1
|
Qiu C, Wu H, Shi W. Characterization of stem cell subtypes and prognostic signature in hepatocellular carcinoma. J Cancer Res Clin Oncol 2023; 149:14081-14100. [PMID: 37548770 DOI: 10.1007/s00432-023-05239-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Accepted: 07/31/2023] [Indexed: 08/08/2023]
Abstract
BACKGROUND Cancer stem cells (CSCs) were linked to cancer aggressiveness and poor prognosis in patients with hepatocellular carcinoma (HCC). METHODS We integrated two external HCC cohorts to develop the stem cell subtypes according to unsupervised clustering with 26 stem cell gene sets. Between the subtypes, differences in prognosis, clinical characteristics, recognized HCC subtypes, metabolic profile, immune-related features, somatic mutation, and drug sensitivity were examined. The prognostic signature was created, and validated by numerous cohorts, and used to assess the efficacy of immunotherapy and transcatheter arterial chemoembolization (TACE) treatment. The nomogram was developed based on the signature and clinical features. We further examined the function of KIF20A in HCC and proved that KIF20A had the potential to regulate the stemness of HCC cells through western blot. RESULTS Low stem cell patterns, a good prognosis, positive clinical features, specific molecular subtypes, low metastatic characteristics, and an abundance of metabolic and immunological aspects were associated with Cluster 1, whereas Cluster 2 was the reverse. Chemotherapy and immunotherapy were more effective in Cluster 1. Cluster 1 and CTNNB1 and ALB mutation were more closely. Additionally, the prognosis, immunotherapeutic, and TACE therapy responses were all worse in the high-risk group. The nomogram could predict the survival probability of HCC patients. KIF20A was discovered to be overexpressed in HCC and was revealed to be connected to the stemness of the HepG2 cell line. CONCLUSIONS Two stem cell subgroups with different prognoses, metabolic, and immunological characteristics in HCC patients were identified. We also created a 7-gene prognostic signature and a nomogram to estimate the survival probability. The function of KIF20A in HCC stemness was initially examined.
Collapse
Affiliation(s)
- Chenjie Qiu
- Department of General Surgery, Changzhou Hospital of Traditional Chinese Medicine, Changzhou, China.
| | - Huili Wu
- Department of Endodontics, Changzhou Hospital of Traditional Chinese Medicine, Changzhou, China
| | - Wenxiang Shi
- Department of Pediatric Cardiology, Xinhua Hospital, Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| |
Collapse
|
2
|
Ye SP, Yu HX, Lu WJ, Wang JF, Li TY, Shi J, Cheng XY. Stratifin Promotes Hepatocellular Carcinoma Progression by Modulating the Wnt/ β-Catenin Pathway. Int J Genomics 2023; 2023:9731675. [PMID: 37587914 PMCID: PMC10427227 DOI: 10.1155/2023/9731675] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 07/05/2023] [Accepted: 07/31/2023] [Indexed: 08/18/2023] Open
Abstract
Abnormal stratifin (SFN) expression is closely related to the progression of several human cancers, but the potential roles of SFN in hepatocellular carcinoma (HCC) remain largely unknown. In this study, we found that SFN was upregulated in HCC cell lines and tissues and was positively associated with tumor size, poor differentiation, Tumor Node Metastasis (TNM) stage, and vascular invasion. In addition, high expression levels of SFN were associated with poor overall survival and disease-free survival. Biologically, downregulation of SFN suppressed tumor cell proliferation, epithelial-mesenchymal transition (EMT), invasion, and migration in vitro and tumor growth in vivo. However, overexpression of SFN promoted cell proliferation, EMT, invasion, and migration in vitro and tumor growth in vivo. Mechanistically, overexpression of SFN activated the Wnt/β-catenin pathway by promoting Glycogen synthase kinase-3 beta (GSK-3β) phosphorylation, decreasing β-catenin phosphorylation, promoting β-catenin transport into the nucleus, and enhancing the expression of c-Myc, whereas depletion of SFN inhibited the Wnt/β-catenin pathway. In addition, TOPFlash/FOPFlash reporter assays showed that overexpression or downregulation of SFN obviously increased or decreased, respectively, the activity of the Wnt/β-catenin pathway. Our results indicated that SFN plays an important role in HCC, possibly providing a prognostic factor and therapeutic target for HCC.
Collapse
Affiliation(s)
- Shan-Ping Ye
- Department of General Surgery, The First Affiliated Hospital of Nanchang University, No. 17 Yongwaizheng Street, Nanchang, Jiangxi Province 330006, China
| | - Hong-Xin Yu
- Department of General Surgery, The First Affiliated Hospital of Nanchang University, No. 17 Yongwaizheng Street, Nanchang, Jiangxi Province 330006, China
| | - Wei-Jie Lu
- Department of General Surgery, The First Affiliated Hospital of Nanchang University, No. 17 Yongwaizheng Street, Nanchang, Jiangxi Province 330006, China
| | - Jun-Fu Wang
- Department of General Surgery, The First Affiliated Hospital of Nanchang University, No. 17 Yongwaizheng Street, Nanchang, Jiangxi Province 330006, China
| | - Tai-Yuan Li
- Department of General Surgery, The First Affiliated Hospital of Nanchang University, No. 17 Yongwaizheng Street, Nanchang, Jiangxi Province 330006, China
| | - Jun Shi
- Department of General Surgery, The First Affiliated Hospital of Nanchang University, No. 17 Yongwaizheng Street, Nanchang, Jiangxi Province 330006, China
| | - Xiao-Ye Cheng
- Department of Hematology, The First Affiliated Hospital of Nanchang University, No. 17 Yongwaizheng Street, Nanchang, Jiangxi Province 330006, China
| |
Collapse
|
3
|
Jiang L, Xu F, Li C, Liu T, Zhao Q, Liu Y, Zhao Y, Li Y, Zhang Z, Tang X, Zhang J. Sulfotransferase 1C2 promotes hepatocellular carcinoma progression by enhancing glycolysis and fatty acid metabolism. Cancer Med 2023; 12:10738-10754. [PMID: 36880364 PMCID: PMC10225225 DOI: 10.1002/cam4.5759] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 11/16/2022] [Accepted: 12/01/2022] [Indexed: 03/08/2023] Open
Abstract
BACKGROUND Hepatocellular carcinoma (HCC) is aggressive liver cancer. Despite advanced imaging and other diagnostic measures, HCC in a significant portion of patients had reached the advanced stage at the first diagnosis. Unfortunately, there is no cure for advanced HCC. As a result, HCC is still a leading cause of cancer death, and there is a pressing need for new diagnostic markers and therapeutic targets. METHODS We investigated sulfotransferase 1C2 (SUTL1C2), which we recently showed was overexpressed in human HCC cancerous tissues. Specifically, we analyzed the effects of SULT1C2 knockdown on the growth, survival, migration, and invasiveness of two HCC cell lines, i.e., HepG2 and Huh7 cells. We also studied the transcriptomes and metabolomes in the two HCC cell lines before and after SULT1C2 knockdown. Based on the transcriptome and metabolome data, we further investigated the SULT1C2 knockdown-mediated shared changes, i.e., glycolysis and fatty acid metabolism, in the two HCC cell lines. Finally, we performed rescue experiments to determine whether the inhibitory effects of SULT1C2 knockdown could be rescued via overexpression. RESULTS We showed that SULT1C2 overexpression promoted the growth, survival, migration, and invasiveness of HCC cells. In addition, SULT1C2 knockdown resulted in a wide range of gene expression and metabolome changes in HCC cells. Moreover, analysis of shared alterations showed that SULT1C2 knockdown significantly suppressed glycolysis and fatty acid metabolism, which could be rescued via SULT1C2 overexpression. CONCLUSIONS Our data suggest that SULT1C2 is a potential diagnostic marker and therapeutic target for human HCC.
