1
|
Alzheimer M, Froschauer K, Svensson SL, König F, Hopp E, Drobnič T, Henderson LD, Ribardo DA, Hendrixson DR, Bischler T, Beeby M, Sharma CM. Functional genomics of Campylobacter -host interactions in an intestinal tissue model reveals a small lipoprotein essential for flagellar assembly. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.04.02.646747. [PMID: 40236077 PMCID: PMC11996450 DOI: 10.1101/2025.04.02.646747] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/17/2025]
Abstract
Campylobacter jejuni is currently the most common cause of bacterial gastroenteritis worldwide. However, its genome provides few clues about how it interacts with the host. Moreover, infection screens have often been limited to classical cell culture or animal models. To identify C. jejuni genes involved in host cell interactions, we applied transposon sequencing in a humanized 3D intestinal infection model based on tissue engineering. This revealed key proteins required for host cell adherence and/or internalization, including an Rrf2 family transcriptional regulator as well as three so far uncharacterized genes ( pflC / Cj1643 , pflD / Cj0892c , pflE / Cj0978c ), which we demonstrate to encode factors essential for motility. Deletion mutants of pflC / D / E are non-motile but retain intact, paralysed flagella filaments. We demonstrate that two of these newly identified motility proteins, PflC and PflD, are components of the C. jejuni 's periplasmic disk structures of the high torque motor. The third gene, pflE , encodes a small protein of only 57 aa. Using CryoET imaging we uncovered that the small protein has a striking effect on motor biogenesis, leading to a complete loss of the flagellar disk and motor structures upon its deletion. While PflE does not appear to be a structural component of the motor itself, our data suggests that it is a lipoprotein and supports localization of the main basal disk protein FlgP, which is the first assembly step of the flagellar disk structure. Despite being annotated as a lipoprotein, we find that C. jejuni FlgP instead relies on PflE for its association with the outer membrane. Overall, our genome-wide screen revealed novel C. jejuni host interaction factors including a transcriptional regulator as well as two structural components and a small protein crucial for biogenesis of the C. jejuni high torque flagella motor. Since the flagella machinery is a critical virulence determining factor for C. jejuni , our work demonstrates how such a small protein can, quite literally, bring a bacterial pathogen to a halt.
Collapse
|
2
|
Sun RQ, Dong WX, Zeng JH, Wei HM, Xu L, Sun JQ. Novosphingobium rhizovicinum sp. nov. and Novosphingobium kalidii sp. nov., two novel species isolated from rhizosphere soil and a root of halophyte Kalidium cuspidatum. Int J Syst Evol Microbiol 2025; 75. [PMID: 40063669 DOI: 10.1099/ijsem.0.006710] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/13/2025] Open
Abstract
Two bacteria, designated strain M1R2S20T and RD2P27T, were isolated from rhizosphere soil and a root of Kalidium cuspidatum in Baotou, Inner Mongolia, China. Phylogenetic analyses based on the 16S rRNA gene sequences revealed that strains M1R2S20T and RD2P27T were tightly clustered and both shared the highest 16S rRNA gene similarities (98.6 and 98.5 %) to Novosphingobium fluoreni ACCC 19180T and less than 97.8% similarities with all other current type strains. Values of the digital DNA-DNA hybridization (dDDH), the average nucleotide identity based on the blast method (ANIb) and the average amino acid identity (AAI) of the two strains and their closely related species were 32.2, 79.0, and 84.5%, which were lower than the threshold values (70% for dDDH, 95% for ANIb and 95% for AAI). The major fatty acids of strains M1R2S20T and RD2P27T were C18 : 1 ω7c and summed feature 3 (C16 : 1 ω6c and/or C16 : 1 ω7c). The only quinone was ubiquinone-10. Spermidine was the predominant polyamine. The genomic DNA G+C contents for strain M1R2S20T and RD2P27T were 62.4 and 62.7%. The phenotypic, chemotaxonomic and phylogenetic results supported that strains M1R2S20T and RD2P27T could be identified as two novel species within the genus Novosphingobium, for which the name Novosphingobium rhizovicinum sp. nov. and Novosphingobium kalidii sp. nov. are proposed. The type strains are N. rhizovicinum M1R2S20T (=CGMCC 1.62060T=KCTC 8106T) and N. kalidii RD2P27T (=CGMCC 1.62131T=KCTC 8107T).
Collapse
Affiliation(s)
- Rui-Qi Sun
- Ministry of Education Key Laboratory of Ecology and Resource Use of the Mongolian Plateau, School of Ecology and Environment, Inner Mongolia University, Hohhot, 010020, PR China
| | - Wen-Xia Dong
- Ministry of Education Key Laboratory of Ecology and Resource Use of the Mongolian Plateau, School of Ecology and Environment, Inner Mongolia University, Hohhot, 010020, PR China
| | - Jia-Hui Zeng
- Ministry of Education Key Laboratory of Ecology and Resource Use of the Mongolian Plateau, School of Ecology and Environment, Inner Mongolia University, Hohhot, 010020, PR China
| | - Hua-Mei Wei
- Ministry of Education Key Laboratory of Ecology and Resource Use of the Mongolian Plateau, School of Ecology and Environment, Inner Mongolia University, Hohhot, 010020, PR China
| | - Lian Xu
- Jiangsu Key Lab for Organic Solid Waste Utilization, Educational Ministry Engineering Center of Resource-saving Fertilizers, Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, Nanjing Agricultural University, Nanjing, 210095, PR China
| | - Ji-Quan Sun
- Ministry of Education Key Laboratory of Ecology and Resource Use of the Mongolian Plateau, School of Ecology and Environment, Inner Mongolia University, Hohhot, 010020, PR China
| |
Collapse
|
3
|
dos Santos NM, Picinato BA, Santos LS, de Araújo HL, Balan A, Koide T, Marques MV. Mapping the IscR regulon sheds light on the regulation of iron homeostasis in Caulobacter. Front Microbiol 2024; 15:1463854. [PMID: 39411446 PMCID: PMC11475020 DOI: 10.3389/fmicb.2024.1463854] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Accepted: 08/28/2024] [Indexed: 10/19/2024] Open
Abstract
The role of the iron-sulfur [Fe-S] cluster transcriptional regulator IscR in maintaining [Fe-S] homeostasis in bacteria is still poorly characterized in many groups. Caulobacter crescentus and other Alphaproteobacteria have a single operon encoding [Fe-S] cluster biosynthesis enzymes. We showed that the expression of this operon increases in iron starvation, but not in oxidative stress, and is controlled mainly by IscR. Transcriptome analysis comparing an iscR null mutant strain with the wild-type (wt) strain identified 94 differentially expressed genes (DEGs), with 47 upregulated and 47 downregulated genes in the ΔiscR mutant. We determined the IscR binding sites in conditions of sufficient or scarce iron by Chromatin Immunoprecipitation followed by DNA sequencing (ChIP-seq), identifying two distinct putative DNA binding motifs. The estimated IscR regulon comprises 302 genes, and direct binding to several regulatory regions was shown by Electrophoresis Mobility Shift Assay (EMSA). The results showed that the IscR and Fur regulons partially overlap and that IscR represses the expression of the respiration regulator FixK, fine-tuning gene regulation in response to iron and redox balance.
Collapse
Affiliation(s)
- Naara M. dos Santos
- Departamento de Microbiologia, Instituto de Ciências Biomédicas, Universidade de São Paulo, São Paulo, Brazil
| | - Beatriz A. Picinato
- Departamento de Bioquímica e Imunologia, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, Brazil
| | - Lucas S. Santos
- Departamento de Microbiologia, Instituto de Ciências Biomédicas, Universidade de São Paulo, São Paulo, Brazil
| | - Hugo L. de Araújo
- Departamento de Microbiologia, Instituto de Ciências Biomédicas, Universidade de São Paulo, São Paulo, Brazil
| | - Andrea Balan
- Departamento de Microbiologia, Instituto de Ciências Biomédicas, Universidade de São Paulo, São Paulo, Brazil
| | - Tie Koide
- Departamento de Bioquímica e Imunologia, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, Brazil
| | - Marilis V. Marques
- Departamento de Microbiologia, Instituto de Ciências Biomédicas, Universidade de São Paulo, São Paulo, Brazil
| |
Collapse
|
4
|
Mettert EL, Kiley PJ. Fe-S cluster homeostasis and beyond: The multifaceted roles of IscR. BIOCHIMICA ET BIOPHYSICA ACTA. MOLECULAR CELL RESEARCH 2024; 1871:119749. [PMID: 38763301 PMCID: PMC11309008 DOI: 10.1016/j.bbamcr.2024.119749] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2024] [Revised: 03/29/2024] [Accepted: 05/08/2024] [Indexed: 05/21/2024]
Abstract
The role of IscR in regulating the transcription of genes involved in Fe-S cluster homeostasis has been well established for the model organism Escherichia coli K12. In this bacterium, IscR coordinates expression of the Isc and Suf Fe-S cluster assembly pathways to meet cellular Fe-S cluster demands shaped by a variety of environmental cues. However, since its initial discovery nearly 25 years ago, there has been growing evidence that IscR function extends well beyond Fe-S cluster homeostasis, not only in E. coli, but in bacteria of diverse lifestyles. Notably, pathogenic bacteria have exploited the ability of IscR to respond to changes in oxygen tension, oxidative and nitrosative stress, and iron availability to navigate their trajectory in their respective hosts as changes in these cues are frequently encountered during host infection. In this review, we highlight these broader roles of IscR in different cellular processes and, in particular, discuss the importance of IscR as a virulence factor for many bacterial pathogens.
Collapse
Affiliation(s)
- Erin L Mettert
- Department of Biomolecular Chemistry, University of Wisconsin-Madison, Madison, WI, USA
| | - Patricia J Kiley
- Department of Biomolecular Chemistry, University of Wisconsin-Madison, Madison, WI, USA.
| |
Collapse
|
5
|
Calvanese M, D’Angelo C, Tutino ML, Lauro C. Whole-Cell Biosensor for Iron Monitoring as a Potential Tool for Safeguarding Biodiversity in Polar Marine Environments. Mar Drugs 2024; 22:299. [PMID: 39057408 PMCID: PMC11277574 DOI: 10.3390/md22070299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 06/05/2024] [Accepted: 06/24/2024] [Indexed: 07/28/2024] Open
Abstract
Iron is a key micronutrient essential for various essential biological processes. As a consequence, alteration in iron concentration in seawater can deeply influence marine biodiversity. In polar marine environments, where environmental conditions are characterized by low temperatures, the role of iron becomes particularly significant. While iron limitation can negatively influence primary production and nutrient cycling, excessive iron concentrations can lead to harmful algal blooms and oxygen depletion. Furthermore, the growth of certain phytoplankton species can be increased in high-iron-content environments, resulting in altered balance in the marine food web and reduced biodiversity. Although many chemical/physical methods are established for inorganic iron quantification, the determination of the bio-available iron in seawater samples is more suitably carried out using marine microorganisms as biosensors. Despite existing challenges, whole-cell biosensors offer other advantages, such as real-time detection, cost-effectiveness, and ease of manipulation, making them promising tools for monitoring environmental iron levels in polar marine ecosystems. In this review, we discuss fundamental biosensor designs and assemblies, arranging host features, transcription factors, reporter proteins, and detection methods. The progress in the genetic manipulation of iron-responsive regulatory and reporter modules is also addressed to the optimization of the biosensor performance, focusing on the improvement of sensitivity and specificity.
Collapse
Affiliation(s)
- Marzia Calvanese
- Department of Chemical Sciences, University of Naples “Federico II”, Complesso Universitario Monte S. Angelo, Via Cintia 4, 80126 Naples, Italy; (M.C.); (C.D.); (M.L.T.)
