1
|
Uehara Y, Matsumoto A, Nakazawa T, Fukuta A, Ando K, Uchiumi T, Oka N, Ito K. Binding mode between peptidyl-tRNA hydrolase and the peptidyl-A76 moiety of the substrate. J Biol Chem 2025; 301:108385. [PMID: 40049414 PMCID: PMC11994314 DOI: 10.1016/j.jbc.2025.108385] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2024] [Revised: 01/26/2025] [Accepted: 03/01/2025] [Indexed: 04/01/2025] Open
Abstract
Peptidyl-tRNA hydrolase (Pth) hydrolyzes the ester bond between the peptide and the tRNA of peptidyl-tRNA molecules, which are the products of aborted translation, to prevent cell death by recycling tRNA. Numerous studies have attempted to elucidate the substrate recognition mechanism of Pth. However, the binding mode of the peptidyl-A76 (3'-terminal adenosine of tRNA) moiety of the substrate to Pth, especially the A76 moiety, remains unclear. Here, we present the crystal structure of Thermus thermophilus Pth (TtPth) in complex with adenosine 5'-monophosphate (AMP), a mimic of A76. In addition, we show the crystal structure of TtPth in which the active site cleft interacts with the C-terminal three amino acid residues of a crystallographically related neighboring TtPth molecule. Superimposition of these two crystal structures reveals that the C-terminal carboxyl group of the neighboring TtPth molecule and the 3'-hydroxyl group of AMP are located in positions favorable for ester bond formation, and we present a TtPth⋅peptidyl-A76 complex model. The complex model agrees with many previous NMR and kinetic studies, and our site-directed mutagenesis studies support its validity. Based on these facts, we conclude that the complex model properly represents the interaction between Pth and the substrate in the reaction. Furthermore, structural comparisons suggest that the substrate recognition mode is conserved among bacterial Pths. This study provides insights into the molecular mechanism of the reaction and useful information to design new drugs targeting Pth.
Collapse
Affiliation(s)
- Yuji Uehara
- Department of Biology, Faculty of Science, Niigata University, Niigata, Japan
| | - Ami Matsumoto
- Department of Biology, Faculty of Science, Niigata University, Niigata, Japan
| | - Tomonori Nakazawa
- Department of Biology, Faculty of Science, Niigata University, Niigata, Japan
| | - Akane Fukuta
- Department of Chemistry and Biomolecular Science, Faculty of Engineering, Gifu University, Gifu, Japan
| | - Kaori Ando
- Department of Chemistry and Biomolecular Science, Faculty of Engineering, Gifu University, Gifu, Japan
| | - Toshio Uchiumi
- The Institute of Science and Technology, Niigata University, Niigata, Japan
| | - Natsuhisa Oka
- Department of Chemistry and Biomolecular Science, Faculty of Engineering, Gifu University, Gifu, Japan; Institute for Glyco-core Research (iGCORE), Gifu University, Gifu, Japan; Center for One Medicine Innovative Translational Research (COMIT), Gifu University, Gifu, Japan
| | - Kosuke Ito
- Department of Biology, Faculty of Science, Niigata University, Niigata, Japan.
| |
Collapse
|
2
|
Yu T, Li X, Dong W, Zhou Q, Li Q, Du Z, Zeng F. Conserved GTPase OLA1 promotes efficient translation on D/E-rich mRNA. Nat Commun 2025; 16:1549. [PMID: 39934121 PMCID: PMC11814078 DOI: 10.1038/s41467-025-56797-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Accepted: 01/30/2025] [Indexed: 02/13/2025] Open
Abstract
The TRAFAC (translation factors) GTPase OLA1 plays a critical role in various stress responses and is implicated in the regulation of tumor progression. It is conserved from bacteria to eukaryotes and regulates the translation through binding to the ribosome. Here, we report the cryo-electron microscopy structure of its Escherichia coli homolog, YchF, with the 50S subunit. In this structure, YchF is positioned at the side of the 50S subunit by engaging with uL14, bL19, and rRNA helix H62 through its helical and ATPase domains. We further demonstrate that the helical domain is essential for OLA1/YchF to function. A comprehensive analysis of the structure and Ribo-seq data points out that OLA1/YchF promotes the splitting of ribosomes into subunits on D/E-rich mRNA. Our findings provide crucial structural insights into the molecular mechanism of OLA1/YchF-associated translation-stalling regulation, which maintains the translation of genes involved in stress response and tumor progression.
Collapse
Affiliation(s)
- Ting Yu
- Department of Systems Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen, Guangdong, PR China
- Institute for Biological Electron Microscopy, Southern University of Science and Technology, Shenzhen, Guangdong, PR China
| | - Xin Li
- Department of Systems Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen, Guangdong, PR China
- Institute for Biological Electron Microscopy, Southern University of Science and Technology, Shenzhen, Guangdong, PR China
| | - Wanlin Dong
- Department of Systems Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen, Guangdong, PR China
- Institute for Biological Electron Microscopy, Southern University of Science and Technology, Shenzhen, Guangdong, PR China
| | - Qixin Zhou
- Department of Systems Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen, Guangdong, PR China
- Institute for Biological Electron Microscopy, Southern University of Science and Technology, Shenzhen, Guangdong, PR China
| | - Qingrong Li
- Department of Systems Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen, Guangdong, PR China
- Institute for Biological Electron Microscopy, Southern University of Science and Technology, Shenzhen, Guangdong, PR China
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, CA, USA
| | - Zisuo Du
- Department of Systems Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen, Guangdong, PR China
- Institute for Biological Electron Microscopy, Southern University of Science and Technology, Shenzhen, Guangdong, PR China
| | - Fuxing Zeng
- Department of Systems Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen, Guangdong, PR China.
- Institute for Biological Electron Microscopy, Southern University of Science and Technology, Shenzhen, Guangdong, PR China.
| |
Collapse
|
3
|
Rahman ASMZ, Syroegin EA, Novomisky Nechcoff J, Devarajan A, Polikanov YS, Cardona ST. Rationally designed pooled CRISPRi-seq uncovers an inhibitor of bacterial peptidyl-tRNA hydrolase. Cell Rep 2024; 43:114967. [PMID: 39541213 DOI: 10.1016/j.celrep.2024.114967] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 10/16/2024] [Accepted: 10/23/2024] [Indexed: 11/16/2024] Open
Abstract
Bacterial mutant libraries with downregulated antibiotic targets are useful tools for elucidating the mechanisms of action of antibacterial compounds, a pivotal step in antibiotic discovery. However, achieving genomic coverage of antibacterial targets poses a challenge due to the uneven proliferation of knockdown mutants during pooled growth, leading to the unintended loss of important targets. To overcome this issue, we constructed an arrayed essential gene mutant library (EGML) in the antibiotic-resistant bacterium Burkholderia cenocepacia using CRISPR interference (CRISPRi). By modeling depletion levels and adjusting knockdown mutant inocula, we rationally designed and optimized a CRISPR interference-mediated pooled library of essential genes (CIMPLE) approaching coverage of the bacterial essential genome with mutant sensitization. We exposed CIMPLE to an uncharacterized bacterial growth inhibitor structurally different from antibiotics and discovered that it inhibits the essential peptidyl-tRNA hydrolase. Overall, CIMPLE leverages the advantages of arrayed and pooled CRISPRi libraries to uncover unexplored targets for antibiotic action.
Collapse
Affiliation(s)
- A S M Zisanur Rahman
- Department of Microbiology, University of Manitoba, Winnipeg, MB R3T 2N2, Canada
| | - Egor A Syroegin
- Department of Biological Sciences, University of Illinois at Chicago, Chicago, IL 60607, USA
| | | | - Archit Devarajan
- Department of Microbiology, University of Manitoba, Winnipeg, MB R3T 2N2, Canada
| | - Yury S Polikanov
- Department of Biological Sciences, University of Illinois at Chicago, Chicago, IL 60607, USA; Center for Biomolecular Sciences, University of Illinois at Chicago, Chicago, IL 60607, USA; Department of Pharmaceutical Sciences, University of Illinois at Chicago, Chicago, IL 60607, USA
| | - Silvia T Cardona
- Department of Microbiology, University of Manitoba, Winnipeg, MB R3T 2N2, Canada; Department of Medical Microbiology and Infectious Diseases, University of Manitoba, Winnipeg, MB R3E 0J9, Canada.
| |
Collapse
|
4
|
Sharkia R, Vuillaume ML, Jain S, Mahajnah M, Stoeva R, Guichet A, Colin E, Champ J, Derive N, Chefdor A, Zalan A. An Update of Phenotypic-Genotypic IMNEPD Cases and a Bioinformatics Analysis of the New PTRH2 Gene Variants. Genes (Basel) 2024; 15:1508. [PMID: 39766776 PMCID: PMC11675358 DOI: 10.3390/genes15121508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2024] [Revised: 11/16/2024] [Accepted: 11/19/2024] [Indexed: 01/11/2025] Open
Abstract
BACKGROUND/OBJECTIVES Biallelic mutations in the PTRH2 gene are associated with a rare genetic disease known as infantile-onset multisystem neurologic, endocrine, and pancreatic disease (IMNEPD). In this study, we describe a new case carrying a previously identified mutation, provide an updated analysis of the relative frequencies of the clinical features across all published cases (including the three latest studies), and perform a bioinformatics analysis of the newly identified PTRH2 protein variants from a structural perspective. METHODS Clinical examination of the patients was carried out, and genetic testing was performed using a genome sequencing strategy. A bioinformatics analysis was carried out for the newly reported mutations using PYMOL that was utilized to view the structure and analyze the mutations. Additionally, the ThermoMPNN webserver was employed to check the effect of point mutations on the overall stability of the protein. RESULTS Our findings indicate that motor delay, neuropathy, intellectual disability, distal weakness, hearing impairment, and ataxia are the most common symptoms, while the other clinical features fall into two frequency categories: moderately common ones and the least common ones. The bioinformatics analysis revealed that the Q85 residue is highly conserved, suggesting that mutations at this position could disrupt key signaling pathways or cellular functions. Indeed, the Q85R mutation was shown to significantly impair the stability and functionality of the protein. CONCLUSIONS The clinical presentation of IMNEPD remains highly variable in terms of both severity and progression. Mutations at the Q85 residue have been identified in nearly 50% of reported cases, highlighting this position as a potential mutational hotspot in the PTRH2 protein.