Collapse
Affiliation(s)
- Liya Jiang
- Henan Institute of Medical and Pharmaceutical SciencesZhengzhou UniversityZhengzhouHenanChina
- School of Life SciencesZhengzhou UniversityZhengzhouHenanChina
| | - Fang Xu
- Henan Institute of Medical and Pharmaceutical SciencesZhengzhou UniversityZhengzhouHenanChina
| | - Chenglong Li
- School of Basic Medical SciencesZhengzhou UniversityZhengzhouHenanChina
| | - Ting Liu
- BGI College & Henan Institute of Medical and Pharmaceutical SciencesZhengzhou UniversityZhengzhouHenanChina
| | - Qianwei Zhao
- Henan Institute of Medical and Pharmaceutical SciencesZhengzhou UniversityZhengzhouHenanChina
- Henan Key Laboratory of Tumor Epidemiology and State Key Laboratory of Esophageal Cancer Prevention & TreatmentZhengzhou UniversityZhengzhouHenanChina
| | - Yixian Liu
- Henan Institute of Medical and Pharmaceutical SciencesZhengzhou UniversityZhengzhouHenanChina
| | - Ying Zhao
- Henan Institute of Medical and Pharmaceutical SciencesZhengzhou UniversityZhengzhouHenanChina
| | - Yamei Li
- School of Basic Medical SciencesZhengzhou UniversityZhengzhouHenanChina
| | - Zhendong Zhang
- BGI College & Henan Institute of Medical and Pharmaceutical SciencesZhengzhou UniversityZhengzhouHenanChina
| | - Xiaolei Tang
- Department of Veterinary Biomedical Sciences, College of Veterinary MedicineLong Island UniversityBrookvilleNew YorkUSA
- Division of Regenerative Medicine, Department of Medicine, Department of Basic Science, School of MedicineLoma Linda UniversityLoma LindaCaliforniaUSA
| | - Jintao Zhang
- Henan Institute of Medical and Pharmaceutical SciencesZhengzhou UniversityZhengzhouHenanChina
- Henan Key Laboratory of Tumor Epidemiology and State Key Laboratory of Esophageal Cancer Prevention & TreatmentZhengzhou UniversityZhengzhouHenanChina
| |
Collapse
|
4
|
Abstract
Hepatocellular carcinoma (HCC) belongs to the most prevalent and deadliest cancers worldwide. It can be attributed to well-defined risk factors (mainly chronic viral hepatitis and alcoholic/nonalcoholic steatohepatitis) leading to liver cirrhosis, a premalignant condition for the development of preneoplastic hepatocellular lesions and finally liver cancer. By applying strict morphological criteria and a panel of immunohistological markers, early HCC can be differentiated from its precursor lesions and other highly differentiated hepatocellular lesions even in most biopsy specimens. Integrative characterization led to the association of histological features and molecular subgroups of human HCC. This potentially relevant clinical development was recognized by the recently updated WHO classification of liver cancer resulting in the introduction of several HCC subtypes. These are characterized by a distinct combination of histological and molecular features, biological behavior, and clinical characteristics, allowing for a distinction from other HCC without specified features. Whether this development sets the corner stone for precision oncology of human HCC patients must be monitored.
Collapse
Affiliation(s)
- Thomas Longerich
- Pathologisches Institut, Uniklinikum Heidelberg, Im Neuenheimer Feld 224, 69120, Heidelberg, Deutschland.
| |
Collapse
|
5
|
Suárez-Bonnet A, Priestnall SL, Ramírez GA, Molín J, Jaber JR. Aberrant Expression of Cell Cycle Regulator 14-3-3-σ and E-Cadherin in a Metastatic Cholangiocarcinoma in a Vervet Monkey (Chlorocebus pygerythrus). J Comp Pathol 2020; 179:25-30. [PMID: 32958143 DOI: 10.1016/j.jcpa.2020.07.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Revised: 06/04/2020] [Accepted: 07/01/2020] [Indexed: 01/20/2023]
Abstract
We present a unique case of metastatic cholangiocarcinoma with concurrent abdominal cestodiasis in an African green monkey (Chlorocebus pygerythrus) that presented with respiratory insufficiency and abdominal discomfort. There were multiple white-grey masses in the liver and colonic serosa alongside intra-abdominal parasitic cysts. Histopathologically, the liver masses were composed of poorly-differentiated epithelial cells that formed densely cellular solid areas and trabeculae. The neoplastic cells were strongly immunopositive for CK7 but negative for Hep-Par1 antigen, which confirmed a diagnosis of cholangiocarcinoma. Interestingly, there was strong and diffuse neoexpression in the tumour of the cell cycle regulator 14-3-3σ, which is not constitutively expressed in normal liver. There was aberrantly strong expression of E-cadherin, a key cell-cell adhesion protein, in neoplastic cells with evidence of cytoplasmic internalization. This is the first immunohistochemical analysis of 14-3-3σ and E-cadherin in a liver neoplasm in an animal species and the use of these markers requires further investigation in animal liver neoplasms.