- Istituto Nazionale Biostrutture e Biosistemi (I.N.B.B), Viale Medaglie D’Oro 305, 00136 Roma, Italy
| | - Caterina D’Angelo
- Department of Chemical Sciences, University of Naples “Federico II”, Complesso Universitario Monte S. Angelo, Via Cintia 4, 80126 Naples, Italy; (M.C.); (C.D.); (M.L.T.)
| | - Maria Luisa Tutino
- Department of Chemical Sciences, University of Naples “Federico II”, Complesso Universitario Monte S. Angelo, Via Cintia 4, 80126 Naples, Italy; (M.C.); (C.D.); (M.L.T.)
- Istituto Nazionale Biostrutture e Biosistemi (I.N.B.B), Viale Medaglie D’Oro 305, 00136 Roma, Italy
| | - Concetta Lauro
- Department of Chemical Sciences, University of Naples “Federico II”, Complesso Universitario Monte S. Angelo, Via Cintia 4, 80126 Naples, Italy; (M.C.); (C.D.); (M.L.T.)
| |
Collapse
|
6
|
Shomar H, Bokinsky G. Harnessing iron‑sulfur enzymes for synthetic biology. BIOCHIMICA ET BIOPHYSICA ACTA. MOLECULAR CELL RESEARCH 2024; 1871:119718. [PMID: 38574823 DOI: 10.1016/j.bbamcr.2024.119718] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 03/13/2024] [Accepted: 03/25/2024] [Indexed: 04/06/2024]
Abstract
Reactions catalysed by iron-sulfur (Fe-S) enzymes appear in a variety of biosynthetic pathways that produce valuable natural products. Harnessing these biosynthetic pathways by expression in microbial cell factories grown on an industrial scale would yield enormous economic and environmental benefits. However, Fe-S enzymes often become bottlenecks that limits the productivity of engineered pathways. As a consequence, achieving the production metrics required for industrial application remains a distant goal for Fe-S enzyme-dependent pathways. Here, we identify and review three core challenges in harnessing Fe-S enzyme activity, which all stem from the properties of Fe-S clusters: 1) limited Fe-S cluster supply within the host cell, 2) Fe-S cluster instability, and 3) lack of specialized reducing cofactor proteins often required for Fe-S enzyme activity, such as enzyme-specific flavodoxins and ferredoxins. We highlight successful methods developed for a variety of Fe-S enzymes and electron carriers for overcoming these difficulties. We use heterologous nitrogenase expression as a grand case study demonstrating how each of these challenges can be addressed. We predict that recent breakthroughs in protein structure prediction and design will prove well-suited to addressing each of these challenges. A reliable toolkit for harnessing Fe-S enzymes in engineered metabolic pathways will accelerate the development of industry-ready Fe-S enzyme-dependent biosynthesis pathways.
Collapse
Affiliation(s)
- Helena Shomar
- Institut Pasteur, université Paris Cité, Inserm U1284, Diversité moléculaire des microbes (Molecular Diversity of Microbes lab), 75015 Paris, France
| | - Gregory Bokinsky
- Department of Bionanoscience, Kavli Institute of Nanoscience, Delft University of Technology, Delft, the Netherlands.
| |
Collapse
|
7
|
Teteneva N, Sanches-Medeiros A, Sourjik V. Genome-wide screen of genetic determinants that govern Escherichia coli growth and persistence in lake water. THE ISME JOURNAL 2024; 18:wrae096. [PMID: 38874171 PMCID: PMC11188689 DOI: 10.1093/ismejo/wrae096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 05/23/2024] [Accepted: 05/31/2024] [Indexed: 06/15/2024]
Abstract
Although enteric bacteria normally reside within the animal intestine, the ability to persist extraintestinally is an essential part of their overall lifestyle, and it might contribute to transmission between hosts. Despite this potential importance, few genetic determinants of extraintestinal growth and survival have been identified, even for the best-studied model, Escherichia coli. In this work, we thus used a genome-wide library of barcoded transposon insertions to systematically identify functional clusters of genes that are crucial for E. coli fitness in lake water. Our results revealed that inactivation of pathways involved in maintaining outer membrane integrity, nucleotide biosynthesis, and chemotaxis negatively affected E. coli growth or survival in this extraintestinal environment. In contrast, inactivation of another group of genes apparently benefited E. coli growth or persistence in filtered lake water, resulting in higher abundance of these mutants. This group included rpoS, which encodes the general stress response sigma factor, as well as genes encoding several other global transcriptional regulators and RNA chaperones, along with several poorly annotated genes. Based on this co-enrichment, we identified these gene products as novel positive regulators of RpoS activity. We further observed that, despite their enhanced growth, E. coli mutants with inactive RpoS had reduced viability in lake water, and they were not enriched in the presence of the autochthonous microbiota. This highlights the duality of the general stress response pathway for E. coli growth outside the host.
Collapse
Affiliation(s)
- Nataliya Teteneva
- Max Planck Institute for Terrestrial Microbiology, D-35043 Marburg, Germany
- Center for Synthetic Microbiology (SYNMIKRO), D-35043 Marburg, Germany
| | - Ananda Sanches-Medeiros
- Max Planck Institute for Terrestrial Microbiology, D-35043 Marburg, Germany
- Center for Synthetic Microbiology (SYNMIKRO), D-35043 Marburg, Germany
| | - Victor Sourjik
- Max Planck Institute for Terrestrial Microbiology, D-35043 Marburg, Germany
- Center for Synthetic Microbiology (SYNMIKRO), D-35043 Marburg, Germany
| |
Collapse
|
8
|
Pollo-Oliveira L, Davis NK, Hossain I, Ho P, Yuan Y, Salguero García P, Pereira C, Byrne SR, Leng J, Sze M, Blaby-Haas CE, Sekowska A, Montoya A, Begley T, Danchin A, Aalberts DP, Angerhofer A, Hunt J, Conesa A, Dedon PC, de Crécy-Lagard V. The absence of the queuosine tRNA modification leads to pleiotropic phenotypes revealing perturbations of metal and oxidative stress homeostasis in Escherichia coli K12. Metallomics 2022; 14:mfac065. [PMID: 36066904 PMCID: PMC9508795 DOI: 10.1093/mtomcs/mfac065] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Accepted: 09/09/2022] [Indexed: 02/04/2023]
Abstract
Queuosine (Q) is a conserved hypermodification of the wobble base of tRNA containing GUN anticodons but the physiological consequences of Q deficiency are poorly understood in bacteria. This work combines transcriptomic, proteomic and physiological studies to characterize a Q-deficient Escherichia coli K12 MG1655 mutant. The absence of Q led to an increased resistance to nickel and cobalt, and to an increased sensitivity to cadmium, compared to the wild-type (WT) strain. Transcriptomic analysis of the WT and Q-deficient strains, grown in the presence and absence of nickel, revealed that the nickel transporter genes (nikABCDE) are downregulated in the Q- mutant, even when nickel is not added. This mutant is therefore primed to resist to high nickel levels. Downstream analysis of the transcriptomic data suggested that the absence of Q triggers an atypical oxidative stress response, confirmed by the detection of slightly elevated reactive oxygen species (ROS) levels in the mutant, increased sensitivity to hydrogen peroxide and paraquat, and a subtle growth phenotype in a strain prone to accumulation of ROS.
Collapse
Affiliation(s)
- Leticia Pollo-Oliveira
- Department of Microbiology and Cell Science, University of Florida, Gainesville, FL 32611, USA
| | - Nick K Davis
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Intekhab Hossain
- Department of Physics, Williams College, Williamstown, MA 01267, USA
| | - Peiying Ho
- Antimicrobial Resistance Interdisciplinary Research Group, Singapore-MIT Alliance for Research and Technology, Singapore 138602, Singapore
| | - Yifeng Yuan
- Department of Microbiology and Cell Science, University of Florida, Gainesville, FL 32611, USA
| | - Pedro Salguero García
- Department of Applied Statistics, Operations Research and Quality, Universitat Politècnica de València, Valencia 46022, Spain
| | - Cécile Pereira
- Department of Microbiology and Cell Science, University of Florida, Gainesville, FL 32611, USA
| | - Shane R Byrne
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Jiapeng Leng
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Melody Sze
- Department of Microbiology and Cell Science, University of Florida, Gainesville, FL 32611, USA
| | - Crysten E Blaby-Haas
- Department of Microbiology and Cell Science, University of Florida, Gainesville, FL 32611, USA
| | | | - Alvaro Montoya
- Department of Chemistry, University of Florida, Gainesville, FL 32611, USA
| | - Thomas Begley
- The RNA Institute and Department of Biology, University at Albany, Albany, NY 12222, USA
| | - Antoine Danchin
- Kodikos Labs, 23 rue Baldassini, Lyon 69007, France
- School of Biomedical Sciences, Li Kashing Faculty of Medicine, University of Hong Kong, Pokfulam, SAR Hong Kong
| | - Daniel P Aalberts
- Department of Physics, Williams College, Williamstown, MA 01267, USA
| | | | - John Hunt
- Department of Biological Sciences, Columbia University, New York, NY 10024, USA
| | - Ana Conesa
- Department of Microbiology and Cell Science, University of Florida, Gainesville, FL 32611, USA
- Institute for Integrative Systems Biology, Spanish National Research Council, Paterna 46980, Spain
| | - Peter C Dedon
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
- Antimicrobial Resistance Interdisciplinary Research Group, Singapore-MIT Alliance for Research and Technology, Singapore 138602, Singapore
| | - Valérie de Crécy-Lagard
- Department of Microbiology and Cell Science, University of Florida, Gainesville, FL 32611, USA
- Genetic Institute, University of Florida, Gainesville, FL 32611, USA
| |
Collapse
|
9
|
Dandapani H, Kankaanpää P, Jones PR, Kallio P. A Plasmid-Based Fluorescence Reporter System for Monitoring Oxidative Damage in E. coli. SENSORS (BASEL, SWITZERLAND) 2022; 22:6334. [PMID: 36080791 PMCID: PMC9459809 DOI: 10.3390/s22176334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 08/11/2022] [Accepted: 08/17/2022] [Indexed: 06/15/2023]
Abstract
Quantitating intracellular oxidative damage caused by reactive oxygen species (ROS) is of interest in many fields of biological research. The current systems primarily rely on supplemented oxygen-sensitive substrates that penetrate the target cells, and react with ROS to produce signals that can be monitored with spectroscopic or imaging techniques. The objective here was to design a new non-invasive analytical strategy for measuring ROS-induced damage inside living cells by taking advantage of the native redox sensor system of E. coli. The developed plasmid-based sensor relies on an oxygen-sensitive transcriptional repressor IscR that controls the expression of a fluorescent marker in vivo. The system was shown to quantitatively respond to oxidative stress induced by supplemented H2O2 and lowered cultivation temperatures. Comparative analysis with fluorescence microscopy further demonstrated that the specificity of the reporter system was equivalent to the commercial chemical probe (CellROX). The strategy introduced here is not dependent on chemical probes, but instead uses a fluorescent expression system to detect enzyme-level oxidative damage in microbial cells. This provides a cheap and simple means for analysing enzyme-level oxidative damage in a biological context in E. coli.
