transglycosylation intermediates, providing crystallographic evidence of transglycosylation. The catalytic cleft is filled with (i) donors ranging from cellotriose to cellohexaose in the negative subsites and (ii) cellobiose and cellotriose in the positive subsites. Such a structure is particularly relevant since it is the first structure of a GH5 enzyme in complex with transglycosylation products that has been obtained with neither of the catalytic glutamate residues modified.
Collapse
Affiliation(s)
- Laetitia Collet
- LABIRIS, 1 Avenue Emile Gryzon, 1070 Brussels, Belgium
- Center for Protein Engineering (CIP), Biological Macromolecules, University of Liège, 13 Allée du 6 Août, 4000 Liège, Belgium
| | | | | | - Moreno Galleni
- Center for Protein Engineering (CIP), Biological Macromolecules, University of Liège, 13 Allée du 6 Août, 4000 Liège, Belgium
| | | |
Collapse
|
3
|
Møller MS, El Bouaballati S, Henrissat B, Svensson B. Functional diversity of three tandem C-terminal carbohydrate-binding modules of a β-mannanase. J Biol Chem 2021; 296:100638. [PMID: 33838183 PMCID: PMC8121702 DOI: 10.1016/j.jbc.2021.100638] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Revised: 03/29/2021] [Accepted: 04/05/2021] [Indexed: 11/16/2022] Open
Abstract
Carbohydrate active enzymes, such as those involved in plant cell wall and storage polysaccharide biosynthesis and deconstruction, often contain repeating noncatalytic carbohydrate-binding modules (CBMs) to compensate for low-affinity binding typical of protein–carbohydrate interactions. The bacterium Saccharophagus degradans produces an endo-β-mannanase of glycoside hydrolase family 5 subfamily 8 with three phylogenetically distinct family 10 CBMs located C-terminally from the catalytic domain (SdGH5_8-CBM10x3). However, the functional roles and cooperativity of these CBM domains in polysaccharide binding are not clear. To learn more, we studied the full-length enzyme, three stepwise CBM family 10 (CBM10) truncations, and GFP fusions of the individual CBM10s and all three domains together by pull-down assays, affinity gel electrophoresis, and activity assays. Only the C-terminal CBM10-3 was found to bind strongly to microcrystalline cellulose (dissociation constant, Kd = 1.48 μM). CBM10-3 and CBM10-2 bound galactomannan with similar affinity (Kd = 0.2–0.4 mg/ml), but CBM10-1 had 20-fold lower affinity for this substrate. CBM10 truncations barely affected specific activity on carob galactomannan and konjac glucomannan. Full-length SdGH5_8-CBM10x3 was twofold more active on the highly galactose-decorated viscous guar gum galactomannan and crystalline ivory nut mannan at high enzyme concentrations, but the specific activity was fourfold to ninefold reduced at low enzyme and substrate concentrations compared with the enzyme lacking CBM10-2 and CBM10-3. Comparison of activity and binding data for the different enzyme forms indicates unproductive and productive polysaccharide binding to occur. We conclude that the C-terminal-most CBM10-3 secures firm binding, with contribution from CBM10-2, which with CBM10-1 also provides spatial flexibility.
Collapse
Affiliation(s)
- Marie Sofie Møller
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Lyngby, Denmark.
| | - Souad El Bouaballati
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Lyngby, Denmark
| | - Bernard Henrissat
- Architecture et Fonction des Macromolécules Biologiques, CNRS, Aix-Marseille Université, Marseille, France; Department of Biological Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Birte Svensson
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Lyngby, Denmark
| |
Collapse
|
4
|
Collet L, Vander Wauven C, Oudjama Y, Galleni M, Dutoit R. Glycoside hydrolase family 5: structural snapshots highlighting the involvement of two conserved residues in catalysis. Acta Crystallogr D Struct Biol 2021; 77:205-216. [PMID: 33559609 DOI: 10.1107/s2059798320015557] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Accepted: 11/24/2020] [Indexed: 11/10/2022] Open
Abstract
The ability of retaining glycoside hydrolases (GHs) to transglycosylate is inherent to the double-displacement mechanism. Studying reaction intermediates, such as the glycosyl-enzyme intermediate (GEI) and the Michaelis complex, could provide valuable information to better understand the molecular factors governing the catalytic mechanism. Here, the GEI structure of RBcel1, an endo-1,4-β-glucanase of the GH5 family endowed with transglycosylase activity, is reported. It is the first structure of a GH5 enzyme covalently bound to a natural oligosaccharide with the two catalytic glutamate residues present. The structure of the variant RBcel1_E135A in complex with cellotriose is also reported, allowing a description of the entire binding cleft of RBcel1. Taken together, the structures deliver different snapshots of the double-displacement mechanism. The structural analysis revealed a significant movement of the nucleophilic glutamate residue during the reaction. Enzymatic assays indicated that, as expected, the acid/base glutamate residue is crucial for the glycosylation step and partly contributes to deglycosylation. Moreover, a conserved tyrosine residue in the -1 subsite, Tyr201, plays a determinant role in both the glycosylation and deglycosylation steps, since the GEI was trapped in the RBcel1_Y201F variant. The approach used to obtain the GEI presented here could easily be transposed to other retaining GHs in clan GH-A.
Collapse
Affiliation(s)
| | | | | | - Moreno Galleni
- Center for Protein Engineering (CIP), Biological Macromolecules, University of Liège, 13 Allée du 6 Août, 4000 Liège, Belgium
| | | |
Collapse
|
5
|
Yuan Y, Zhang X, Zhang H, Wang W, Zhao X, Gao J, Zhou Y. Degradative GH5 β-1,3-1,4-glucanase PpBglu5A for glucan in Paenibacillus polymyxa KF-1. Process Biochem 2020. [DOI: 10.1016/j.procbio.2020.08.008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
6
|
Kaira GS, Kapoor M. Molecular advancements on over-expression, stability and catalytic aspects of endo-β-mannanases. Crit Rev Biotechnol 2020; 41:1-15. [PMID: 33032458 DOI: 10.1080/07388551.2020.1825320] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
The hydrolysis of mannans by endo-β-mannanases continues to gather significance as exemplified by its commercial applications in food, feed, and a rekindled interest in biorefineries. The present review provides a comprehensive account of fundamental research and fascinating insights in the field of endo-β-mannanase engineering in order to improve over-expression and to decipher molecular determinants governing activity-stability during harsh conditions, substrate recognition, polysaccharide specificity, endo/exo mode of action and multi-functional activities in the modular polypeptide. In-depth analysis of the available literature has also been made on rational and directed evolution approaches, which have translated native endo-β-mannanases into superior biocatalysts for satisfying industrial requirements.
Collapse
Affiliation(s)
- Gaurav Singh Kaira
- Department of Protein Chemistry and Technology, CSIR-Central Food Technological Research Institute, Mysuru, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Mukesh Kapoor
- Department of Protein Chemistry and Technology, CSIR-Central Food Technological Research Institute, Mysuru, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| |
Collapse
|
7
|
Li X, Griffin K, Langeveld S, Frommhagen M, Underlin EN, Kabel MA, de Vries RP, Dilokpimol A. Functional Validation of Two Fungal Subfamilies in Carbohydrate Esterase Family 1 by Biochemical Characterization of Esterases From Uncharacterized Branches. Front Bioeng Biotechnol 2020; 8:694. [PMID: 32671051 PMCID: PMC7332973 DOI: 10.3389/fbioe.2020.00694] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Accepted: 06/03/2020] [Indexed: 12/25/2022] Open
Abstract
The fungal members of Carbohydrate Esterase family 1 (CE1) from the CAZy database include both acetyl xylan esterases (AXEs) and feruloyl esterases (FAEs). AXEs and FAEs are essential auxiliary enzymes to unlock the full potential of feedstock. They are being used in many biotechnology applications including food and feed, pulp and paper, and biomass valorization. AXEs catalyze the hydrolysis of acetyl group from xylan, while FAEs release ferulic and other hydroxycinnamic acids from xylan and pectin. Previously, we reported a phylogenetic analysis for the fungal members of CE1, establishing five subfamilies (CE1_SF1–SF5). Currently, the characterized AXEs are in the subfamily CE1_SF1, whereas CE1_SF2 contains mainly characterized FAEs. These two subfamilies are more related to each other than to the other subfamilies and are predicted to have evolved from a common ancestor, but target substrates with a different molecular structure. In this study, four ascomycete enzymes from CE1_SF1 and SF2 were heterologously produced in Pichia pastoris and characterized with respect to their biochemical properties and substrate preference toward different model and plant biomass substrates. The selected enzymes from CE1_SF1 only exhibited AXE activity, whereas the one from CE1_SF2 possessed dual FAE/AXE activity. This dual activity enzyme also showed broad substrate specificity toward model substrates for FAE activity and efficiently released both acetic acid and ferulic acid (∼50%) from wheat arabinoxylan and wheat bran which was pre-treated with a commercial xylanase. These fungal AXEs and FAEs also showed promising biochemical properties, e.g., high stability over a wide pH range and retaining more than 80% of their residual activity at pH 6.0–9.0. These newly characterized fungal AXEs and FAEs from CE1 have high potential for biotechnological applications. In particular as an additional ingredient for enzyme cocktails to remove the ester-linked decorations which enables access for the backbone degrading enzymes. Among these novel enzymes, the dual FAE/AXE activity enzyme also supports the evolutionary relationship of CE1_SF1 and SF2.