Collapse
Affiliation(s)
- A Suárez-Bonnet
- Department of Pathobiology and Population Sciences, The Royal Veterinary College, Hatfield, UK.
| | - S L Priestnall
- Department of Pathobiology and Population Sciences, The Royal Veterinary College, Hatfield, UK
| | - G A Ramírez
- Department of Animal Science, Universitat de Lleida, Lleida, Spain
| | - J Molín
- Department of Animal Science, Universitat de Lleida, Lleida, Spain
| | - J R Jaber
- Morphology Department, Universidad de Las Palmas de Gran Canaria, Las Palmas, Spain
| |
Collapse
|
6
|
Gümüş Güler B, Özler S. Increased syndecan-1 and glypican-3 predict poor perinatal outcome and treatment resistance in intrahepatic cholestasis. Hepatobiliary Pancreat Dis Int 2020; 19:271-276. [PMID: 31919038 DOI: 10.1016/j.hbpd.2019.12.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/09/2019] [Accepted: 12/10/2019] [Indexed: 02/05/2023]
Abstract
BACKGROUND Intrahepatic cholestasis of pregnancy (ICP) increases the risk of adverse pregnancy outcomes. This study aimed to explore the association between serum syndecan-1 and glypican-3 levels and the adverse perinatal outcome as well as the responses to the treatment of ursodeoxycholic acid (UDCA). METHODS This prospective, case control study included 88 pregnant women (44 women with ICP and 44 healthy controls). The primary end points were the perinatal outcome and the response to UDCA therapy. A logistic regression model was used to identify the independent risk factors of adverse pregnancy outcomes and reduced response to UDCA therapy. RESULTS Women with ICP had significantly higher serum syndecan-1 (1.27 ± 0.36 ng/mL vs. 0.98 ± 0.50 ng/mL; P = 0.003), glypican-3 (1.78 ± 0.13 ng/mL vs.1.69 ± 0.16 ng/mL; P = 0.004), AST (128.59 ± 1.44 vs. 13.29 ± 1.32 U/L; P < 0.001), and ALT (129.84 ± 1.53 vs. 8.00 ± 3.67 U/L; P < 0.001) levels compared with the controls. The increased levels of syndecan-1 (OR = 4.715, 95% CI: 1.554-14.310; P = 0.006), glypican-3 (OR = 8.465, 95% CI: 3.372-21.248; P = 0.007), ALT (OR = 1.382, 95% CI: 1.131-1.690; P = 0.002), and postprandial bile acid (PBA) (OR = 3.392, 95% CI: 1.003-12.869; P = 0.026) were correlated to ICP. The adverse neonatal outcome was related to increased glypican-3 (OR = 4.275, 95% CI: 2.726-5.635; P = 0.039), and PBA (OR = 3.026, 95% CI: 1.069-13.569; P = 0.037). Increases of syndecan-1 (OR = 7.464, 95% CI: 2.130-26.153, P = 0.017) and glypican-3 (OR = 6.194, 95% CI: 2.951-13.002; P = 0.025) were the risk factors of decreased response to UDCA treatment. CONCLUSION Syndecan-1 and glypican-3 might be powerful determinants in predicting adverse perinatal outcome in patients with ICP, and they can be used to predict the response to the UDCA treatment.
Collapse
Affiliation(s)
- Başak Gümüş Güler
- Department of Health Sciences, Istinye University, Istanbul 34010, Turkey
| | - Sibel Özler
- Department of Perinatology, Selcuk University Faculty of Medicine, Konya 42130, Turkey.
| |
Collapse
|
7
|
Identification of a Novel Eight-lncRNA Prognostic Signature for HBV-HCC and Analysis of Their Functions Based on Coexpression and ceRNA Networks. BIOMED RESEARCH INTERNATIONAL 2020; 2020:8765461. [PMID: 32382578 PMCID: PMC7180394 DOI: 10.1155/2020/8765461] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/01/2019] [Revised: 02/09/2020] [Accepted: 02/12/2020] [Indexed: 02/07/2023]
Abstract
Studies have demonstrated the prognosis potential of long noncoding RNAs (lncRNAs) for hepatocellular carcinoma (HCC), but specific lncRNAs for hepatitis B virus- (HBV-) related HCC have rarely been reported. This study was aimed at identifying a lncRNA prognostic signature for HBV-HCC and exploring their underlying functions. The sequencing dataset was collected from The Cancer Genome Atlas database as the training set, while the microarray dataset was obtained from the European Bioinformatics Institute database (E-TABM-36) as the validation set. Univariate and multivariate Cox regression analyses identified that eight lncRNAs (TSPEAR-AS1, LINC00511, LINC01136, MKLN1-AS, LINC00506, KRTAP5-AS1, ZNF252P-AS1, and THUMPD3-AS1) were significantly associated with overall survival (OS). These eight lncRNAs were used to construct a risk score model. The Kaplan-Meier survival curve results showed that this risk score can significantly differentiate the OS between the high-risk group and the low-risk group. Receiver operating characteristic curve analysis demonstrated that this risk score exhibited good prediction effectiveness (area under the curve (AUC) = 0.990 for the training set; AUC = 0.903 for the validation set). Furthermore, this lncRNA risk score was identified as an independent prognostic factor in the multivariate analysis after adjusting other clinical characteristics. The crucial coexpression (LINC00511-CABYR, THUMPD3-AS1-TRIP13, LINC01136-SFN, LINC00506-ANLN, and KRTAP5-AS1/TSPEAR-AS1/MKLN1-AS/ZNF252P-AS1-MC1R) or competing endogenous RNA (THUMPD3-AS1-hsa-miR-450a-TRIP13) interaction axes were identified to reveal the possible functions of lncRNAs. These genes were enriched into cell cycle-related biological processes or pathways. In conclusion, our study identified a novel eight-lncRNA prognosis signature for HBV-HCC patients and these lncRNAs may be potential therapeutic targets.