Collapse
Affiliation(s)
- Hariharan Dandapani
- Molecular Plant Biology, Department of Life Technologies, University of Turku, FI-20014 Turku, Finland
| | - Pasi Kankaanpää
- Turku BioImaging and Turku Bioscience Centre, University of Turku, FI-20014 Turku, Finland
- Turku BioImaging and Turku Bioscience Centre, Åbo Akademi University, FI-20500 Turku, Finland
| | - Patrik R. Jones
- Molecular Plant Biology, Department of Life Technologies, University of Turku, FI-20014 Turku, Finland
- Department of Life Sciences, Faculty of Natural Sciences, Imperial College London, London SW7 2BX, UK
| | - Pauli Kallio
- Molecular Plant Biology, Department of Life Technologies, University of Turku, FI-20014 Turku, Finland
| |
Collapse
|
10
|
Rohac R, Crack JC, de Rosny E, Gigarel O, Le Brun NE, Fontecilla-Camps JC, Volbeda A. Structural determinants of DNA recognition by the NO sensor NsrR and related Rrf2-type [FeS]-transcription factors. Commun Biol 2022; 5:769. [PMID: 35908109 PMCID: PMC9338935 DOI: 10.1038/s42003-022-03745-7] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Accepted: 07/21/2022] [Indexed: 11/20/2022] Open
Abstract
Several transcription factors of the Rrf2 family use an iron-sulfur cluster to regulate DNA binding through effectors such as nitric oxide (NO), cellular redox status and iron levels. [4Fe-4S]-NsrR from Streptomyces coelicolor (ScNsrR) modulates expression of three different genes via reaction and complex formation with variable amounts of NO, which results in detoxification of this gas. Here, we report the crystal structure of ScNsrR complexed with an hmpA1 gene operator fragment and compare it with those previously reported for [2Fe-2S]-RsrR/rsrR and apo-IscR/hyA complexes. Important structural differences reside in the variation of the DNA minor and major groove widths. In addition, different DNA curvatures and different interactions with the protein sensors are observed. We also report studies of NsrR binding to four hmpA1 variants, which indicate that flexibility in the central region is not a key binding determinant. Our study explores the promotor binding specificities of three closely related transcriptional regulators. The crystal structure of the iron-sulfur protein NsrR from Streptomyces coelicolor bound to a gene operator fragment is reported and compared with other structures, giving insight into the structural determinants of DNA recognition by the NO sensor.
Collapse
Affiliation(s)
- Roman Rohac
- Univ. Grenoble Alpes, CEA, CNRS, Institut de Biologie Structurale, Metalloproteins Unit, F-38000, Grenoble, France
| | - Jason C Crack
- Centre for Molecular and Structural Biochemistry, School of Chemistry, University of East Anglia, Norwich Research Park, Norwich, NR4 7TJ, UK
| | - Eve de Rosny
- Univ. Grenoble Alpes, CEA, CNRS, Institut de Biologie Structurale, Metalloproteins Unit, F-38000, Grenoble, France
| | - Océane Gigarel
- Univ. Grenoble Alpes, CEA, CNRS, Institut de Biologie Structurale, Metalloproteins Unit, F-38000, Grenoble, France
| | - Nick E Le Brun
- Centre for Molecular and Structural Biochemistry, School of Chemistry, University of East Anglia, Norwich Research Park, Norwich, NR4 7TJ, UK
| | - Juan C Fontecilla-Camps
- Univ. Grenoble Alpes, CEA, CNRS, Institut de Biologie Structurale, Metalloproteins Unit, F-38000, Grenoble, France
| | - Anne Volbeda
- Univ. Grenoble Alpes, CEA, CNRS, Institut de Biologie Structurale, Metalloproteins Unit, F-38000, Grenoble, France.
| |
Collapse
|
11
|
Barreto HC, Abreu B, Gordo I. Fluctuating selection on bacterial iron regulation in the mammalian gut. Curr Biol 2022; 32:3261-3275.e4. [PMID: 35793678 DOI: 10.1016/j.cub.2022.06.017] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Revised: 04/27/2022] [Accepted: 06/08/2022] [Indexed: 10/17/2022]
Abstract
Iron is critical in host-microbe interactions, and its availability is tightly regulated in the mammalian gut. Antibiotics and inflammation can perturb iron availability in the gut, which could alter host-microbe interactions. Here, we show that an adaptive allele of iscR, a major regulator of iron homeostasis of Escherichia coli, is under fluctuating selection in the mouse gut. In vivo competitions in immune-competent, immune-compromised, and germ-free mice reveal that the selective pressure on an iscR mutant E. coli is modulated by the presence of antibiotics, the microbiota, and the immune system. In vitro assays show that iron availability is an important mediator of the iscR allele fitness benefits or costs. We identify Lipocalin-2, a host's immune protein that prevents bacterial iron acquisition, as a major host mechanism underlying fluctuating selection of iscR. Our results provide a remarkable example of strong fluctuating selection acting on bacterial iron regulation in the mammalian gut.
Collapse
Affiliation(s)
- Hugo C Barreto
- Instituto Gulbenkian de Ciência, Rua da Quinta Grande 6, 2780-156 Oeiras, Portugal.
| | - Beatriz Abreu
- Instituto Gulbenkian de Ciência, Rua da Quinta Grande 6, 2780-156 Oeiras, Portugal
| | - Isabel Gordo
- Instituto Gulbenkian de Ciência, Rua da Quinta Grande 6, 2780-156 Oeiras, Portugal.
| |
Collapse
|
12
|
Bartholomew HP, Reynoso G, Thomas BJ, Mullins CM, Smith C, Gentzel IN, Giese LA, Mackey D, Stevens AM. The Transcription Factor Lrp of Pantoea stewartii subsp. stewartii Controls Capsule Production, Motility, and Virulence Important for in planta Growth. Front Microbiol 2022; 12:806504. [PMID: 35237242 PMCID: PMC8882988 DOI: 10.3389/fmicb.2021.806504] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Accepted: 12/17/2021] [Indexed: 11/13/2022] Open
Abstract
The bacterial phytopathogen Pantoea stewartii subsp. stewartii causes leaf blight and Stewart's wilt disease in susceptible corn varieties. A previous RNA-Seq study examined P. stewartii gene expression patterns during late-stage infection in the xylem, and a Tn-Seq study using a P. stewartii mutant library revealed genes essential for colonization of the xylem. Based on these findings, strains with in-frame chromosomal deletions in the genes encoding seven transcription factors (NsrR, IscR, Nac, Lrp, DSJ_00125, DSJ_03645, and DSJ_18135) and one hypothetical protein (DSJ_21690) were constructed to further evaluate the role of the encoded gene products during in vitro and in planta growth. Assays for capsule production and motility indicate that Lrp plays a role in regulating these two key physiological outputs in vitro. Single infections of each deletion strain into the xylem of corn seedlings determined that Lrp plays a significant role in P. stewartii virulence. In planta xylem competition assays between co-inoculated deletion and the corresponding complementation or wild-type strains as well as in vitro growth curves determined that Lrp controls functions important for P. stewartii colonization and growth in corn plants, whereas IscR may have a more generalized impact on growth. Defining the role of essential transcription factors, such as Lrp, during in planta growth will enable modeling of key components of the P. stewartii regulatory network utilized during growth in corn plants.
Collapse
Affiliation(s)
| | - Guadalupe Reynoso
- Department of Biological Sciences, Virginia Tech, Blacksburg, VA, United States
| | - Brandi J. Thomas
- Department of Biological Sciences, Virginia Tech, Blacksburg, VA, United States
| | - Chase M. Mullins
- Department of Biological Sciences, Virginia Tech, Blacksburg, VA, United States
| | - Chastyn Smith
- Department of Biological Sciences, Virginia Tech, Blacksburg, VA, United States
| | - Irene N. Gentzel
- Department of Horticulture & Crop Science, The Ohio State University, Columbus, OH, United States
| | - Laura A. Giese
- Department of Horticulture & Crop Science, The Ohio State University, Columbus, OH, United States
| | - David Mackey
- Department of Horticulture & Crop Science, The Ohio State University, Columbus, OH, United States
- Department of Molecular Genetics and Center for Applied Plant Sciences, The Ohio State University, Columbus, OH, United States
| | - Ann M. Stevens
- Department of Biological Sciences, Virginia Tech, Blacksburg, VA, United States
- Center for Emerging, Zoonotic and Arthropod-Borne Pathogens, Virginia Tech, Blacksburg, VA, United States
| |
Collapse
|
13
|
Exoproteomic analysis of two MLST clade 2 strains of Clostridioides difficile from Latin America reveal close similarities. Sci Rep 2021; 11:13273. [PMID: 34168208 PMCID: PMC8225638 DOI: 10.1038/s41598-021-92684-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Accepted: 06/04/2021] [Indexed: 02/04/2023] Open
Abstract
Clostridioides difficile BI/NAP1/ribotype 027 is an epidemic hypervirulent strain found worldwide, including in Latin America. We examined the genomes and exoproteomes of two multilocus sequence type (MLST) clade 2 C. difficile strains considered hypervirulent: ICC-45 (ribotype SLO231/UK[CE]821), isolated in Brazil, and NAP1/027/ST01 (LIBA5756), isolated during a 2010 outbreak in Costa Rica. C. difficile isolates were cultured and extracellular proteins were analyzed using high-performance liquid chromatography-tandem mass spectrometry. Genomic analysis revealed that these isolates shared most of the gene composition. Only 83 and 290 NAP1/027 genes were considered singletons in ICC-45 and NAP1/027, respectively. Exoproteome analysis revealed 197 proteins, of which 192 were similar in both strains. Only five proteins were exclusive to the ICC-45 strain. These proteins were involved with catalytic and binding functions and indirectly interacted with proteins related to pathogenicity. Most proteins, including TcdA, TcdB, flagellin subunit, and cell surface protein, were overrepresented in the ICC-45 strain; 14 proteins, including mature S-layer protein, were present in higher proportions in LIBA5756. Data are available via ProteomeXchange with identifier PXD026218. These data show close similarity between the genome and proteins in the supernatant of two strains with hypervirulent features isolated in Latin America and underscore the importance of epidemiological surveillance of the transmission and emergence of new strains.
Collapse
|
14
|
Das M, Dewan A, Shee S, Singh A. The Multifaceted Bacterial Cysteine Desulfurases: From Metabolism to Pathogenesis. Antioxidants (Basel) 2021; 10:997. [PMID: 34201508 PMCID: PMC8300815 DOI: 10.3390/antiox10070997] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Revised: 05/01/2021] [Accepted: 05/06/2021] [Indexed: 12/02/2022] Open
Abstract
Living cells have developed a relay system to efficiently transfer sulfur (S) from cysteine to various thio-cofactors (iron-sulfur (Fe-S) clusters, thiamine, molybdopterin, lipoic acid, and biotin) and thiolated tRNA. The presence of such a transit route involves multiple protein components that allow the flux of S to be precisely regulated as a function of environmental cues to avoid the unnecessary accumulation of toxic concentrations of soluble sulfide (S2-). The first enzyme in this relay system is cysteine desulfurase (CSD). CSD catalyzes the release of sulfane S from L-cysteine by converting it to L-alanine by forming an enzyme-linked persulfide intermediate on its conserved cysteine residue. The persulfide S is then transferred to diverse acceptor proteins for its incorporation into the thio-cofactors. The thio-cofactor binding-proteins participate in essential and diverse cellular processes, including DNA repair, respiration, intermediary metabolism, gene regulation, and redox sensing. Additionally, CSD modulates pathogenesis, antibiotic susceptibility, metabolism, and survival of several pathogenic microbes within their hosts. In this review, we aim to comprehensively illustrate the impact of CSD on bacterial core metabolic processes and its requirement to combat redox stresses and antibiotics. Targeting CSD in human pathogens can be a potential therapy for better treatment outcomes.