Collapse
Affiliation(s)
- Rajech Sharkia
- Unit of Human Biology and Genetics, The Triangle Regional Research and Development Center, Kafr Qari 3007500, Israel;
- Unit of Natural Sciences, Beit-Berl Academic College, Beit-Berl 4490500, Israel
| | - Marie-Laure Vuillaume
- Genetics Department, Tours University Hospital, 37044 Tours, France
- INSERM, Imaging Brain & Neuropsychiatry iBraiN U12523, University of Tours, 37032 Tours, France
| | - Sahil Jain
- Bioinformatics Centre, Dr. D.Y. Patil Biotechnology and Bioinformatics Institute, Dr. D.Y. Patil Vidyapeeth, Pune 411033, India
| | - Muhammad Mahajnah
- The Ruth and Bruce Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa 3109600, Israel
- Child Neurology and Development Center, Hillel Yaffe Medical Center, Hadera 3810000, Israel
| | - Radka Stoeva
- Department of Medical Genetics, Le Mans Hospital, 72037 Le Mans, France
| | - Agnès Guichet
- Genetics Department CHU 4 Rue Larrey, 49933 Angers, France
- Miotvasc, UMR CNRS 6015, INSERM U1083, Angers University, 49933 Angers, France
| | - Estelle Colin
- Genetics Department CHU 4 Rue Larrey, 49933 Angers, France
- Miotvasc, UMR CNRS 6015, INSERM U1083, Angers University, 49933 Angers, France
| | | | | | - Arnaud Chefdor
- Department of Pediatrics, Le Mans Hospital, 72037 Le Mans, France
| | - Abdelnaser Zalan
- Unit of Human Biology and Genetics, The Triangle Regional Research and Development Center, Kafr Qari 3007500, Israel;
| |
Collapse
|
5
|
Pandey R, Kaul G, Akhir A, Saxena D, Shukla M, Mundra S, Zohib M, Singh S, Pal RK, Tripathi S, Jain A, Chopra S, Arora A. Characterization of structure of peptidyl-tRNA hydrolase from Enterococcus faecium and its inhibition by a pyrrolinone compound. Int J Biol Macromol 2024; 275:133445. [PMID: 38945334 DOI: 10.1016/j.ijbiomac.2024.133445] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 06/15/2024] [Accepted: 06/24/2024] [Indexed: 07/02/2024]
Abstract
In bacteria, peptidyl-tRNA hydrolase (Pth, E.C. 3.1.1.29) is a ubiquitous and essential enzyme for preventing the accumulation of peptidyl-tRNA and sequestration of tRNA. Pth is an esterase that cleaves the ester bond between peptide and tRNA. Here, we present the crystal structure of Pth from Enterococcus faecium (EfPth) at a resolution of 1.92 Å. The two molecules in the asymmetric unit differ in the orientation of sidechain of N66, a conserved residue of the catalytic site. Enzymatic hydrolysis of substrate α-N-BODIPY-lysyl-tRNALys (BLT) by EfPth was characterized by Michaelis-Menten parameters KM 163.5 nM and Vmax 1.9 nM/s. Compounds having pyrrolinone scaffold were tested for inhibition of Pth and one compound, 1040-C, was found to have IC50 of 180 nM. Antimicrobial activity profiling was done for 1040-C. It exhibited equipotent activity against drug-susceptible and resistant S. aureus (MRSA and VRSA) and Enterococcus (VSE and VRE) with MICs 2-8 μg/mL. 1040-C synergized with gentamicin and the combination was effective against the gentamicin resistant S. aureus strain NRS-119. 1040-C was found to reduce biofilm mass of S. aureus to an extent similar to Vancomycin. In a murine model of infection, 1040-C was able to reduce bacterial load to an extent comparable to Vancomycin.
Collapse
Affiliation(s)
- Roumya Pandey
- Biochemistry and Structural Biology Division, CSIR - Central Drug Research Institute, Lucknow 226031, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Grace Kaul
- Molecular Microbiology and Immunology Division, CSIR - Central Drug Research Institute, Lucknow 226031, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Abdul Akhir
- Molecular Microbiology and Immunology Division, CSIR - Central Drug Research Institute, Lucknow 226031, India
| | - Deepanshi Saxena
- Molecular Microbiology and Immunology Division, CSIR - Central Drug Research Institute, Lucknow 226031, India
| | - Manjulika Shukla
- Molecular Microbiology and Immunology Division, CSIR - Central Drug Research Institute, Lucknow 226031, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Surbhi Mundra
- Biochemistry and Structural Biology Division, CSIR - Central Drug Research Institute, Lucknow 226031, India; Department of Science and Technology, New Delhi 110016, India
| | - Muhammad Zohib
- Biochemistry and Structural Biology Division, CSIR - Central Drug Research Institute, Lucknow 226031, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Sneha Singh
- Biochemistry and Structural Biology Division, CSIR - Central Drug Research Institute, Lucknow 226031, India
| | - Ravi Kant Pal
- X-ray Crystallography Facility, National Institute of Immunology, New Delhi 110067, India
| | - Sarita Tripathi
- Biochemistry and Structural Biology Division, CSIR - Central Drug Research Institute, Lucknow 226031, India
| | - Anupam Jain
- Biochemistry and Structural Biology Division, CSIR - Central Drug Research Institute, Lucknow 226031, India
| | - Sidharth Chopra
- Molecular Microbiology and Immunology Division, CSIR - Central Drug Research Institute, Lucknow 226031, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India.
| | - Ashish Arora
- Biochemistry and Structural Biology Division, CSIR - Central Drug Research Institute, Lucknow 226031, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India.
| |
Collapse
|
6
|
Rahman ASMZ, Syroegin EA, Novomisky Nechcoff J, Devarajan A, Polikanov YS, Cardona ST. Rationally Designed Pooled CRISPRi-Seq Uncovers an Inhibitor of Bacterial Peptidyl-tRNA Hydrolase. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.02.592284. [PMID: 38979387 PMCID: PMC11230203 DOI: 10.1101/2024.05.02.592284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/10/2024]
Abstract
Pooled knockdown libraries of essential genes are useful tools for elucidating the mechanisms of action of antibacterial compounds, a pivotal step in antibiotic discovery. However, achieving genomic coverage of antibacterial targets poses a challenge due to the uneven proliferation of knockdown mutants during pooled growth, leading to the unintended loss of important targets. To overcome this issue, we describe the construction of CIMPLE ( C RISPR i - m ediated p ooled library of e ssential genes), a rationally designed pooled knockdown library built in a model antibiotic-resistant bacteria, Burkholderia cenocepacia. By analyzing growth parameters of clonal knockdown populations of an arrayed CRISPRi library, we predicted strain depletion levels during pooled growth and adjusted mutant relative abundance, approaching genomic coverage of antibacterial targets during antibiotic exposure. We first benchmarked CIMPLE by chemical-genetic profiling of known antibacterials, then applied it to an uncharacterized bacterial growth inhibitor from a new class. CRISPRi-Seq with CIMPLE, followed by biochemical validation, revealed that the novel compound targets the peptidyl-tRNA hydrolase (Pth). Overall, CIMPLE leverages the advantages of arrayed and pooled CRISPRi libraries to uncover unexplored targets for antibiotic action. Summary Bacterial mutant libraries in which antibiotic targets are downregulated are useful tools to functionally characterize novel antimicrobials. These libraries are used for chemical-genetic profiling as target-compound interactions can be inferred by differential fitness of mutants during pooled growth. Mutants that are functionally related to the antimicrobial mode of action are usually depleted from the pool upon exposure to the drug. Although powerful, this method can fail when the unequal proliferation of mutant strains before exposure causes mutants to fall below the detection level in the library pool. To address this issue, we constructed an arrayed essential gene mutant library (EGML) in the antibiotic-resistant bacterium Burkholderia cenocepacia using CRISPR interference (CRISPRi) and analyzed the growth parameters of individual mutant strains. We then modelled depletion levels during pooled growth and used the model to rationally design an optimized CRISPR interference-mediated pooled library of essential genes (CIMPLE). By adjusting the initial inoculum of the knockdown mutants, we achieved coverage of the bacterial essential genome with mutant sensitization. We exposed CIMPLE to a recently discovered antimicrobial of a novel class and discovered it inhibits the peptidyl-tRNA hydrolase, an essential bacterial enzyme. In summary, we demonstrate the utility of CIMPLE and CRISPRi-Seq to uncover the mechanism of action of novel antimicrobial compounds. Graphical abstract
Collapse
|
7
|
Mundra S, Kabra A. Unveiling the Druggable Landscape of Bacterial Peptidyl tRNA Hydrolase: Insights into Structure, Function, and Therapeutic Potential. Biomolecules 2024; 14:668. [PMID: 38927071 PMCID: PMC11202043 DOI: 10.3390/biom14060668] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 06/02/2024] [Accepted: 06/06/2024] [Indexed: 06/28/2024] Open
Abstract
Bacterial peptidyl tRNA hydrolase (Pth) or Pth1 emerges as a pivotal enzyme involved in the maintenance of cellular homeostasis by catalyzing the release of peptidyl moieties from peptidyl-tRNA molecules and the maintenance of a free pool of specific tRNAs. This enzyme is vital for bacterial cells and an emerging drug target for various bacterial infections. Understanding the enzymatic mechanisms and structural intricacies of bacterial Pth is pivotal in designing novel therapeutics to combat antibiotic resistance. This review provides a comprehensive analysis of the multifaceted roles of Pth in bacterial physiology, shedding light on its significance as a potential drug target. This article delves into the diverse functions of Pth, encompassing its involvement in ribosome rescue, the maintenance of a free tRNA pool in bacterial systems, the regulation of translation fidelity, and stress response pathways within bacterial systems. Moreover, it also explores the druggability of bacterial Pth, emphasizing its promise as a target for antibacterial agents and highlighting the challenges associated with developing specific inhibitors against this enzyme. Structural elucidation represents a cornerstone in unraveling the catalytic mechanisms and substrate recognition of Pth. This review encapsulates the current structural insights of Pth garnered through various biophysical techniques, such as X-ray crystallography and NMR spectroscopy, providing a detailed understanding of the enzyme's architecture and conformational dynamics. Additionally, biophysical aspects, including its interaction with ligands, inhibitors, and substrates, are discussed, elucidating the molecular basis of bacterial Pth's function and its potential use in drug design strategies. Through this review article, we aim to put together all the available information on bacterial Pth and emphasize its potential in advancing innovative therapeutic interventions and combating bacterial infections.