Collapse
|
8
|
Zhang X, Wang L, Yan Y. Identification of potential key genes and pathways in hepatitis B virus-associated hepatocellular carcinoma by bioinformatics analyses. Oncol Lett 2020; 19:3477-3486. [PMID: 32269621 PMCID: PMC7138035 DOI: 10.3892/ol.2020.11470] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2019] [Accepted: 01/24/2020] [Indexed: 12/12/2022] Open
Abstract
Chronic hepatitis B virus (HBV) is one of the leading causes of hepatocellular carcinoma (HCC). The precise molecular mechanisms by which HBV contributes to HCC development are not fully understood. The key genes and pathways involved in the transformation of nontumor hepatic tissues into HCC tissues in patients with HBV infection are essential to guide the treatment of HBV-associated HCC. Five datasets were collected from the Gene Expression Omnibus database to form a large cohort. Differentially expressed genes (DEGs) were identified between HCC tissues and nontumor hepatic tissues from HBV-infected patients using the ‘limma’ package. The top 50 upregulated and top 50 downregulated DEGs in HCC vs. nontumor tissues were demonstrated in subsets by heat maps. Based on the DEGs, Gene Ontology functional and Kyoto Encyclopedia of Genes and Genomes pathways enrichment analyses were performed. Several key pathways of the up- and downregulated DEGs were identified and presented by protein-protein interaction (PPI) networks. A total of 1,934 DEGs were identified. The upregulated DEGs were primarily associated with the ‘cell cycle’. Among the DEGs enriched in the ‘cell cycle’ pathway, 6 genes had a log2-fold change >2: SFN, BUB1B, TTK, CCNB1, CDK1 and CDC20. The downregulated DEGs were primarily associated with the metabolic pathways, such as ‘carbon metabolism’, ‘glycine, serine and threonine metabolism’, ‘tryptophan metabolism’, ‘retinol metabolism’ and ‘alanine, aspartate and glutamate metabolism’. The DEGs in the ‘cell cycle’ and ‘metabolic pathways’ were presented by the PPI networks respectively. Overall, the present study provides new insights into the specific etiology of HCC and molecular mechanisms for the transformation of nontumor hepatic tissues into HCC tissues in patients with a history of HBV infection and several potential therapeutic targets for targeted therapy in these patients.
Collapse
Affiliation(s)
- Xiang Zhang
- Department of General Surgery, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Lingchen Wang
- Department of Biostatistics and Epidemiology, School of Public Health, Nanchang University, Nanchang, Jiangxi 330006, P.R. China.,Jiangxi Provincial Key Laboratory of Preventive Medicine, Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Yehong Yan
- Department of General Surgery, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| |
Collapse
|
9
|
Alanazi B, Munje CR, Rastogi N, Williamson AJK, Taylor S, Hole PS, Hodges M, Doyle M, Baker S, Gilkes AF, Knapper S, Pierce A, Whetton AD, Darley RL, Tonks A. Integrated nuclear proteomics and transcriptomics identifies S100A4 as a therapeutic target in acute myeloid leukemia. Leukemia 2020; 34:427-440. [PMID: 31611628 PMCID: PMC6995695 DOI: 10.1038/s41375-019-0596-4] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2019] [Revised: 09/18/2019] [Accepted: 09/30/2019] [Indexed: 12/20/2022]
Abstract
Inappropriate localization of proteins can interfere with normal cellular function and drive tumor development. To understand how this contributes to the development of acute myeloid leukemia (AML), we compared the nuclear proteome and transcriptome of AML blasts with normal human CD34+ cells. Analysis of the proteome identified networks and processes that significantly affected transcription regulation including misexpression of 11 transcription factors with seven proteins not previously implicated in AML. Transcriptome analysis identified changes in 40 transcription factors but none of these were predictive of changes at the protein level. The highest differentially expressed protein in AML nuclei compared with normal CD34+ nuclei (not previously implicated in AML) was S100A4. In an extended cohort, we found that over-expression of nuclear S100A4 was highly prevalent in AML (83%; 20/24 AML patients). Knock down of S100A4 in AML cell lines strongly impacted their survival whilst normal hemopoietic stem progenitor cells were unaffected. These data are the first analysis of the nuclear proteome in AML and have identified changes in transcription factor expression or regulation of transcription that would not have been seen at the mRNA level. These data also suggest that S100A4 is essential for AML survival and could be a therapeutic target in AML.
Collapse
Affiliation(s)
- Bader Alanazi
- Department of Haematology, Division of Cancer & Genetics, School of Medicine, Cardiff University, Cardiff, CF14 4XN, Wales, UK
| | - Chinmay R Munje
- Department of Haematology, Division of Cancer & Genetics, School of Medicine, Cardiff University, Cardiff, CF14 4XN, Wales, UK
- Paul O'Gorman Leukaemia Research Centre, University of Glasgow, Glasgow, G12 0ZD, UK
| | - Namrata Rastogi
- Department of Haematology, Division of Cancer & Genetics, School of Medicine, Cardiff University, Cardiff, CF14 4XN, Wales, UK
| | - Andrew J K Williamson
- Stoller Biomarker Discovery Centre, The University of Manchester, Manchester, M20 3LJ, UK
| | - Samuel Taylor
- Stoller Biomarker Discovery Centre, The University of Manchester, Manchester, M20 3LJ, UK
| | - Paul S Hole
- Department of Haematology, Division of Cancer & Genetics, School of Medicine, Cardiff University, Cardiff, CF14 4XN, Wales, UK
| | - Marie Hodges
- Department of Haematology, Division of Cancer & Genetics, School of Medicine, Cardiff University, Cardiff, CF14 4XN, Wales, UK
- Cardiff Experimental and Cancer Medicine Centre (ECMC), School of Medicine, Cardiff University, Cardiff, CF14 4XN, Wales, UK
| | - Michelle Doyle
- Department of Haematology, Division of Cancer & Genetics, School of Medicine, Cardiff University, Cardiff, CF14 4XN, Wales, UK
- Cardiff Experimental and Cancer Medicine Centre (ECMC), School of Medicine, Cardiff University, Cardiff, CF14 4XN, Wales, UK
| | - Sarah Baker
- Department of Haematology, Division of Cancer & Genetics, School of Medicine, Cardiff University, Cardiff, CF14 4XN, Wales, UK
- Cardiff Experimental and Cancer Medicine Centre (ECMC), School of Medicine, Cardiff University, Cardiff, CF14 4XN, Wales, UK
| | - Amanda F Gilkes
- Department of Haematology, Division of Cancer & Genetics, School of Medicine, Cardiff University, Cardiff, CF14 4XN, Wales, UK
- Cardiff Experimental and Cancer Medicine Centre (ECMC), School of Medicine, Cardiff University, Cardiff, CF14 4XN, Wales, UK
| | - Steven Knapper
- Department of Haematology, Division of Cancer & Genetics, School of Medicine, Cardiff University, Cardiff, CF14 4XN, Wales, UK
| | - Andrew Pierce
- Stoller Biomarker Discovery Centre, The University of Manchester, Manchester, M20 3LJ, UK
| | - Anthony D Whetton
- Stoller Biomarker Discovery Centre, The University of Manchester, Manchester, M20 3LJ, UK
| | - Richard L Darley
- Department of Haematology, Division of Cancer & Genetics, School of Medicine, Cardiff University, Cardiff, CF14 4XN, Wales, UK
| | - Alex Tonks
- Department of Haematology, Division of Cancer & Genetics, School of Medicine, Cardiff University, Cardiff, CF14 4XN, Wales, UK.