Collapse
Affiliation(s)
| | | | | | - Amit Singh
- Centre for Infectious Disease Research, Department of Microbiology and Cell Biology, Indian Institute of Science, Bangalore 560012, India; (M.D.); (A.D.); (S.S.)
| |
Collapse
|
15
|
Genome Scale Analysis Reveals IscR Directly and Indirectly Regulates Virulence Factor Genes in Pathogenic Yersinia. mBio 2021; 12:e0063321. [PMID: 34060331 PMCID: PMC8262890 DOI: 10.1128/mbio.00633-21] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The iron-sulfur cluster coordinating transcription factor IscR is important for the virulence of Yersinia pseudotuberculosis and a number of other bacterial pathogens. However, the IscR regulon has not yet been defined in any organism. To determine the Yersinia IscR regulon and identify IscR-dependent functions important for virulence, we employed chromatin immunoprecipitation sequencing (ChIP-Seq) and RNA sequencing (RNA-Seq) of Y. pseudotuberculosis expressing or lacking iscR following iron starvation conditions, such as those encountered during infection. We found that IscR binds to the promoters of genes involved in iron homeostasis, reactive oxygen species metabolism, and cell envelope remodeling and regulates expression of these genes in response to iron depletion. Consistent with our previous work, we also found that IscR binds in vivo to the promoter of the Ysc type III secretion system (T3SS) master regulator LcrF, leading to regulation of T3SS genes. Interestingly, comparative genomic analysis suggested over 93% of IscR binding sites were conserved between Y. pseudotuberculosis and the related plague agent Yersinia pestis. Surprisingly, we found that the IscR positively regulated sufABCDSE Fe-S cluster biogenesis pathway was required for T3SS activity. These data suggest that IscR regulates the T3SS in Yersinia through maturation of an Fe-S cluster protein critical for type III secretion, in addition to its known role in activating T3SS genes through LcrF. Altogether, our study shows that iron starvation triggers IscR to coregulate multiple, distinct pathways relevant to promoting bacterial survival during infection.
Collapse
|
16
|
Bradley JM, Svistunenko DA, Wilson MT, Hemmings AM, Moore GR, Le Brun NE. Bacterial iron detoxification at the molecular level. J Biol Chem 2021; 295:17602-17623. [PMID: 33454001 PMCID: PMC7762939 DOI: 10.1074/jbc.rev120.007746] [Citation(s) in RCA: 70] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Revised: 10/07/2020] [Indexed: 01/18/2023] Open
Abstract
Iron is an essential micronutrient, and, in the case of bacteria, its availability is commonly a growth-limiting factor. However, correct functioning of cells requires that the labile pool of chelatable "free" iron be tightly regulated. Correct metalation of proteins requiring iron as a cofactor demands that such a readily accessible source of iron exist, but overaccumulation results in an oxidative burden that, if unchecked, would lead to cell death. The toxicity of iron stems from its potential to catalyze formation of reactive oxygen species that, in addition to causing damage to biological molecules, can also lead to the formation of reactive nitrogen species. To avoid iron-mediated oxidative stress, bacteria utilize iron-dependent global regulators to sense the iron status of the cell and regulate the expression of proteins involved in the acquisition, storage, and efflux of iron accordingly. Here, we survey the current understanding of the structure and mechanism of the important members of each of these classes of protein. Diversity in the details of iron homeostasis mechanisms reflect the differing nutritional stresses resulting from the wide variety of ecological niches that bacteria inhabit. However, in this review, we seek to highlight the similarities of iron homeostasis between different bacteria, while acknowledging important variations. In this way, we hope to illustrate how bacteria have evolved common approaches to overcome the dual problems of the insolubility and potential toxicity of iron.
Collapse
Affiliation(s)
- Justin M Bradley
- Centre for Molecular and Structural Biochemistry, School of Chemistry, University of East Anglia, Norwich, United Kingdom.
| | | | - Michael T Wilson
- School of Life Sciences, University of Essex, Colchester, United Kingdom
| | - Andrew M Hemmings
- Centre for Molecular and Structural Biochemistry, School of Chemistry, University of East Anglia, Norwich, United Kingdom; Centre for Molecular and Structural Biochemistry, School of Biological Sciences, University of East Anglia, Norwich, United Kingdom
| | - Geoffrey R Moore
- Centre for Molecular and Structural Biochemistry, School of Chemistry, University of East Anglia, Norwich, United Kingdom
| | - Nick E Le Brun
- Centre for Molecular and Structural Biochemistry, School of Chemistry, University of East Anglia, Norwich, United Kingdom.
| |
Collapse
|
17
|
Searching for putative virulence factors in the genomes of Shewanella indica and Shewanella algae. Arch Microbiol 2020; 203:683-692. [PMID: 33040180 DOI: 10.1007/s00203-020-02060-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Revised: 09/12/2020] [Accepted: 09/30/2020] [Indexed: 12/16/2022]
Abstract
Bacterial pathogens are a major threat to both humans and animals worldwide. It is crucial to understand the mechanisms of various disease processes at the molecular level. Shewanella species are widespread in the environment and some are considered as emerging opportunistic human and marine mammal pathogens. In this study, putative virulence factors on the genome of Shewanella indica BW, a bacterium isolated from the Bryde's whale (Balaenoptera edeni), were determined. Additionally, for comparative purposes, putative virulence factors from two other S. indica and ten S. algae strains were also determined using the Pathosystems Resource Integration Center (PATRIC) pipeline. We confirmed the presence of previously reported virulence factors and we are proposing several new candidate virulence factors. Interestingly, the putative virulence factors were very similar between the two species with the exception of microbial collagenase which was present in all S. algae genomes, but absent in all S. indica genomes.
Collapse
|
18
|
Nonoyama S, Kishida K, Sakai K, Nagata Y, Ohtsubo Y, Tsuda M. A transcriptional regulator, IscR, of Burkholderia multivorans acts as both repressor and activator for transcription of iron-sulfur cluster-biosynthetic isc operon. Res Microbiol 2020; 171:319-330. [PMID: 32628999 DOI: 10.1016/j.resmic.2020.06.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Accepted: 06/26/2020] [Indexed: 11/18/2022]
Abstract
Bacterial iron-sulfur (Fe-S) clusters are essential cofactors for many metabolic pathways, and Fe-S cluster-containing proteins (Fe-S proteins) regulate the expression of various important genes. However, biosynthesis of such clusters has remained unknown in genus Burkholderia. Here, we clarified that Burkholderia multivorans ATCC 17616 relies on the ISC system for the biosynthesis of Fe-S clusters, and that the biosynthetic genes are organized as an isc operon, whose first gene encodes IscR, a transcriptional regulatory Fe-S protein. Transcription of the isc operon was repressed and activated under iron-rich and -limiting conditions, respectively, and Fur, an iron-responsive global transcriptional regulator, was indicated to indirectly regulate the expression of isc operon. Further analysis using a ΔiscR mutant in combination with a constitutive expression system of IscR and its derivatives indicated transcriptional repression and activation of isc operon by holo- and apo-forms of IscR, respectively, through their binding to the sequences within an isc promoter-containing (Pisc) fragment. Biochemical analysis using the Pisc fragment suggested that the apo-IscR binding sequence differs from the holo-IscR binding sequence. The results obtained in this study revealed a unique regulatory system for the expression of the ATCC 17616 isc operon that has not been observed in other genera.
Collapse
Affiliation(s)
- Shouta Nonoyama
- Graduate School of Life Sciences, Tohoku University, 2-1-1 Katahira, Sendai, 980-8577, Japan.
| | - Kouhei Kishida
- Graduate School of Life Sciences, Tohoku University, 2-1-1 Katahira, Sendai, 980-8577, Japan.
| | - Keiichiro Sakai
- Graduate School of Life Sciences, Tohoku University, 2-1-1 Katahira, Sendai, 980-8577, Japan.
| | - Yuji Nagata
- Graduate School of Life Sciences, Tohoku University, 2-1-1 Katahira, Sendai, 980-8577, Japan.
| | - Yoshiyuki Ohtsubo
- Graduate School of Life Sciences, Tohoku University, 2-1-1 Katahira, Sendai, 980-8577, Japan.
| | - Masataka Tsuda
- Graduate School of Life Sciences, Tohoku University, 2-1-1 Katahira, Sendai, 980-8577, Japan.
| |
Collapse
|
19
|
Zheng X, Bai J, Ye M, Liu Y, Jin Y, He X. Bivariate genome-wide association study of the growth plasticity of Staphylococcus aureus in coculture with Escherichia coli. Appl Microbiol Biotechnol 2020; 104:5437-5447. [PMID: 32350560 DOI: 10.1007/s00253-020-10636-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2020] [Revised: 04/15/2020] [Accepted: 04/20/2020] [Indexed: 12/20/2022]
Abstract
Phenotypic plasticity is the capacity to change the phenotype in response to different environments without alteration of the genotype. Despite sufficient evidence that microorganisms have a major role in the fitness and sickness of eukaryotes, there has been little research regarding microbial phenotypic plasticity. In this study, 45 strains of Staphylococcus aureus were grown for 12 days in both monoculture and in coculture with the same strain of Escherichia coli to create a competitive environment. Cell abundance was determined by quantitative PCR every 24 h, and growth curves of each S. aureus strain under the two sets of conditions were generated. Combined with whole-genome resequencing data, bivariate genome-wide association study (GWAS) was performed to analyze the growth plasticity of S. aureus in coculture. Finally, 20 significant single-nucleotide polymorphisms (eight annotated, seven unannotated, and five non-coding regions) were obtained, which may affect the competitive growth of S. aureus. This study advances genome-wide bacterial growth plasticity research and demonstrates the potential of bivariate GWAS for bacterial phenotypic plasticity research. KEY POINTS: • Growth plasticity of S. aureus was analyzed by bivariate GWAS. • Twenty significant SNPs may affect the growth plasticity of S. aureus.
Collapse
Affiliation(s)
- Xuyang Zheng
- College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing, 100083, China
| | - Jun Bai
- College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing, 100083, China
| | - Meixia Ye
- College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing, 100083, China
- Center for Computational Biology, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, 100083, China
| | - Yanxi Liu
- College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing, 100083, China
| | - Yi Jin
- College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing, 100083, China.
| | - Xiaoqing He
- College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing, 100083, China.
| |
Collapse
|
20
|
Crack JC, Amara P, Volbeda A, Mouesca JM, Rohac R, Pellicer Martinez MT, Huang CY, Gigarel O, Rinaldi C, Le Brun NE, Fontecilla-Camps JC. Electron and Proton Transfers Modulate DNA Binding by the Transcription Regulator RsrR. J Am Chem Soc 2020; 142:5104-5116. [PMID: 32078310 DOI: 10.1021/jacs.9b12250] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The [Fe2S2]-RsrR gene transcription regulator senses the redox status in bacteria by modulating DNA binding, while its cluster cycles between +1 and +2 states-only the latter binds DNA. We have previously shown that RsrR can undergo remarkable conformational changes involving a 100° rotation of tryptophan 9 between exposed (Out) and buried (In) states. Here, we have used the chemical modification of Trp9, site-directed mutagenesis, and crystallographic and computational chemical studies to show that (i) the Out and In states correspond to oxidized and reduced RsrR, respectively, (ii) His33 is protonated in the In state due to a change in its pKa caused by cluster reduction, and (iii) Trp9 rotation is conditioned by the response of its dipole moment to environmental electrostatic changes. Our findings illustrate a novel function of protonation resulting from electron transfer.
