1
|
Wu L, He JB, Wei W, Pan HX, Wang X, Yang S, Liang Y, Tang GL, Zhou J. Three distinct strategies lead to programmable aliphatic C-H oxidation in bicyclomycin biosynthesis. Nat Commun 2025; 16:4651. [PMID: 40389404 PMCID: PMC12089406 DOI: 10.1038/s41467-025-58997-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Accepted: 04/09/2025] [Indexed: 05/21/2025] Open
Abstract
The C-H bond functionalization has been widely used in chemical synthesis over the past decade. However, regio- and stereoselectivity still remain a significant challenge, especially for inert aliphatic C-H bonds. Here we report the mechanism of three Fe(II)/α-ketoglutarate-dependent dioxygenases in bicyclomycin synthesis, which depicts the natural tactic to sequentially hydroxylate specific C-H bonds of similar substrates (cyclodipeptides). Molecular basis by crystallographic studies, computational simulations, and site-directed mutagenesis reveals the exquisite arrangement of three enzymes using mutually orthogonal strategies to realize three different regio-selectivities. Moreover, this programmable selective hydroxylation can be extended to other cyclodipeptides. This evidence not only provides a naturally occurring showcase corresponding to the widely used methods in chemical catalysis but also expands the toolbox of biocatalysts to address the regioselective functionalization of C-H bonds.
Collapse
Affiliation(s)
- Lian Wu
- Key Laboratory of Synthetic Biology, Chinese Academy of Sciences (CAS) Center for Excellence in Molecular Plant Sciences, University of CAS, Shanghai, 200032, China
| | - Jun-Bin He
- State Key Laboratory of Chemical Biology, Shanghai Institute of Organic Chemistry, University of CAS, Shanghai, 200032, China
| | - Wanqing Wei
- School of Biotechnology and Key Laboratory of Industrial Biotechnology of Ministry of Education, Jiangnan University, Wuxi, 214122, China
| | - Hai-Xue Pan
- State Key Laboratory of Chemical Biology, Shanghai Institute of Organic Chemistry, University of CAS, Shanghai, 200032, China
- School of Chemistry and Material Sciences, Hangzhou Institute for Advanced Study, University of CAS, Hangzhou, 310024, China
| | - Xin Wang
- Henan-Macquarie University Joint Centre for Biomedical Innovation, School of Life Sciences, Henan University, Kaifeng, 475004, China
| | - Sheng Yang
- Key Laboratory of Synthetic Biology, Chinese Academy of Sciences (CAS) Center for Excellence in Molecular Plant Sciences, University of CAS, Shanghai, 200032, China.
| | - Yong Liang
- Henan-Macquarie University Joint Centre for Biomedical Innovation, School of Life Sciences, Henan University, Kaifeng, 475004, China.
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, Chemistry and Biomedicine Innovation Center, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China.
| | - Gong-Li Tang
- State Key Laboratory of Chemical Biology, Shanghai Institute of Organic Chemistry, University of CAS, Shanghai, 200032, China.
- School of Chemistry and Material Sciences, Hangzhou Institute for Advanced Study, University of CAS, Hangzhou, 310024, China.
| | - Jiahai Zhou
- State Key Laboratory of Microbial Technology, Nanjing Normal University, Nanjing, 210023, China.
| |
Collapse
|
2
|
Tamiaki H, Kichishima S. Chlorophyll Pigments and Their Synthetic Analogs. PLANT & CELL PHYSIOLOGY 2025; 66:153-167. [PMID: 39172630 PMCID: PMC11879082 DOI: 10.1093/pcp/pcae094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 08/08/2024] [Accepted: 08/17/2024] [Indexed: 08/24/2024]
Abstract
Oxygenic phototrophs use chlorophylls (Chls) as photosynthetically active pigments. A variety of Chl molecules have been found in photosynthetic organisms, including green plants, algae and cyanobacteria. Here, we review their molecular structures with stereochemistry, occurrence in light-harvesting antennas and reaction centers, biosyntheses in the late stage, chemical stabilities and visible absorption maxima in diethyl ether. The observed maxima are comparable to those of semisynthetic Chl analogs, methyl pyropheophorbides, in dichloromethane. The effects of their peripheral substituents and core π-conjugation on the maxima of the monomeric states are discussed. Notably, the oxidation along the molecular x-axis in Chl-a produces its accessory pigments, Chls-b/c, and introduction of an electron-withdrawing formyl group along the y-axis perpendicular to the x-axis affords far-red light absorbing Chls-d/f.
Collapse
Affiliation(s)
- Hitoshi Tamiaki
- Graduate School of Life Sciences, Ritsumeikan University, Kusatsu, Shiga, 525-8577 Japan
| | - Saki Kichishima
- Graduate School of Life Sciences, Ritsumeikan University, Kusatsu, Shiga, 525-8577 Japan
| |
Collapse
|
3
|
Dwyer KD, Snyder CA, Coulombe KLK. Cardiomyocytes in Hypoxia: Cellular Responses and Implications for Cell-Based Cardiac Regenerative Therapies. Bioengineering (Basel) 2025; 12:154. [PMID: 40001674 PMCID: PMC11851968 DOI: 10.3390/bioengineering12020154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2025] [Revised: 01/28/2025] [Accepted: 02/02/2025] [Indexed: 02/27/2025] Open
Abstract
Myocardial infarction (MI) is a severe hypoxic event, resulting in the loss of up to one billion cardiomyocytes (CMs). Due to the limited intrinsic regenerative capacity of the heart, cell-based regenerative therapies, which feature the implantation of stem cell-derived cardiomyocytes (SC-CMs) into the infarcted myocardium, are being developed with the goal of restoring lost muscle mass, re-engineering cardiac contractility, and preventing the progression of MI into heart failure (HF). However, such cell-based therapies are challenged by their susceptibility to oxidative stress in the ischemic environment of the infarcted heart. To maximize the therapeutic benefits of cell-based approaches, a better understanding of the heart environment at the cellular, tissue, and organ level throughout MI is imperative. This review provides a comprehensive summary of the cardiac pathophysiology occurring during and after MI, as well as how these changes define the cardiac environment to which cell-based cardiac regenerative therapies are delivered. This understanding is then leveraged to frame how cell culture treatments may be employed to enhance SC-CMs' hypoxia resistance. In this way, we synthesize both the complex experience of SC-CMs upon implantation and the engineering techniques that can be utilized to develop robust SC-CMs for the clinical translation of cell-based cardiac therapies.