Collapse
Affiliation(s)
- Xinxin Li
- Fungal Physiology, Westerdijk Fungal Biodiversity Institute, Fungal Molecular Physiology, Utrecht University, Utrecht, Netherlands
| | - Kelli Griffin
- Fungal Physiology, Westerdijk Fungal Biodiversity Institute, Fungal Molecular Physiology, Utrecht University, Utrecht, Netherlands
| | - Sandra Langeveld
- Fungal Physiology, Westerdijk Fungal Biodiversity Institute, Fungal Molecular Physiology, Utrecht University, Utrecht, Netherlands
| | - Matthias Frommhagen
- Laboratory of Food Chemistry, Wageningen University & Research, Wageningen, Netherlands
| | - Emilie N Underlin
- Laboratory of Food Chemistry, Wageningen University & Research, Wageningen, Netherlands.,Department of Chemistry, Technical University of Denmark, Lyngby, Denmark
| | - Mirjam A Kabel
- Laboratory of Food Chemistry, Wageningen University & Research, Wageningen, Netherlands
| | - Ronald P de Vries
- Fungal Physiology, Westerdijk Fungal Biodiversity Institute, Fungal Molecular Physiology, Utrecht University, Utrecht, Netherlands
| | - Adiphol Dilokpimol
- Fungal Physiology, Westerdijk Fungal Biodiversity Institute, Fungal Molecular Physiology, Utrecht University, Utrecht, Netherlands
| |
Collapse
|
8
|
Pauchet Y, Ruprecht C, Pfrengle F. Analyzing the Substrate Specificity of a Class of Long-Horned-Beetle-Derived Xylanases by Using Synthetic Arabinoxylan Oligo- and Polysaccharides. Chembiochem 2020; 21:1517-1525. [PMID: 31850611 PMCID: PMC7317733 DOI: 10.1002/cbic.201900687] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2019] [Indexed: 12/23/2022]
Abstract
Xylophagous long-horned beetles thrive in challenging environments. To access nutrients, they secrete plant-cell-wall-degrading enzymes in their gut fluid; among them are cellulases of the subfamily 2 of glycoside hydrolase family 5 (GH5_2). Recently, we discovered that several beetle-derived GH5_2s use xylan as a substrate instead of cellulose, which is unusual for this family of enzymes. Here, we analyze the substrate specificity of a GH5_2 xylanase from the beetle Apriona japonica (AJAGH5_2-1) using commercially available substrates and synthetic arabinoxylan oligo- and polysaccharides. We demonstrate that AJAGH5_2-1 processes arabinoxylan polysaccharides in a manner distinct from classical xylanase families such as GH10 and GH11. AJAGH5_2-1 is active on long oligosaccharides and cleaves at the non-reducing end of a substituted xylose residue (position +1) only if: 1) three xylose residues are present upstream and downstream of the cleavage site, and 2) xylose residues at positions -1, -2, +2 and +3 are not substituted.
Collapse
Affiliation(s)
- Yannick Pauchet
- Department of Entomology, Max Planck Institute for Chemical Ecology, Hans-Knoell-Strasse 8, 07745, Jena, Germany
| | - Colin Ruprecht
- Department of Biomolecular Systems, Max Planck Institute of Colloids and Interfaces, Am Mühlenberg 1, 14476, Potsdam, Germany
| | - Fabian Pfrengle
- Department of Biomolecular Systems, Max Planck Institute of Colloids and Interfaces, Am Mühlenberg 1, 14476, Potsdam, Germany.,Institute of Chemistry and Biochemistry, Freie Universität Berlin, Takustrasse 3, 14195, Berlin, Germany
| |
Collapse
|
9
|
Dutoit R, Delsaute M, Collet L, Vander Wauven C, Van Elder D, Berlemont R, Richel A, Galleni M, Bauvois C. Crystal structure determination of Pseudomonas stutzeri A1501 endoglucanase Cel5A: the search for a molecular basis for glycosynthesis in GH5_5 enzymes. Acta Crystallogr D Struct Biol 2019; 75:605-615. [PMID: 31205022 DOI: 10.1107/s2059798319007113] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2018] [Accepted: 05/16/2019] [Indexed: 01/23/2023] Open
Abstract
The discovery of new glycoside hydrolases that can be utilized in the chemoenzymatic synthesis of carbohydrates has emerged as a promising approach for various biotechnological processes. In this study, recombinant Ps_Cel5A from Pseudomonas stutzeri A1501, a novel member of the GH5_5 subfamily, was expressed, purified and crystallized. Preliminary experiments confirmed the ability of Ps_Cel5A to catalyze transglycosylation with cellotriose as a substrate. The crystal structure revealed several structural determinants in and around the positive subsites, providing a molecular basis for a better understanding of the mechanisms that promote and favour synthesis rather than hydrolysis. In the positive subsites, two nonconserved positively charged residues (Arg178 and Lys216) were found to interact with cellobiose. This adaptation has also been reported for transglycosylating β-mannanases of the GH5_7 subfamily.
Collapse
Affiliation(s)
| | - Maud Delsaute
- InBioS - Center for Protein Engineering (CIP), Biological Macromolecules, University of Liège, 13 Allée du 6 Août, 4000 Liège, Belgium
| | | | | | - Dany Van Elder
- Laboratory of Microbiology, Université Libre de Bruxelles, 12 Rue des Professeurs Jeener et Brachet, 6041 Gosselies, Belgium
| | - Renaud Berlemont
- Department of Biological Sciences, California State University Long Beach, 1250 Bellflower Boulevard, Long Beach, CA 90840-9502, USA
| | - Aurore Richel
- Gembloux Agro-Bio Tech, University of Liège, 2 Passage des Déportés, 5030 Gembloux, Belgium
| | - Moreno Galleni
- InBioS - Center for Protein Engineering (CIP), Biological Macromolecules, University of Liège, 13 Allée du 6 Août, 4000 Liège, Belgium
| | | |
Collapse
|
10
|
von Freiesleben P, Moroz OV, Blagova E, Wiemann M, Spodsberg N, Agger JW, Davies GJ, Wilson KS, Stålbrand H, Meyer AS, Krogh KBRM. Crystal structure and substrate interactions of an unusual fungal non-CBM carrying GH26 endo-β-mannanase from Yunnania penicillata. Sci Rep 2019; 9:2266. [PMID: 30783168 PMCID: PMC6381184 DOI: 10.1038/s41598-019-38602-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2018] [Accepted: 12/18/2018] [Indexed: 01/07/2023] Open
Abstract
Endo-β(1 → 4)-mannanases (endomannanases) catalyse degradation of β-mannans, an abundant class of plant polysaccharides. This study investigates structural features and substrate binding of YpenMan26A, a non-CBM carrying endomannanase from Yunnania penicillata. Structural and sequence comparisons to other fungal family GH26 endomannanases showed high sequence similarities and conserved binding residues, indicating that fungal GH26 endomannanases accommodate galactopyranosyl units in the -3 and -2 subsites. Two striking amino acid differences in the active site were found when the YpenMan26A structure was compared to a homology model of Wsp.Man26A from Westerdykella sp. and the sequences of nine other fungal GH26 endomannanases. Two YpenMan26A mutants, W110H and D37T, inspired by differences observed in Wsp.Man26A, produced a shift in how mannopentaose bound across the active site cleft and a decreased affinity for galactose in the -2 subsite, respectively, compared to YpenMan26A. YpenMan26A was moreover found to have a flexible surface loop in the position where PansMan26A from Podospora anserina has an α-helix (α9) which interacts with its family 35 CBM. Sequence alignment inferred that the core structure of fungal GH26 endomannanases differ depending on the natural presence of this type of CBM. These new findings have implications for selecting and optimising these enzymes for galactomannandegradation.
Collapse
Affiliation(s)
- Pernille von Freiesleben
- Novozymes A/S, Krogshøjvej 36, 2880, Bagsværd, Denmark.,DTU Bioengineering, Department of Biotechnology and Biomedicine, Building 221, Technical University of Denmark, 2800 Kgs. Lyngby, Denmark
| | - Olga V Moroz
- York Structural Biology Laboratory, Department of Chemistry, University of York, York, YO10 5DD, UK
| | - Elena Blagova
- York Structural Biology Laboratory, Department of Chemistry, University of York, York, YO10 5DD, UK
| | - Mathias Wiemann
- Department of Biochemistry and Structural Biology, Center for Molecular Protein Science, Lund University, PO Box 124, SE-221 00, Lund, Sweden
| | | | - Jane W Agger
- DTU Bioengineering, Department of Biotechnology and Biomedicine, Building 221, Technical University of Denmark, 2800 Kgs. Lyngby, Denmark
| | - Gideon J Davies
- York Structural Biology Laboratory, Department of Chemistry, University of York, York, YO10 5DD, UK
| | - Keith S Wilson
- York Structural Biology Laboratory, Department of Chemistry, University of York, York, YO10 5DD, UK.
| | - Henrik Stålbrand
- Department of Biochemistry and Structural Biology, Center for Molecular Protein Science, Lund University, PO Box 124, SE-221 00, Lund, Sweden
| | - Anne S Meyer
- DTU Bioengineering, Department of Biotechnology and Biomedicine, Building 221, Technical University of Denmark, 2800 Kgs. Lyngby, Denmark.
| | | |
Collapse
|
11
|
Ueda M, Hirano Y, Fukuhara H, Naka Y, Nakazawa M, Sakamoto T, Ogata Y, Tamada T. Gene cloning, expression, and X-ray crystallographic analysis of a β-mannanase from Eisenia fetida. Enzyme Microb Technol 2018; 117:15-22. [DOI: 10.1016/j.enzmictec.2018.05.014] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2018] [Revised: 05/16/2018] [Accepted: 05/25/2018] [Indexed: 10/16/2022]
|
12
|
von Freiesleben P, Spodsberg N, Stenbæk A, Stålbrand H, Krogh KBRM, Meyer AS. Boosting of enzymatic softwood saccharification by fungal GH5 and GH26 endomannanases. BIOTECHNOLOGY FOR BIOFUELS 2018; 11:194. [PMID: 30026809 PMCID: PMC6048861 DOI: 10.1186/s13068-018-1184-y] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/29/2018] [Accepted: 06/21/2018] [Indexed: 06/08/2023]
Abstract
BACKGROUND Softwood is a promising feedstock for lignocellulosic biorefineries, but as it contains galactoglucomannan efficient mannan-degrading enzymes are required to unlock its full potential. RESULTS Boosting of the saccharification of pretreated softwood (Canadian lodgepole pine) was investigated for 10 fungal endo-β(1→4)-mannanases (endomannanases) from GH5 and GH26, including 6 novel GH26 enzymes. The endomannanases from Trichoderma reesei (TresMan5A) and Podospora anserina (PansMan26) were investigated with and without their carbohydrate-binding module (CBM). The pH optimum and initial rates of enzyme catalysed hydrolysis were determined on pure β-mannans, including acetylated and deacetylated spruce galactoglucomannan. Melting temperature (Tm) and stability of the endomannanases during prolonged incubations were also assessed. The highest initial rates on the pure mannans were attained by GH26 endomannanases. Acetylation tended to decrease the enzymatic rates to different extents depending on the enzyme. Despite exhibiting low rates on the pure mannan substrates, TresMan5A with CBM1 catalysed highest release among the endomannanases of both mannose and glucose during softwood saccharification. The presence of the CBM1 as well as the catalytic capability of the TresMan5A core module itself seemed to allow fast and more profound degradation of portions of the mannan that led to better cellulose degradation. In contrast, the presence of the CBM35 did not change the performance of PansMan26 in softwood saccharification. CONCLUSIONS This study identified TresMan5A as the best endomannanase for increasing cellulase catalysed glucose release from softwood. Except for the superior performance of TresMan5A, the fungal GH5 and GH26 endomannanases generally performed on par on the lignocellulosic matrix. The work also illustrated the importance of using genuine lignocellulosic substrates rather than simple model substrates when selecting enzymes for industrial biomass applications.