Collapse
Affiliation(s)
- Surbhi Mundra
- Department of Biochemistry and Biophysics, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA;
| | - Ashish Kabra
- Department of Molecular Physiology and Biological Physics, University of Virginia, Charlottesville, VA 22903, USA
| |
Collapse
|
8
|
Park S, Lee S, Kim T, Choi A, Lee S, Kim P. Development strategy of non-GMO organism for increased hemoproteins in Corynebacterium glutamicum: a growth-acceleration-targeted evolution. Bioprocess Biosyst Eng 2024; 47:549-556. [PMID: 38499686 PMCID: PMC11003892 DOI: 10.1007/s00449-024-02986-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Accepted: 02/13/2024] [Indexed: 03/20/2024]
Abstract
Heme, found in hemoproteins, is a valuable source of iron, an essential mineral. The need for an alternative hemoprotein source has emerged due to the inherent risks of large-scale livestock farming and animal proteins. Corynebacterium glutamicum, regarded for Qualified Presumption of Safety or Generally Recognized as Safe, can biosynthesize hemoproteins. C. glutamicum single-cell protein (SCP) can be a valuable alternative hemoprotein for supplying heme iron without adversely affecting blood fat levels. We constructed the chemostat culture system to increase hemoprotein content in C. glutamicum SCP. Through adaptive evolution, hemoprotein levels could be naturally increased to address oxidative stress resulting from enhanced growth rate. In addition, we used several specific plasmids containing growth-accelerating genes and the hemA promoter to expedite the evolutionary process. Following chemostat culture for 15 days, the plasmid in selected descendants was cured. The evolved strains showed improved specific growth rates from 0.59 h-1 to 0.62 h-1, 20% enhanced resistance to oxidative stress, and increased heme concentration from 12.95 µg/g-DCW to 14.22-15.24 µg/g-DCW. Notably, the putative peptidyl-tRNA hydrolase-based evolved strain manifested the most significant increase (30%) of hemoproteins. This is the first report presenting the potential of a growth-acceleration-targeted evolution (GATE) strategy for developing non-GMO industrial strains with increased bio-product productivity.
Collapse
Affiliation(s)
- Sehyeon Park
- Research Group of Novel Food Ingredients for Alternative Proteins, The Catholic University of Korea, Bucheon, Gyeonggi, 14662, Republic of Korea
| | - Seungki Lee
- Department of Biotechnology, The Catholic University of Korea, Bucheon, Gyeonggi, 14662, Republic of Korea
| | - Taeyeon Kim
- Research Group of Novel Food Ingredients for Alternative Proteins, The Catholic University of Korea, Bucheon, Gyeonggi, 14662, Republic of Korea
| | - Ahyoung Choi
- Research Group of Novel Food Ingredients for Alternative Proteins, The Catholic University of Korea, Bucheon, Gyeonggi, 14662, Republic of Korea
| | - Soyeon Lee
- Research Group of Novel Food Ingredients for Alternative Proteins, The Catholic University of Korea, Bucheon, Gyeonggi, 14662, Republic of Korea
| | - Pil Kim
- Research Group of Novel Food Ingredients for Alternative Proteins, The Catholic University of Korea, Bucheon, Gyeonggi, 14662, Republic of Korea.
- Department of Biotechnology, The Catholic University of Korea, Bucheon, Gyeonggi, 14662, Republic of Korea.
| |
Collapse
|
9
|
Makarova KS, Zhang C, Wolf YI, Karamycheva S, Whitaker RJ, Koonin EV. Computational analysis of genes with lethal knockout phenotype and prediction of essential genes in archaea. mBio 2024; 15:e0309223. [PMID: 38189270 PMCID: PMC10865827 DOI: 10.1128/mbio.03092-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Accepted: 11/27/2023] [Indexed: 01/09/2024] Open
Abstract
The identification of microbial genes essential for survival as those with lethal knockout phenotype (LKP) is a common strategy for functional interrogation of genomes. However, interpretation of the LKP is complicated because a substantial fraction of the genes with this phenotype remains poorly functionally characterized. Furthermore, many genes can exhibit LKP not because their products perform essential cellular functions but because their knockout activates the toxicity of other genes (conditionally essential genes). We analyzed the sets of LKP genes for two archaea, Methanococcus maripaludis and Sulfolobus islandicus, using a variety of computational approaches aiming to differentiate between essential and conditionally essential genes and to predict at least a general function for as many of the proteins encoded by these genes as possible. This analysis allowed us to predict the functions of several LKP genes including previously uncharacterized subunit of the GINS protein complex with an essential function in genome replication and of the KEOPS complex that is responsible for an essential tRNA modification as well as GRP protease implicated in protein quality control. Additionally, several novel antitoxins (conditionally essential genes) were predicted, and this prediction was experimentally validated by showing that the deletion of these genes together with the adjacent genes apparently encoding the cognate toxins caused no growth defect. We applied principal component analysis based on sequence and comparative genomic features showing that this approach can separate essential genes from conditionally essential ones and used it to predict essential genes in other archaeal genomes.IMPORTANCEOnly a relatively small fraction of the genes in any bacterium or archaeon is essential for survival as demonstrated by the lethal effect of their disruption. The identification of essential genes and their functions is crucial for understanding fundamental cell biology. However, many of the genes with a lethal knockout phenotype remain poorly functionally characterized, and furthermore, many genes can exhibit this phenotype not because their products perform essential cellular functions but because their knockout activates the toxicity of other genes. We applied state-of-the-art computational methods to predict the functions of a number of uncharacterized genes with the lethal knockout phenotype in two archaeal species and developed a computational approach to predict genes involved in essential functions. These findings advance the current understanding of key functionalities of archaeal cells.
Collapse
Affiliation(s)
- Kira S. Makarova
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, Maryland, USA
| | - Changyi Zhang
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
| | - Yuri I. Wolf
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, Maryland, USA
| | - Svetlana Karamycheva
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, Maryland, USA
| | - Rachel J. Whitaker
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
| | - Eugene V. Koonin
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, Maryland, USA
| |
Collapse
|
10
|
Sharkia R, Jain S, Mahajnah M, Habib C, Azem A, Al-Shareef W, Zalan A. PTRH2 Gene Variants: Recent Review of the Phenotypic Features and Their Bioinformatics Analysis. Genes (Basel) 2023; 14:genes14051031. [PMID: 37239392 DOI: 10.3390/genes14051031] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 04/25/2023] [Accepted: 04/28/2023] [Indexed: 05/28/2023] Open
Abstract
Peptidyl-tRNA hydrolase 2 (PTRH2) is an evolutionarily highly conserved mitochondrial protein. The biallelic mutations in the PTRH2 gene have been suggested to cause a rare autosomal recessive disorder characterized by an infantile-onset multisystem neurologic endocrine and pancreatic disease (IMNEPD). Patients with IMNEPD present varying clinical manifestations, including global developmental delay associated with microcephaly, growth retardation, progressive ataxia, distal muscle weakness with ankle contractures, demyelinating sensorimotor neuropathy, sensorineural hearing loss, and abnormalities of thyroid, pancreas, and liver. In the current study, we conducted an extensive literature review with an emphasis on the variable clinical spectrum and genotypes in patients. Additionally, we reported on a new case with a previously documented mutation. A bioinformatics analysis of the various PTRH2 gene variants was also carried out from a structural perspective. It appears that the most common clinical characteristics among all patients include motor delay (92%), neuropathy (90%), distal weakness (86.4%), intellectual disability (84%), hearing impairment (80%), ataxia (79%), and deformity of head and face (~70%). The less common characteristics include hand deformity (64%), cerebellar atrophy/hypoplasia (47%), and pancreatic abnormality (35%), while the least common appear to be diabetes mellitus (~30%), liver abnormality (~22%), and hypothyroidism (16%). Three missense mutations were revealed in the PTRH2 gene, the most common one being Q85P, which was shared by four different Arab communities and was presented in our new case. Moreover, four different nonsense mutations in the PTRH2 gene were detected. It may be concluded that disease severity depends on the PTRH2 gene variant, as most of the clinical features are manifested by nonsense mutations, while only the common features are presented by missense mutations. A bioinformatics analysis of the various PTRH2 gene variants also suggested the mutations to be deleterious, as they seem to disrupt the structural confirmation of the enzyme, leading to loss of stability and functionality.