Collapse
Affiliation(s)
| | | | - Kareen L. K. Coulombe
- Institute for Biology, Engineering, and Medicine, School of Engineering, Brown University, Providence, RI 02912, USA; (K.D.D.); (C.A.S.)
| |
Collapse
|
4
|
Zhao S, Wu L, Xu Y, Nie Y. Fe(II) and 2-oxoglutarate-dependent dioxygenases for natural product synthesis: molecular insights into reaction diversity. Nat Prod Rep 2025; 42:67-92. [PMID: 39403014 DOI: 10.1039/d4np00030g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2024]
Abstract
Covering: up to 2024Fe(II) and 2-oxoglutarate-dependent dioxygenases (Fe/2OG DOs) are a superfamily of enzymes that play important roles in a variety of catalytic reactions, including hydroxylation, ring formation, ring reconstruction, desaturation, and demethylation. Each member of this family has similarities in their overall structure, but they have varying specific differences, making Fe/2OG DOs attractive for catalytic diversity. With the advancement of current research, more Fe/2OG DOs have been discovered, and their catalytic scope has been further broadened; however, apart from hydroxylation, many reaction mechanisms have not been accurately demonstrated, and there is a lack of a systematic understanding of their molecular basis. Recently, an increasing number of X-ray structures of Fe/2OG DOs have provided new insights into the structural basis of their function and substrate-binding properties. This structural information is essential for understanding catalytic mechanisms and mining potential catalytic reactions. In this review, we summarize most of the Fe/2OG DOs whose structures have been resolved in recent years, focus on their structural features, and explore the relationships between various structural elements and unique catalytic mechanisms and their associated reaction type classification.
Collapse
Affiliation(s)
- Songyin Zhao
- Laboratory of Brewing Microbiology and Applied Enzymology, School of Biotechnology and Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, Wuxi, China.
| | - Lunjie Wu
- Laboratory of Brewing Microbiology and Applied Enzymology, School of Biotechnology and Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, Wuxi, China.
| | - Yan Xu
- Laboratory of Brewing Microbiology and Applied Enzymology, School of Biotechnology and Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, Wuxi, China.
| | - Yao Nie
- Laboratory of Brewing Microbiology and Applied Enzymology, School of Biotechnology and Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, Wuxi, China.
| |
Collapse
|
5
|
Sun Z, Wu M, Zhong B, Wu J, Liu D, Ren J, Fan S, Lin W, Fan A. Target Discovery of Dhilirane-Type Meroterpenoids by Biosynthesis Guidance and Tailoring Enzyme Catalysis. J Am Chem Soc 2024; 146:30242-30251. [PMID: 39454086 DOI: 10.1021/jacs.4c09298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2024]
Abstract
Dhilirane-type meroterpenoids (DMs) featuring a 6/6/6/5/5 ring system represent a rare group of fungal meroterpenoids. To date, merely 11 DMs have been isolated or derived, leaving their chemical diversity predominantly unexplored. Herein, we leverage an understanding of biosynthesis to develop a workflow for discovery of DMs by genome mining, metabolite analysis, and tailoring enzyme catalysis. Twenty-three new DMs, including seven unprecedented scaffolds, were consequently identified. An α-ketoglutarate (α-KG)-dependent oxygenase DhiD was found to catalyze the stereodivergent ring contraction of dhilirolide D to form the dhilirane skeleton; while the cytochrome P450 DhiH reshaped the structural diversity by establishing diverse C-C bonds and oxidation. Crystallographic and mutagenesis experiments provide a molecular basis for the DhiD reaction and its stereodivergent products. Notably, DhiD exhibits substrate-controlled catalytic versatility in the chemical expansion of DMs through ring contraction, hydroxylation, dehydrogenation, epoxidation, isomerization, epimerization, and α-ketol cleavage. Bioassay results demonstrated that the obtained meroterpenoids exhibited anti-inflammatory and insecticidal activities. Our work provides insight into nature's arsenal for DM biosynthesis and the functional versatility of α-KG-dependent oxygenase and P450, which can be applied for target discovery and diversification of DM-type natural products.
Collapse
Affiliation(s)
- Zhaolun Sun
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Mengyue Wu
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Boyuan Zhong
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Jingshuai Wu
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Dong Liu
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Jinwei Ren
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - Shilong Fan
- Ministry of Education Key Laboratory of Protein Sciences, Center for Structural Biology, School of Life Sciences, Tsinghua University, 100084 Beijing, China
| | - Wenhan Lin
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
- Institute of Ocean Research, Ningbo Institute of Marine Medicine, Peking University, Ningbo 315832 Zhejiang, China
| | - Aili Fan
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| |
Collapse
|
6
|
Flores ADR, Khosla C. Characterization of the Flavin-Dependent Monooxygenase Involved in the Biosynthesis of the Nocardiosis-Associated Polyketide†. Biochemistry 2024; 63:2868-2877. [PMID: 39433512 PMCID: PMC11872153 DOI: 10.1021/acs.biochem.4c00480] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2024]
Abstract
Some species of the Nocardia genus harbor a highly conserved biosynthetic gene cluster designated as the NOCardiosis-Associated Polyketide (NOCAP) synthase that produces a unique glycolipid natural product. The NOCAP glycolipid is composed of a fully substituted benzaldehyde headgroup linked to a polyfunctional alkyl tail and an O-linked disaccharide composed of 3-α-epimycarose and 2-O-methyl-α-rhamnose. Incorporation of the disaccharide unit is preceded by a critical step involving hydroxylation by NocapM, a flavin monooxygenase. In this study, we employed biochemical, spectroscopic, and kinetic analyses to explore the substrate scope of NocapM. Our findings indicate that NocapM catalyzes hydroxylation of diverse aromatic substrates, although the observed coupling between NADPH oxidation and substrate hydroxylation varies widely from substrate to substrate. Our in-depth biochemical characterization of NocapM provides a solid foundation for future mechanistic studies of this enzyme as well as its utilization as a practical biocatalyst.