Collapse
Affiliation(s)
- Pernille von Freiesleben
- Novozymes A/S, Krogshøjvej 36, 2880 Bagsværd, Denmark
- Protein Chemistry & Enzyme Technology, DTU Bioengineering, Technical University of Denmark, Building 221, 2800 Kgs. Lyngby, Denmark
| | | | - Anne Stenbæk
- Novozymes A/S, Krogshøjvej 36, 2880 Bagsværd, Denmark
| | - Henrik Stålbrand
- Department of Biochemistry and Structural Biology, Center for Molecular Protein Science, Lund University, PO Box 124, 221 00 Lund, Sweden
| | | | - Anne S. Meyer
- Protein Chemistry & Enzyme Technology, DTU Bioengineering, Technical University of Denmark, Building 221, 2800 Kgs. Lyngby, Denmark
| |
Collapse
|
13
|
β-Mannanase-catalyzed synthesis of alkyl mannooligosides. Appl Microbiol Biotechnol 2018; 102:5149-5163. [PMID: 29680901 PMCID: PMC5959982 DOI: 10.1007/s00253-018-8997-2] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2017] [Revised: 04/04/2018] [Accepted: 04/07/2018] [Indexed: 12/28/2022]
Abstract
β-Mannanases catalyze the conversion and modification of β-mannans and may, in addition to hydrolysis, also be capable of transglycosylation which can result in enzymatic synthesis of novel glycoconjugates. Using alcohols as glycosyl acceptors (alcoholysis), β-mannanases can potentially be used to synthesize alkyl glycosides, biodegradable surfactants, from renewable β-mannans. In this paper, we investigate the synthesis of alkyl mannooligosides using glycoside hydrolase family 5 β-mannanases from the fungi Trichoderma reesei (TrMan5A and TrMan5A-R171K) and Aspergillus nidulans (AnMan5C). To evaluate β-mannanase alcoholysis capacity, a novel mass spectrometry-based method was developed that allows for relative comparison of the formation of alcoholysis products using different enzymes or reaction conditions. Differences in alcoholysis capacity and potential secondary hydrolysis of alkyl mannooligosides were observed when comparing alcoholysis catalyzed by the three β-mannanases using methanol or 1-hexanol as acceptor. Among the three β-mannanases studied, TrMan5A was the most efficient in producing hexyl mannooligosides with 1-hexanol as acceptor. Hexyl mannooligosides were synthesized using TrMan5A and purified using high-performance liquid chromatography. The data suggests a high selectivity of TrMan5A for 1-hexanol as acceptor over water. The synthesized hexyl mannooligosides were structurally characterized using nuclear magnetic resonance, with results in agreement with their predicted β-conformation. The surfactant properties of the synthesized hexyl mannooligosides were evaluated using tensiometry, showing that they have similar micelle-forming properties as commercially available hexyl glucosides. The present paper demonstrates the possibility of using β-mannanases for alkyl glycoside synthesis and increases the potential utilization of renewable β-mannans.
Collapse
|
14
|
Michalak L, Knutsen SH, Aarum I, Westereng B. Effects of pH on steam explosion extraction of acetylated galactoglucomannan from Norway spruce. BIOTECHNOLOGY FOR BIOFUELS 2018; 11:311. [PMID: 30455740 PMCID: PMC6225635 DOI: 10.1186/s13068-018-1300-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2018] [Accepted: 10/24/2018] [Indexed: 05/15/2023]
Abstract
BACKGROUND Acetylated galactoglucomannan (AcGGM) is a complex hemicellulose found in softwoods such as Norway spruce (Picea abies). AcGGM has a large potential as a biorefinery feedstock and source of oligosaccharides for high-value industrial applications. Steam explosion is an effective method for extraction of carbohydrates from plant biomass. Increasing the reaction pH reduces the combined severity ( R 0 ' ) of treatment, affecting yields and properties of extracted oligosaccharides. In this study, steam explosion was used to extract oligosaccharides from Norway spruce wood chips soaked with sodium citrate and potassium phosphate buffers with pH of 4.0-7.0. Yields, monosaccharide composition of released oligosaccharides and biomass residue, their acetate content and composition of their lignin fraction were examined to determine the impact of steam explosion buffering on the extraction of softwood hemicellulose. RESULTS Reducing the severity of steam explosion resulted in lower yields, although the extracted oligosaccharides had a higher degree of polymerization. Higher buffering pH also resulted in a higher fraction of xylan in the extracted oligos. Oligosaccharides extracted in buffers of pH > 5.0 were deacetylated. Buffering leads to a removal of acetylations from both the extracted oligosaccharides and the hemicellulose in the residual biomass. Treatment of the residual biomass with a GH5 family mannanase from Aspergillus nidulans was not able to improve the AcGGM yields. No hydroxymethylfurfural formation, a decomposition product from hexoses, was observed in samples soaked with buffers at pH higher than 4.0. CONCLUSIONS Buffering the steam explosion reactions proved to be an effective way to reduce the combined severity ( R 0 ' ) and produce a wide range of products from the same feedstock at the same physical conditions. The results highlight the impact of chemical autohydrolysis of hemicellulose by acetic acid released from the biomass in hydrothermal pretreatments. Lower combined severity results in products with a lower degree of acetylation of both the extracted oligosaccharides and residual biomass. Decrease in severity appears not to be the result of reduced acetate release, but rather a result of inhibited autohydrolysis by the released acetate. Based on the results presented, the optimal soaking pH for fine-tuning properties of extracted AcGGM is below 5.0.
Collapse
Affiliation(s)
- Leszek Michalak
- Faculty of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences, Ås, Norway
| | - Svein Halvor Knutsen
- Nofima, Norwegian Institute of Food, Fishery and Aquaculture Research, PB 210, 1431 Ås, Norway
| | - Ida Aarum
- Faculty of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences, Ås, Norway
| | - Bjørge Westereng
- Faculty of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences, Ås, Norway
| |
Collapse
|
15
|
Arnling Bååth J, Martínez-Abad A, Berglund J, Larsbrink J, Vilaplana F, Olsson L. Mannanase hydrolysis of spruce galactoglucomannan focusing on the influence of acetylation on enzymatic mannan degradation. BIOTECHNOLOGY FOR BIOFUELS 2018; 11:114. [PMID: 29713374 PMCID: PMC5907293 DOI: 10.1186/s13068-018-1115-y] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2018] [Accepted: 04/10/2018] [Indexed: 05/14/2023]
Abstract
BACKGROUND Galactoglucomannan (GGM) is the most abundant hemicellulose in softwood, and consists of a backbone of mannose and glucose units, decorated with galactose and acetyl moieties. GGM can be hydrolyzed into fermentable sugars, or used as a polymer in films, gels, and food additives. Endo-β-mannanases, which can be found in the glycoside hydrolase families 5 and 26, specifically cleave the mannan backbone of GGM into shorter oligosaccharides. Information on the activity and specificity of different mannanases on complex and acetylated substrates is still lacking. The aim of this work was to evaluate and compare the modes of action of two mannanases from Cellvibrio japonicus (CjMan5A and CjMan26A) on a variety of mannan substrates, naturally and chemically acetylated to varying degrees, including naturally acetylated spruce GGM. Both enzymes were evaluated in terms of cleavage patterns and their ability to accommodate acetyl substitutions. RESULTS CjMan5A and CjMan26A demonstrated different substrate preferences on mannan substrates with distinct backbone and decoration structures. CjMan5A action resulted in higher amounts of mannotriose and mannotetraose than that of CjMan26A, which mainly generated mannose and mannobiose as end products. Mass spectrometric analysis of products from the enzymatic hydrolysis of spruce GGM revealed that an acetylated hexotriose was the shortest acetylated oligosaccharide produced by CjMan5A, whereas CjMan26A generated acetylated hexobiose as well as diacetylated oligosaccharides. A low degree of native acetylation did not significantly inhibit the enzymatic action. However, a high degree of chemical acetylation resulted in decreased hydrolyzability of mannan substrates, where reduced substrate solubility seemed to reduce enzyme activity. CONCLUSIONS Our findings demonstrate that the two mannanases from C. japonicus have different cleavage patterns on linear and decorated mannan polysaccharides, including the abundant and industrially important resource spruce GGM. CjMan26A released higher amounts of fermentable sugars suitable for biofuel production, while CjMan5A, producing higher amounts of oligosaccharides, could be a good candidate for the production of oligomeric platform chemicals and food additives. Furthermore, chemical acetylation of mannan polymers was found to be a potential strategy for limiting the biodegradation of mannan-containing materials.