Collapse
Affiliation(s)
- Rajech Sharkia
- Unit of Human Biology and Genetics, Triangle Regional Research and Development Center, Kfar Qari 30075, Israel
- Unit of Natural Sciences, Beit-Berl Academic College, Beit-Berl 4490500, Israel
| | - Sahil Jain
- Department of Biochemistry and Molecular Biology, Faculty of Life Sciences, Tel Aviv University, Tel Aviv 69978, Israel
| | - Muhammad Mahajnah
- The Ruth and Bruce Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa 31096, Israel
- Child Neurology and Development Center, Hillel Yaffe Medical Center, Hadera 38100, Israel
| | - Clair Habib
- Genetics Institute, Rambam Health Care Campus, Haifa 31096, Israel
| | - Abdussalam Azem
- Department of Biochemistry and Molecular Biology, Faculty of Life Sciences, Tel Aviv University, Tel Aviv 69978, Israel
| | - Wasif Al-Shareef
- Unit of Human Biology and Genetics, Triangle Regional Research and Development Center, Kfar Qari 30075, Israel
| | - Abdelnaser Zalan
- Unit of Human Biology and Genetics, Triangle Regional Research and Development Center, Kfar Qari 30075, Israel
| |
Collapse
|
11
|
Tomasi FG, Schweber JTP, Kimura S, Zhu J, Cleghorn LAT, Davis SH, Green SR, Waldor MK, Rubin EJ. Peptidyl tRNA Hydrolase Is Required for Robust Prolyl-tRNA Turnover in Mycobacterium tuberculosis. mBio 2023; 14:e0346922. [PMID: 36695586 PMCID: PMC9973355 DOI: 10.1128/mbio.03469-22] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Accepted: 12/23/2022] [Indexed: 01/26/2023] Open
Abstract
Enzymes involved in rescuing stalled ribosomes and recycling translation machinery are ubiquitous in bacteria and required for growth. Peptidyl tRNA drop-off is a type of abortive translation that results in the release of a truncated peptide that is still bound to tRNA (peptidyl tRNA) into the cytoplasm. Peptidyl tRNA hydrolase (Pth) recycles the released tRNA by cleaving off the unfinished peptide and is essential in most bacteria. We developed a sequencing-based strategy called copper sulfate-based tRNA sequencing (Cu-tRNAseq) to study the physiological role of Pth in Mycobacterium tuberculosis (Mtb). While most peptidyl tRNA species accumulated in a strain with impaired Pth expression, peptidyl prolyl-tRNA was particularly enriched, suggesting that Pth is required for robust peptidyl prolyl-tRNA turnover. Reducing Pth levels increased Mtb's susceptibility to tRNA synthetase inhibitors that are in development to treat tuberculosis (TB) and rendered this pathogen highly susceptible to macrolides, drugs that are ordinarily ineffective against Mtb. Collectively, our findings reveal the potency of Cu-tRNAseq for profiling peptidyl tRNAs and suggest that targeting Pth would open new therapeutic approaches for TB. IMPORTANCE Peptidyl tRNA hydrolase (Pth) is an enzyme that cuts unfinished peptides off tRNA that has been prematurely released from a stalled ribosome. Pth is essential in nearly all bacteria, including the pathogen Mycobacterium tuberculosis (Mtb), but it has not been clear why. We have used genetic and novel biochemical approaches to show that when Pth levels decline in Mtb, peptidyl tRNA accumulates to such an extent that usable tRNA pools drop. Thus, Pth is needed to maintain normal tRNA levels, most strikingly for prolyl-tRNAs. Many antibiotics act on protein synthesis and could be affected by altering the availability of tRNA. This is certainly true for tRNA synthetase inhibitors, several of which are drug candidates for tuberculosis. We find that their action is potentiated by Pth depletion. Furthermore, Pth depletion results in hypersensitivity to macrolides, drugs that are not active enough under ordinary circumstances to be useful for tuberculosis.
Collapse
Affiliation(s)
- Francesca G. Tomasi
- Department of Immunology and Infectious Diseases, Harvard T. H. Chan School of Public Health, Boston, Massachusetts, USA
| | - Jessica T. P. Schweber
- Department of Immunology and Infectious Diseases, Harvard T. H. Chan School of Public Health, Boston, Massachusetts, USA
| | - Satoshi Kimura
- Division of Infectious Diseases, Brigham and Women’s Hospital, Boston, Massachusetts, USA
- Department of Microbiology, Harvard Medical School, Boston, Massachusetts, USA
- Howard Hughes Medical Institute, Boston, Massachusetts, USA
| | - Junhao Zhu
- Department of Immunology and Infectious Diseases, Harvard T. H. Chan School of Public Health, Boston, Massachusetts, USA
| | - Laura A. T. Cleghorn
- Drug Discovery Unit, Wellcome Centre for Anti-Infectives Research, Division of Biological Chemistry and Drug Discovery, College of Life Sciences, University of Dundee, Dundee, United Kingdom
| | - Susan H. Davis
- Drug Discovery Unit, Wellcome Centre for Anti-Infectives Research, Division of Biological Chemistry and Drug Discovery, College of Life Sciences, University of Dundee, Dundee, United Kingdom
| | - Simon R. Green
- Drug Discovery Unit, Wellcome Centre for Anti-Infectives Research, Division of Biological Chemistry and Drug Discovery, College of Life Sciences, University of Dundee, Dundee, United Kingdom
| | - Matthew K. Waldor
- Department of Immunology and Infectious Diseases, Harvard T. H. Chan School of Public Health, Boston, Massachusetts, USA
- Division of Infectious Diseases, Brigham and Women’s Hospital, Boston, Massachusetts, USA
- Department of Microbiology, Harvard Medical School, Boston, Massachusetts, USA
- Howard Hughes Medical Institute, Boston, Massachusetts, USA
| | - Eric J. Rubin
- Department of Immunology and Infectious Diseases, Harvard T. H. Chan School of Public Health, Boston, Massachusetts, USA
| |
Collapse
|
12
|
Zheng Z, Liu H, Shi Y, Liu Z, Teng H, Deng S, Wei L, Wang Y, Zhang F. Comparative transcriptome analysis reveals the resistance regulation mechanism and fungicidal activity of the fungicide phenamacril in Fusarium oxysporum. Sci Rep 2022; 12:11081. [PMID: 35773469 PMCID: PMC9247061 DOI: 10.1038/s41598-022-15188-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Accepted: 06/20/2022] [Indexed: 12/21/2022] Open
Abstract
Fusarium oxysporum (Fo) is an important species complex of soil-borne pathogenic fungi that cause vascular wilt diseases of agricultural crops and some opportunistic diseases of humans. The fungicide phenamacril has been extensively reported to have antifungal activity against Fusarium graminearum and Fusarium fujikuroi. In this study, we found that the amino acid substitutions (V151A and S418T) in Type I myosin FoMyo5 cause natural low resistance to phenamacril in the plant pathogenic Fo isolates. Therefore, we compared the transcriptomes of two phenamacril-resistant Fo isolates FoII5, Fo1st and one phenamacril-sensitive isolate Fo3_a after 1 μg/mL phenamacril treatment. Among the 2728 differentially expressed genes (DEGs), 14 DEGs involved in oxidation–reduction processes and MFS transporters, were significantly up-regulated in phenamacril-resistant isolates. On the other hand, 14 DEGs involved in ATP-dependent RNA helicase and ribosomal biogenesis related proteins, showed significantly down-regulated expression in both phenamacril-resistant and -sensitive isolates. These results indicated that phenamacril not only seriously affected the cytoskeletal protein binding and ATPase activity of sensitive isolate, but also suppressed ribosome biogenesis in all the isolates. Hence, this study helps us better understand resistance regulation mechanism and fungicidal activity of phenamacril and provide reference for the development of new fungicides to control Fo.
Collapse
Affiliation(s)
- Zhitian Zheng
- School of Life Science and Food Engineering, Huaiyin Institute of Technology, Huai'an, 223003, People's Republic of China.
| | - Huaqi Liu
- School of Life Science and Food Engineering, Huaiyin Institute of Technology, Huai'an, 223003, People's Republic of China
| | - Yunyong Shi
- School of Life Science and Food Engineering, Huaiyin Institute of Technology, Huai'an, 223003, People's Republic of China
| | - Zao Liu
- School of Life Science and Food Engineering, Huaiyin Institute of Technology, Huai'an, 223003, People's Republic of China
| | - Hui Teng
- School of Life Science and Food Engineering, Huaiyin Institute of Technology, Huai'an, 223003, People's Republic of China
| | - Sheng Deng
- Institute of Plant Protection, Key Lab of Food Quality and Safety of Jiangsu Province-State, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, People's Republic of China.
| | - Lihui Wei
- Institute of Plant Protection, Key Lab of Food Quality and Safety of Jiangsu Province-State, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, People's Republic of China
| | - Yunpeng Wang
- School of Life Science and Food Engineering, Huaiyin Institute of Technology, Huai'an, 223003, People's Republic of China.