Collapse
Affiliation(s)
| | - Chaitan Khosla
- Department of Chemistry, Stanford University, Stanford, California 94305, United States
- Department of Chemical Engineering, Stanford University, Stanford, California 94305, United States
- Sarafan ChEM-H, Stanford University, Stanford, California 94305, United States
| |
Collapse
|
7
|
Zheng C, Wei W, Wen J, Song W, Wu J, Wang R, Yin D, Chen X, Gao C, Liu J, Liu L. Rational Design of the Spatial Effect in a Fe(II)/α-Ketoglutarate-Dependent Dioxygenase Reverses the Regioselectivity of C(sp 3)-H Bond Hydroxylation in Aliphatic Amino Acids. Angew Chem Int Ed Engl 2024; 63:e202406060. [PMID: 38789390 DOI: 10.1002/anie.202406060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 05/20/2024] [Accepted: 05/23/2024] [Indexed: 05/26/2024]
Abstract
The hydroxylation of remote C(sp3)-H bonds in aliphatic amino acids yields crucial precursors for the synthesis of high-value compounds. However, accurate regulation of the regioselectivity of remote C(sp3)-H bonds hydroxylation in aliphatic amino acids continues to be a common challenge in chemosynthesis and biosynthesis. In this study, the Fe(II)/α-ketoglutarate-dependent dioxygenase from Bacillus subtilis (BlAH) was mined and found to catalyze hydroxylation at the γ and δ sites of aliphatic amino acids. Crystal structure analysis, molecular dynamics simulations, and quantum chemical calculations revealed that regioselectivity was regulated by the spatial effect of BlAH. Based on these results, the spatial effect of BlAH was reconstructed to stabilize the transition state at the δ site of aliphatic amino acids, thereby successfully reversing the γ site regioselectivity to the δ site. For example, the regioselectivity of L-Homoleucine (5 a) was reversed from the γ site (1 : 12) to the δ site (>99 : 1). The present study not only expands the toolbox of biocatalysts for the regioselective functionalization of remote C(sp3)-H bonds, but also provides a theoretical guidance for the precision-driven modification of similarly remote C(sp3)-H bonds in complex molecules.
Collapse
Affiliation(s)
- Chenni Zheng
- School of Biotechnology and Key Laboratory of Industrial Biotechnology of Ministry of Education, Jiangnan University, Wuxi, 214122, China
| | - Wanqing Wei
- School of Biotechnology and Key Laboratory of Industrial Biotechnology of Ministry of Education, Jiangnan University, Wuxi, 214122, China
| | - Jian Wen
- School of Life Sciences and Health Engineering, Jiangnan University, Wuxi, 214122, China
| | - Wei Song
- School of Life Sciences and Health Engineering, Jiangnan University, Wuxi, 214122, China
| | - Jing Wu
- School of Life Sciences and Health Engineering, Jiangnan University, Wuxi, 214122, China
| | - Ran Wang
- School of Life Sciences and Health Engineering, Jiangnan University, Wuxi, 214122, China
| | - Dejing Yin
- School of Biotechnology, Jiangnan University, Wuxi, 214122, China
| | - Xiulai Chen
- School of Biotechnology and Key Laboratory of Industrial Biotechnology of Ministry of Education, Jiangnan University, Wuxi, 214122, China
| | - Cong Gao
- School of Biotechnology and Key Laboratory of Industrial Biotechnology of Ministry of Education, Jiangnan University, Wuxi, 214122, China
| | - Jia Liu
- School of Biotechnology and Key Laboratory of Industrial Biotechnology of Ministry of Education, Jiangnan University, Wuxi, 214122, China
| | - Liming Liu
- School of Biotechnology and Key Laboratory of Industrial Biotechnology of Ministry of Education, Jiangnan University, Wuxi, 214122, China
| |
Collapse
|
8
|
Su Y, Lai W. Unraveling the Mechanism of the Oxidative C-C Bond Coupling Reaction Catalyzed by Deoxypodophyllotoxin Synthase. Inorg Chem 2024; 63:13948-13958. [PMID: 39008659 DOI: 10.1021/acs.inorgchem.4c01263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/17/2024]
Abstract
Deoxypodophyllotoxin synthase (DPS), a nonheme Fe(II)/2-oxoglutarate (2OG)-dependent oxygenase, is a key enzyme that is involved in the construction of the fused-ring system in (-)-podophyllotoxin biosynthesis by catalyzing the C-C coupling reaction. However, the mechanistic details of DPS-catalyzed ring formation remain unclear. Herein, our quantum mechanics/molecular mechanics (QM/MM) calculations reveal a novel mechanism that involves the recycling of CO2 (a product of decarboxylation of 2OG) to prevent the formation of hydroxylated byproducts. Our results show that CO2 can react with the FeIII-OH species to generate an unusual FeIII-bicarbonate species. In this way, hydroxylation is avoided by consuming the OH group. Then, the C-C coupling followed by desaturation yields the final product, deoxypodophyllotoxin. This work highlights the crucial role of the CO2 molecule, generated in the crevice between the iron active site and the substrate, in controlling the reaction selectivity.
Collapse
Affiliation(s)
- Yanzhuang Su
- Key Laboratory of Advanced Light Conversion Materials and Biophotonics, School of Chemistry and Life Resources, Renmin University of China, Beijing 100872, China
| | - Wenzhen Lai
- Key Laboratory of Advanced Light Conversion Materials and Biophotonics, School of Chemistry and Life Resources, Renmin University of China, Beijing 100872, China
| |
Collapse
|
9
|
Wolf ME, Eltis LD. Preparation of reductases for multicomponent oxygenases. Methods Enzymol 2024; 703:65-85. [PMID: 39261004 DOI: 10.1016/bs.mie.2024.05.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/13/2024]
Abstract
Oxygenases catalyze crucial reactions throughout all domains of life, cleaving molecular oxygen (O2) and inserting one or two of its atoms into organic substrates. Many oxygenases, including those in the cytochrome P450 (P450) and Rieske oxygenase enzyme families, function as multicomponent systems, which require one or more redox partners to transfer electrons to the catalytic center. As the identity of the reductase can change the reactivity of the oxygenase, characterization of the latter with its cognate redox partners is critical. However, the isolation of the native redox partner or partners is often challenging. Here, we report the preparation and characterization of PbdB, the native reductase partner of PbdA, a bacterial P450 enzyme that catalyzes the O-demethylation of para-methoxylated benzoates. Through production in a rhodoccocal host, codon optimization, and anaerobic purification, this procedure overcomes conventional challenges in redox partner production and allows for robust oxygenase characterization with its native redox partner. Key lessons learned here, including the value of production in a related host and rare codon effects are applicable to a broad range of Fe-dependent oxygenases and their components.