Collapse
Affiliation(s)
- Jenny Arnling Bååth
- Division of Industrial Biotechnology, Department of Biology and Biological Engineering, Chalmers University of Technology, 412 96 Gothenburg, Sweden
- Wallenberg Wood Science Center, Chalmers University of Technology, 412 96 Gothenburg, Sweden
| | - Antonio Martínez-Abad
- Division of Glycoscience, Department of Chemistry, School of Engineering Sciences in Chemistry, Biotechnology and Health, KTH Royal Institute of Technology, 100 44 Stockholm, Sweden
- Present Address: Department of Analytical Chemistry, Nutrition and Food Sciences, University of Alicante, 03690 Alicante, Spain
| | - Jennie Berglund
- Wallenberg Wood Science Center, School of Engineering Sciences in Chemistry, Biotechnology and Health, KTH Royal Institute of Technology, 100 44 Stockholm, Sweden
| | - Johan Larsbrink
- Division of Industrial Biotechnology, Department of Biology and Biological Engineering, Chalmers University of Technology, 412 96 Gothenburg, Sweden
- Wallenberg Wood Science Center, Chalmers University of Technology, 412 96 Gothenburg, Sweden
| | - Francisco Vilaplana
- Division of Glycoscience, Department of Chemistry, School of Engineering Sciences in Chemistry, Biotechnology and Health, KTH Royal Institute of Technology, 100 44 Stockholm, Sweden
- Wallenberg Wood Science Center, School of Engineering Sciences in Chemistry, Biotechnology and Health, KTH Royal Institute of Technology, 100 44 Stockholm, Sweden
| | - Lisbeth Olsson
- Division of Industrial Biotechnology, Department of Biology and Biological Engineering, Chalmers University of Technology, 412 96 Gothenburg, Sweden
- Wallenberg Wood Science Center, Chalmers University of Technology, 412 96 Gothenburg, Sweden
| |
Collapse
|
16
|
Abdul Manas NH, Md Illias R, Mahadi NM. Strategy in manipulating transglycosylation activity of glycosyl hydrolase for oligosaccharide production. Crit Rev Biotechnol 2017; 38:272-293. [PMID: 28683572 DOI: 10.1080/07388551.2017.1339664] [Citation(s) in RCA: 61] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
BACKGROUND The increasing market demand for oligosaccharides has intensified the need for efficient biocatalysts. Glycosyl hydrolases (GHs) are still gaining popularity as biocatalyst for oligosaccharides synthesis owing to its simple reaction and high selectivity. PURPOSE Over the years, research has advanced mainly directing to one goal; to reduce hydrolysis activity of GHs for increased transglycosylation activity in achieving high production of oligosaccharides. DESIGN AND METHODS This review concisely presents the strategies to increase transglycosylation activity of GHs for oligosaccharides synthesis, focusing on controlling the reaction equilibrium, and protein engineering. Various modifications of the subsites of GHs have been demonstrated to significantly modulate the hydrolysis and transglycosylation activity of the enzymes. The clear insight of the roles of each amino acid in these sites provides a platform for designing an enzyme that could synthesize a specific oligosaccharide product. CONCLUSIONS The key strategies presented here are important for future improvement of GHs as a biocatalyst for oligosaccharide synthesis.
Collapse
Affiliation(s)
- Nor Hasmaliana Abdul Manas
- a Department of Chemical Engineering and Energy Sustainability, Faculty of Engineering , Universiti Malaysia Sarawak , Kota Samarahan , Malaysia.,b BioMolecular and Microbial Process Research Group , Health and Wellness Research Alliance, Universiti Teknologi Malaysia , Johor , Malaysia
| | - Rosli Md Illias
- b BioMolecular and Microbial Process Research Group , Health and Wellness Research Alliance, Universiti Teknologi Malaysia , Johor , Malaysia.,c Department of Bioprocess Engineering, Faculty of Chemical and Energy Engineering , Universiti Teknologi Malaysia , Skudai , Malaysia
| | - Nor Muhammad Mahadi
- d Comparative Genomics and Genetics Research Centre , Malaysia Genome Institute , Kajang , Malaysia
| |
Collapse
|
17
|
Pimentel AC, Ematsu GC, Liberato MV, Paixão DA, Franco Cairo JPL, Mandelli F, Tramontina R, Gandin CA, de Oliveira Neto M, Squina FM, Alvarez TM. Biochemical and biophysical properties of a metagenome-derived GH5 endoglucanase displaying an unconventional domain architecture. Int J Biol Macromol 2017; 99:384-393. [DOI: 10.1016/j.ijbiomac.2017.02.075] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2016] [Revised: 02/05/2017] [Accepted: 02/06/2017] [Indexed: 11/15/2022]
|
18
|
Harvey DJ. Analysis of carbohydrates and glycoconjugates by matrix-assisted laser desorption/ionization mass spectrometry: An update for 2011-2012. MASS SPECTROMETRY REVIEWS 2017; 36:255-422. [PMID: 26270629 DOI: 10.1002/mas.21471] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2014] [Accepted: 01/15/2015] [Indexed: 06/04/2023]
Abstract
This review is the seventh update of the original article published in 1999 on the application of MALDI mass spectrometry to the analysis of carbohydrates and glycoconjugates and brings coverage of the literature to the end of 2012. General aspects such as theory of the MALDI process, matrices, derivatization, MALDI imaging, and fragmentation are covered in the first part of the review and applications to various structural types constitute the remainder. The main groups of compound are oligo- and poly-saccharides, glycoproteins, glycolipids, glycosides, and biopharmaceuticals. Much of this material is presented in tabular form. Also discussed are medical and industrial applications of the technique, studies of enzyme reactions, and applications to chemical synthesis. © 2015 Wiley Periodicals, Inc. Mass Spec Rev 36:255-422, 2017.
Collapse
Affiliation(s)
- David J Harvey
- Department of Biochemistry, Oxford Glycobiology Institute, University of Oxford, Oxford, OX1 3QU, UK
| |
Collapse
|
19
|
Dilokpimol A, Mäkelä MR, Mansouri S, Belova O, Waterstraat M, Bunzel M, de Vries RP, Hildén KS. Expanding the feruloyl esterase gene family of Aspergillus niger by characterization of a feruloyl esterase, FaeC. N Biotechnol 2017; 37:200-209. [PMID: 28285179 DOI: 10.1016/j.nbt.2017.02.007] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2016] [Revised: 02/08/2017] [Accepted: 02/08/2017] [Indexed: 02/02/2023]
Abstract
A feruloyl esterase (FAE) from Aspergillus niger N402, FaeC was heterologously produced in Pichia pastoris X-33 in a yield of 10mg/L. FaeC was most active at pH 7.0 and 50°C, and showed broad substrate specificity and catalyzed the hydrolysis of methyl 3,4-dimethoxycinnamate, ethyl ferulate, methyl ferulate, methyl p-coumarate, ethyl coumarate, methyl sinapate, and methyl caffeate. The enzyme released both ferulic acid and p-coumaric acid from wheat arabinoxylan and sugar beet pectin (up to 3mg/g polysaccharide), and acted synergistically with a commercial xylanase increasing the release of ferulic acid up to six-fold. The expression of faeC increased over time in the presence of feruloylated polysaccharides. Cinnamic, syringic, caffeic, vanillic and ferulic acid induced the expression of faeC. Overall expression of faeC was very low in all tested conditions, compared to two other A. niger FAE encoding genes, faeA and faeB. Our data showed that the fae genes responded differently towards the feruloylated polysaccharides and tested monomeric phenolic compounds suggesting that the corresponding FAE isoenzymes may target different substrates in a complementary manner. This may increase the efficiency of the degradation of diverse plant biomass.
Collapse
Affiliation(s)
- Adiphol Dilokpimol
- Fungal Physiology, CBS-KNAW Fungal Biodiversity Centre & Fungal Molecular Physiology, Utrecht University, Uppsalalaan 8, Utrecht, The Netherlands
| | - Miia R Mäkelä
- Department of Food and Environmental Sciences, Division of Microbiology and Biotechnology, Viikki Biocenter 1, University of Helsinki, Finland
| | - Sadegh Mansouri
- Department of Food and Environmental Sciences, Division of Microbiology and Biotechnology, Viikki Biocenter 1, University of Helsinki, Finland
| | - Olga Belova
- Fungal Physiology, CBS-KNAW Fungal Biodiversity Centre & Fungal Molecular Physiology, Utrecht University, Uppsalalaan 8, Utrecht, The Netherlands
| | - Martin Waterstraat
- Department of Food Chemistry and Phytochemistry, Institute of Applied Biosciences, Karlsruhe Institute of Technology (KIT), Adenauerring 20a, Building 50.41, 76131 Karlsruhe, Germany
| | - Mirko Bunzel
- Department of Food Chemistry and Phytochemistry, Institute of Applied Biosciences, Karlsruhe Institute of Technology (KIT), Adenauerring 20a, Building 50.41, 76131 Karlsruhe, Germany
| | - Ronald P de Vries
- Fungal Physiology, CBS-KNAW Fungal Biodiversity Centre & Fungal Molecular Physiology, Utrecht University, Uppsalalaan 8, Utrecht, The Netherlands
| | - Kristiina S Hildén
- Department of Food and Environmental Sciences, Division of Microbiology and Biotechnology, Viikki Biocenter 1, University of Helsinki, Finland.
| |
Collapse
|
20
|
Production, properties, and applications of endo-β-mannanases. Biotechnol Adv 2017; 35:1-19. [DOI: 10.1016/j.biotechadv.2016.11.001] [Citation(s) in RCA: 85] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2015] [Revised: 10/12/2016] [Accepted: 11/07/2016] [Indexed: 12/27/2022]
|
21
|
Durand J, Biarnés X, Watterlot L, Bonzom C, Borsenberger V, Planas A, Bozonnet S, O’Donohue MJ, Fauré R. A Single Point Mutation Alters the Transglycosylation/Hydrolysis Partition, Significantly Enhancing the Synthetic Capability of an endo-Glycoceramidase. ACS Catal 2016. [DOI: 10.1021/acscatal.6b02159] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Julien Durand
- LISBP, Université de Toulouse, CNRS, INRA, INSA, Toulouse, France
| | - Xevi Biarnés
- Laboratory
of Biochemistry, Institut Químic de Sarrià, Universitat Ramon Llull, Barcelona, Spain
| | - Laurie Watterlot
- LISBP, Université de Toulouse, CNRS, INRA, INSA, Toulouse, France
| | - Cyrielle Bonzom
- LISBP, Université de Toulouse, CNRS, INRA, INSA, Toulouse, France
| | | | - Antoni Planas
- Laboratory
of Biochemistry, Institut Químic de Sarrià, Universitat Ramon Llull, Barcelona, Spain
| | - Sophie Bozonnet
- LISBP, Université de Toulouse, CNRS, INRA, INSA, Toulouse, France
| | | | - Régis Fauré
- LISBP, Université de Toulouse, CNRS, INRA, INSA, Toulouse, France
| |
Collapse
|
22
|
Cockburn D, Wilkens C, Dilokpimol A, Nakai H, Lewińska A, Abou Hachem M, Svensson B. Using Carbohydrate Interaction Assays to Reveal Novel Binding Sites in Carbohydrate Active Enzymes. PLoS One 2016; 11:e0160112. [PMID: 27504624 PMCID: PMC4978508 DOI: 10.1371/journal.pone.0160112] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2016] [Accepted: 07/13/2016] [Indexed: 01/23/2023] Open
Abstract
Carbohydrate active enzymes often contain auxiliary binding sites located either on independent domains termed carbohydrate binding modules (CBMs) or as so-called surface binding sites (SBSs) on the catalytic module at a certain distance from the active site. The SBSs are usually critical for the activity of their cognate enzyme, though they are not readily detected in the sequence of a protein, but normally require a crystal structure of a complex for their identification. A variety of methods, including affinity electrophoresis (AE), insoluble polysaccharide pulldown (IPP) and surface plasmon resonance (SPR) have been used to study auxiliary binding sites. These techniques are complementary as AE allows monitoring of binding to soluble polysaccharides, IPP to insoluble polysaccharides and SPR to oligosaccharides. Here we show that these methods are useful not only for analyzing known binding sites, but also for identifying new ones, even without structural data available. We further verify the chosen assays discriminate between known SBS/CBM containing enzymes and negative controls. Altogether 35 enzymes are screened for the presence of SBSs or CBMs and several novel binding sites are identified, including the first SBS ever reported in a cellulase. This work demonstrates that combinations of these methods can be used as a part of routine enzyme characterization to identify new binding sites and advance the study of SBSs and CBMs, allowing them to be detected in the absence of structural data.