| |
Collapse
|
10
|
Expression profile and prognostic value of SFN in human ovarian cancer. Biosci Rep 2019; 39:BSR20190100. [PMID: 30926680 PMCID: PMC6499453 DOI: 10.1042/bsr20190100] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2019] [Revised: 03/18/2019] [Accepted: 03/28/2019] [Indexed: 12/24/2022] Open
Abstract
Ovarian cancer is a highly lethal cancer in females. Therefore, it is necessary to explore effective biomarkers for the diagnosis and prognosis of the disease. Stratifin (SFN) is a cell cycle checkpoint protein that has been reported to be involved in oncogenesis. Our studies detected the expression of SFN in ovarian cancer by Oncomine, Human Protein Atlas database and ULCAN database. Meanwhile, we found its coexpression gene by cBioPortal online tool and validated their expression in different ovarian cancer cells by western blot and reverse transcription quantitative PCR. Then, we also investigated their prognostic values via the Kaplan–Meier plotter database in different subtypes of ovarian cancer patients. The results demonstrated that SFN was found to be increased in ten various ovarian cancer datasets, compared with healthy tissues. Additionally, up-regulation of SFN expression is associated with age and cancer grades. The higher expression of SFN in all patients with ovarian cancers is significantly correlated with worse postprogression survival. In addition, high SFN expression is associated with significantly worse overall survival in patients who received chemotherapy contains gemcitabine, taxol, taxol+platin, paclitaxel and avastin. In human ovarian carcinoma SKOV3 and A2780 cells, the expression of SFN and its coexpression gene MICB were also increased at protein and mRNA levels compared with the normal ovarian epithelial cells. Based on above results, overexpression of SFN was correlated with the prognosis in ovarian cancer. The present study might be useful for better understanding the clinical significance of SFN mRNA.
Collapse
|
11
|
Fischer HP, Goltz D. Hepatozelluläre Karzinome und leberzellähnliche Tumoren. DER PATHOLOGE 2019; 40:101-118. [DOI: 10.1007/s00292-018-0565-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
12
|
Qiu Y, Dai Y, Zhang C, Yang Y, Jin M, Shan W, Shen J, Lu M, Tang Z, Ju L, Wang Y, Jiao R, Xia Y, Huang G, Yang L, Li Y, Zhang J, Wong VKW, Jiang Z. Arsenic trioxide reverses the chemoresistance in hepatocellular carcinoma: a targeted intervention of 14-3-3η/NF-κB feedback loop. J Exp Clin Cancer Res 2018; 37:321. [PMID: 30572915 PMCID: PMC6302299 DOI: 10.1186/s13046-018-1005-y] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2018] [Accepted: 12/14/2018] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Multi-drug resistance (MDR) is one of the main obstacles for treatment of advanced/recurrent hepatocellular carcinoma (HCC). We have previously identified arsenic trioxide (ATO) as an effective metastasis/angiogenesis inhibitor in HCC. Here, we further found that MDR-HCC cells were more sensitive to ATO. METHODS The MDR-HCC cells were used as experimental models. Biological functions were investigated using cell transfection, polymerase chain reaction, western blot, southwestern blot, immunostaining, immunoprecipitation plus atomic fluorescence spectrometry, and so on. RESULTS The MDR-HCC cells underwent high oxidative stress condition, and employed adaptive mechanisms for them to survive; while ATO abolished such mechanisms via targeting the 14-3-3η/nuclear factor kappa B (NF-κB) feedback Loop. Briefly, in MDR cells, the increase of ROS activated NF-κB signaling, which transcriptionally activated 14-3-3η. Meanwhile, the activation of NF-κB can be constitutively maintained by 14-3-3η. As a NF-κB inhibitor, ATO transcriptionally inhibited the 14-3-3η mRNA level. Meanwhile, ATO was also validated to directly bind to 14-3-3η, enhancing the degradation of 14-3-3η protein in an ubiquitination-dependent manner. Knockdown of 14-3-3η reduced the ATO-induced reversal extents of drug resistance in MDR cells. CONCLUSION 14-3-3η/NF-κB feedback loop plays an important role in maintaining the MDR phenotype in HCC. Moreover, via targeting such feedback loop, ATO could be considered as a potential molecular targeted agent for the treatment of HCC.