Collapse
Affiliation(s)
- Megan E Wolf
- Microbiology and Immunology, The University of British Columbia, Vancouver, BC, Canada
| | - Lindsay D Eltis
- Microbiology and Immunology, The University of British Columbia, Vancouver, BC, Canada.
| |
Collapse
|
10
|
Ushimaru R. Functions and mechanisms of enzymes assembling lignans and norlignans. Curr Opin Chem Biol 2024; 80:102462. [PMID: 38692182 DOI: 10.1016/j.cbpa.2024.102462] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2024] [Revised: 04/08/2024] [Accepted: 04/08/2024] [Indexed: 05/03/2024]
Abstract
Lignans and norlignans are distributed throughout the plant kingdom and exhibit diverse chemical structures and biological properties that offer potential for therapeutic use. Originating from the phenylpropanoid biosynthesis pathway, their characteristic carbon architectures are formed through unique enzyme catalysis, featuring regio- and stereoselective C-C bond forming processes. Despite extensive research on these plant natural products, their biosynthetic pathways, and enzyme mechanisms remain enigmatic. This review highlights recent advancements in elucidating the functions and mechanisms of the biosynthetic enzymes responsible for constructing the distinct carbon frameworks of lignans and norlignans.
Collapse
Affiliation(s)
- Richiro Ushimaru
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo 113-0033, Japan; Collaborative Research Institute for Innovative Microbiology, The University of Tokyo, Tokyo 113-8657, Japan.
| |
Collapse
|
11
|
Kalkreuter E, Kautsar SA, Yang D, Bader CD, Teijaro CN, Fluegel LL, Davis CM, Simpson JR, Lauterbach L, Steele AD, Gui C, Meng S, Li G, Viehrig K, Ye F, Su P, Kiefer AF, Nichols A, Cepeda AJ, Yan W, Fan B, Jiang Y, Adhikari A, Zheng CJ, Schuster L, Cowan TM, Smanski MJ, Chevrette MG, de Carvalho LPS, Shen B. The Natural Products Discovery Center: Release of the First 8490 Sequenced Strains for Exploring Actinobacteria Biosynthetic Diversity. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.12.14.571759. [PMID: 38168313 PMCID: PMC10760148 DOI: 10.1101/2023.12.14.571759] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2024]
Abstract
Actinobacteria, the bacterial phylum most renowned for natural product discovery, has been established as a valuable source for drug discovery and biotechnology but is underrepresented within accessible genome and strain collections. Herein, we introduce the Natural Products Discovery Center (NPDC), featuring 122,449 strains assembled over eight decades, the genomes of the first 8490 NPDC strains (7142 Actinobacteria), and the online NPDC Portal making both strains and genomes publicly available. A comparative survey of RefSeq and NPDC Actinobacteria highlights the taxonomic and biosynthetic diversity within the NPDC collection, including three new genera, hundreds of new species, and ~7000 new gene cluster families. Selected examples demonstrate how the NPDC Portal's strain metadata, genomes, and biosynthetic gene clusters can be leveraged using genome mining approaches. Our findings underscore the ongoing significance of Actinobacteria in natural product discovery, and the NPDC serves as an unparalleled resource for both Actinobacteria strains and genomes.
Collapse
Affiliation(s)
- Edward Kalkreuter
- Department of Chemistry, The Herbert Wertheim UF Scripps Institute for Biomedical Innovation & Technology, Jupiter, FL 33458
| | - Satria A. Kautsar
- Department of Chemistry, The Herbert Wertheim UF Scripps Institute for Biomedical Innovation & Technology, Jupiter, FL 33458
- Current address: DOE Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA 94720
| | - Dong Yang
- Department of Chemistry, The Herbert Wertheim UF Scripps Institute for Biomedical Innovation & Technology, Jupiter, FL 33458
- Natural Products Discovery Center, The Herbert Wertheim UF Scripps Institute for Biomedical Innovation & Technology, Jupiter, FL 33458
| | - Chantal D. Bader
- Department of Chemistry, The Herbert Wertheim UF Scripps Institute for Biomedical Innovation & Technology, Jupiter, FL 33458
| | - Christiana N. Teijaro
- Department of Chemistry, The Herbert Wertheim UF Scripps Institute for Biomedical Innovation & Technology, Jupiter, FL 33458
- Current address: Department of Discovery Chemistry, Bristol-Meyers Squibb, Princeton, NJ 08543
| | - Lucas L. Fluegel
- Department of Chemistry, The Herbert Wertheim UF Scripps Institute for Biomedical Innovation & Technology, Jupiter, FL 33458
- Skaggs Graduate School of Chemical and Biological Sciences, Scripps Research, Jupiter, FL 33458
| | - Christina M. Davis
- Department of Chemistry, The Herbert Wertheim UF Scripps Institute for Biomedical Innovation & Technology, Jupiter, FL 33458
- Skaggs Graduate School of Chemical and Biological Sciences, Scripps Research, Jupiter, FL 33458
| | - Johnathon R. Simpson
- Department of Chemistry, The Herbert Wertheim UF Scripps Institute for Biomedical Innovation & Technology, Jupiter, FL 33458
- Current address: Prepaire Labs, Pompano Beach, FL 33060
| | - Lukas Lauterbach
- Department of Chemistry, The Herbert Wertheim UF Scripps Institute for Biomedical Innovation & Technology, Jupiter, FL 33458
| | - Andrew D. Steele
- Department of Chemistry, The Herbert Wertheim UF Scripps Institute for Biomedical Innovation & Technology, Jupiter, FL 33458
| | - Chun Gui
- Department of Chemistry, The Herbert Wertheim UF Scripps Institute for Biomedical Innovation & Technology, Jupiter, FL 33458
| | - Song Meng
- Department of Chemistry, The Herbert Wertheim UF Scripps Institute for Biomedical Innovation & Technology, Jupiter, FL 33458
- Current address: State Key Laboratory of Drug Research & Natural Products Research Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, People’s Republic of China, Beijing, China 100049
| | - Gengnan Li
- Department of Chemistry, The Herbert Wertheim UF Scripps Institute for Biomedical Innovation & Technology, Jupiter, FL 33458
- Current address: Centivax Inc., South San Francisco, CA 94080
| | - Konrad Viehrig
- Department of Chemistry, The Herbert Wertheim UF Scripps Institute for Biomedical Innovation & Technology, Jupiter, FL 33458
- Current address: Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Matosinhos, Portugal 4450-208
| | - Fei Ye