| | - Feng Zhang
- Key Laboratory of Pesticide, College of Plant Protection, Nanjing Agricultural University, Nanjing, 210095, People's Republic of China
| |
Collapse
|
13
|
Tomasi FG, Hall AMJ, Schweber JTP, Dulberger CL, McGowen K, Liu Q, Fortune SM, Helaine S, Rubin EJ. A tRNA-Acetylating Toxin and Detoxifying Enzyme in Mycobacterium tuberculosis. Microbiol Spectr 2022; 10:e0058022. [PMID: 35638832 PMCID: PMC9241777 DOI: 10.1128/spectrum.00580-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Accepted: 05/02/2022] [Indexed: 11/20/2022] Open
Abstract
Toxin-antitoxin (TA) systems allow bacteria to adapt to changing environments without altering gene expression. Despite being overrepresented in Mycobacterium tuberculosis, their physiological roles remain elusive. We describe a TA system in M. tuberculosis which we named TacAT due to its homology to previously discovered systems in Salmonella. The toxin, TacT, blocks growth by acetylating glycyl-tRNAs and inhibiting translation. Its effects are reversed by the enzyme peptidyl tRNA hydrolase (Pth), which also cleaves peptidyl tRNAs that are prematurely released from stalled ribosomes. Pth is essential in most bacteria and thereby has been proposed as a promising drug target for complex pathogens like M. tuberculosis. Transposon sequencing data suggest that the tacAT operon is nonessential for M. tuberculosis growth in vitro, and premature stop mutations in this TA system present in some clinical isolates suggest that it is also dispensable in vivo. We assessed whether TacT modulates pth essentiality in M. tuberculosis because drugs targeting Pth might prompt resistance if TacAT is disrupted. We show that pth essentiality is unaffected by the absence of tacAT. These results highlight a fundamental aspect of mycobacterial biology and indicate that Pth's essential role hinges on its peptidyl-tRNA hydrolase activity. Our work underscores Pth's potential as a viable target for new antibiotics. IMPORTANCE The global rise in antibiotic-resistant tuberculosis has prompted an urgent search for new drugs. Toxin-antitoxin (TA) systems allow bacteria to adapt rapidly to environmental changes, and Mycobacterium tuberculosis encodes more TA systems than any known pathogen. We have characterized a new TA system in M. tuberculosis: the toxin, TacT, acetylates charged tRNA to block protein synthesis. TacT's effects are reversed by the essential bacterial enzyme peptidyl tRNA hydrolase (Pth), which is currently being explored as an antibiotic target. Pth also cleaves peptidyl tRNAs that are prematurely released from stalled ribosomes. We assessed whether TacT modulates pth essentiality in M. tuberculosis because drugs targeting Pth might prompt resistance if TacT is disrupted. We show that pth essentiality is unaffected by the absence of this TA system, indicating that Pth's essential role hinges on its peptidyl-tRNA hydrolase activity. Our work underscores Pth's potential as a viable target for new antibiotics.
Collapse
Affiliation(s)
- Francesca G. Tomasi
- Department of Immunology and Infectious Diseases, Harvard T. H. Chan School of Public Health, Boston, Massachusetts, USA
| | | | - Jessica T. P. Schweber
- Department of Immunology and Infectious Diseases, Harvard T. H. Chan School of Public Health, Boston, Massachusetts, USA
| | - Charles L. Dulberger
- Department of Immunology and Infectious Diseases, Harvard T. H. Chan School of Public Health, Boston, Massachusetts, USA
| | - Kerry McGowen
- Department of Immunology and Infectious Diseases, Harvard T. H. Chan School of Public Health, Boston, Massachusetts, USA
| | - Qingyun Liu
- Department of Immunology and Infectious Diseases, Harvard T. H. Chan School of Public Health, Boston, Massachusetts, USA
| | - Sarah M. Fortune
- Department of Immunology and Infectious Diseases, Harvard T. H. Chan School of Public Health, Boston, Massachusetts, USA
| | - Sophie Helaine
- Department of Microbiology, Harvard Medical School, Boston, Massachusetts, USA
| | - Eric J. Rubin
- Department of Immunology and Infectious Diseases, Harvard T. H. Chan School of Public Health, Boston, Massachusetts, USA
| |
Collapse
|
14
|
Li X, Guo R, Zou X, Yao Y, Lu L. The First Cbk-Like Phage Infecting Erythrobacter, Representing a Novel Siphoviral Genus. Front Microbiol 2022; 13:861793. [PMID: 35620087 PMCID: PMC9127768 DOI: 10.3389/fmicb.2022.861793] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Accepted: 03/31/2022] [Indexed: 11/13/2022] Open
Abstract
Erythrobacter is an important and widespread bacterial genus in the ocean. However, our knowledge about their phages is still rare. Here, a novel lytic phage vB_EliS-L02, infecting Erythrobacter litoralis DSM 8509, was isolated and purified from Sanggou Bay seawater, China. Morphological observation revealed that the phage belonged to Cbk-like siphovirus, with a long prolate head and a long tail. The host range test showed that phage vB_EliS-L02 could only infect a few strains of Erythrobacter, demonstrating its potential narrow-host range. The genome size of vB_EliS-L02 was 150,063 bp with a G+C content of 59.43%, encoding 231 putative open reading frames (ORFs), but only 47 were predicted to be functional domains. Fourteen auxiliary metabolic genes were identified, including phoH that may confer vB_EliS-L02 the advantage of regulating phosphate uptake and metabolism under a phosphate-limiting condition. Genomic and phylogenetic analyses indicated that vB_EliS-L02 was most closely related to the genus Lacusarxvirus with low similarity (shared genes < 30%, and average nucleotide sequence identity < 70%), distantly from other reported phages, and could be grouped into a novel viral genus cluster, in this study as Eliscbkvirus. Meanwhile, the genus Eliscbkvirus and Lacusarxvirus stand out from other siphoviral genera and could represent a novel subfamily within Siphoviridae, named Dolichocephalovirinae-II. Being a representative of an understudied viral group with manifold adaptations to the host, phage vB_EliS-L02 could improve our understanding of the virus–host interactions and provide reference information for viral metagenomic analysis in the ocean.
Collapse
Affiliation(s)
- Xuejing Li
- State Key Laboratory of Marine Environmental Science, Institute of Marine Microbes and Ecospheres, College of Ocean and Earth Sciences, Xiamen University (Xiang'an), Xiamen, China
| | - Ruizhe Guo
- Frontiers Science Center for Deep Ocean Multispheres and Earth System, College of Marine Life Sciences, Institute of Evolution and Marine Biodiversity, Ocean University of China, Qingdao, China
| | - Xiao Zou
- Qingdao Central Hospital, Qingdao, China
| | - Yanyan Yao
- Weihai Changqing Ocean Science Technology Co., Ltd., Weihai, China
| | - Longfei Lu
- Weihai Changqing Ocean Science Technology Co., Ltd., Weihai, China
| |
Collapse
|
15
|
Chadani Y, Sugata N, Niwa T, Ito Y, Iwasaki S, Taguchi H. Nascent polypeptide within the exit tunnel stabilizes the ribosome to counteract risky translation. EMBO J 2021; 40:e108299. [PMID: 34672004 PMCID: PMC8634131 DOI: 10.15252/embj.2021108299] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Revised: 09/21/2021] [Accepted: 09/29/2021] [Indexed: 01/26/2023] Open
Abstract
Continuous translation elongation, irrespective of amino acid sequences, is a prerequisite for living organisms to produce their proteomes. However, nascent polypeptide products bear an inherent risk of elongation abortion. For example, negatively charged sequences with occasional intermittent prolines, termed intrinsic ribosome destabilization (IRD) sequences, weaken the translating ribosomal complex, causing certain nascent chain sequences to prematurely terminate translation. Here, we show that most potential IRD sequences in the middle of open reading frames remain cryptic and do not interrupt translation, due to two features of the nascent polypeptide. Firstly, the nascent polypeptide itself spans the exit tunnel, and secondly, its bulky amino acid residues occupy the tunnel entrance region, thereby serving as a bridge and protecting the large and small ribosomal subunits from dissociation. Thus, nascent polypeptide products have an inbuilt ability to ensure elongation continuity.
Collapse
Affiliation(s)
- Yuhei Chadani
- Cell Biology CenterInstitute of Innovative ResearchTokyo Institute of TechnologyYokohamaJapan
| | - Nobuyuki Sugata
- School of Life Science and TechnologyTokyo Institute of TechnologyYokohamaJapan
| | - Tatsuya Niwa
- Cell Biology CenterInstitute of Innovative ResearchTokyo Institute of TechnologyYokohamaJapan
- School of Life Science and TechnologyTokyo Institute of TechnologyYokohamaJapan
| | - Yosuke Ito
- School of Life Science and TechnologyTokyo Institute of TechnologyYokohamaJapan
| | - Shintaro Iwasaki
- RNA Systems Biochemistry LaboratoryRIKEN Cluster for Pioneering ResearchSaitamaJapan
- Department of Computational Biology and Medical Sciences, Graduate School of Frontier SciencesThe University of TokyoKashiwaJapan
| | - Hideki Taguchi
- Cell Biology CenterInstitute of Innovative ResearchTokyo Institute of TechnologyYokohamaJapan
- School of Life Science and TechnologyTokyo Institute of TechnologyYokohamaJapan
| |
Collapse
|
16
|
Abstract
Translation of the genetic information into proteins, performed by the ribosome, is a key cellular process in all organisms. Translation usually proceeds smoothly, but, unfortunately, undesirable events can lead to stalling of translating ribosomes. To rescue these faulty arrested ribosomes, bacterial cells possess three well-characterized quality control systems, tmRNA, ArfA, and ArfB. Recently, an additional ribosome rescue mechanism has been discovered in Bacillus subtilis. In contrast to the "canonical" systems targeting the 70S bacterial ribosome, this latter mechanism operates by first splitting the ribosome into the small (30S) and large (50S) subunits to then clearing the resultant jammed large subunit from the incomplete nascent polypeptide. Here, I will discuss the recent microbiological, biochemical, and structural data regarding functioning of this novel rescue system.