Collapse
Affiliation(s)
- Jason C Crack
- Centre for Molecular and Structural Biochemistry, School of Chemistry, University of East Anglia, Norwich Research Park, Norwich NR4 7TJ, U.K
| | - Patricia Amara
- Université Grenoble Alpes, CEA, CNRS, Institut de Biologie Structurale, Metalloproteins Unit, F-38044 Grenoble, France
| | - Anne Volbeda
- Université Grenoble Alpes, CEA, CNRS, Institut de Biologie Structurale, Metalloproteins Unit, F-38044 Grenoble, France
| | - Jean-Marie Mouesca
- Université Grenoble Alpes, CEA, CNRS, IRIG-DIESE-SyMMES-CAMPE, 38000 Grenoble, France
| | - Roman Rohac
- Université Grenoble Alpes, CEA, CNRS, Institut de Biologie Structurale, Metalloproteins Unit, F-38044 Grenoble, France
| | - Ma Teresa Pellicer Martinez
- Centre for Molecular and Structural Biochemistry, School of Chemistry, University of East Anglia, Norwich Research Park, Norwich NR4 7TJ, U.K
| | - Chia-Ying Huang
- Macromolecular Crystallography, Swiss Light Source, Paul Scherrer Institute, 5232 Villigen, PSI, Switzerland
| | - Océane Gigarel
- Université Grenoble Alpes, CEA, CNRS, Institut de Biologie Structurale, Metalloproteins Unit, F-38044 Grenoble, France
| | - Clara Rinaldi
- Université Grenoble Alpes, CEA, CNRS, Institut de Biologie Structurale, Metalloproteins Unit, F-38044 Grenoble, France
| | - Nick E Le Brun
- Centre for Molecular and Structural Biochemistry, School of Chemistry, University of East Anglia, Norwich Research Park, Norwich NR4 7TJ, U.K
| | - Juan C Fontecilla-Camps
- Université Grenoble Alpes, CEA, CNRS, Institut de Biologie Structurale, Metalloproteins Unit, F-38044 Grenoble, France
| |
Collapse
|
21
|
Blanchard A, Gora C, Golinelli-Cohen MP. La protéine Fe-S NfuA, un nouvel acteur essentiel dans la virulence de Pseudomonas aeruginosa. Med Sci (Paris) 2020; 36:174-176. [DOI: 10.1051/medsci/2020018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
22
|
Hooker-Romero D, Mettert E, Schwiesow L, Balderas D, Alvarez PA, Kicin A, Gonzalez AL, Plano GV, Kiley PJ, Auerbuch V. Iron availability and oxygen tension regulate the Yersinia Ysc type III secretion system to enable disseminated infection. PLoS Pathog 2019; 15:e1008001. [PMID: 31869388 PMCID: PMC6946166 DOI: 10.1371/journal.ppat.1008001] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2019] [Revised: 01/07/2020] [Accepted: 11/10/2019] [Indexed: 11/21/2022] Open
Abstract
The enteropathogen Yersinia pseudotuberculosis and the related plague agent Y. pestis require the Ysc type III secretion system (T3SS) to subvert phagocyte defense mechanisms and cause disease. Yet type III secretion (T3S) in Yersinia induces growth arrest and innate immune recognition, necessitating tight regulation of the T3SS. Here we show that Y. pseudotuberculosis T3SS expression is kept low under anaerobic, iron-rich conditions, such as those found in the intestinal lumen where the Yersinia T3SS is not required for growth. In contrast, the Yersinia T3SS is expressed under aerobic or anaerobic, iron-poor conditions, such as those encountered by Yersinia once they cross the epithelial barrier and encounter phagocytic cells. We further show that the [2Fe-2S] containing transcription factor, IscR, mediates this oxygen and iron regulation of the T3SS by controlling transcription of the T3SS master regulator LcrF. IscR binds directly to the lcrF promoter and, importantly, a mutation that prevents this binding leads to decreased disseminated infection of Y. pseudotuberculosis but does not perturb intestinal colonization. Similar to E. coli, Y. pseudotuberculosis uses the Fe-S cluster occupancy of IscR as a readout of oxygen and iron conditions that impact cellular Fe-S cluster homeostasis. We propose that Y. pseudotuberculosis has coopted this system to sense entry into deeper tissues and induce T3S where it is required for virulence. The IscR binding site in the lcrF promoter is completely conserved between Y. pseudotuberculosis and Y. pestis. Deletion of iscR in Y. pestis leads to drastic disruption of T3S, suggesting that IscR control of the T3SS evolved before Y. pestis split from Y. pseudotuberculosis. The Yersinia type III secretion system (T3SS) is an important virulence factor of the enteropathogen Yersinia pseudotuberculosis as well as Yersinia pestis, the causative agent of plague. Although the T3SS promotes Yersinia survival in the host, its activity is not compatible with bacterial growth. Therefore, Yersinia must control where and when to express the T3SS to optimize fitness within the mammalian host. Here we show that Yersinia sense iron availability and oxygen tension, which vary between the intestinal environment and deeper tissues. Importantly, we show that eliminating the ability of Y. pseudotuberculosis to control its T3SS in response to iron and oxygen does not affect colonization of the intestine, where the T3SS is dispensable for growth. However, loss of T3SS control by iron and oxygen severely decreases disseminated infection. We propose that Y. pseudotuberculosis senses iron availability and oxygen tension to detect crossing the intestinal epithelial barrier. As the mechanism by which iron and oxygen control the T3SS is completely conserved between Y. pseudotuberculosis and Y. pestis, yet Y. pestis is not transmitted through the intestinal route, we propose that Y. pestis has retained this T3SS regulatory mechanism to suit its new infection cycle.
Collapse
Affiliation(s)
- Diana Hooker-Romero
- Department of Microbiology and Environmental Toxicology, University of California Santa Cruz, Santa Cruz, CA United States of America
| | - Erin Mettert
- Department of Biomolecular Chemistry, University of Wisconsin-Madison, Madison, WI, United States of America
| | - Leah Schwiesow
- Department of Molecular, Cell, and Developmental Biology, University of California Santa Cruz, Santa Cruz, CA, United States of America
| | - David Balderas
- Department of Microbiology and Environmental Toxicology, University of California Santa Cruz, Santa Cruz, CA United States of America
| | - Pablo A. Alvarez
- Department of Microbiology and Environmental Toxicology, University of California Santa Cruz, Santa Cruz, CA United States of America
| | - Anadin Kicin
- Department of Microbiology and Environmental Toxicology, University of California Santa Cruz, Santa Cruz, CA United States of America
| | - Azuah L. Gonzalez
- Department of Microbiology and Environmental Toxicology, University of California Santa Cruz, Santa Cruz, CA United States of America
| | - Gregory V. Plano
- Department of Microbiology and Immunology, University of Miami, Miami, FL, United States of America
| | - Patricia J. Kiley
- Department of Biomolecular Chemistry, University of Wisconsin-Madison, Madison, WI, United States of America
| | - Victoria Auerbuch
- Department of Microbiology and Environmental Toxicology, University of California Santa Cruz, Santa Cruz, CA United States of America
- * E-mail:
| |
Collapse
|
23
|
Saninjuk K, Romsang A, Duang-nkern J, Vattanaviboon P, Mongkolsuk S. Transcriptional regulation of the Pseudomonas aeruginosa iron-sulfur cluster assembly pathway by binding of IscR to multiple sites. PLoS One 2019; 14:e0218385. [PMID: 31251744 PMCID: PMC6599224 DOI: 10.1371/journal.pone.0218385] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2019] [Accepted: 06/01/2019] [Indexed: 01/06/2023] Open
Abstract
Iron-sulfur ([Fe-S]) cluster proteins have essential functions in many biological processes. [Fe-S] homeostasis is crucial for bacterial survival under a wide range of environmental conditions. IscR is a global transcriptional regulator in Pseudomonas aeruginosa; it has been shown to regulate genes involved in [Fe-S] cluster biosynthesis, iron homeostasis, resistance to oxidants, and pathogenicity. Many aspects of the IscR transcriptional regulatory mechanism differ from those of other well-studied systems. This study demonstrates the mechanisms of IscR Type-1 binding to its target sites that mediate the repression of gene expression at the isc operon, nfuA, and tpx. The analysis of IscR binding to multiple binding sites in the promoter region of the isc operon reveals that IscR first binds to the high-affinity site B followed by binding to the low-affinity site A. The results of in vitro IscR binding assays and in vivo analysis of IscR-mediated repression of gene expression support the role of site B as the primary site, while site A has only a minor role in the efficiency of IscR repression of gene expression. Ligation of an [Fe-S] cluster to IscR is required for the binding of IscR to target sites and in vivo repression and stress-induced gene expression. Analysis of Type-1 sites in many bacteria, including P. aeruginosa, indicates that the first and the last three AT-rich bases were among the most highly conserved bases within all analyzed Type-1 sites. Herein, we first propose the putative sequence of P. aeruginosa IscR Type-1 binding motif as 5'AWWSSYRMNNWWWTNNNWSGGNYWW3'. This can benefit further studies in the identification of novel genes under the IscR regulon and the regulatory mechanism model of P. aeruginosa IscR as it contributes to the roles of an [Fe-S] cluster in several biologically important cellular activities.
Collapse
Affiliation(s)
- Kritsakorn Saninjuk
- Department of Biotechnology, Faculty of Science, Mahidol University, Bangkok, Thailand
| | - Adisak Romsang
- Department of Biotechnology, Faculty of Science, Mahidol University, Bangkok, Thailand
- Center for Emerging Bacterial Infections, Faculty of Science, Mahidol University, Bangkok, Thailand
| | - Jintana Duang-nkern
- Laboratory of Biotechnology, Chulabhorn Research Institute, Bangkok, Thailand
| | - Paiboon Vattanaviboon
- Laboratory of Biotechnology, Chulabhorn Research Institute, Bangkok, Thailand
- Program in Applied Biological Sciences: Environmental Health, Chulabhorn Graduate Institute, Chulabhorn Royal Academy, Bangkok, Thailand
- Center of Excellence on Environmental Health and Toxicology, EHT, Ministry of Education, Bangkok, Thailand
| | - Skorn Mongkolsuk
- Department of Biotechnology, Faculty of Science, Mahidol University, Bangkok, Thailand
- Center for Emerging Bacterial Infections, Faculty of Science, Mahidol University, Bangkok, Thailand
- Laboratory of Biotechnology, Chulabhorn Research Institute, Bangkok, Thailand
- Center of Excellence on Environmental Health and Toxicology, EHT, Ministry of Education, Bangkok, Thailand
- * E-mail:
| |
Collapse
|
24
|
Li J, Xu L, Su F, Yu B, Yuan X. Association between iscR-based phylogeny, serovars and potential virulence markers of Haemophilus parasuis. PeerJ 2019; 7:e6950. [PMID: 31143554 PMCID: PMC6524630 DOI: 10.7717/peerj.6950] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2019] [Accepted: 04/09/2019] [Indexed: 12/03/2022] Open
Abstract
Haemophilus parasuis is an economically important bacterial pathogen of swine. Extensive genetic and phenotypic heterogeneity among H. parasuis strains have been observed, which hinders the deciphering of the population structure and its association with clinical virulence. In this study, two highly divergent clades were defined according to iron-sulphur cluster regulator (iscR)-based phylogeny analysis of 148 isolates. Clear separation of serovars and potential virulence markers (PVMs) were observed between the two clades, which are indicative of independent evolution of the two lineages. Previously suggested virulence factors showed no correlation with clinical virulence, and were probably clade or serovar specific genes emerged during different stage of evolution. PVMs profiles varied widely among isolates in the same serovar. Higher strain diversity in respect of PVMs was found for isolates from multi-strain infected farms than those from single strain infected ones, which indicates that multi-strain infection in one farm may increase the frequency of gene transfer in H. parasuis. Systemic isolates were more frequently found in serovar 13 and serovar 12, while no correlation between clinical virulence and iscR-based phylogeny was observed. It shows that iscR is a reliable marker for studying population structure of H. parasuis, while other factors should be included to avoid the interference of gene exchange of iscR between isolates. The two lineages of H. parasuis may have undergone independent evolution, but show no difference in clinical virulence. Wide distribution of systemic isolates across the entire population poses new challenge for development of vaccine with better cross-protection. Our study provides new information for better deciphering the population structure of H. parasuis, which helps understanding the extreme diversity within this pathogenic bacterium.