- Department of Chemistry, The Herbert Wertheim UF Scripps Institute for Biomedical Innovation & Technology, Jupiter, FL 33458
- Current address: Department of Biological Chemistry & Molecular Pharmacology, Harvard University, Boston, MA 02115
| | - Ping Su
- Department of Chemistry, The Herbert Wertheim UF Scripps Institute for Biomedical Innovation & Technology, Jupiter, FL 33458
- Current address: State Key Laboratory for Quality Assurance and Sustainable Use of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China 100700
| | - Alexander F. Kiefer
- Department of Chemistry, The Herbert Wertheim UF Scripps Institute for Biomedical Innovation & Technology, Jupiter, FL 33458
| | - Angela Nichols
- Department of Chemistry, The Herbert Wertheim UF Scripps Institute for Biomedical Innovation & Technology, Jupiter, FL 33458
- Skaggs Graduate School of Chemical and Biological Sciences, Scripps Research, Jupiter, FL 33458
| | - Alexis J. Cepeda
- Department of Chemistry, The Herbert Wertheim UF Scripps Institute for Biomedical Innovation & Technology, Jupiter, FL 33458
- Skaggs Graduate School of Chemical and Biological Sciences, Scripps Research, Jupiter, FL 33458
| | - Wei Yan
- Department of Chemistry, The Herbert Wertheim UF Scripps Institute for Biomedical Innovation & Technology, Jupiter, FL 33458
- Current address: College of Plant Protection, Nanjing Agricultural University, Nanjing, China 210095
| | - Boyi Fan
- Department of Chemistry, The Herbert Wertheim UF Scripps Institute for Biomedical Innovation & Technology, Jupiter, FL 33458
- Current address: School of Pharmacy, Nantong University, Nantong, China 226001
| | - Yanlong Jiang
- Department of Chemistry, The Herbert Wertheim UF Scripps Institute for Biomedical Innovation & Technology, Jupiter, FL 33458
- Current address: Department of Chemistry, Rice University, Houston, TX 77005
| | - Ajeeth Adhikari
- Department of Chemistry, The Herbert Wertheim UF Scripps Institute for Biomedical Innovation & Technology, Jupiter, FL 33458
- Skaggs Graduate School of Chemical and Biological Sciences, Scripps Research, Jupiter, FL 33458
- Current address: Evercrisp Biosciences, San Francisco, CA 94109
| | - Cheng-Jian Zheng
- Department of Chemistry, The Herbert Wertheim UF Scripps Institute for Biomedical Innovation & Technology, Jupiter, FL 33458
- Current address: Faculty of Pharmacy, Naval Medical University, Shanghai, China 200433
| | - Layla Schuster
- Department of Microbiology and Cell Science, University of Florida, Gainesville, FL 32603
| | - Tyler M. Cowan
- Department of Chemistry, The Herbert Wertheim UF Scripps Institute for Biomedical Innovation & Technology, Jupiter, FL 33458
| | - Michael J. Smanski
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, Saint Paul, MN 55108
- Biotechnology Institute, University of Minnesota, Saint Paul, MN 55108
| | - Marc G. Chevrette
- Department of Microbiology and Cell Science, University of Florida, Gainesville, FL 32603
- Genetics Institute, University of Florida, Gainesville, FL 32603
| | - Luiz P. S. de Carvalho
- Department of Chemistry, The Herbert Wertheim UF Scripps Institute for Biomedical Innovation & Technology, Jupiter, FL 33458
| | - Ben Shen
- Department of Chemistry, The Herbert Wertheim UF Scripps Institute for Biomedical Innovation & Technology, Jupiter, FL 33458
- Department of Molecular Medicine, The Herbert Wertheim UF Scripps Institute for Biomedical Innovation & Technology, Jupiter, FL 33458
- Natural Products Discovery Center, The Herbert Wertheim UF Scripps Institute for Biomedical Innovation & Technology, Jupiter, FL 33458
- Skaggs Graduate School of Chemical and Biological Sciences, Scripps Research, Jupiter, FL 33458
| |
Collapse
|
12
|
Krishnan A, Waheed SO, Varghese A, Cherilakkudy FH, Schofield CJ, Karabencheva-Christova TG. Unusual catalytic strategy by non-heme Fe(ii)/2-oxoglutarate-dependent aspartyl hydroxylase AspH. Chem Sci 2024; 15:3466-3484. [PMID: 38455014 PMCID: PMC10915816 DOI: 10.1039/d3sc05974j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Accepted: 02/02/2024] [Indexed: 03/09/2024] Open
Abstract
Biocatalytic C-H oxidation reactions are of important synthetic utility, provide a sustainable route for selective synthesis of important organic molecules, and are an integral part of fundamental cell processes. The multidomain non-heme Fe(ii)/2-oxoglutarate (2OG) dependent oxygenase AspH catalyzes stereoselective (3R)-hydroxylation of aspartyl- and asparaginyl-residues. Unusually, compared to other 2OG hydroxylases, crystallography has shown that AspH lacks the carboxylate residue of the characteristic two-His-one-Asp/Glu Fe-binding triad. Instead, AspH has a water molecule that coordinates Fe(ii) in the coordination position usually occupied by the Asp/Glu carboxylate. Molecular dynamics (MD) and quantum mechanics/molecular mechanics (QM/MM) studies reveal that the iron coordinating water is stabilized by hydrogen bonding with a second coordination sphere (SCS) carboxylate residue Asp721, an arrangement that helps maintain the six coordinated Fe(ii) distorted octahedral coordination geometry and enable catalysis. AspH catalysis follows a dioxygen activation-hydrogen atom transfer (HAT)-rebound hydroxylation mechanism, unusually exhibiting higher activation energy for rebound hydroxylation than for HAT, indicating that the rebound step may be rate-limiting. The HAT step, along with substrate positioning modulated by the non-covalent interactions with SCS residues (Arg688, Arg686, Lys666, Asp721, and Gln664), are essential in determining stereoselectivity, which likely proceeds with retention of configuration. The tetratricopeptide repeat (TPR) domain of AspH influences substrate binding and manifests dynamic motions during catalysis, an observation of interest with respect to other 2OG oxygenases with TPR domains. The results provide unique insights into how non-heme Fe(ii) oxygenases can effectively catalyze stereoselective hydroxylation using only two enzyme-derived Fe-ligating residues, potentially guiding enzyme engineering for stereoselective biocatalysis, thus advancing the development of non-heme Fe(ii) based biomimetic C-H oxidation catalysts, and supporting the proposal that the 2OG oxygenase superfamily may be larger than once perceived.