Collapse
Affiliation(s)
- Maxim S Svetlov
- Center for Biomolecular Sciences, Department of Pharmaceutical Sciences, University of Illinois at Chicago, Chicago, IL 60607, USA.
| |
Collapse
|
17
|
Müller C, Crowe-McAuliffe C, Wilson DN. Ribosome Rescue Pathways in Bacteria. Front Microbiol 2021; 12:652980. [PMID: 33815344 PMCID: PMC8012679 DOI: 10.3389/fmicb.2021.652980] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Accepted: 02/23/2021] [Indexed: 12/18/2022] Open
Abstract
Ribosomes that become stalled on truncated or damaged mRNAs during protein synthesis must be rescued for the cell to survive. Bacteria have evolved a diverse array of rescue pathways to remove the stalled ribosomes from the aberrant mRNA and return them to the free pool of actively translating ribosomes. In addition, some of these pathways target the damaged mRNA and the incomplete nascent polypeptide chain for degradation. This review highlights the recent developments in our mechanistic understanding of bacterial ribosomal rescue systems, including drop-off, trans-translation mediated by transfer-messenger RNA and small protein B, ribosome rescue by the alternative rescue factors ArfA and ArfB, as well as Bacillus ribosome rescue factor A, an additional rescue system found in some Gram-positive bacteria, such as Bacillus subtilis. Finally, we discuss the recent findings of ribosome-associated quality control in particular bacterial lineages mediated by RqcH and RqcP. The importance of rescue pathways for bacterial survival suggests they may represent novel targets for the development of new antimicrobial agents against multi-drug resistant pathogenic bacteria.
Collapse
Affiliation(s)
| | | | - Daniel N. Wilson
- Institute for Biochemistry and Molecular Biology, University of Hamburg, Hamburg, Germany
| |
Collapse
|
18
|
Siebert JC, Saint-Cyr M, Borengasser SJ, Wagner BD, Lozupone CA, Görg C. CANTARE: finding and visualizing network-based multi-omic predictive models. BMC Bioinformatics 2021; 22:80. [PMID: 33607938 PMCID: PMC7896366 DOI: 10.1186/s12859-021-04016-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2020] [Accepted: 02/05/2021] [Indexed: 12/30/2022] Open
Abstract
BACKGROUND One goal of multi-omic studies is to identify interpretable predictive models for outcomes of interest, with analytes drawn from multiple omes. Such findings could support refined biological insight and hypothesis generation. However, standard analytical approaches are not designed to be "ome aware." Thus, some researchers analyze data from one ome at a time, and then combine predictions across omes. Others resort to correlation studies, cataloging pairwise relationships, but lacking an obvious approach for cohesive and interpretable summaries of these catalogs. METHODS We present a novel workflow for building predictive regression models from network neighborhoods in multi-omic networks. First, we generate pairwise regression models across all pairs of analytes from all omes, encoding the resulting "top table" of relationships in a network. Then, we build predictive logistic regression models using the analytes in network neighborhoods of interest. We call this method CANTARE (Consolidated Analysis of Network Topology And Regression Elements). RESULTS We applied CANTARE to previously published data from healthy controls and patients with inflammatory bowel disease (IBD) consisting of three omes: gut microbiome, metabolomics, and microbial-derived enzymes. We identified 8 unique predictive models with AUC > 0.90. The number of predictors in these models ranged from 3 to 13. We compare the results of CANTARE to random forests and elastic-net penalized regressions, analyzing AUC, predictions, and predictors. CANTARE AUC values were competitive with those generated by random forests and penalized regressions. The top 3 CANTARE models had a greater dynamic range of predicted probabilities than did random forests and penalized regressions (p-value = 1.35 × 10-5). CANTARE models were significantly more likely to prioritize predictors from multiple omes than were the alternatives (p-value = 0.005). We also showed that predictive models from a network based on pairwise models with an interaction term for IBD have higher AUC than predictive models built from a correlation network (p-value = 0.016). R scripts and a CANTARE User's Guide are available at https://sourceforge.net/projects/cytomelodics/files/CANTARE/ . CONCLUSION CANTARE offers a flexible approach for building parsimonious, interpretable multi-omic models. These models yield quantitative and directional effect sizes for predictors and support the generation of hypotheses for follow-up investigation.
Collapse
Affiliation(s)
- Janet C Siebert
- Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, USA.
| | - Martine Saint-Cyr
- Department of Pediatrics, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Sarah J Borengasser
- Department of Pediatrics, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Brandie D Wagner
- Department of Biostatistics and Informatics, Colorado School of Public Health, Aurora, CO, USA
| | - Catherine A Lozupone
- Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Carsten Görg
- Department of Biostatistics and Informatics, Colorado School of Public Health, Aurora, CO, USA
| |
Collapse
|
19
|
Mundra S, Pal RK, Tripathi S, Jain A, Arora A. Structural and functional characterization of peptidyl-tRNA hydrolase from Klebsiella pneumoniae. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2020; 1869:140554. [PMID: 33068756 DOI: 10.1016/j.bbapap.2020.140554] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Revised: 10/08/2020] [Accepted: 10/13/2020] [Indexed: 10/23/2022]
Abstract
Klebsiella pneumoniae is a member of the ESKAPE panel of pathogens that are top priority to tackle AMR. Bacterial peptidyl tRNA hydrolase (Pth), an essential, ubiquitous enzyme, hydrolyzes the peptidyl-tRNAs that accumulate in the cytoplasm because of premature termination of translation. Pth cleaves the ester bond between 2' or 3' hydroxyl of the ribose in the tRNA and C-terminal carboxylate of the peptide, thereby making free tRNA available for repeated cycles of protein synthesis and preventing cell death by alleviating tRNA starvation. Pth structures have been determined in peptide-bound or peptide-free states. In peptide-bound state, highly conserved residues F67, N69 and N115 adopt a conformation that is conducive to their interaction with peptide moiety of the substrate. While, in peptide-free state, these residues move away from the catalytic center, perhaps, in order to facilitate release of hydrolysed peptide. Here, we present a novel X-ray crystal structure of Pth from Klebsiella pneumoniae (KpPth), at 1.89 Å resolution, in which out of the two molecules in the asymmetric unit, one reflects the peptide-bound while the other reflects peptide-free conformation of the conserved catalytic site residues. Each molecule of the protein has canonical structure with seven stranded β-sheet structure surrounded by six α-helices. MD simulations indicate that both the forms converge over 500 ns simulation to structures with wider opening of the crevice at peptide-binding end. In solution, KpPth is monomeric and its 2D-HSQC spectrum displays a single set of well dispersed peaks. Further, KpPth was demonstrated to be enzymatically active on BODIPY-Lys-tRNALys3.
Collapse
Affiliation(s)
- Surbhi Mundra
- Molecular and Structural Biology Division, CSIR-Central Drug Research Institute, Lucknow 226031, India; Department of Science and Technology, New Delhi 110016, India
| | - Ravi Kant Pal
- X-ray Crystallography Facility, National Institute of Immunology, New Delhi 110067, India
| | - Sarita Tripathi
- Molecular and Structural Biology Division, CSIR-Central Drug Research Institute, Lucknow 226031, India
| | - Anupam Jain
- Molecular and Structural Biology Division, CSIR-Central Drug Research Institute, Lucknow 226031, India
| | - Ashish Arora
- Molecular and Structural Biology Division, CSIR-Central Drug Research Institute, Lucknow 226031, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India.
| |
Collapse
|
20
|
Characterization of active/binding site residues of peptidyl-tRNA hydrolase using biophysical and computational studies. Int J Biol Macromol 2020; 159:877-885. [PMID: 32445815 DOI: 10.1016/j.ijbiomac.2020.05.133] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Revised: 04/09/2020] [Accepted: 05/17/2020] [Indexed: 11/21/2022]
Abstract
All mRNAs cannot be translated into full-length proteins due to ribosome-stalling that leads to release of peptidyl-tRNA which can be lethal for bacterial survival. The enzyme peptidyl-tRNA hydrolase (PtH) hydrolyses the ester bond between nascent peptide and tRNA of peptidyl-tRNA and rescues the cells from toxicity. PtH is an essential enzyme in bacteria and inhibiting this crucial enzyme can serve to combat bacterial diseases. But due to lack of understanding about the catalytic mechanism of PtH, its inhibitors have not been developed. In this work, we have carried out the binding studies of M. tuberculosis and E. coli PtH with the peptidyl-tRNA analogue (puromycin) using ITC, FTIR, CD experiments followed by docking and MD simulations to identify the potential active site residues that would help to design PtH inhibitors. Binding studies of puromycin with both PtH by ITC experiments demonstrate similar thermodynamic parameters and three fold difference in their KD. CD and FTIR studies detected changes in secondary structure composition of PtH in the presence of puromycin with different degree of perturbation. Though interactions with puromycin are conserved in both proteins, modelling studies revealed that water mediated interactions in M. tb-PtH resulting in higher affinity to puromycin.
Collapse
|
21
|
Tang X, Ding X, Hou YL. Comparative analysis of transcriptomes revealed the molecular mechanism of development of Tricholoma matsutake at different stages of fruiting bodies. Food Sci Biotechnol 2020; 29:939-951. [PMID: 32582456 DOI: 10.1007/s10068-020-00732-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2019] [Revised: 12/17/2019] [Accepted: 01/02/2020] [Indexed: 11/27/2022] Open
Abstract
The purpose of the study is to investigate the molecular mechanisms of development of Tricholoma matsutake fruiting body at the primordial stage (TM-1), the intermediate stage (TM-2) and the mature stage (TM-3) using RNA-Seq sequencing technology. The analysis of gene expression level revealed that the Spn2 and Eef1a1 gene were the key genes in the primordial stage of T. matsutake by regulating cytokinesis, protein synthesis, and cell growth. And the Ubc, Atp6, Cytb, and Pth2 gene were the key genes in the mature stage of T. matsutake by regulating energy metabolism and protein synthesis. Differential expression genes (DEGs) analysis results showed that Cdc28, Rad53, Dun1, Pho85 and Pho81 were the key DEGs regulating cell cycle genes of T. matsutake from primordial stage to intermediate stage. And APC, Cyr1, Cdc45, Spo11 and Rec8 genes were the key DEGs for the meiosis and sporogenesis of T. matsutake from the intermediate stage to the mature stage.