Collapse
Affiliation(s)
- Junxing Li
- Zhejiang Academy of Agricultural Sciences, Institute of Animal Husbandry and Veterinary Medicine, Hangzhou, Zhejiang, China
| | - Lihua Xu
- Zhejiang Academy of Agricultural Sciences, Institute of Animal Husbandry and Veterinary Medicine, Hangzhou, Zhejiang, China
| | - Fei Su
- Zhejiang Academy of Agricultural Sciences, Institute of Animal Husbandry and Veterinary Medicine, Hangzhou, Zhejiang, China
| | - Bin Yu
- Zhejiang Academy of Agricultural Sciences, Institute of Animal Husbandry and Veterinary Medicine, Hangzhou, Zhejiang, China
| | - Xiufang Yuan
- Zhejiang Academy of Agricultural Sciences, Institute of Animal Husbandry and Veterinary Medicine, Hangzhou, Zhejiang, China
| |
Collapse
|
25
|
Sevilla E, Bes MT, González A, Peleato ML, Fillat MF. Redox-Based Transcriptional Regulation in Prokaryotes: Revisiting Model Mechanisms. Antioxid Redox Signal 2019; 30:1651-1696. [PMID: 30073850 DOI: 10.1089/ars.2017.7442] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
SIGNIFICANCE The successful adaptation of microorganisms to ever-changing environments depends, to a great extent, on their ability to maintain redox homeostasis. To effectively maintain the redox balance, cells have developed a variety of strategies mainly coordinated by a battery of transcriptional regulators through diverse mechanisms. Recent Advances: This comprehensive review focuses on the main mechanisms used by major redox-responsive regulators in prokaryotes and their relationship with the different redox signals received by the cell. An overview of the corresponding regulons is also provided. CRITICAL ISSUES Some regulators are difficult to classify since they may contain several sensing domains and respond to more than one signal. We propose a classification of redox-sensing regulators into three major groups. The first group contains one-component or direct regulators, whose sensing and regulatory domains are in the same protein. The second group comprises the classical two-component systems involving a sensor kinase that transduces the redox signal to its DNA-binding partner. The third group encompasses a heterogeneous group of flavin-based photosensors whose mechanisms are not always fully understood and are often involved in more complex regulatory networks. FUTURE DIRECTIONS Redox-responsive transcriptional regulation is an intricate process as identical signals may be sensed and transduced by different transcription factors, which often interplay with other DNA-binding proteins with or without regulatory activity. Although there is much information about some key regulators, many others remain to be fully characterized due to the instability of their clusters under oxygen. Understanding the mechanisms and the regulatory networks operated by these regulators is essential for the development of future applications in biotechnology and medicine.
Collapse
Affiliation(s)
- Emma Sevilla
- 1 Departamento de Bioquímica y Biología Molecular y Celular, Universidad de Zaragoza, Zaragoza, Spain.,2 Instituto de Biocomputación y Física de Sistemas Complejos (BIFI), Universidad de Zaragoza, Zaragoza, Spain.,3 Grupo de Bioquímica, Biofísica y Biología Computacional (BIFI, UNIZAR), Unidad Asociada al CSIC, Zaragoza, Spain
| | - María Teresa Bes
- 1 Departamento de Bioquímica y Biología Molecular y Celular, Universidad de Zaragoza, Zaragoza, Spain.,2 Instituto de Biocomputación y Física de Sistemas Complejos (BIFI), Universidad de Zaragoza, Zaragoza, Spain.,3 Grupo de Bioquímica, Biofísica y Biología Computacional (BIFI, UNIZAR), Unidad Asociada al CSIC, Zaragoza, Spain
| | - Andrés González
- 2 Instituto de Biocomputación y Física de Sistemas Complejos (BIFI), Universidad de Zaragoza, Zaragoza, Spain.,3 Grupo de Bioquímica, Biofísica y Biología Computacional (BIFI, UNIZAR), Unidad Asociada al CSIC, Zaragoza, Spain.,4 Instituto de Investigación Sanitaria Aragón (IIS Aragón), Zaragoza, Spain
| | - María Luisa Peleato
- 1 Departamento de Bioquímica y Biología Molecular y Celular, Universidad de Zaragoza, Zaragoza, Spain.,2 Instituto de Biocomputación y Física de Sistemas Complejos (BIFI), Universidad de Zaragoza, Zaragoza, Spain.,3 Grupo de Bioquímica, Biofísica y Biología Computacional (BIFI, UNIZAR), Unidad Asociada al CSIC, Zaragoza, Spain
| | - María F Fillat
- 1 Departamento de Bioquímica y Biología Molecular y Celular, Universidad de Zaragoza, Zaragoza, Spain.,2 Instituto de Biocomputación y Física de Sistemas Complejos (BIFI), Universidad de Zaragoza, Zaragoza, Spain.,3 Grupo de Bioquímica, Biofísica y Biología Computacional (BIFI, UNIZAR), Unidad Asociada al CSIC, Zaragoza, Spain
| |
Collapse
|
26
|
Volbeda A, Martinez MTP, Crack JC, Amara P, Gigarel O, Munnoch JT, Hutchings MI, Darnault C, Le Brun NE, Fontecilla-Camps JC. Crystal Structure of the Transcription Regulator RsrR Reveals a [2Fe-2S] Cluster Coordinated by Cys, Glu, and His Residues. J Am Chem Soc 2019; 141:2367-2375. [PMID: 30657661 DOI: 10.1021/jacs.8b10823] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
The recently discovered Rrf2 family transcriptional regulator RsrR coordinates a [2Fe-2S] cluster. Remarkably, binding of the protein to RsrR-regulated promoter DNA sequences is switched on and off through the facile cycling of the [2Fe-2S] cluster between +2 and +1 states. Here, we report high resolution crystal structures of the RsrR dimer, revealing that the [2Fe-2S] cluster is asymmetrically coordinated across the RsrR monomer-monomer interface by two Cys residues from one subunit and His and Glu residues from the other. To our knowledge, this is the first example of a protein bound [Fe-S] cluster with three different amino acid side chains as ligands, and of Glu acting as ligand to a [2Fe-2S] cluster. Analyses of RsrR structures revealed a conformational change, centered on Trp9, which results in a significant shift in the DNA-binding helix-turn-helix region.
Collapse
Affiliation(s)
- Anne Volbeda
- Université Grenoble Alpes, CEA, CNRS , IBS , Metalloproteins Unit, F-38044 Grenoble , France
| | - Ma Teresa Pellicer Martinez
- Centre for Molecular and Structural Biochemistry, School of Chemistry , University of East Anglia , Norwich Research Park, Norwich NR4 7TJ , United Kingdom
| | - Jason C Crack
- Centre for Molecular and Structural Biochemistry, School of Chemistry , University of East Anglia , Norwich Research Park, Norwich NR4 7TJ , United Kingdom
| | - Patricia Amara
- Université Grenoble Alpes, CEA, CNRS , IBS , Metalloproteins Unit, F-38044 Grenoble , France
| | - Océane Gigarel
- Université Grenoble Alpes, CEA, CNRS , IBS , Metalloproteins Unit, F-38044 Grenoble , France
| | - John T Munnoch
- School of Biological Sciences , University of East Anglia , Norwich Research Park, Norwich NR4 7TJ , United Kingdom
| | - Matthew I Hutchings
- School of Biological Sciences , University of East Anglia , Norwich Research Park, Norwich NR4 7TJ , United Kingdom
| | - Claudine Darnault
- Université Grenoble Alpes, CEA, CNRS , IBS , Metalloproteins Unit, F-38044 Grenoble , France
| | - Nick E Le Brun
- Centre for Molecular and Structural Biochemistry, School of Chemistry , University of East Anglia , Norwich Research Park, Norwich NR4 7TJ , United Kingdom
| | - Juan C Fontecilla-Camps
- Université Grenoble Alpes, CEA, CNRS , IBS , Metalloproteins Unit, F-38044 Grenoble , France
| |
Collapse
|
27
|
Conley ZC, Carlson-Banning KM, Carter AG, de la Cova A, Song Y, Zechiedrich L. Sugar and iron: Toward understanding the antibacterial effect of ciclopirox in Escherichia coli. PLoS One 2019; 14:e0210547. [PMID: 30633761 PMCID: PMC6329577 DOI: 10.1371/journal.pone.0210547] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2018] [Accepted: 12/27/2018] [Indexed: 12/11/2022] Open
Abstract
New antibiotics are needed against antibiotic-resistant gram-negative bacteria. The repurposed antifungal drug, ciclopirox, equally blocks antibiotic-susceptible or multidrug-resistant Acinetobacter baumannii, Escherichia coli, and Klebsiella pneumoniae clinical isolates, indicating that it is not affected by existing resistance mechanisms. Toward understanding how ciclopirox blocks growth, we screened E. coli mutant strains and found that disruption of genes encoding products involved in galactose salvage, enterobacterial common antigen synthesis, and transport of the iron binding siderophore, enterobactin, lowered the minimum inhibitory concentration of ciclopirox needed to block growth of the mutant compared to the isogenic parent strain. We found that ciclopirox induced enterobactin production and that this effect is strongly affected by the deletion of the galactose salvage genes encoding UDP-galactose 4-epimerase, galE, or galactose-1-phosphate uridylyltransferase, galT. As disruption of ECA synthesis activates the regulation of capsular synthesis (Rcs) phosphorelay, which inhibits bacterial swarming and promotes biofilm development, we test whether ciclopirox prevents activation of the Rcs pathway. Sub-inhibitory concentrations of ciclopirox increased swarming of the E. coli laboratory K12 strain BW25113 but had widely varying effects on swarming or surface motility of clinical isolate E. coli, A. baumannii, and K. pneumoniae. There was no effect of ciclopirox on biofilm production, suggesting it does not target Rcs. Altogether, our data suggest ciclopirox-mediated alteration of lipopolysaccharides stimulates enterobactin production and affects bacterial swarming.