Collapse
Affiliation(s)
- Anandhu Krishnan
- Department of Chemistry, Michigan Technological University Houghton MI 49931 USA
| | - Sodiq O Waheed
- Department of Chemistry, Michigan Technological University Houghton MI 49931 USA
| | - Ann Varghese
- Department of Chemistry, Michigan Technological University Houghton MI 49931 USA
| | | | - Christopher J Schofield
- Chemistry Research Laboratory, Department of Chemistry and the Ineos Oxford Institute for Antimicrobial Research, University of Oxford OX1 3TA Oxford UK
| | | |
Collapse
|
13
|
Monkcom EC, Gómez L, Lutz M, Ye S, Bill E, Costas M, Klein Gebbink RJM. Synthesis, Structure and Reactivity of a Mononuclear N,N,O-Bound Fe(II) α-Keto-Acid Complex. Chemistry 2024; 30:e202302710. [PMID: 37882223 DOI: 10.1002/chem.202302710] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 10/23/2023] [Accepted: 10/25/2023] [Indexed: 10/27/2023]
Abstract
A bulky, tridentate phenolate ligand (ImPh2 NNOtBu ) was used to synthesise the first example of a mononuclear, facial, N,N,O-bound iron(II) benzoylformate complex, [Fe(ImPh2 NNOtBu )(BF)] (2). The X-ray crystal structure of 2 reveals that the iron centre is pentacoordinate (τ=0.5), with a vacant site located cis to the bidentate BF ligand. The Mössbauer parameters of 2 are consistent with high-spin iron(II), and are very close to those reported for α-ketoglutarate-bound non-heme iron enzyme active sites. According to NMR and UV-vis spectroscopies, the structural integrity of 2 is retained in both coordinating and non-coordinating solvents. Cyclic voltammetry studies show that the iron centre has a very low oxidation potential and is more prone to electrochemical oxidation than the redox-active phenolate ligand. Complex 2 reacts with NO to form a S=3 /2 {FeNO}7 adduct in which NO binds directly to the iron centre, according to EPR, UV-vis, IR spectroscopies and DFT analysis. Upon O2 exposure, 2 undergoes oxidative decarboxylation to form a diiron(III) benzoate complex, [Fe2 (ImPh2 NNOtBu )2 (μ2 -OBz)(μ2 -OH)2 ]+ (3). A small amount of hydroxylated ligand was also observed by ESI-MS, hinting at the formation of a high-valent iron(IV)-oxo intermediate. Initial reactivity studies show that 2 is capable of oxygen atom transfer reactivity with O2 , converting methyl(p-tolyl)sulfide to sulfoxide.
Collapse
Affiliation(s)
- Emily C Monkcom
- Organic Chemistry and Catalysis, Institute for Sustainable and Circular Chemistry, Utrecht University, Universiteitsweg 99, 3584 CG, Utrecht, The Netherlands
| | - Laura Gómez
- Serveis Tècnics de Recerca, Universitat de Girona, Pic de Peguera 15, Parc Cientific, 17003, Girona, Spain
| | - Martin Lutz
- Structural Biochemistry, Bijvoet Centre for Biomolecular Research, Utrecht University, Universiteitsweg 99, 3584 CG, Utrecht, The Netherlands
| | - Shengfa Ye
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian, 116023, China
| | - Eckhard Bill
- Max-Planck-Institut für Chemische Energiekonversion, 45470, Mülheim an der Ruhr, Germany
| | - Miquel Costas
- Institut de Química Computacional i Catàlisi, Universitat de Girona, Pic de Peguera 15, Parc Cientific, 17003, Girona, Spain
| | - Robertus J M Klein Gebbink
- Organic Chemistry and Catalysis, Institute for Sustainable and Circular Chemistry, Utrecht University, Universiteitsweg 99, 3584 CG, Utrecht, The Netherlands
| |
Collapse
|
14
|
Ushimaru R. Three-membered ring formation catalyzed by α-ketoglutarate-dependent nonheme iron enzymes. J Nat Med 2024; 78:21-32. [PMID: 37980694 PMCID: PMC10764440 DOI: 10.1007/s11418-023-01760-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Accepted: 10/25/2023] [Indexed: 11/21/2023]
Abstract
Epoxides, aziridines, and cyclopropanes are found in various medicinal natural products, including polyketides, terpenes, peptides, and alkaloids. Many classes of biosynthetic enzymes are involved in constructing these ring structures during their biosynthesis. This review summarizes our current knowledge regarding how α-ketoglutarate-dependent nonheme iron enzymes catalyze the formation of epoxides, aziridines, and cyclopropanes in nature, with a focus on enzyme mechanisms.
Collapse
Affiliation(s)
- Richiro Ushimaru
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo, 113-0033, Japan.
- Collaborative Research Institute for Innovative Microbiology, The University of Tokyo, Tokyo, 113-8657, Japan.
| |
Collapse
|
15
|
Liu K, Zhang J, Zhang G, Zhang L, Meng Z, Ma L, Zhang W, Xiong W, Zhu Y, Wang B, Zhang C. Deciphering Deoxynybomycin Biosynthesis Reveals Fe(II)/α-Ketoglutarate-Dependent Dioxygenase-Catalyzed Oxazoline Ring Formation and Decomposition. J Am Chem Soc 2023; 145:27886-27899. [PMID: 38055632 DOI: 10.1021/jacs.3c11772] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/08/2023]
Abstract
The antibacterial agents deoxynybomycin (DNM) and nybomycin (NM) have a unique tetracyclic structure featuring an angularly fused 4-oxazoline ring. Here, we report the identification of key enzymes responsible for forming the 4-oxazoline ring in Embleya hyalina NBRC 13850 by comparative bioinformatics analysis of the biosynthetic gene clusters encoding structurally similar natural products DNM, deoxynyboquinone (DNQ), and diazaquinomycins (DAQs). The N-methyltransferase DnmS plays a crucial role in catalyzing the N-dimethylation of a tricyclic precursor prenybomycin to generate NM D; subsequently, the Fe(II)/α-ketoglutarate-dependent dioxygenase (Fe/αKGD) DnmT catalyzes the formation of a 4-oxazoline ring from NM D to produce DNM; finally, a second Fe/αKGD DnmU catalyzes the C-12 hydroxylation of DNM to yield NM. Strikingly, DnmT is shown to display unexpected functions to also catalyze the decomposition of the 4-oxazoline ring and the N-demethylation, thereby converting DNM back to prenybomycin, to putatively serve as a manner to control the intracellular yield of DNM. Structure modeling, site-directed mutagenesis, and quantum mechanics calculations provide mechanistic insights into the DnmT-catalyzed reactions. This work expands our understanding of the functional diversity of Fe/αKGDs in natural product biosynthesis.