Collapse
Affiliation(s)
- Yongxin Qiu
- The Second Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Yi Dai
- Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Jiangsu Collaborative Innovation Center For Cancer Personalized Medicine, School of Public Health, Nanjing Medical University, Nanjing, China
- State Key Laboratory of Quality Research in Chinese Medicine, Macau Institute for Applied Research in Medicine and Health, Macau University of Science and Technology, Macau, China
| | - Chi Zhang
- The Second Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Ye Yang
- Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Jiangsu Collaborative Innovation Center For Cancer Personalized Medicine, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Ming Jin
- Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Jiangsu Collaborative Innovation Center For Cancer Personalized Medicine, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Wenqi Shan
- Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Jiangsu Collaborative Innovation Center For Cancer Personalized Medicine, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Jian Shen
- The Second Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Ming Lu
- The Second Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Zhaoyang Tang
- The Second Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Liang Ju
- The Second Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Yuting Wang
- Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Jiangsu Collaborative Innovation Center For Cancer Personalized Medicine, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Ruonan Jiao
- Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Jiangsu Collaborative Innovation Center For Cancer Personalized Medicine, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Yunwei Xia
- Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Jiangsu Collaborative Innovation Center For Cancer Personalized Medicine, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Guangming Huang
- The Second Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Lihua Yang
- The Second Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Yuan Li
- Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Jiangsu Collaborative Innovation Center For Cancer Personalized Medicine, School of Public Health, Nanjing Medical University, Nanjing, China
- State Key Laboratory of Quality Research in Chinese Medicine, Macau Institute for Applied Research in Medicine and Health, Macau University of Science and Technology, Macau, China
| | - Jianping Zhang
- The Second Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Vincent Kam Wai Wong
- State Key Laboratory of Quality Research in Chinese Medicine, Macau Institute for Applied Research in Medicine and Health, Macau University of Science and Technology, Macau, China
| | - Zhihong Jiang
- State Key Laboratory of Quality Research in Chinese Medicine, Macau Institute for Applied Research in Medicine and Health, Macau University of Science and Technology, Macau, China
| |
Collapse
|
13
|
Huang R, Chen Z, He L, He N, Xi Z, Li Z, Deng Y, Zeng X. Mass spectrometry-assisted gel-based proteomics in cancer biomarker discovery: approaches and application. Theranostics 2017; 7:3559-3572. [PMID: 28912895 PMCID: PMC5596443 DOI: 10.7150/thno.20797] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2017] [Accepted: 07/12/2017] [Indexed: 12/13/2022] Open
Abstract
There is a critical need for the discovery of novel biomarkers for early detection and targeted therapy of cancer, a major cause of deaths worldwide. In this respect, proteomic technologies, such as mass spectrometry (MS), enable the identification of pathologically significant proteins in various types of samples. MS is capable of high-throughput profiling of complex biological samples including blood, tissues, urine, milk, and cells. MS-assisted proteomics has contributed to the development of cancer biomarkers that may form the foundation for new clinical tests. It can also aid in elucidating the molecular mechanisms underlying cancer. In this review, we discuss MS principles and instrumentation as well as approaches in MS-based proteomics, which have been employed in the development of potential biomarkers. Furthermore, the challenges in validation of MS biomarkers for their use in clinical practice are also reviewed.
Collapse
Affiliation(s)
- Rongrong Huang
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China
| | - Zhongsi Chen
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China
| | - Lei He
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China
| | - Nongyue He
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China
- Economical Forest Cultivation and Utilization of 2011 Collaborative Innovation Center in Hunan Province, Hunan Key Laboratory of Green Chemistry and Application of Biological Nanotechnology; Hunan University of Technology, Zhuzhou 412007, China
| | - Zhijiang Xi
- School of Medicine, Yangtze University, Jingzhou 434023, China
| | - Zhiyang Li
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China
- Department of Clinical Laboratory, the Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing 210008, China
| | - Yan Deng
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China
- Economical Forest Cultivation and Utilization of 2011 Collaborative Innovation Center in Hunan Province, Hunan Key Laboratory of Green Chemistry and Application of Biological Nanotechnology; Hunan University of Technology, Zhuzhou 412007, China
| | - Xin Zeng
- Nanjing Maternity and Child Health Medical Institute, Obstetrics and Gynecology Hospital Affiliated to Nanjing Medical University, Nanjing 210004, China
| |
Collapse
|
14
|
Megger DA, Padden J, Rosowski K, Uszkoreit J, Bracht T, Eisenacher M, Gerges C, Neuhaus H, Schumacher B, Schlaak JF, Sitek B. One Sample, One Shot - Evaluation of sample preparation protocols for the mass spectrometric proteome analysis of human bile fluid without extensive fractionation. J Proteomics 2017; 154:13-21. [DOI: 10.1016/j.jprot.2016.11.021] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2016] [Revised: 11/08/2016] [Accepted: 11/29/2016] [Indexed: 12/15/2022]
|
15
|
Megger DA, Rosowski K, Ahrens M, Bracht T, Eisenacher M, Schlaak JF, Weber F, Hoffmann AC, Meyer HE, Baba HA, Sitek B. Tissue-based quantitative proteome analysis of human hepatocellular carcinoma using tandem mass tags. Biomarkers 2016; 22:113-122. [DOI: 10.1080/1354750x.2016.1210678] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Affiliation(s)
| | | | - Maike Ahrens
- Medizinisches Proteom-Center, Ruhr-Universität Bochum, Germany
| | - Thilo Bracht
- Medizinisches Proteom-Center, Ruhr-Universität Bochum, Germany
| | | | - Jörg F. Schlaak
- Department of Gastroenterology and Hepatology, University Hospital of Essen, Germany
| | - Frank Weber
- Department of General, Visceral and Transplantation Surgery, University Hospital of Essen, Germany
| | - Andreas-Claudius Hoffmann
- Department of Medicine (Cancer Research), Molecular Oncology Risk-Profile Evaluation, University Hospital of Essen, Germany
| | - Helmut E. Meyer
- Medizinisches Proteom-Center, Ruhr-Universität Bochum, Germany
| | - Hideo A. Baba
- Department of Pathology, University Hospital of Essen, Germany
| | - Barbara Sitek
- Medizinisches Proteom-Center, Ruhr-Universität Bochum, Germany
| |
Collapse
|
16
|
Differential proteomic and tissue expression analyses identify valuable diagnostic biomarkers of hepatocellular differentiation and hepatoid adenocarcinomas. Pathology 2016; 47:543-50. [PMID: 26308133 DOI: 10.1097/pat.0000000000000298] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The exact discrimination of lesions with true hepatocellular differentiation from secondary tumours and neoplasms with hepatocellular histomorphology like hepatoid adenocarcinomas (HAC) is crucial. Therefore, we aimed to identify ancillary protein biomarkers by using complementary proteomic techniques (2D-DIGE, label-free MS). The identified candidates were immunohistochemically validated in 14 paired samples of hepatocellular carcinoma (HCC) and non-tumourous liver tissue (NT). The candidates and HepPar1/Arginase1 were afterwards tested for consistency in a large cohort of hepatocellular lesions and NT (n = 290), non-hepatocellular malignancies (n = 383) and HAC (n = 13). Eight non-redundant, differentially expressed proteins were suitable for further immunohistochemical validation and four (ABAT, BHMT, FABP1, HAOX1) for further evaluation. Sensitivity and specificity rates for HCC/HAC were as follows: HepPar1 80.2%, 94.3% / 80.2%, 46.2%; Arginase1 82%, 99.4% / 82%, 69.2%; BHMT 61.4%, 93.8% / 61.4%, 100%; ABAT 84.4%, 33.7% / 84.4%, 30.8%; FABP1 87.2%, 95% / 87.2%, 69.2%; HAOX1 95.5%, 36.3% / 95.5%, 46.2%. The best 2×/3× biomarker panels for the diagnosis of HCC consisted of Arginase1/HAOX1 and BHMT/Arginase1/HAOX1 and for HAC consisted of Arginase1/FABP1 and BHMT/Arginase1/FABP1. In summary, we successfully identified, validated and benchmarked protein biomarker candidates of hepatocellular differentiation. BHMT in particular exhibited superior diagnostic characteristics in hepatocellular lesions and specifically in HAC. BHMT is therefore a promising (panel based) biomarker candidate in the differential diagnostic process of lesions with hepatocellular aspect.