Collapse
Affiliation(s)
- Darrell Cockburn
- Enzyme and Protein Chemistry, Department of Systems Biology, Technical University of Denmark, Lyngby, Denmark
| | - Casper Wilkens
- Enzyme and Protein Chemistry, Department of Systems Biology, Technical University of Denmark, Lyngby, Denmark
| | - Adiphol Dilokpimol
- Enzyme and Protein Chemistry, Department of Systems Biology, Technical University of Denmark, Lyngby, Denmark
| | - Hiroyuki Nakai
- Enzyme and Protein Chemistry, Department of Systems Biology, Technical University of Denmark, Lyngby, Denmark
| | - Anna Lewińska
- Enzyme and Protein Chemistry, Department of Systems Biology, Technical University of Denmark, Lyngby, Denmark
| | - Maher Abou Hachem
- Enzyme and Protein Chemistry, Department of Systems Biology, Technical University of Denmark, Lyngby, Denmark
| | - Birte Svensson
- Enzyme and Protein Chemistry, Department of Systems Biology, Technical University of Denmark, Lyngby, Denmark
- * E-mail:
| |
Collapse
|
23
|
A Novel Glycoside Hydrolase Family 113 Endo-β-1,4-Mannanase from Alicyclobacillus sp. Strain A4 and Insight into the Substrate Recognition and Catalytic Mechanism of This Family. Appl Environ Microbiol 2016; 82:2718-2727. [PMID: 26921423 DOI: 10.1128/aem.04071-15] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2015] [Accepted: 02/20/2016] [Indexed: 11/20/2022] Open
Abstract
Few members of glycoside hydrolase (GH) family 113 have been characterized, and information on substrate recognition by and the catalytic mechanism of this family is extremely limited. In the present study, a novel endo-β-1,4-mannanase of GH 113, Man113A, was identified in thermoacidophilic Alicyclobacillus sp. strain A4 and found to exhibit both hydrolytic and transglycosylation activities. The enzyme had a broad substrate spectrum, showed higher activities on glucomannan than on galactomannan, and released mannobiose and mannotriose as the main hydrolysis products after an extended incubation. Compared to the only functionally characterized and structure-resolved counter part Alicyclobacillus acidocaldarius ManA (AaManA) of GH 113, Man113A showed much higher catalytic efficiency on mannooligosaccharides, in the order mannohexaose ≈ mannopentaose > mannotetraose > mannotriose, and required at least four sugar units for efficient catalysis. Homology modeling, molecular docking analysis, and site-directed mutagenesis revealed the vital roles of eight residues (Trp13, Asn90, Trp96, Arg97, Tyr196, Trp274, Tyr292, and Cys143) related to substrate recognition by and catalytic mechanism of GH 113. Comparison of the binding pockets and key residues of β-mannanases of different families indicated that members of GH 113 and GH 5 have more residues serving as stacking platforms to support -4 to -1 subsites than those of GH 26 and that the residues preceding the acid/base catalyst are quite different. Taken as a whole, this study elucidates substrate recognition by and the catalytic mechanism of GH 113 β-mannanases and distinguishes them from counterparts of other families.
Collapse
|
24
|
Biochemical characterization of an acidophilic β-mannanase from Gloeophyllum trabeum CBS900.73 with significant transglycosylation activity and feed digesting ability. Food Chem 2016; 197:474-81. [DOI: 10.1016/j.foodchem.2015.10.115] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2015] [Revised: 09/06/2015] [Accepted: 10/24/2015] [Indexed: 02/05/2023]
|
25
|
Replacing a piece of loop-structure in the substrate-binding groove of Aspergillus usamii β-mannanase, AuMan5A, to improve its enzymatic properties by rational design. Appl Microbiol Biotechnol 2015; 100:3989-98. [DOI: 10.1007/s00253-015-7224-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2015] [Revised: 11/12/2015] [Accepted: 12/05/2015] [Indexed: 01/28/2023]
|
26
|
Morrill J, Kulcinskaja E, Sulewska AM, Lahtinen S, Stålbrand H, Svensson B, Abou Hachem M. The GH5 1,4-β-mannanase from Bifidobacterium animalis subsp. lactis Bl-04 possesses a low-affinity mannan-binding module and highlights the diversity of mannanolytic enzymes. BMC BIOCHEMISTRY 2015; 16:26. [PMID: 26558435 PMCID: PMC4642672 DOI: 10.1186/s12858-015-0055-4] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/24/2015] [Accepted: 10/29/2015] [Indexed: 12/18/2022]
Abstract
Background β-Mannans are abundant and diverse plant structural and storage polysaccharides. Certain human gut microbiota members including health-promoting Bifidobacterium spp. catabolize dietary mannans. Little insight is available on the enzymology of mannan deconstruction in the gut ecological niche. Here, we report the biochemical properties of the first family 5 subfamily 8 glycoside hydrolase (GH5_8) mannanase from the probiotic bacterium Bifidobacterium animalis subsp. lactis Bl-04 (BlMan5_8). Results BlMan5_8 possesses a novel low affinity carbohydrate binding module (CBM) specific for soluble mannan and displays the highest catalytic efficiency reported to date for a GH5 mannanase owing to a very high kcat (1828 ± 87 s-1) and a low Km (1.58 ± 0.23 g · L-1) using locust bean galactomannan as substrate. The novel CBM of BlMan5_8 mediates increased binding to soluble mannan based on affinity electrophoresis. Surface plasmon resonance analysis confirmed the binding of the CBM10 to manno-oligosaccharides, albeit with slightly lower affinity than the catalytic module of the enzyme. This is the first example of a low-affinity mannan-specific CBM, which forms a subfamily of CBM10 together with close homologs present only in mannanases. Members of this new subfamily lack an aromatic residue mediating binding to insoluble cellulose in canonical CBM10 members consistent with the observed low mannan affinity. Conclusion BlMan5_8 is evolved for efficient deconstruction of soluble mannans, which is reflected by an exceptionally low Km and the presence of an atypical low affinity CBM, which increases binding to specifically to soluble mannan while causing minimal decrease in catalytic efficiency as opposed to enzymes with canonical mannan binding modules. These features highlight fine tuning of catalytic and binding properties to support specialization towards a preferred substrate, which is likely to confer an advantage in the adaptation to competitive ecological niches. Electronic supplementary material The online version of this article (doi:10.1186/s12858-015-0055-4) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Johan Morrill
- Department of Biochemistry and Structural Biology, Center for Chemistry and Chemical Engineering, Lund University, P.O. Box 124, S-221 00, Lund, Sweden
| | - Evelina Kulcinskaja
- Department of Biochemistry and Structural Biology, Center for Chemistry and Chemical Engineering, Lund University, P.O. Box 124, S-221 00, Lund, Sweden
| | - Anna Maria Sulewska
- Enzyme and Protein Chemistry (EPC), Department of Systems Biology, Technical University of Denmark (DTU), Søltofts Plads, building 224, DK-2800, Kgs Lyngby, Denmark.,Current address: Biochemistry and Bioprocessing, Department of Food Science, University of Copenhagen, Rolighedsvej 30, DK-1958, Fredriksberg C, Denmark
| | - Sampo Lahtinen
- Active Nutrition, DuPont Nutrition & Health, Sokeritehtaantie 20, 02460, Kantvik, Finland
| | - Henrik Stålbrand
- Department of Biochemistry and Structural Biology, Center for Chemistry and Chemical Engineering, Lund University, P.O. Box 124, S-221 00, Lund, Sweden
| | - Birte Svensson
- Enzyme and Protein Chemistry (EPC), Department of Systems Biology, Technical University of Denmark (DTU), Søltofts Plads, building 224, DK-2800, Kgs Lyngby, Denmark
| | - Maher Abou Hachem
- Enzyme and Protein Chemistry (EPC), Department of Systems Biology, Technical University of Denmark (DTU), Søltofts Plads, building 224, DK-2800, Kgs Lyngby, Denmark.
| |
Collapse
|
27
|
von Freiesleben P, Spodsberg N, Blicher TH, Anderson L, Jørgensen H, Stålbrand H, Meyer AS, Krogh KBRM. An Aspergillus nidulans GH26 endo-β-mannanase with a novel degradation pattern on highly substituted galactomannans. Enzyme Microb Technol 2015; 83:68-77. [PMID: 26777252 DOI: 10.1016/j.enzmictec.2015.10.011] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2015] [Revised: 10/04/2015] [Accepted: 10/31/2015] [Indexed: 01/17/2023]
Abstract
The activity and substrate degradation pattern of a novel Aspergillus nidulans GH26 endo-β-mannanase (AnMan26A) was investigated using two galactomannan substrates with varying amounts of galactopyranosyl residues. The AnMan26A was characterized in parallel with the GH26 endomannanase from Podospora anserina (PaMan26A) and three GH5 endomannanases from A. nidulans and Trichoderma reesei (AnMan5A, AnMan5C and TrMan5A). The initial rates and the maximal degree of enzymatically catalyzed conversion of locust bean gum and guar gum galactomannans were determined. The hydrolysis product profile at maximal degree of conversion was determined using DNA sequencer-Assisted Saccharide analysis in High throughput (DASH). This is the first reported use of this method for analyzing galactomannooligosaccharides. AnMan26A and PaMan26A were found to have a novel substrate degradation pattern on the two galactomannan substrates. On the highly substituted guar gum AnMan26A and PaMan26A reached 35-40% as their maximal degree of conversion whereas the three tested GH5 endomannanases only reached 8-10% as their maximal degree of conversion. α-Galactosyl-mannose was identified as the dominant degradation product resulting from AnMan26A and PaMan26A action on guar gum, strongly indicating that these two enzymes can accommodate galactopyranosyl residues in the -1 and in the +1 subsite. The degradation of α-6(4)-6(3)-di-galactosyl-mannopentaose by AnMan26A revealed accommodation of galactopyranosyl residues in the -2, -1 and +1 subsite of the enzyme. Accommodation of galactopyranosyl residues in subsites -2 and +1 has not been observed for other characterized endomannanases to date. Docking analysis of galactomannooligosaccharides in available crystal structures and homology models supported the conclusions drawn from the experimental results. This newly discovered diversity of substrate degradation patterns demonstrates an expanded functionality of fungal endomannanases, than hitherto reported.