Collapse
Affiliation(s)
- Kai Liu
- Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, China-Sri Lanka Joint Center for Education and Research, South China Sea Institute of Oceanology, Chinese Academy of Sciences, 164 West Xingang Road, Guangzhou 510301, China
| | - Jinyan Zhang
- State Key Laboratory of Physical Chemistry of Solid Surfaces and Fujian Provincial Key Laboratory of Theoretical and Computational Chemistry College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Guangtao Zhang
- Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, China-Sri Lanka Joint Center for Education and Research, South China Sea Institute of Oceanology, Chinese Academy of Sciences, 164 West Xingang Road, Guangzhou 510301, China
| | - Liping Zhang
- Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, China-Sri Lanka Joint Center for Education and Research, South China Sea Institute of Oceanology, Chinese Academy of Sciences, 164 West Xingang Road, Guangzhou 510301, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhen Meng
- Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, China-Sri Lanka Joint Center for Education and Research, South China Sea Institute of Oceanology, Chinese Academy of Sciences, 164 West Xingang Road, Guangzhou 510301, China
| | - Liang Ma
- Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, China-Sri Lanka Joint Center for Education and Research, South China Sea Institute of Oceanology, Chinese Academy of Sciences, 164 West Xingang Road, Guangzhou 510301, China
| | - Wenjun Zhang
- Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, China-Sri Lanka Joint Center for Education and Research, South China Sea Institute of Oceanology, Chinese Academy of Sciences, 164 West Xingang Road, Guangzhou 510301, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- Sanya Institute of Ocean Eco-Environmental Engineering, Yazhou Scientific Bay, Sanya 572000, China
| | - Weiliang Xiong
- Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, China-Sri Lanka Joint Center for Education and Research, South China Sea Institute of Oceanology, Chinese Academy of Sciences, 164 West Xingang Road, Guangzhou 510301, China
| | - Yiguang Zhu
- Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, China-Sri Lanka Joint Center for Education and Research, South China Sea Institute of Oceanology, Chinese Academy of Sciences, 164 West Xingang Road, Guangzhou 510301, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- Sanya Institute of Ocean Eco-Environmental Engineering, Yazhou Scientific Bay, Sanya 572000, China
| | - Binju Wang
- State Key Laboratory of Physical Chemistry of Solid Surfaces and Fujian Provincial Key Laboratory of Theoretical and Computational Chemistry College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Changsheng Zhang
- Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, China-Sri Lanka Joint Center for Education and Research, South China Sea Institute of Oceanology, Chinese Academy of Sciences, 164 West Xingang Road, Guangzhou 510301, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- Sanya Institute of Ocean Eco-Environmental Engineering, Yazhou Scientific Bay, Sanya 572000, China
| |
Collapse
|
16
|
Ushimaru R, Cha L, Shimo S, Li X, Paris JC, Mori T, Miyamoto K, Coffer L, Uchiyama M, Guo Y, Chang WC, Abe I. Mechanistic Analysis of Stereodivergent Nitroalkane Cyclopropanation Catalyzed by Nonheme Iron Enzymes. J Am Chem Soc 2023; 145:24210-24217. [PMID: 37874539 PMCID: PMC10725191 DOI: 10.1021/jacs.3c08413] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2023]
Abstract
BelL and HrmJ are α-ketoglutarate-dependent nonheme iron enzymes that catalyze the oxidative cyclization of 6-nitronorleucine, resulting in the formation of two diastereomeric 3-(2-nitrocyclopropyl)alanine (Ncpa) products containing trans-cyclopropane rings with (1'R,2'R) and (1'S,2'S) configurations, respectively. Herein, we investigate the catalytic mechanism and stereodivergency of the cyclopropanases. The results suggest that the nitroalkane moiety of the substrate is first deprotonated to produce the nitronate form. Spectroscopic analyses and biochemical assays with substrates and analogues indicate that an iron(IV)-oxo species abstracts proS-H from C4 to initiate intramolecular C-C bond formation. A hydroxylation intermediate is unlikely to be involved in the cyclopropanation reaction. Additionally, a genome mining approach is employed to discover new homologues that perform the cyclopropanation of 6-nitronorleucine to generate cis-configured Ncpa products with (1'R,2'S) or (1'S,2'R) stereochemistries. Sequence and structure comparisons of these cyclopropanases enable us to determine the amino acid residues critical for controlling the stereoselectivity of cyclopropanation.
Collapse
Affiliation(s)
- Richiro Ushimaru
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo 113-0033, Japan
- Collaborative Research Institute for Innovative Microbiology, The University of Tokyo, Tokyo 113-8657, Japan
| | - Lide Cha
- Department of Chemistry, North Carolina State University, Raleigh, North Carolina 27695, United States
| | - Shotaro Shimo
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo 113-0033, Japan
| | - Xiaojun Li
- Department of Chemistry, North Carolina State University, Raleigh, North Carolina 27695, United States
| | - Jared C Paris
- Department of Chemistry, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, United States
| | - Takahiro Mori
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo 113-0033, Japan
- Collaborative Research Institute for Innovative Microbiology, The University of Tokyo, Tokyo 113-8657, Japan
- PRESTO, Japan Science and Technology Agency, Kawaguchi, Saitama 332-0012, Japan
| | - Kazunori Miyamoto
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo 113-0033, Japan
| | - Lindsay Coffer
- Department of Chemistry, North Carolina State University, Raleigh, North Carolina 27695, United States
| | - Masanobu Uchiyama
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo 113-0033, Japan
- Research Initiative for Supra-Materials, Shinshu University, Nagano 380-8553, Japan
| | - Yisong Guo
- Department of Chemistry, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, United States
| | - Wei-Chen Chang
- Department of Chemistry, North Carolina State University, Raleigh, North Carolina 27695, United States
| | - Ikuro Abe
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo 113-0033, Japan
- Collaborative Research Institute for Innovative Microbiology, The University of Tokyo, Tokyo 113-8657, Japan
| |
Collapse
|
17
|
Zwick CR, Renata H. Overview of Amino Acid Modifications by Iron- and α-Ketoglutarate-Dependent Enzymes. ACS Catal 2023. [DOI: 10.1021/acscatal.3c00424] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/29/2023]
|
18
|
Cha L, Paris JC, Zanella B, Spletzer M, Yao A, Guo Y, Chang WC. Mechanistic Studies of Aziridine Formation Catalyzed by Mononuclear Non-Heme Iron Enzymes. J Am Chem Soc 2023; 145:6240-6246. [PMID: 36913534 PMCID: PMC11973640 DOI: 10.1021/jacs.2c12664] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/15/2023]
Abstract
Aziridines are compounds with a nitrogen-containing three-membered ring. When it is incorporated into natural products, the reactivity of the strained ring often drives the biological activities of aziridines. Despite its importance, the enzymes and biosynthetic strategies deployed to install this reactive moiety remain understudied. Herein, we report the use of in silico methods to identify enzymes with potential aziridine-installing (aziridinase) functionality. To validate candidates, we reconstitute enzymatic activity in vitro and demonstrate that an iron(IV)-oxo species initiates aziridine ring closure by the C-H bond cleavage. Furthermore, we divert the reaction pathway from aziridination to hydroxylation using mechanistic probes. This observation, isotope tracing experiments using H218O and 18O2, and quantitative product analysis, provide evidence for the polar capture of a carbocation species by the amine in the pathway to aziridine installation.