Collapse
|
17
|
Markers of Hippo-Pathway Activity in Tumor Forming Liver Lesions. Pathol Oncol Res 2016; 23:33-39. [PMID: 27276915 DOI: 10.1007/s12253-016-0079-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/20/2015] [Accepted: 06/02/2016] [Indexed: 02/06/2023]
Abstract
Hepatocellular Carcinoma (HCC) is a lethal cancer worldwide. Recently, the hippo signaling pathway has been implicated in tumorigenesis of HCC and other malignant tumors. Aim of the study was therefore to evaluate the hippo signaling pathway activity and its clinico-pathological associations and crosstalk in different tumor forming hepatocellular lesions (HCC, hepatocellular adenoma (HCA), focal nodular hyperplasia (FNH) and cirrhosis). A tissue micro array (TMA) from paired human tumorous and non-tumorous (NT) tissue samples of HCC (n = 92), HCA (n = 25), FNH (n = 28) and cirrhosis (n = 28; no NT) was constructed. The hippo-pathway related proteins of MST1/2, (nuclear(n)/cytoplasmic(c)) YAP and (phospho(p)) TAZ and interactors as Glypican3, RASSF1a, pAKT, pERK and pP70S6K were evaluated by immunohistochemistry (IHC). Proliferation was assessed by Ki67-IHC and apoptosis by TUNEL-technique. MST1/2- and nYAP-immunoreactivity was associated with lymph node status (p = 0.048, p = 0.001), higher grading (p = 0.012, p = 0.24) and unfavorable relapse-free survival (p = 0.004, p = 0.003). MST1/2, c/nYAP and pTAZ were significantly different between HCC/NT (p < 0.001, p = 0.029, p < 0.001, p < 0.001) and mono-/polyclonal hepatocellular lesions (HCC/HCA vs. FNH/cirrhosis; all p ≤ 0.001). Phospho-TAZ-negativity and nYAP-positivity were almost exclusively and MST1/2 exclusively detected in HCC. MST1/2 correlated with pP70S6K (p = 0.002), pERK (p = 0.042), RASSF1a-IRS (p = 0.002) and GPC3 (p < 0.001) and nYAP with GPC3 (p = 0.025), higher Ki67-indices (p = 0.016) and lower apoptosis rate (p = 0.078). MST1/2 and nYAP are unfavorable prognostic markers associated with an aggressive tumor-phenotype in HCC. Positive nYAP- and negative pTAZ-immunostaining were strong indicators of a monoclonal hepatocellular lesion. The unexpected findings for MST1/2 remain to be elucidated.
Collapse
|
18
|
Bertram S, Padden J, Kälsch J, Ahrens M, Pott L, Canbay A, Weber F, Fingas C, Hoffmann AC, Vietor A, Schlaak JF, Eisenacher M, Reis H, Sitek B, Baba HA. Novel immunohistochemical markers differentiate intrahepatic cholangiocarcinoma from benign bile duct lesions. J Clin Pathol 2016; 69:619-26. [PMID: 26729014 DOI: 10.1136/jclinpath-2015-203418] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2015] [Accepted: 11/30/2015] [Indexed: 12/17/2022]
Abstract
AIMS The distinction between intrahepatic cholangiocarcinoma (ICC) and benign bile duct lesions can be challenging. Using our previously identified potential biomarkers for ICC, we examined whether these are useful for the differential diagnosis of ICC, bile duct adenoma and reactive bile duct proliferations in an immunohistochemical approach and identified a diagnostic marker panel including known biomarkers. METHODS Subjects included samples from 77 patients with ICC, 33 patients with bile duct adenoma and 47 patients with ductular reactions in liver cirrhosis. Our previously identified biomarkers (stress-induced phosphoprotein 1 (STIP1), SerpinH1, 14-3-3Sigma) were tested immunohistochemically following comparison with candidates from the literature (cluster of differentiation 56, heat shock protein (HSP)27, HSP70, B-cell-lymphoma2, p53, ki67). RESULTS The expression of SerpinH1 and 14-3-3Sigma was significantly higher in ICC than in bile duct adenomas and ductular reactions (p<0.05), whereas STIP1 expression was significantly higher (p<0.05) in ICC than in ductular reactions, but the difference to the bile duct adenoma group was not significant. A panel of the biomarker SerpinH1, 14-3-3Sigma and ki67 (≥2 marker positive) showed a high diagnostic accuracy (sensitivity 87.8%, specificity 95.9%, accuracy 91.8%) in the differential diagnosis of ICC versus non-malignant bile duct lesions. CONCLUSIONS This suggests that 14-3-3Sigma and SerpinH1 may be useful in the differential diagnosis of malignant, benign and reactive bile duct lesions in addition to ki67 where a cut-off of >5% might be used for the distinction of malignant and non-malignant lesions.