Collapse
Affiliation(s)
- Pernille von Freiesleben
- Novozymes A/S, Krogshøjvej 36, 2880 Bagsværd, Denmark; Center for Bioprocess Engineering, Department of Chemical and Biochemical Engineering, Building 229, Technical University of Denmark, 2800 Kgs. Lyngby, Denmark
| | | | | | - Lars Anderson
- Novozymes A/S, Krogshøjvej 36, 2880 Bagsværd, Denmark
| | - Henning Jørgensen
- Center for Bioprocess Engineering, Department of Chemical and Biochemical Engineering, Building 229, Technical University of Denmark, 2800 Kgs. Lyngby, Denmark
| | - Henrik Stålbrand
- Department of Biochemistry and Structural Biology, Center for Molecular Protein Science, Lund University, PO Box 124, SE-221 00 Lund, Sweden
| | - Anne S Meyer
- Center for Bioprocess Engineering, Department of Chemical and Biochemical Engineering, Building 229, Technical University of Denmark, 2800 Kgs. Lyngby, Denmark.
| | | |
Collapse
|
28
|
Shimizu M, Kaneko Y, Ishihara S, Mochizuki M, Sakai K, Yamada M, Murata S, Itoh E, Yamamoto T, Sugimura Y, Hirano T, Takaya N, Kobayashi T, Kato M. Novel β-1,4-Mannanase Belonging to a New Glycoside Hydrolase Family in Aspergillus nidulans. J Biol Chem 2015; 290:27914-27. [PMID: 26385921 PMCID: PMC4646033 DOI: 10.1074/jbc.m115.661645] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2015] [Indexed: 11/10/2022] Open
Abstract
Many filamentous fungi produce β-mannan-degrading β-1,4-mannanases that belong to the glycoside hydrolase 5 (GH5) and GH26 families. Here we identified a novel β-1,4-mannanase (Man134A) that belongs to a new glycoside hydrolase (GH) family (GH134) in Aspergillus nidulans. Blast analysis of the amino acid sequence using the NCBI protein database revealed that this enzyme had no similarity to any sequences and no putative conserved domains. Protein homologs of the enzyme were distributed to limited fungal and bacterial species. Man134A released mannobiose (M2), mannotriose (M3), and mannotetraose (M4) but not mannopentaose (M5) or higher manno-oligosaccharides when galactose-free β-mannan was the substrate from the initial stage of the reaction, suggesting that Man134A preferentially reacts with β-mannan via a unique catalytic mode. Man134A had high catalytic efficiency (kcat/Km) toward mannohexaose (M6) compared with the endo-β-1,4-mannanase Man5C and notably converted M6 to M2, M3, and M4, with M3 being the predominant reaction product. The action of Man5C toward β-mannans was synergistic. The growth phenotype of a Man134A disruptant was poor when β-mannans were the sole carbon source, indicating that Man134A is involved in β-mannan degradation in vivo. These findings indicate a hitherto undiscovered mechanism of β-mannan degradation that is enhanced by the novel β-1,4-mannanase, Man134A, when combined with other mannanolytic enzymes including various endo-β-1,4-mannanases.
Collapse
Affiliation(s)
- Motoyuki Shimizu
- From the Faculty of Agriculture, Meijo University, Nagoya, Aichi 468-8502, Japan,
| | - Yuhei Kaneko
- From the Faculty of Agriculture, Meijo University, Nagoya, Aichi 468-8502, Japan
| | - Saaya Ishihara
- From the Faculty of Agriculture, Meijo University, Nagoya, Aichi 468-8502, Japan
| | - Mai Mochizuki
- From the Faculty of Agriculture, Meijo University, Nagoya, Aichi 468-8502, Japan
| | - Kiyota Sakai
- From the Faculty of Agriculture, Meijo University, Nagoya, Aichi 468-8502, Japan
| | - Miyuki Yamada
- From the Faculty of Agriculture, Meijo University, Nagoya, Aichi 468-8502, Japan
| | - Shunsuke Murata
- From the Faculty of Agriculture, Meijo University, Nagoya, Aichi 468-8502, Japan
| | - Eriko Itoh
- Graduate School of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Ibaraki 305-8572, Japan, and
| | - Tatsuya Yamamoto
- From the Faculty of Agriculture, Meijo University, Nagoya, Aichi 468-8502, Japan
| | - Yu Sugimura
- From the Faculty of Agriculture, Meijo University, Nagoya, Aichi 468-8502, Japan
| | - Tatsuya Hirano
- From the Faculty of Agriculture, Meijo University, Nagoya, Aichi 468-8502, Japan
| | - Naoki Takaya
- Graduate School of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Ibaraki 305-8572, Japan, and
| | - Tetsuo Kobayashi
- Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya, Aichi 464-8601, Japan
| | - Masashi Kato
- From the Faculty of Agriculture, Meijo University, Nagoya, Aichi 468-8502, Japan
| |
Collapse
|
29
|
Yamabhai M, Sak-Ubol S, Srila W, Haltrich D. Mannan biotechnology: from biofuels to health. Crit Rev Biotechnol 2015; 36:32-42. [DOI: 10.3109/07388551.2014.923372] [Citation(s) in RCA: 79] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
30
|
Glycosynthesis in a waterworld: new insight into the molecular basis of transglycosylation in retaining glycoside hydrolases. Biochem J 2015; 467:17-35. [PMID: 25793417 DOI: 10.1042/bj20141412] [Citation(s) in RCA: 123] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Carbohydrates are ubiquitous in Nature and play vital roles in many biological systems. Therefore the synthesis of carbohydrate-based compounds is of considerable interest for both research and commercial purposes. However, carbohydrates are challenging, due to the large number of sugar subunits and the multiple ways in which these can be linked together. Therefore, to tackle the challenge of glycosynthesis, chemists are increasingly turning their attention towards enzymes, which are exquisitely adapted to the intricacy of these biomolecules. In Nature, glycosidic linkages are mainly synthesized by Leloir glycosyltransferases, but can result from the action of non-Leloir transglycosylases or phosphorylases. Advantageously for chemists, non-Leloir transglycosylases are glycoside hydrolases, enzymes that are readily available and exhibit a wide range of substrate specificities. Nevertheless, non-Leloir transglycosylases are unusual glycoside hydrolases in as much that they efficiently catalyse the formation of glycosidic bonds, whereas most glycoside hydrolases favour the mechanistically related hydrolysis reaction. Unfortunately, because non-Leloir transglycosylases are almost indistinguishable from their hydrolytic counterparts, it is unclear how these enzymes overcome the ubiquity of water, thus avoiding the hydrolytic reaction. Without this knowledge, it is impossible to rationally design non-Leloir transglycosylases using the vast diversity of glycoside hydrolases as protein templates. In this critical review, a careful analysis of literature data describing non-Leloir transglycosylases and their relationship to glycoside hydrolase counterparts is used to clarify the state of the art knowledge and to establish a new rational basis for the engineering of glycoside hydrolases.
Collapse
|
31
|
Zhou P, Liu Y, Yan Q, Chen Z, Qin Z, Jiang Z. Structural insights into the substrate specificity and transglycosylation activity of a fungal glycoside hydrolase family 5 β-mannosidase. ACTA ACUST UNITED AC 2014; 70:2970-82. [DOI: 10.1107/s1399004714019762] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2014] [Accepted: 09/02/2014] [Indexed: 01/23/2023]
Abstract
β-Mannosidases are exo-acting glycoside hydrolases (GHs) that catalyse the removal of the nonreducing end β-D-mannose from manno-oligosaccharides or mannoside-substituted molecules. They play important roles in fundamental biological processes and also have potential applications in various industries. In this study, the first fungal GH family 5 β-mannosidase (RmMan5B) fromRhizomucor mieheiwas functionally and structurally characterized.RmMan5B exhibited a much higher activity against manno-oligosaccharides than againstp-nitrophenyl β-D-mannopyranoside (pNPM) and had a transglycosylation activity which transferred mannosyl residues to sugars such as fructose. To investigate its substrate specificity and transglycosylation activity, crystal structures ofRmMan5B and of its inactive E202A mutant in complex with mannobiose, mannotriose and mannosyl-fructose were determined at resolutions of 1.3, 2.6, 2.0 and 2.4 Å, respectively. In addition, the crystal structure ofR. mieheiβ-mannanase (RmMan5A) was determined at a resolution of 2.3 Å. BothRmMan5A andRmMan5B adopt the (β/α)8-barrel architecture, which is globally similar to the other members of GH family 5. However,RmMan5B shows several differences in the loop around the active site. The extended loop between strand β8 and helix α8 (residues 354–392) forms a `double' steric barrier to `block' the substrate-binding cleft at the end of the −1 subsite. Trp119, Asn260 and Glu380 in the β-mannosidase, which are involved in hydrogen-bond contacts with the −1 mannose, might be essential for exo catalytic activity. Moreover, the structure of RmMan5B in complex with mannosyl-fructose has provided evidence for the interactions between the β-mannosidase and D-fructofuranose. Overall, the present study not only helps in understanding the catalytic mechanism of GH family 5 β-mannosidases, but also provides a basis for further enzymatic engineering of β-mannosidases and β-mannanases.
Collapse
|
32
|
An Aspergillus nidulans β-mannanase with high transglycosylation capacity revealed through comparative studies within glycosidase family 5. Appl Microbiol Biotechnol 2014; 98:10091-104. [PMID: 24950755 PMCID: PMC4237917 DOI: 10.1007/s00253-014-5871-8] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2014] [Revised: 05/28/2014] [Accepted: 05/29/2014] [Indexed: 11/03/2022]
Abstract
β-Mannanases are involved in the conversion and modification of mannan-based saccharides. Using a retaining mechanism, they can, in addition to hydrolysis, also potentially perform transglycosylation reactions, synthesizing new glyco-conjugates. Transglycosylation has been reported for β-mannanases in GH5 and GH113. However, although they share the same fold and catalytic mechanism, there may be differences in the enzymes’ ability to perform transglycosylation. Three GH5 β-mannanases from Aspergillus nidulans, AnMan5A, AnMan5B and AnMan5C, which belong to subfamily GH5_7 were studied. Comparative studies, including the GH5_7 TrMan5A from Trichoderma reesei, showed some differences between the enzymes. All the enzymes could perform transglycosylation but AnMan5B stood out in generating comparably higher amounts of transglycosylation products when incubated with manno-oligosaccharides. In addition, AnMan5B did not use alcohols as acceptor, which was also different compared to the other three β-mannanases. In order to map the preferred binding of manno-oligosaccharides, incubations were performed in H218O. AnMan5B in contrary to the other enzymes did not generate any 18O-labelled products. This further supported the idea that AnMan5B potentially prefers to use saccharides as acceptor instead of water. A homology model of AnMan5B showed a non-conserved Trp located in subsite +2, not present in the other studied enzymes. Strong aglycone binding seems to be important for transglycosylation with saccharides. Depending on the application, it is important to select the right enzyme.