Collapse
Affiliation(s)
- Zachary C. Conley
- Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, Texas, United States of America
- Department of Virology and Microbiology, Baylor College of Medicine, Houston, Texas, United States of America
| | - Kimberly M. Carlson-Banning
- Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, Texas, United States of America
- Department of Virology and Microbiology, Baylor College of Medicine, Houston, Texas, United States of America
| | - Ashley G. Carter
- Department of Virology and Microbiology, Baylor College of Medicine, Houston, Texas, United States of America
| | - Alejandro de la Cova
- Department of Virology and Microbiology, Baylor College of Medicine, Houston, Texas, United States of America
- Center for Environmental and Human Toxicology, University of Florida College of Veterinary Medicine, University of Florida, Gainesville, Florida, United States of America
| | - Yongcheng Song
- Department of Pharmacology and Chemical Biology, Baylor College of Medicine, Houston, Texas, United States of America
| | - Lynn Zechiedrich
- Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, Texas, United States of America
- Department of Virology and Microbiology, Baylor College of Medicine, Houston, Texas, United States of America
- Department of Pharmacology and Chemical Biology, Baylor College of Medicine, Houston, Texas, United States of America
| |
Collapse
|
28
|
Berges M, Michel AM, Lassek C, Nuss AM, Beckstette M, Dersch P, Riedel K, Sievers S, Becher D, Otto A, Maaß S, Rohde M, Eckweiler D, Borrero-de Acuña JM, Jahn M, Neumann-Schaal M, Jahn D. Iron Regulation in Clostridioides difficile. Front Microbiol 2018; 9:3183. [PMID: 30619231 PMCID: PMC6311696 DOI: 10.3389/fmicb.2018.03183] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2018] [Accepted: 12/10/2018] [Indexed: 12/13/2022] Open
Abstract
The response to iron limitation of several bacteria is regulated by the ferric uptake regulator (Fur). The Fur-regulated transcriptional, translational and metabolic networks of the Gram-positive, pathogen Clostridioides difficile were investigated by a combined RNA sequencing, proteomic, metabolomic and electron microscopy approach. At high iron conditions (15 μM) the C. difficile fur mutant displayed a growth deficiency compared to wild type C. difficile cells. Several iron and siderophore transporter genes were induced by Fur during low iron (0.2 μM) conditions. The major adaptation to low iron conditions was observed for the central energy metabolism. Most ferredoxin-dependent amino acid fermentations were significantly down regulated (had, etf, acd, grd, trx, bdc, hbd). The substrates of these pathways phenylalanine, leucine, glycine and some intermediates (phenylpyruvate, 2-oxo-isocaproate, 3-hydroxy-butyryl-CoA, crotonyl-CoA) accumulated, while end products like isocaproate and butyrate were found reduced. Flavodoxin (fldX) formation and riboflavin biosynthesis (rib) were enhanced, most likely to replace the missing ferredoxins. Proline reductase (prd), the corresponding ion pumping RNF complex (rnf) and the reaction product 5-aminovalerate were significantly enhanced. An ATP forming ATPase (atpCDGAHFEB) of the F0F1-type was induced while the formation of a ATP-consuming, proton-pumping V-type ATPase (atpDBAFCEKI) was decreased. The [Fe-S] enzyme-dependent pyruvate formate lyase (pfl), formate dehydrogenase (fdh) and hydrogenase (hyd) branch of glucose utilization and glycogen biosynthesis (glg) were significantly reduced, leading to an accumulation of glucose and pyruvate. The formation of [Fe-S] enzyme carbon monoxide dehydrogenase (coo) was inhibited. The fur mutant showed an increased sensitivity to vancomycin and polymyxin B. An intensive remodeling of the cell wall was observed, Polyamine biosynthesis (spe) was induced leading to an accumulation of spermine, spermidine, and putrescine. The fur mutant lost most of its flagella and motility. Finally, the CRISPR/Cas and a prophage encoding operon were downregulated. Fur binding sites were found upstream of around 20 of the regulated genes. Overall, adaptation to low iron conditions in C. difficile focused on an increase of iron import, a significant replacement of iron requiring metabolic pathways and the restructuring of the cell surface for protection during the complex adaptation phase and was only partly directly regulated by Fur.
Collapse
Affiliation(s)
- Mareike Berges
- Braunschweig Integrated Centre of Systems Biology (BRICS), Technische Universität Braunschweig, Braunschweig, Germany
| | - Annika-Marisa Michel
- Braunschweig Integrated Centre of Systems Biology (BRICS), Technische Universität Braunschweig, Braunschweig, Germany
| | - Christian Lassek
- Center for Functional Genomics of Microbes (CFGM), Institute of Microbiology, University of Greifswald, Greifswald, Germany
| | - Aaron M Nuss
- Department of Molecular Infection Biology, Helmholtz Centre for Infection Research (HZI), Braunschweig, Germany
| | - Michael Beckstette
- Department of Molecular Infection Biology, Helmholtz Centre for Infection Research (HZI), Braunschweig, Germany
| | - Petra Dersch
- Department of Molecular Infection Biology, Helmholtz Centre for Infection Research (HZI), Braunschweig, Germany
| | - Katharina Riedel
- Center for Functional Genomics of Microbes (CFGM), Institute of Microbiology, University of Greifswald, Greifswald, Germany
| | - Susanne Sievers
- Center for Functional Genomics of Microbes (CFGM), Institute of Microbiology, University of Greifswald, Greifswald, Germany
| | - Dörte Becher
- Center for Functional Genomics of Microbes (CFGM), Institute of Microbiology, University of Greifswald, Greifswald, Germany
| | - Andreas Otto
- Center for Functional Genomics of Microbes (CFGM), Institute of Microbiology, University of Greifswald, Greifswald, Germany
| | - Sandra Maaß
- Center for Functional Genomics of Microbes (CFGM), Institute of Microbiology, University of Greifswald, Greifswald, Germany
| | - Manfred Rohde
- Central Facility for Microscopy, Helmholtz Centre for Infection Research (HZI), Braunschweig, Germany
| | - Denitsa Eckweiler
- Braunschweig Integrated Centre of Systems Biology (BRICS), Technische Universität Braunschweig, Braunschweig, Germany
| | | | - Martina Jahn
- Institute of Microbiology, Technische Universität Braunschweig, Braunschweig, Germany
| | - Meina Neumann-Schaal
- Leibniz-Institute DSMZ-German Collection of Microorganisms and Cell Cultures, Braunschweig, Germany
| | - Dieter Jahn
- Braunschweig Integrated Centre of Systems Biology (BRICS), Technische Universität Braunschweig, Braunschweig, Germany.,Institute of Microbiology, Technische Universität Braunschweig, Braunschweig, Germany
| |
Collapse
|
29
|
Loi VV, Busche T, Tedin K, Bernhardt J, Wollenhaupt J, Huyen NTT, Weise C, Kalinowski J, Wahl MC, Fulde M, Antelmann H. Redox-Sensing Under Hypochlorite Stress and Infection Conditions by the Rrf2-Family Repressor HypR in Staphylococcus aureus. Antioxid Redox Signal 2018; 29:615-636. [PMID: 29237286 PMCID: PMC6067689 DOI: 10.1089/ars.2017.7354] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
AIMS Staphylococcus aureus is a major human pathogen and has to cope with reactive oxygen and chlorine species (ROS, RCS) during infections, which requires efficient protection mechanisms to avoid destruction. Here, we have investigated the changes in the RNA-seq transcriptome by the strong oxidant sodium hypochlorite (NaOCl) in S. aureus USA300 to identify novel redox-sensing mechanisms that provide protection under infection conditions. RESULTS NaOCl stress caused an oxidative stress response in S. aureus as indicated by the induction of the PerR, QsrR, HrcA, and SigmaB regulons in the RNA-seq transcriptome. The hypR-merA (USA300HOU_0588-87) operon was most strongly upregulated under NaOCl stress, which encodes for the Rrf2-family regulator HypR and the pyridine nucleotide disulfide reductase MerA. We have characterized HypR as a novel redox-sensitive repressor that controls MerA expression and directly senses and responds to NaOCl and diamide stress via a thiol-based mechanism in S. aureus. Mutational analysis identified Cys33 and the conserved Cys99 as essential for NaOCl sensing, while Cys99 is also important for repressor activity of HypR in vivo. The redox-sensing mechanism of HypR involves Cys33-Cys99 intersubunit disulfide formation by NaOCl stress both in vitro and in vivo. Moreover, the HypR-controlled flavin disulfide reductase MerA was shown to protect S. aureus against NaOCl stress and increased survival in J774A.1 macrophage infection assays. Conclusion and Innovation: Here, we identified a new member of the widespread Rrf2 family as redox sensor of NaOCl stress in S. aureus that uses a thiol/disulfide switch to regulate defense mechanisms against the oxidative burst under infections in S. aureus. Antioxid. Redox Signal. 29, 615-636.
Collapse
Affiliation(s)
- Vu Van Loi
- 1 Institute for Biology-Microbiology, Freie Universität Berlin , Berlin, Germany
| | - Tobias Busche
- 1 Institute for Biology-Microbiology, Freie Universität Berlin , Berlin, Germany .,2 Center for Biotechnology, Bielefeld University , Bielefeld, Germany
| | - Karsten Tedin
- 3 Centre for Infection Medicine, Institute of Microbiology and Epizootics , Freie Universität Berlin, Berlin, Germany
| | - Jörg Bernhardt
- 4 Institute for Microbiology, Ernst-Moritz-Arndt-University of Greifswald , Greifswald, Germany
| | - Jan Wollenhaupt
- 5 Laboratory of Structural Biochemistry, Freie Universität Berlin, Berlin, Germany
| | - Nguyen Thi Thu Huyen
- 1 Institute for Biology-Microbiology, Freie Universität Berlin , Berlin, Germany
| | - Christoph Weise
- 6 Institute of Chemistry and Biochemistry , Freie Universität Berlin, Berlin, Germany
| | - Jörn Kalinowski
- 2 Center for Biotechnology, Bielefeld University , Bielefeld, Germany
| | - Markus C Wahl
- 5 Laboratory of Structural Biochemistry, Freie Universität Berlin, Berlin, Germany
| | - Marcus Fulde
- 3 Centre for Infection Medicine, Institute of Microbiology and Epizootics , Freie Universität Berlin, Berlin, Germany
| | - Haike Antelmann
- 1 Institute for Biology-Microbiology, Freie Universität Berlin , Berlin, Germany
| |
Collapse
|
30
|
Lu R, Osei-Adjei G, Huang X, Zhang Y. Role and regulation of the orphan AphA protein of quorum sensing in pathogenic Vibrios. Future Microbiol 2018; 13:383-391. [PMID: 29441822 DOI: 10.2217/fmb-2017-0165] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Quorum sensing (QS), a cell-to-cell communication process, is widely distributed in the bacterial kingdom. Bacteria use QS to control gene expression in response to cell density by detecting the signal molecules called autoinducers. AphA protein is the master QS regulator of vibrios operating at low cell density. It regulates the expression of a variety of genes, especially those encoding virulence factors, flagella/motility and biofilm formation. The role and regulation of AphA in vibrios, especially in human pathogenic vibrios, are summarized in this review. Clarification of the roles of AphA will help us to understand the pathogenesis of vibrios.
Collapse
Affiliation(s)
- Renfei Lu
- School of Medicine, Jiangsu University, Zhenjiang 212013, Jiangsu, PR China
| | - George Osei-Adjei
- School of Medicine, Jiangsu University, Zhenjiang 212013, Jiangsu, PR China
| | - Xinxiang Huang
- School of Medicine, Jiangsu University, Zhenjiang 212013, Jiangsu, PR China
| | - Yiquan Zhang
- School of Medicine, Jiangsu University, Zhenjiang 212013, Jiangsu, PR China
| |
Collapse
|
31
|
Pellicer Martinez MT, Martinez AB, Crack JC, Holmes JD, Svistunenko DA, Johnston AWB, Cheesman MR, Todd JD, Le Brun NE. Sensing iron availability via the fragile [4Fe-4S] cluster of the bacterial transcriptional repressor RirA. Chem Sci 2017; 8:8451-8463. [PMID: 29619193 PMCID: PMC5863699 DOI: 10.1039/c7sc02801f] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2017] [Accepted: 10/20/2017] [Indexed: 01/02/2023] Open
Abstract
The global iron regulator RirA controls transcription of iron metabolism genes via the binding of a fragile [4Fe–4S] cluster.
Rhizobial iron regulator A (RirA) is a global regulator of iron homeostasis in many nitrogen-fixing Rhizobia and related species of α-proteobacteria. It belongs to the widespread Rrf2 super-family of transcriptional regulators and features three conserved Cys residues that characterise the binding of an iron–sulfur cluster in other Rrf2 family regulators. Here we report biophysical studies demonstrating that RirA contains a [4Fe–4S] cluster, and that this form of the protein binds RirA-regulated DNA, consistent with its function as a repressor of expression of many genes involved in iron uptake. Under low iron conditions, [4Fe–4S] RirA undergoes a cluster conversion reaction resulting in a [2Fe–2S] form, which exhibits much lower affinity for DNA. Under prolonged low iron conditions, the [2Fe–2S] cluster degrades to apo-RirA, which does not bind DNA and can no longer function as a repressor of the cell's iron-uptake machinery. [4Fe–4S] RirA was also found to be sensitive to O2, suggesting that both iron and O2 are important signals for iron metabolism. Consistent with this, in vivo data showed that expression of RirA-regulated genes is also affected by O2. These data lead us to propose a novel regulatory model for iron homeostasis, in which RirA senses iron via the incorporation of a fragile iron–sulfur cluster that is sensitive to iron and O2 concentrations.