Collapse
Affiliation(s)
- Xian Tang
- Key Laboratory of Southwest China Wildlife Resources Conservation (Ministry of Education), College of Life Sciences, China West Normal University, 1# Shida Road, Nanchong, 637009 Sichuan Province China
| | - Xiang Ding
- College of Environmental Science and Engineering, China West Normal University, 1# Shida Road, Nanchong, 637009 Sichuan Province China
| | - Yi-Ling Hou
- Key Laboratory of Southwest China Wildlife Resources Conservation (Ministry of Education), College of Life Sciences, China West Normal University, 1# Shida Road, Nanchong, 637009 Sichuan Province China
| |
Collapse
|
22
|
Rycroft JA, Gollan B, Grabe GJ, Hall A, Cheverton AM, Larrouy-Maumus G, Hare SA, Helaine S. Activity of acetyltransferase toxins involved in Salmonella persister formation during macrophage infection. Nat Commun 2018; 9:1993. [PMID: 29777131 PMCID: PMC5959882 DOI: 10.1038/s41467-018-04472-6] [Citation(s) in RCA: 82] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2017] [Accepted: 04/27/2018] [Indexed: 12/31/2022] Open
Abstract
Non-typhoidal Salmonella strains are responsible for invasive infections associated with high mortality and recurrence in sub-Saharan Africa, and there is strong evidence for clonal relapse following antibiotic treatment. Persisters are non-growing bacteria that are thought to be responsible for the recalcitrance of many infections to antibiotics. Toxin-antitoxin systems are stress-responsive elements that are important for Salmonella persister formation, specifically during infection. Here, we report the analysis of persister formation of clinical invasive strains of Salmonella Typhimurium and Enteritidis in human primary macrophages. We show that all the invasive clinical isolates of both serovars that we tested produce high levels of persisters following internalization by human macrophages. Our genome comparison reveals that S. Enteritidis and S. Typhimurium strains contain three acetyltransferase toxins that we characterize structurally and functionally. We show that all induce the persister state by inhibiting translation through acetylation of aminoacyl-tRNAs. However, they differ in their potency and target partially different subsets of aminoacyl-tRNAs, potentially accounting for their non-redundant effect.
Collapse
Affiliation(s)
- Julian A Rycroft
- Section of Microbiology, Medical Research Council Centre for Molecular Bacteriology and Infection, Imperial College London, Armstrong Road, London, SW7 2AZ, UK
| | - Bridget Gollan
- Section of Microbiology, Medical Research Council Centre for Molecular Bacteriology and Infection, Imperial College London, Armstrong Road, London, SW7 2AZ, UK
| | - Grzegorz J Grabe
- Section of Microbiology, Medical Research Council Centre for Molecular Bacteriology and Infection, Imperial College London, Armstrong Road, London, SW7 2AZ, UK
| | - Alexander Hall
- Section of Microbiology, Medical Research Council Centre for Molecular Bacteriology and Infection, Imperial College London, Armstrong Road, London, SW7 2AZ, UK
| | - Angela M Cheverton
- Section of Microbiology, Medical Research Council Centre for Molecular Bacteriology and Infection, Imperial College London, Armstrong Road, London, SW7 2AZ, UK
| | - Gerald Larrouy-Maumus
- Department of Life Sciences, Medical Research Council Centre for Molecular Bacteriology and Infection, Imperial College London, Armstrong Road, London, SW7 2AZ, UK
| | - Stephen A Hare
- Department of Life Sciences, Imperial College London, Exhibition Road, London, SW7 2AZ, UK
- School of Life Sciences, University of Sussex, Brighton, BN1 9QG, UK
| | - Sophie Helaine
- Section of Microbiology, Medical Research Council Centre for Molecular Bacteriology and Infection, Imperial College London, Armstrong Road, London, SW7 2AZ, UK.
| |
Collapse
|
23
|
Multiple target sites for designing candidate drugs. Biochem J 2018. [PMID: 29523702 DOI: 10.1042/bcj20180007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Rational drug discovery strategy requires a design of small molecules as candidate drugs which can specifically inhibit a target protein or any other macromolecule and effectively interfere in a defined physiological process. One of the important bacterial protein targets aimed toward developing new antibiotics is peptidyl-tRNA hydrolase (Pth). The discovery that cytarabine, a known anticancer drug, binds to Pth from Acinetobacter baumannii in a cleft located away from the catalytic site of this enzyme, published in Biochemical Journal, opens up interesting new avenues for drug design. An approach involving crystallographic identification of multiple ligand-binding sites on a target protein surface could enable iterative optimization of multiple high-affinity ligands, which may synergistically interfere in the target function with enhanced effect.
Collapse
|
24
|
Van Melderen L, Jurenas D, Garcia-Pino A. Messing up translation from the start: How AtaT inhibits translation initiation in E. coli. RNA Biol 2018; 15:303-307. [PMID: 29099338 DOI: 10.1080/15476286.2017.1391439] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022] Open
Abstract
Toxin-antitoxin systems (TA) are widespread in bacteria and archea. They are commonly found in chromosomes and mobile genetic elements. These systems move from different genomic locations and bacterial hosts through horizontal gene transfer, using mobile elements as vehicles. Their potential roles in bacterial physiology are still a matter of debate in the field. The mechanisms of action of different toxin families have been deciphered at the molecular level. Intriguingly, the vast majority of these toxins target protein synthesis. They use a variety of molecular mechanisms and inhibit nearly every step of the translation process. Recently, we have identified a novel toxin, AtaT, presenting acetyltransferase activity. 1 Our work uncovered the molecular activity of AtaT: it specifically acetylates the methionine moiety on the initiator Met-tRNAfMet. This modification drastically impairs recognition by initiation factor 2 (IF2), thereby inhibiting the initiation step of translation.
Collapse
Affiliation(s)
- Laurence Van Melderen
- a Cellular and Molecular Microbiology, Faculté des Sciences, Université Libre de Bruxelles (ULB) , Gosselies , Belgium
| | - Dukas Jurenas
- a Cellular and Molecular Microbiology, Faculté des Sciences, Université Libre de Bruxelles (ULB) , Gosselies , Belgium.,b Department of Biochemistry and Molecular Biology , Vilnius University Joint Life Sciences Center , Vilnius , Lithuania
| | - Abel Garcia-Pino
- a Cellular and Molecular Microbiology, Faculté des Sciences, Université Libre de Bruxelles (ULB) , Gosselies , Belgium
| |
Collapse
|
25
|
Chadani Y, Niwa T, Izumi T, Sugata N, Nagao A, Suzuki T, Chiba S, Ito K, Taguchi H. Intrinsic Ribosome Destabilization Underlies Translation and Provides an Organism with a Strategy of Environmental Sensing. Mol Cell 2017; 68:528-539.e5. [PMID: 29100053 DOI: 10.1016/j.molcel.2017.10.020] [Citation(s) in RCA: 57] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2017] [Revised: 08/28/2017] [Accepted: 10/06/2017] [Indexed: 01/05/2023]
Abstract
Nascent polypeptides can modulate the polypeptide elongation speed on the ribosome. Here, we show that nascent chains can even destabilize the translating Escherichia coli ribosome from within. This phenomenon, termed intrinsic ribosome destabilization (IRD), occurs in response to a special amino acid sequence of the nascent chain, without involving the release or the recycling factors. Typically, a consecutive array of acidic residues and those intermitted by alternating prolines induce IRD. The ribosomal protein bL31, which bridges the two subunits, counteracts IRD, such that only strong destabilizing sequences abort translation in living cells. We found that MgtL, the leader peptide of a Mg2+ transporter (MgtA), contains a translation-aborting sequence, which sensitizes the ribosome to a decline in Mg2+ concentration and thereby triggers the MgtA-upregulating genetic scheme. Translation proceeds at an inherent risk of ribosomal destabilization, and nascent chain-ribosome complexes can function as a Mg2+ sensor by harnessing IRD.
Collapse
Affiliation(s)
- Yuhei Chadani
- Cell Biology Center, Institute of Innovative Research, Tokyo Institute of Technology, Yokohama 226-8503, Japan
| | - Tatsuya Niwa
- Cell Biology Center, Institute of Innovative Research, Tokyo Institute of Technology, Yokohama 226-8503, Japan
| | - Takashi Izumi
- Cell Biology Center, Institute of Innovative Research, Tokyo Institute of Technology, Yokohama 226-8503, Japan
| | - Nobuyuki Sugata
- Cell Biology Center, Institute of Innovative Research, Tokyo Institute of Technology, Yokohama 226-8503, Japan
| | - Asuteka Nagao
- Department of Chemistry and Biotechnology, Graduate School of Engineering, The University of Tokyo, Tokyo 113-8565, Japan
| | - Tsutomu Suzuki
- Department of Chemistry and Biotechnology, Graduate School of Engineering, The University of Tokyo, Tokyo 113-8565, Japan
| | - Shinobu Chiba
- Faculty of Life Sciences and Institute for Protein Dynamics, Kyoto Sangyo University, Kyoto 603-8555, Japan
| | - Koreaki Ito
- Faculty of Life Sciences and Institute for Protein Dynamics, Kyoto Sangyo University, Kyoto 603-8555, Japan.
| | - Hideki Taguchi
- Cell Biology Center, Institute of Innovative Research, Tokyo Institute of Technology, Yokohama 226-8503, Japan.
| |
Collapse
|
26
|
Sharkia R, Shalev SA, Zalan A, Marom-David M, Watemberg N, Urquhart JE, Daly SB, Bhaskar SS, Williams SG, Newman WG, Spiegel R, Azem A, Elpeleg O, Mahajnah M. Homozygous mutation in PTRH2 gene causes progressive sensorineural deafness and peripheral neuropathy. Am J Med Genet A 2017; 173:1051-1055. [PMID: 28328138 DOI: 10.1002/ajmg.a.38140] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2016] [Revised: 12/03/2016] [Accepted: 12/09/2016] [Indexed: 01/18/2023]
Abstract
PTRH2 is an evolutionarily highly conserved mitochondrial protein that belongs to a family of peptidyl-tRNA hydrolases. Recently, patients from two consanguineous families with mutations in the PTRH2 gene were reported. Global developmental delay associated with microcephaly, growth retardation, progressive ataxia, distal muscle weakness with ankle contractures, demyelinating sensorimotor neuropathy, and sensorineural hearing loss were present in all patients, while facial dysmorphism with widely spaced eyes, exotropia, thin upper lip, proximally placed thumbs, and deformities of the fingers and toes were present in some individuals. Here, we report a new family with three siblings affected by sensorineural hearing loss and peripheral neuropathy. Autozygosity mapping followed by exome sequencing identified a previously reported homozygous missense mutation in PTRH2 (c.254A>C; p.(Gln85Pro)). Sanger sequencing confirmed that the variant segregated with the phenotype. In contrast to the previously reported patient, the affected siblings had normal intelligence, milder microcephaly, delayed puberty, myopia, and moderate insensitivity to pain. Our findings expand the clinical phenotype and further demonstrate the clinical heterogeneity related to PTRH2 variants.