Collapse
Affiliation(s)
- Stefanie Bertram
- Institute of Pathology, University Hospital of Essen, University of Duisburg-Essen, Essen, Germany
| | - Juliet Padden
- Medizinisches Proteom-Center, Ruhr-Universität Bochum, Bochum, Germany
| | - Julia Kälsch
- Institute of Pathology, University Hospital of Essen, University of Duisburg-Essen, Essen, Germany Department of Gastroenterology and Hepatology, University Hospital of Essen, University of Duisburg-Essen, Essen, Germany
| | - Maike Ahrens
- Medizinisches Proteom-Center, Ruhr-Universität Bochum, Bochum, Germany
| | - Leona Pott
- Institute of Pathology, University Hospital of Essen, University of Duisburg-Essen, Essen, Germany Medizinisches Proteom-Center, Ruhr-Universität Bochum, Bochum, Germany
| | - Ali Canbay
- Department of Gastroenterology and Hepatology, University Hospital of Essen, University of Duisburg-Essen, Essen, Germany
| | - Frank Weber
- Department of General, Visceral and Transplantation Surgery, University Hospital of Essen, University of Duisburg-Essen, Essen, Germany
| | - Christian Fingas
- Department of General, Visceral and Transplantation Surgery, University Hospital of Essen, University of Duisburg-Essen, Essen, Germany
| | - Andreas C Hoffmann
- West German Cancer Center Essen, University Hospital of Essen, University of Duisburg-Essen, Essen, Germany
| | - Antonie Vietor
- Institute of Pathology, University Hospital of Essen, University of Duisburg-Essen, Essen, Germany
| | - Joerg F Schlaak
- Department of Gastroenterology and Hepatology, University Hospital of Essen, University of Duisburg-Essen, Essen, Germany
| | - Martin Eisenacher
- Medizinisches Proteom-Center, Ruhr-Universität Bochum, Bochum, Germany
| | - Henning Reis
- Institute of Pathology, University Hospital of Essen, University of Duisburg-Essen, Essen, Germany
| | - Barbara Sitek
- Medizinisches Proteom-Center, Ruhr-Universität Bochum, Bochum, Germany
| | - Hideo A Baba
- Institute of Pathology, University Hospital of Essen, University of Duisburg-Essen, Essen, Germany
| |
Collapse
|
19
|
Naboulsi W, Megger DA, Bracht T, Kohl M, Turewicz M, Eisenacher M, Voss DM, Schlaak JF, Hoffmann AC, Weber F, Baba HA, Meyer HE, Sitek B. Quantitative Tissue Proteomics Analysis Reveals Versican as Potential Biomarker for Early-Stage Hepatocellular Carcinoma. J Proteome Res 2015; 15:38-47. [DOI: 10.1021/acs.jproteome.5b00420] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Affiliation(s)
- Wael Naboulsi
- Medizinisches
Proteom-Center, Ruhr-Universität Bochum, 44801 Bochum, Germany
| | - Dominik A. Megger
- Medizinisches
Proteom-Center, Ruhr-Universität Bochum, 44801 Bochum, Germany
| | - Thilo Bracht
- Medizinisches
Proteom-Center, Ruhr-Universität Bochum, 44801 Bochum, Germany
| | - Michael Kohl
- Medizinisches
Proteom-Center, Ruhr-Universität Bochum, 44801 Bochum, Germany
| | - Michael Turewicz
- Medizinisches
Proteom-Center, Ruhr-Universität Bochum, 44801 Bochum, Germany
| | - Martin Eisenacher
- Medizinisches
Proteom-Center, Ruhr-Universität Bochum, 44801 Bochum, Germany
| | - Don Marvin Voss
- Medizinisches
Proteom-Center, Ruhr-Universität Bochum, 44801 Bochum, Germany
| | | | | | | | | | - Helmut E. Meyer
- Medizinisches
Proteom-Center, Ruhr-Universität Bochum, 44801 Bochum, Germany
| | - Barbara Sitek
- Medizinisches
Proteom-Center, Ruhr-Universität Bochum, 44801 Bochum, Germany
| |
Collapse
|
20
|
Wang Z, Gou W, Liu M, Sang W, Chu H, Zhang W. Expression of P53 and HSP70 in Chronic Hepatitis, Liver Cirrhosis, and Early and Advanced Hepatocellular Carcinoma Tissues and Their Diagnostic Value in Hepatocellular Carcinoma: An Immunohistochemical Study. Med Sci Monit 2015; 21:3209-15. [PMID: 26494212 PMCID: PMC4622226 DOI: 10.12659/msm.895592] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Background Tumor protein (P53) and heat shock protein 70 (HSP70) play key roles in chronic liver diseases. This study aimed to characterize P53 and HSP70 expression in chronic hepatitis (CH), liver cirrhosis (LC), early and advanced HCC, and to analyze their diagnostic value in hepatocellular carcinoma (HCC). Material/Methods Immunohistochemical staining was conducted to evaluate the expression of P53 and HSP70 in 200 human liver tissue specimens, with advanced HCC (n=80), early HCC (n=30), CH (n=30), LC (n=30), and Controls (n=30). Results P53 expression levels were lower in LC than those of HCC, but remained on par with those of CH and Controls. HSP70 expression levels were higher in HCC than those of LC, CH, and Controls. The sensitivity and specificity for HCC diagnosis were: 50.9% and 98.9% for P53, and 78.2 and 77.8% for HSP70, respectively. The sensitivity and specificity of different combinations were: 95.5% and 85.5% with either P53 or HSP70 being positive, and 33.6% and 98.9% if both were positive. Among the differentiation stages marked low, intermediate, and high in HCC, the P53 positive rate was higher in the low than in the intermediate, which was higher than that in the high. HSP70 positive rate was higher in the low and the intermediate than in the high, but no obvious changes were found between the low and the intermediate. Conclusions P53 and HSP70 could be potential biomarkers for HCC diagnosis, and proper combinations of these 2 markers could improve diagnostic accuracy.
Collapse
Affiliation(s)
- Zhi Wang
- Department of Pathology, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang, China (mainland)
| | - Wenbin Gou
- Department of Pathology, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang, China (mainland)
| | - Ming Liu
- Department of Pathology, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang, China (mainland)
| | - Wei Sang
- Department of Pathology, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang, China (mainland)
| | - Hui Chu
- Department of Pathology, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang, China (mainland)
| | - Wei Zhang
- Department of Pathology, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang, China (mainland)
| |
Collapse
|
21
|
Cantor DI, Nice EC, Baker MS. Recent findings from the human proteome project: opening the mass spectrometry toolbox to advance cancer diagnosis, surveillance and treatment. Expert Rev Proteomics 2015; 12:279-93. [DOI: 10.1586/14789450.2015.1040770] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|