Collapse
Affiliation(s)
- Ma Teresa Pellicer Martinez
- Centre for Molecular and Structural Biochemistry , School of Chemistry , University of East Anglia , Norwich Research Park , Norwich , NR4 7TJ , UK . ; ; Tel: +44 1603 592699
| | - Ana Bermejo Martinez
- School of Biological Sciences , University of East Anglia , Norwich Research Park , Norwich , NR4 7TJ , UK
| | - Jason C Crack
- Centre for Molecular and Structural Biochemistry , School of Chemistry , University of East Anglia , Norwich Research Park , Norwich , NR4 7TJ , UK . ; ; Tel: +44 1603 592699
| | - John D Holmes
- Centre for Molecular and Structural Biochemistry , School of Chemistry , University of East Anglia , Norwich Research Park , Norwich , NR4 7TJ , UK . ; ; Tel: +44 1603 592699
| | - Dimitri A Svistunenko
- School of Biological Sciences , University of Essex , Wivenhoe Park , Colchester CO4 3SQ , UK
| | - Andrew W B Johnston
- School of Biological Sciences , University of East Anglia , Norwich Research Park , Norwich , NR4 7TJ , UK
| | - Myles R Cheesman
- Centre for Molecular and Structural Biochemistry , School of Chemistry , University of East Anglia , Norwich Research Park , Norwich , NR4 7TJ , UK . ; ; Tel: +44 1603 592699
| | - Jonathan D Todd
- School of Biological Sciences , University of East Anglia , Norwich Research Park , Norwich , NR4 7TJ , UK
| | - Nick E Le Brun
- Centre for Molecular and Structural Biochemistry , School of Chemistry , University of East Anglia , Norwich Research Park , Norwich , NR4 7TJ , UK . ; ; Tel: +44 1603 592699
| |
Collapse
|
32
|
Carreaux A, de Champs de Saint-Leger S, Kouidri Y, Golinelli-Cohen MP. Contrôle de la virulence de Salmonella entericapar la machinerie de biogenèse des centres Fe-S. Med Sci (Paris) 2017; 33:603-606. [DOI: 10.1051/medsci/20173306015] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
33
|
Crystal structures of the NO sensor NsrR reveal how its iron-sulfur cluster modulates DNA binding. Nat Commun 2017; 8:15052. [PMID: 28425466 PMCID: PMC5411485 DOI: 10.1038/ncomms15052] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2016] [Accepted: 02/23/2017] [Indexed: 12/17/2022] Open
Abstract
NsrR from Streptomyces coelicolor (Sc) regulates the expression of three genes through the progressive degradation of its [4Fe–4S] cluster on nitric oxide (NO) exposure. We report the 1.95 Å resolution crystal structure of dimeric holo-ScNsrR and show that the cluster is coordinated by the three invariant Cys residues from one monomer and, unexpectedly, Asp8 from the other. A cavity map suggests that NO displaces Asp8 as a cluster ligand and, while D8A and D8C variants remain NO sensitive, DNA binding is affected. A structural comparison of holo-ScNsrR with an apo-IscR-DNA complex shows that the [4Fe–4S] cluster stabilizes a turn between ScNsrR Cys93 and Cys99 properly oriented to interact with the DNA backbone. In addition, an apo ScNsrR structure suggests that Asn97 from this turn, along with Arg12, which forms a salt-bridge with Asp8, are instrumental in modulating the position of the DNA recognition helix region relative to its major groove. NsrR is a bacterial transcriptional regulator that acts as a nitric oxide (NO) sensor. Here, the authors present the crystal structure of NsrR, which reveals an unusual Fe-S cluster coordination and explains how NO exposure leads to the degradation of the cluster.
Collapse
|
34
|
Characterization of a putative NsrR homologue in Streptomyces venezuelae reveals a new member of the Rrf2 superfamily. Sci Rep 2016; 6:31597. [PMID: 27605472 PMCID: PMC5015018 DOI: 10.1038/srep31597] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2016] [Accepted: 07/25/2016] [Indexed: 01/06/2023] Open
Abstract
Members of the Rrf2 superfamily of transcription factors are widespread in bacteria but their functions are largely unexplored. The few that have been characterized in detail sense nitric oxide (NsrR), iron limitation (RirA), cysteine availability (CymR) and the iron sulfur (Fe-S) cluster status of the cell (IscR). In this study we combined ChIP- and dRNA-seq with in vitro biochemistry to characterize a putative NsrR homologue in Streptomyces venezuelae. ChIP-seq analysis revealed that rather than regulating the nitrosative stress response like Streptomyces coelicolor NsrR, Sven6563 binds to a conserved motif at a different, much larger set of genes with a diverse range of functions, including a number of regulators, genes required for glutamine synthesis, NADH/NAD(P)H metabolism, as well as general DNA/RNA and amino acid/protein turn over. Our biochemical experiments further show that Sven6563 has a [2Fe-2S] cluster and that the switch between oxidized and reduced cluster controls its DNA binding activity in vitro. To our knowledge, both the sensing domain and the putative target genes are novel for an Rrf2 protein, suggesting Sven6563 represents a new member of the Rrf2 superfamily. Given the redox sensitivity of its Fe-S cluster we have tentatively named the protein RsrR for Redox sensitive response Regulator.
Collapse
|
35
|
Pratte BS, Thiel T. Homologous regulators, CnfR1 and CnfR2, activate expression of two distinct nitrogenase gene clusters in the filamentous cyanobacterium Anabaena variabilis ATCC 29413. Mol Microbiol 2016; 100:1096-109. [PMID: 26950042 DOI: 10.1111/mmi.13370] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/04/2016] [Indexed: 02/06/2023]
Abstract
The cyanobacterium Anabaena variabilis has two Mo-nitrogenases that function under different environmental conditions in different cell types. The heterocyst-specific nitrogenase encoded by the large nif1 gene cluster and the similar nif2 gene cluster that functions under anaerobic conditions in vegetative cells are under the control of the promoter for the first gene of each cluster, nifB1 or nifB2 respectively. Associated with each of these clusters is a putative regulatory gene called cnfR (patB) whose product has a C-terminal HTH domain and an N-terminal ferredoxin-like domain. CnfR1 activates nifB1 expression in heterocysts, while CnfR2 activates nifB2 expression. A cnfR1 mutant was unable to make nitrogenase under aerobic conditions in heterocysts while the cnfR2 mutant was unable to make nitrogenase under anaerobic conditions. Mutations in cnfR1 and cnfR2 reduced transcripts for the nif1 and nif2 genes respectively. The closely related cyanobacterium, Anabaena sp. PCC 7120 has the nif1 system but lacks nif2. Expression of nifB2:lacZ from A. variabilis in anaerobic vegetative cells of Anabaena sp. PCC 7120 depended on the presence of cnfR2. This suggests that CnfR2 is necessary and sufficient for activation of the nifB2 promoter and that the CnfR1/CnfR2 family of proteins are the primary activators of nitrogenase gene expression in cyanobacteria.
Collapse
Affiliation(s)
- Brenda S Pratte
- Department of Biology, University of Missouri - St. Louis, Research 223, St. Louis, MO, 63121, USA
| | - Teresa Thiel
- Department of Biology, University of Missouri - St. Louis, Research 223, St. Louis, MO, 63121, USA
| |
Collapse
|
36
|
André G, Haudecoeur E, Courtois E, Monot M, Dupuy B, Rodionov DA, Martin-Verstraete I. Cpe1786/IscR of Clostridium perfringens represses expression of genes involved in Fe-S cluster biogenesis. Res Microbiol 2016; 168:345-355. [PMID: 27020244 DOI: 10.1016/j.resmic.2016.03.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2015] [Revised: 03/14/2016] [Accepted: 03/16/2016] [Indexed: 12/27/2022]
Abstract
Cpe1786 of Clostridium perfringens is an Rrf2-type regulator containing the three-cysteine residues coordinating a Fe-S in IscR, the repressor controlling Fe-S homeostasis in enterobacteria. The cpe1786 gene formed an operon with iscSU involved in Fe-S biogenesis and tmrU. This operon was transcribed from a σA-dependent promoter. We showed that in the heterologous host Bacillus subtilis, Cpe1786, renamed IscRCp, negatively controlled its own transcription. We constructed an iscR mutant in C. perfringens. We then compared the expression profile of strain 13 and of the iscR mutant. IscRCp controlled expression of genes involved in Fe-S biogenesis, in amino acid or sugar metabolisms, in fermentation pathways and in host compound utilization. We then demonstrated, using a ChIP-PCR experiment, that IscRCp interacted with its promoter region in vivo in C. perfringens and with the promoter of cpe2093 encoding an amino acid ABC transporter. We utilized a comparative genomic approach to infer a candidate IscR binding motif and reconstruct IscR regulons in clostridia. We showed that point mutations in the conserved motif of 29 bp identified upstream of iscR decreased the cysteine-dependent repression of iscR mediated by IscRCp.
Collapse
Affiliation(s)
- Gaelle André
- Institut Pasteur, Laboratoire de Pathogénèse des Bactéries anaérobies, 28 rue du Docteur Roux, 75015 Paris, France; Université Paris 7-Denis Diderot, Sorbonne Paris Cité, 75205 Paris, France
| | - Elise Haudecoeur
- Institut Pasteur, Laboratoire de Pathogénèse des Bactéries anaérobies, 28 rue du Docteur Roux, 75015 Paris, France; Université Paris 7-Denis Diderot, Sorbonne Paris Cité, 75205 Paris, France
| | - Emmanuelle Courtois
- Institut Pasteur, Laboratoire de Pathogénèse des Bactéries anaérobies, 28 rue du Docteur Roux, 75015 Paris, France; Université Paris 7-Denis Diderot, Sorbonne Paris Cité, 75205 Paris, France
| | - Marc Monot
- Institut Pasteur, Laboratoire de Pathogénèse des Bactéries anaérobies, 28 rue du Docteur Roux, 75015 Paris, France; Université Paris 7-Denis Diderot, Sorbonne Paris Cité, 75205 Paris, France
| | - Bruno Dupuy
- Institut Pasteur, Laboratoire de Pathogénèse des Bactéries anaérobies, 28 rue du Docteur Roux, 75015 Paris, France; Université Paris 7-Denis Diderot, Sorbonne Paris Cité, 75205 Paris, France
| | - Dmitry A Rodionov
- Institute for Information Transmission Problems, Russian Academy of Sciences, Moscow 127994, Russia
| | - Isabelle Martin-Verstraete
- Institut Pasteur, Laboratoire de Pathogénèse des Bactéries anaérobies, 28 rue du Docteur Roux, 75015 Paris, France; Université Paris 7-Denis Diderot, Sorbonne Paris Cité, 75205 Paris, France.
| |
Collapse
|
37
|
Mozzarelli A, Pollegioni L. Special Issue on "Cofactor-dependent proteins: Evolution, chemical diversity and bio-applications". BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2015; 1854:1071-2. [PMID: 26071224 DOI: 10.1016/j.bbapap.2015.06.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Affiliation(s)
- Andrea Mozzarelli
- Department of Pharmacy, University of Parma, Parma, Italy; National Institute of Biostructure and Biosystems, Rome, Italy; Institute of Biophysics, CNR, Pisa, Italy
| | - Loredano Pollegioni
- Department of Biotechnology and Life Sciences, University of Insubria, Varese, Italy; Protein Factory, InterUniversity Center for Protein Biotechnology, Politecnico di Milano, Università degli studi dell'Insubria and ICRM CNR Milano, Italy
| |
Collapse
|