Collapse
Affiliation(s)
- Rajech Sharkia
- The Triangle Regional Research and Development Center, Kfar Qari', Israel.,Beit-Berl Academic College, Beit-Berl, Israel
| | - Stavit A Shalev
- Genetic Institute, Emek Medical Center, Afula, Israel.,Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, Israel
| | - Abdelnaser Zalan
- The Triangle Regional Research and Development Center, Kfar Qari', Israel
| | - Milit Marom-David
- Faculty of Life Sciences, Department of Biochemistry and Molecular Biology, Tel-Aviv University, Tel-Aviv, Israel
| | - Nathan Watemberg
- Sakler Faculty of Medicine, Child neurology Unit Mier Medical Cener, Tel-Aviv University, Tel-Aviv, Israel
| | - Jill E Urquhart
- Manchester Centre for Genomic Medicine, Manchester Academic Health Sciences Centre, St. Mary's Hospital, Manchester, UK.,Institute of Human Development, Manchester Centre for Genomic Medicine, University of Manchester, Manchester, UK
| | - Sarah B Daly
- Manchester Centre for Genomic Medicine, Manchester Academic Health Sciences Centre, St. Mary's Hospital, Manchester, UK.,Institute of Human Development, Manchester Centre for Genomic Medicine, University of Manchester, Manchester, UK
| | - Sanjeev S Bhaskar
- Manchester Centre for Genomic Medicine, Manchester Academic Health Sciences Centre, St. Mary's Hospital, Manchester, UK
| | - Simon G Williams
- Manchester Centre for Genomic Medicine, Manchester Academic Health Sciences Centre, St. Mary's Hospital, Manchester, UK.,Institute of Human Development, Manchester Centre for Genomic Medicine, University of Manchester, Manchester, UK
| | - William G Newman
- Manchester Centre for Genomic Medicine, Manchester Academic Health Sciences Centre, St. Mary's Hospital, Manchester, UK.,Institute of Human Development, Manchester Centre for Genomic Medicine, University of Manchester, Manchester, UK
| | - Ronen Spiegel
- Genetic Institute, Emek Medical Center, Afula, Israel
| | - Abdussalam Azem
- Faculty of Life Sciences, Department of Biochemistry and Molecular Biology, Tel-Aviv University, Tel-Aviv, Israel
| | - Orly Elpeleg
- Monique and Jacques Roboh Department of Genetic Research, Hadassah, Hebrew University Medical Center, Jerusalem, Israel
| | - Muhammad Mahajnah
- Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, Israel.,Child Neurology and Development Center, Hillel-Yaffe Medical Center, Hadera, Israel
| |
Collapse
|
27
|
Jurėnas D, Garcia-Pino A, Van Melderen L. Novel toxins from type II toxin-antitoxin systems with acetyltransferase activity. Plasmid 2017; 93:30-35. [PMID: 28941941 DOI: 10.1016/j.plasmid.2017.08.005] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2017] [Revised: 08/24/2017] [Accepted: 08/28/2017] [Indexed: 12/21/2022]
Abstract
Type II toxin-antitoxin (TA) systems are widespread in bacterial and archeal genomes. These modules are very dynamic and participate in bacterial genome evolution through horizontal gene transfer. TA systems are commonly composed of a labile antitoxin and a stable toxin. Toxins appear to preferentially inhibit the protein synthesis process. Toxins use a variety of molecular mechanisms and target nearly every step of translation to achieve their inhibitory function. This review focuses on a recently identified TA family that includes acetyltransferase toxins. The AtaT and TacT toxins are the best-characterized to date in this family. AtaT and TacT both inhibit translation by acetylating the amino acid charged on tRNAs. However, the specificities of these 2 toxins are different as AtaT inhibits translation initiation by acetylation of the initiator tRNA whereas TacT acetylates elongator tRNAs. The molecular mechanisms of these toxins are discussed, as well as the functions and possible evolutionary origins of this diverse toxin family.
Collapse
Affiliation(s)
- Dukas Jurėnas
- Department of Biochemistry and Molecular Biology, Vilnius University Joint Life Sciences Center, Vilnius, Lithuania; Cellular and Molecular Microbiology (CM2), Faculté des Sciences, Université Libre de Bruxelles (ULB), Belgium
| | - Abel Garcia-Pino
- Cellular and Molecular Microbiology (CM2), Faculté des Sciences, Université Libre de Bruxelles (ULB), Belgium
| | - Laurence Van Melderen
- Cellular and Molecular Microbiology (CM2), Faculté des Sciences, Université Libre de Bruxelles (ULB), Belgium.
| |
Collapse
|
28
|
Hall AMJ, Gollan B, Helaine S. Toxin–antitoxin systems: reversible toxicity. Curr Opin Microbiol 2017; 36:102-110. [DOI: 10.1016/j.mib.2017.02.003] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2016] [Revised: 01/06/2017] [Accepted: 02/04/2017] [Indexed: 10/20/2022]
|
29
|
Modular transcriptional repertoire and MicroRNA target analyses characterize genomic dysregulation in the thymus of Down syndrome infants. Oncotarget 2016; 7:7497-533. [PMID: 26848775 PMCID: PMC4884935 DOI: 10.18632/oncotarget.7120] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2015] [Accepted: 01/23/2016] [Indexed: 12/25/2022] Open
Abstract
Trisomy 21-driven transcriptional alterations in human thymus were characterized through gene coexpression network (GCN) and miRNA-target analyses. We used whole thymic tissue--obtained at heart surgery from Down syndrome (DS) and karyotipically normal subjects (CT)--and a network-based approach for GCN analysis that allows the identification of modular transcriptional repertoires (communities) and the interactions between all the system's constituents through community detection. Changes in the degree of connections observed for hierarchically important hubs/genes in CT and DS networks corresponded to community changes. Distinct communities of highly interconnected genes were topologically identified in these networks. The role of miRNAs in modulating the expression of highly connected genes in CT and DS was revealed through miRNA-target analysis. Trisomy 21 gene dysregulation in thymus may be depicted as the breakdown and altered reorganization of transcriptional modules. Leading networks acting in normal or disease states were identified. CT networks would depict the "canonical" way of thymus functioning. Conversely, DS networks represent a "non-canonical" way, i.e., thymic tissue adaptation under trisomy 21 genomic dysregulation. This adaptation is probably driven by epigenetic mechanisms acting at chromatin level and through the miRNA control of transcriptional programs involving the networks' high-hierarchy genes.
Collapse
|
30
|
Kabra A, Fatma F, Shahid S, Pathak PP, Yadav R, Pulavarti SK, Tripathi S, Jain A, Arora A. Structural characterization of peptidyl-tRNA hydrolase from Mycobacterium smegmatis by NMR spectroscopy. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2016; 1864:1304-14. [DOI: 10.1016/j.bbapap.2016.06.013] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2016] [Revised: 06/24/2016] [Accepted: 06/28/2016] [Indexed: 10/21/2022]
|
31
|
A Salmonella Toxin Promotes Persister Formation through Acetylation of tRNA. Mol Cell 2016; 63:86-96. [PMID: 27264868 PMCID: PMC4942678 DOI: 10.1016/j.molcel.2016.05.002] [Citation(s) in RCA: 187] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2016] [Revised: 04/22/2016] [Accepted: 04/29/2016] [Indexed: 11/23/2022]
Abstract
The recalcitrance of many bacterial infections to antibiotic treatment is thought to be due to the presence of persisters that are non-growing, antibiotic-insensitive cells. Eventually, persisters resume growth, accounting for relapses of infection. Salmonella is an important pathogen that causes disease through its ability to survive inside macrophages. After macrophage phagocytosis, a significant proportion of the Salmonella population forms non-growing persisters through the action of toxin-antitoxin modules. Here we reveal that one such toxin, TacT, is an acetyltransferase that blocks the primary amine group of amino acids on charged tRNA molecules, thereby inhibiting translation and promoting persister formation. Furthermore, we report the crystal structure of TacT and note unique structural features, including two positively charged surface patches that are essential for toxicity. Finally, we identify a detoxifying mechanism in Salmonella wherein peptidyl-tRNA hydrolase counteracts TacT-dependent growth arrest, explaining how bacterial persisters can resume growth. TacT promotes Salmonella persister formation by inhibiting translation TacT is an acetyltransferase with positively charged patches essential for toxicity TacT blocks the primary amine group of amino acids on charged tRNA molecules Salmonella detoxifies TacT-corrupted tRNAs, allowing bacterial growth to resume
Collapse
|