Collapse
|
33
|
Wang Y, Vilaplana F, Brumer H, Aspeborg H. Enzymatic characterization of a glycoside hydrolase family 5 subfamily 7 (GH5_7) mannanase from Arabidopsis thaliana. PLANTA 2014; 239:653-65. [PMID: 24327260 PMCID: PMC3928506 DOI: 10.1007/s00425-013-2005-y] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2013] [Accepted: 12/01/2013] [Indexed: 05/16/2023]
Abstract
Each plant genome contains a repertoire of β-mannanase genes belonging to glycoside hydrolase family 5 subfamily 7 (GH5_7), putatively involved in the degradation and modification of various plant mannan polysaccharides, but very few have been characterized at the gene product level. The current study presents recombinant production and in vitro characterization of AtMan5-1 as a first step towards the exploration of the catalytic capacity of Arabidopsis thaliana β-mannanase. The target enzyme was expressed in both E. coli (AtMan5-1e) and P. pastoris (AtMan5-1p). The main difference between the two forms was a higher observed thermal stability for AtMan5-1p, presumably due to glycosylation of that particular variant. AtMan5-1 displayed optimal activity at pH 5 and 35 °C and hydrolyzed polymeric carob galactomannan, konjac glucomannan, and spruce galactoglucomannan as well as oligomeric mannopentaose and mannohexaose. However, the galactose-rich and highly branched guar gum was not as efficiently degraded. AtMan5-1 activity was enhanced by Co(2+) and inhibited by Mn(2+). The catalytic efficiency values for carob galactomannan were 426.8 and 368.1 min(-1) mg(-1) mL for AtMan5-1e and AtMan5-1p, respectively. Product analysis of AtMan5-1p suggested that at least five substrate-binding sites were required for manno-oligosaccharide hydrolysis, and that the enzyme also can act as a transglycosylase.
Collapse
Affiliation(s)
- Yang Wang
- Division of Glycoscience, School of Biotechnology, KTH Royal Institute of Technology, AlbaNova University Centre, 106 91 Stockholm, Sweden
- Division of Industrial Biotechnology, School of Biotechnology, KTH Royal Institute of Technology, AlbaNova University Centre, 106 91 Stockholm, Sweden
| | - Francisco Vilaplana
- Division of Glycoscience, School of Biotechnology, KTH Royal Institute of Technology, AlbaNova University Centre, 106 91 Stockholm, Sweden
- Wallenberg Wood Science Centre, Royal Institute of Technology (KTH), 100 44 Stockholm, Sweden
| | - Harry Brumer
- Division of Glycoscience, School of Biotechnology, KTH Royal Institute of Technology, AlbaNova University Centre, 106 91 Stockholm, Sweden
- Michael Smith Laboratories and Department of Chemistry, University of British Columbia, 2185 East Mall, Vancouver, V6T 1Z4 Canada
| | - Henrik Aspeborg
- Division of Glycoscience, School of Biotechnology, KTH Royal Institute of Technology, AlbaNova University Centre, 106 91 Stockholm, Sweden
- Division of Industrial Biotechnology, School of Biotechnology, KTH Royal Institute of Technology, AlbaNova University Centre, 106 91 Stockholm, Sweden
| |
Collapse
|
34
|
Improving the specific activity of β-mannanase from Aspergillus niger BK01 by structure-based rational design. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2014; 1844:663-9. [DOI: 10.1016/j.bbapap.2014.01.011] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2013] [Revised: 12/24/2013] [Accepted: 01/22/2014] [Indexed: 11/20/2022]
|
35
|
Knoch E, Dilokpimol A, Tryfona T, Poulsen CP, Xiong G, Harholt J, Petersen BL, Ulvskov P, Hadi MZ, Kotake T, Tsumuraya Y, Pauly M, Dupree P, Geshi N. A β-glucuronosyltransferase from Arabidopsis thaliana involved in biosynthesis of type II arabinogalactan has a role in cell elongation during seedling growth. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2013; 76:1016-29. [PMID: 24128328 DOI: 10.1111/tpj.12353] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2013] [Revised: 09/30/2013] [Accepted: 10/08/2013] [Indexed: 05/18/2023]
Abstract
We have characterized a β-glucuronosyltransferase (AtGlcAT14A) from Arabidopsis thaliana that is involved in the biosynthesis of type II arabinogalactan (AG). This enzyme belongs to the Carbohydrate Active Enzyme database glycosyltransferase family 14 (GT14). The protein was localized to the Golgi apparatus when transiently expressed in Nicotiana benthamiana. The soluble catalytic domain expressed in Pichia pastoris transferred glucuronic acid (GlcA) to β-1,6-galactooligosaccharides with degrees of polymerization (DP) ranging from 3-11, and to β-1,3-galactooligosaccharides of DP5 and 7, indicating that the enzyme is a glucuronosyltransferase that modifies both the β-1,6- and β-1,3-galactan present in type II AG. Two allelic T-DNA insertion mutant lines showed 20-35% enhanced cell elongation during seedling growth compared to wild-type. Analyses of AG isolated from the mutants revealed a reduction of GlcA substitution on Gal-β-1,6-Gal and β-1,3-Gal, indicating an in vivo role of AtGlcAT14A in synthesis of those structures in type II AG. Moreover, a relative increase in the levels of 3-, 6- and 3,6-linked galactose (Gal) and reduced levels of 3-, 2- and 2,5-linked arabinose (Ara) were seen, suggesting that the mutation in AtGlcAT14A results in a relative increase of the longer and branched β-1,3- and β-1,6-galactans. This increase of galactosylation in the mutants is most likely caused by increased availability of the O6 position of Gal, which is a shared acceptor site for AtGlcAT14A and galactosyltransferases in synthesis of type II AG, and thus addition of GlcA may terminate Gal chain extension. We discuss a role for the glucuronosyltransferase in the biosynthesis of type II AG, with a biological role during seedling growth.
Collapse
Affiliation(s)
- Eva Knoch
- Department of Plant and Environmental Sciences, Faculty of Science, University of Copenhagen, Thorvaldsensvej 40, Frederiksberg C, 1871, Denmark
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Ladevèze S, Tarquis L, Cecchini DA, Bercovici J, André I, Topham CM, Morel S, Laville E, Monsan P, Lombard V, Henrissat B, Potocki-Véronèse G. Role of glycoside phosphorylases in mannose foraging by human gut bacteria. J Biol Chem 2013; 288:32370-32383. [PMID: 24043624 DOI: 10.1074/jbc.m113.483628] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
To metabolize both dietary fiber constituent carbohydrates and host glycans lining the intestinal epithelium, gut bacteria produce a wide range of carbohydrate-active enzymes, of which glycoside hydrolases are the main components. In this study, we describe the ability of phosphorylases to participate in the breakdown of human N-glycans, from an analysis of the substrate specificity of UhgbMP, a mannoside phosphorylase of the GH130 protein family discovered by functional metagenomics. UhgbMP is found to phosphorolyze β-D-Manp-1,4-β-D-GlcpNAc-1,4-D-GlcpNAc and is also a highly efficient enzyme to catalyze the synthesis of this precious N-glycan core oligosaccharide by reverse phosphorolysis. Analysis of sequence conservation within family GH130, mapped on a three-dimensional model of UhgbMP and supported by site-directed mutagenesis results, revealed two GH130 subfamilies and allowed the identification of key residues responsible for catalysis and substrate specificity. The analysis of the genomic context of 65 known GH130 sequences belonging to human gut bacteria indicates that the enzymes of the GH130_1 subfamily would be involved in mannan catabolism, whereas the enzymes belonging to the GH130_2 subfamily would rather work in synergy with glycoside hydrolases of the GH92 and GH18 families in the breakdown of N-glycans. The use of GH130 inhibitors as therapeutic agents or functional foods could thus be considered as an innovative strategy to inhibit N-glycan degradation, with the ultimate goal of protecting, or restoring, the epithelial barrier.
Collapse
Affiliation(s)
- Simon Ladevèze
- From the Institut National des Sciences Appliquées, Université Paul Sabatier, Institut National Polytechnique, Laboratoire d'Ingénierie des Systèmes Biologiques et des Procédés, Université de Toulouse, 135 Avenue de Rangueil, F-31077 Toulouse,; the CNRS, UMR5504, F-31400 Toulouse,; the Institut National de Recherche Agronomique, UMR792 Ingénierie des Systèmes Biologiques et des Procédés, F-31400 Toulouse
| | - Laurence Tarquis
- From the Institut National des Sciences Appliquées, Université Paul Sabatier, Institut National Polytechnique, Laboratoire d'Ingénierie des Systèmes Biologiques et des Procédés, Université de Toulouse, 135 Avenue de Rangueil, F-31077 Toulouse,; the CNRS, UMR5504, F-31400 Toulouse,; the Institut National de Recherche Agronomique, UMR792 Ingénierie des Systèmes Biologiques et des Procédés, F-31400 Toulouse
| | - Davide A Cecchini
- From the Institut National des Sciences Appliquées, Université Paul Sabatier, Institut National Polytechnique, Laboratoire d'Ingénierie des Systèmes Biologiques et des Procédés, Université de Toulouse, 135 Avenue de Rangueil, F-31077 Toulouse,; the CNRS, UMR5504, F-31400 Toulouse,; the Institut National de Recherche Agronomique, UMR792 Ingénierie des Systèmes Biologiques et des Procédés, F-31400 Toulouse
| | - Juliette Bercovici
- From the Institut National des Sciences Appliquées, Université Paul Sabatier, Institut National Polytechnique, Laboratoire d'Ingénierie des Systèmes Biologiques et des Procédés, Université de Toulouse, 135 Avenue de Rangueil, F-31077 Toulouse,; the CNRS, UMR5504, F-31400 Toulouse,; the Institut National de Recherche Agronomique, UMR792 Ingénierie des Systèmes Biologiques et des Procédés, F-31400 Toulouse
| | - Isabelle André
- From the Institut National des Sciences Appliquées, Université Paul Sabatier, Institut National Polytechnique, Laboratoire d'Ingénierie des Systèmes Biologiques et des Procédés, Université de Toulouse, 135 Avenue de Rangueil, F-31077 Toulouse,; the CNRS, UMR5504, F-31400 Toulouse,; the Institut National de Recherche Agronomique, UMR792 Ingénierie des Systèmes Biologiques et des Procédés, F-31400 Toulouse
| | - Christopher M Topham
- From the Institut National des Sciences Appliquées, Université Paul Sabatier, Institut National Polytechnique, Laboratoire d'Ingénierie des Systèmes Biologiques et des Procédés, Université de Toulouse, 135 Avenue de Rangueil, F-31077 Toulouse,; the CNRS, UMR5504, F-31400 Toulouse,; the Institut National de Recherche Agronomique, UMR792 Ingénierie des Systèmes Biologiques et des Procédés, F-31400 Toulouse
| | - Sandrine Morel
- From the Institut National des Sciences Appliquées, Université Paul Sabatier, Institut National Polytechnique, Laboratoire d'Ingénierie des Systèmes Biologiques et des Procédés, Université de Toulouse, 135 Avenue de Rangueil, F-31077 Toulouse,; the CNRS, UMR5504, F-31400 Toulouse,; the Institut National de Recherche Agronomique, UMR792 Ingénierie des Systèmes Biologiques et des Procédés, F-31400 Toulouse
| | - Elisabeth Laville
- From the Institut National des Sciences Appliquées, Université Paul Sabatier, Institut National Polytechnique, Laboratoire d'Ingénierie des Systèmes Biologiques et des Procédés, Université de Toulouse, 135 Avenue de Rangueil, F-31077 Toulouse,; the CNRS, UMR5504, F-31400 Toulouse,; the Institut National de Recherche Agronomique, UMR792 Ingénierie des Systèmes Biologiques et des Procédés, F-31400 Toulouse
| | - Pierre Monsan
- From the Institut National des Sciences Appliquées, Université Paul Sabatier, Institut National Polytechnique, Laboratoire d'Ingénierie des Systèmes Biologiques et des Procédés, Université de Toulouse, 135 Avenue de Rangueil, F-31077 Toulouse,; the CNRS, UMR5504, F-31400 Toulouse,; the Institut National de Recherche Agronomique, UMR792 Ingénierie des Systèmes Biologiques et des Procédés, F-31400 Toulouse
| | - Vincent Lombard
- the Architecture et Fonction des Macromolécules Biologiques, Aix-Marseille Université, CNRS UMR 7257, 163 Avenue de Luminy, F-13288 Marseille, France
| | - Bernard Henrissat
- the Architecture et Fonction des Macromolécules Biologiques, Aix-Marseille Université, CNRS UMR 7257, 163 Avenue de Luminy, F-13288 Marseille, France
| | - Gabrielle Potocki-Véronèse
- From the Institut National des Sciences Appliquées, Université Paul Sabatier, Institut National Polytechnique, Laboratoire d'Ingénierie des Systèmes Biologiques et des Procédés, Université de Toulouse, 135 Avenue de Rangueil, F-31077 Toulouse,; the CNRS, UMR5504, F-31400 Toulouse,; the Institut National de Recherche Agronomique, UMR792 Ingénierie des Systèmes Biologiques et des Procédés, F-31400 Toulouse.
| |
Collapse
|
37
|
Couturier M, Roussel A, Rosengren A, Leone P, Stålbrand H, Berrin JG. Structural and biochemical analyses of glycoside hydrolase families 5 and 26 β-(1,4)-mannanases from Podospora anserina reveal differences upon manno-oligosaccharide catalysis. J Biol Chem 2013; 288:14624-14635. [PMID: 23558681 DOI: 10.1074/jbc.m113.459438] [Citation(s) in RCA: 73] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The microbial deconstruction of the plant cell wall is a key biological process that is of increasing importance with the development of a sustainable biofuel industry. The glycoside hydrolase families GH5 (PaMan5A) and GH26 (PaMan26A) endo-β-1,4-mannanases from the coprophilic ascomycete Podospora anserina contribute to the enzymatic degradation of lignocellulosic biomass. In this study, P. anserina mannanases were further subjected to detailed comparative analysis of their substrate specificities, active site organization, and transglycosylation capacity. Although PaMan5A displays a classical mode of action, PaMan26A revealed an atypical hydrolysis pattern with the release of mannotetraose and mannose from mannopentaose resulting from a predominant binding mode involving the -4 subsite. The crystal structures of PaMan5A and PaMan26A were solved at 1.4 and 2.85 Å resolution, respectively. Analysis of the PaMan26A structure supported strong interaction with substrate at the -4 subsite mediated by two aromatic residues Trp-244 and Trp-245. The PaMan26A structure appended to its family 35 carbohydrate binding module revealed a short and proline-rich rigid linker that anchored together the catalytic and the binding modules.
Collapse
Affiliation(s)
- Marie Couturier
- INRA, UMR1163 BCF, Aix Marseille Université, Polytech Marseille, F-13288 Marseille, France
| | - Alain Roussel
- Architecture et Fonction des Macromolécules Biologiques, Aix Marseille Université, CNRS UMR7257, F-13288 Marseille, France
| | - Anna Rosengren
- Department of Biochemistry and Structural Biology, Lund University, P. O. Box 124, S-221 00, Lund, Sweden
| | - Philippe Leone
- Architecture et Fonction des Macromolécules Biologiques, Aix Marseille Université, CNRS UMR7257, F-13288 Marseille, France
| | - Henrik Stålbrand
- Department of Biochemistry and Structural Biology, Lund University, P. O. Box 124, S-221 00, Lund, Sweden
| | - Jean-Guy Berrin
- INRA, UMR1163 BCF, Aix Marseille Université, Polytech Marseille, F-13288 Marseille, France.
| |
Collapse
|
38
|
Kumagai Y, Kawakami K, Mukaihara T, Kimura M, Hatanaka T. The structural analysis and the role of calcium binding site for thermal stability in mannanase. Biochimie 2012; 94:2783-90. [DOI: 10.1016/j.biochi.2012.09.012] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2012] [Accepted: 09/13/2012] [Indexed: 10/27/2022]
|
39
|
Gonçalves AMD, Silva CS, Madeira TI, Coelho R, de Sanctis D, San Romão MV, Bento I. Endo-β-D-1,4-mannanase from Chrysonilia sitophila displays a novel loop arrangement for substrate selectivity. ACTA CRYSTALLOGRAPHICA SECTION D: BIOLOGICAL CRYSTALLOGRAPHY 2012; 68:1468-78. [PMID: 23090396 DOI: 10.1107/s0907444912034646] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2012] [Accepted: 08/03/2012] [Indexed: 12/19/2022]
Abstract
The crystal structure of wild-type endo-β-D-1,4-mannanase (EC 3.2.1.78) from the ascomycete Chrysonilia sitophila (CsMan5) has been solved at 1.40 Å resolution. The enzyme isolated directly from the source shows mixed activity as both an endo-glucanase and an endo-mannanase. CsMan5 adopts the (β/α)(8)-barrel fold that is well conserved within the GH5 family and has highest sequence and structural homology to the GH5 endo-mannanases. Superimposition with proteins of this family shows a unique structural arrangement of three surface loops of CsMan5 that stretch over the active centre, promoting an altered topography of the binding cleft. The most relevant feature results from the repositioning of a long loop at the extremity of the binding cleft, resulting in a shortened glycone-binding region with two subsites. The other two extended loops flanking the binding groove produce a narrower cleft compared with the wide architecture observed in GH5 homologues. Two aglycone subsites (+1 and +2) are identified and a nonconserved tryptophan (Trp271) at the +1 subsite may offer steric hindrance. Taken together, these findings suggest that the discrimination of mannan substrates is achieved through modified loop length and structure.
Collapse
Affiliation(s)
- Ana Maria D Gonçalves
- Macromolecular Crystallography Unit, Instituto de Tecnologia Química e Biológica, Universidade Nova de Lisboa, Avenida da República, 2780-157 Oeiras, Portugal
| | | | | | | | | | | | | |
Collapse
|
40
|
Aspeborg H, Coutinho PM, Wang Y, Brumer H, Henrissat B. Evolution, substrate specificity and subfamily classification of glycoside hydrolase family 5 (GH5). BMC Evol Biol 2012; 12:186. [PMID: 22992189 PMCID: PMC3526467 DOI: 10.1186/1471-2148-12-186] [Citation(s) in RCA: 355] [Impact Index Per Article: 27.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2012] [Accepted: 09/13/2012] [Indexed: 12/02/2022] Open
Abstract
Background The large Glycoside Hydrolase family 5 (GH5) groups together a wide range of enzymes acting on β-linked oligo- and polysaccharides, and glycoconjugates from a large spectrum of organisms. The long and complex evolution of this family of enzymes and its broad sequence diversity limits functional prediction. With the objective of improving the differentiation of enzyme specificities in a knowledge-based context, and to obtain new evolutionary insights, we present here a new, robust subfamily classification of family GH5. Results About 80% of the current sequences were assigned into 51 subfamilies in a global analysis of all publicly available GH5 sequences and associated biochemical data. Examination of subfamilies with catalytically-active members revealed that one third are monospecific (containing a single enzyme activity), although new functions may be discovered with biochemical characterization in the future. Furthermore, twenty subfamilies presently have no characterization whatsoever and many others have only limited structural and biochemical data. Mapping of functional knowledge onto the GH5 phylogenetic tree revealed that the sequence space of this historical and industrially important family is far from well dispersed, highlighting targets in need of further study. The analysis also uncovered a number of GH5 proteins which have lost their catalytic machinery, indicating evolution towards novel functions. Conclusion Overall, the subfamily division of GH5 provides an actively curated resource for large-scale protein sequence annotation for glycogenomics; the subfamily assignments are openly accessible via the Carbohydrate-Active Enzyme database at
http://www.cazy.org/GH5.html.
Collapse
Affiliation(s)
- Henrik Aspeborg
- Division of Glycoscience, School of Biotechnology, KTH - Royal Institute of Technology, AlbaNova University Center, Stockholm SE-106 91, Sweden
| | | | | | | | | |
Collapse
|