Collapse
Affiliation(s)
- Lide Cha
- Department of Chemistry, North Carolina State University, Raleigh, NC, 27695, U.S.A
| | - Jared C. Paris
- Department of Chemistry, Carnegie Mellon University, Pittsburgh, PA, 15213, U.S.A
| | - Brady Zanella
- Department of Chemistry, North Carolina State University, Raleigh, NC, 27695, U.S.A
| | - Martha Spletzer
- Department of Chemistry, Carnegie Mellon University, Pittsburgh, PA, 15213, U.S.A
| | - Angela Yao
- Department of Chemistry, North Carolina State University, Raleigh, NC, 27695, U.S.A
| | - Yisong Guo
- Department of Chemistry, Carnegie Mellon University, Pittsburgh, PA, 15213, U.S.A
| | - Wei-chen Chang
- Department of Chemistry, North Carolina State University, Raleigh, NC, 27695, U.S.A
| |
Collapse
|
19
|
Tao H, Abe I. Oxidative modification of free-standing amino acids by Fe(II)/αKG-dependent oxygenases. ENGINEERING MICROBIOLOGY 2023; 3:100062. [PMID: 39628521 PMCID: PMC11611013 DOI: 10.1016/j.engmic.2022.100062] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Revised: 11/27/2022] [Accepted: 11/28/2022] [Indexed: 12/06/2024]
Abstract
Fe(II)/α-ketoglutarate (αKG)-dependent oxygenases catalyze the oxidative modification of various molecules, from DNA, RNA, and proteins to primary and secondary metabolites. They also catalyze a variety of biochemical reactions, including hydroxylation, halogenation, desaturation, epoxidation, cyclization, peroxidation, epimerization, and rearrangement. Given the versatile catalytic capability of such oxygenases, numerous studies have been conducted to characterize their functions and elucidate their structure-function relationships over the past few decades. Amino acids, particularly nonproteinogenic amino acids, are considered as important building blocks for chemical synthesis and components for natural product biosynthesis. In addition, the Fe(II)/αKG-dependent oxygenase superfamily includes important enzymes for generating amino acid derivatives, as they efficiently modify various free-standing amino acids. The recent discovery of new Fe(II)/αKG-dependent oxygenases and the repurposing of known enzymes in this superfamily have promoted the generation of useful amino acid derivatives. Therefore, this study will focus on the recent progress achieved from 2019 to 2022 to provide a clear view of the mechanism by which these enzymes have expanded the repertoire of free amino acid oxidative modifications.
Collapse
Affiliation(s)
- Hui Tao
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo, Japan
| | - Ikuro Abe
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo, Japan
- Collaborative Research Institute for Innovative Microbiology, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
20
|
Awakawa T, Mori T, Ushimaru R, Abe I. Structure-based engineering of α-ketoglutarate dependent oxygenases in fungal meroterpenoid biosynthesis. Nat Prod Rep 2023; 40:46-61. [PMID: 35642933 DOI: 10.1039/d2np00014h] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Non-heme iron- and α-ketoglutarate-dependent oxygenases (αKG OXs) are key enzymes that play a major role in diversifying the structure of fungal meroterpenoids. They activate a specific C-H bond of the substrate to first generate radical species, which is usually followed by oxygen rebound to produce cannonical hydroxylated products. However, in some cases remarkable chemistry induces dramatic structural changes in the molecular scaffolds, depending on the stereoelectronic characters of the substrate/intermediates and the resulting conformational changes/movements of the active site of the enzyme. Their molecular bases have been extensively investigated by crystallographic structural analyses and structure-based mutagenesis, which revealed intimate structural details of the enzyme reactions. This information facilitates the manipulation of the enzyme reactions to create unnatural, novel molecules for drug discovery. This review summarizes recent progress in the structure-based engineering of αKG OX enzymes, involved in the biosynthesis of polyketide-derived fungal meroterpenoids. The literature published from 2016 through February 2022 is reviewed.
Collapse
Affiliation(s)
- Takayoshi Awakawa
- Graduate School of Pharmaceutical Sciences, the University of Tokyo, Bunkyo-ku, Tokyo 113-0033, Japan. .,Collaborative Research Institute for Innovative Microbiology, the University of Tokyo, Yayoi 1-1-1, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Takahiro Mori
- Graduate School of Pharmaceutical Sciences, the University of Tokyo, Bunkyo-ku, Tokyo 113-0033, Japan. .,Collaborative Research Institute for Innovative Microbiology, the University of Tokyo, Yayoi 1-1-1, Bunkyo-ku, Tokyo 113-8657, Japan.,PRESTO, Japan Science and Technology Agency, Kawaguchi, Saitama, Japan
| | - Richiro Ushimaru
- Graduate School of Pharmaceutical Sciences, the University of Tokyo, Bunkyo-ku, Tokyo 113-0033, Japan. .,Collaborative Research Institute for Innovative Microbiology, the University of Tokyo, Yayoi 1-1-1, Bunkyo-ku, Tokyo 113-8657, Japan.,ACT-X, Japan Science and Technology Agency, Kawaguchi, Saitama, Japan
| | - Ikuro Abe
- Graduate School of Pharmaceutical Sciences, the University of Tokyo, Bunkyo-ku, Tokyo 113-0033, Japan. .,Collaborative Research Institute for Innovative Microbiology, the University of Tokyo, Yayoi 1-1-1, Bunkyo-ku, Tokyo 113-8657, Japan
| |
Collapse
|
21
|
Williams K, Szwalbe AJ, de Mattos-Shipley KMJ, Bailey AM, Cox RJ, Willis CL. Maleidride biosynthesis - construction of dimeric anhydrides - more than just heads or tails. Nat Prod Rep 2023; 40:128-157. [PMID: 36129067 PMCID: PMC9890510 DOI: 10.1039/d2np00041e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Covering: up to early 2022Maleidrides are a family of polyketide-based dimeric natural products isolated from fungi. Many maleidrides possess significant bioactivities, making them attractive pharmaceutical or agrochemical lead compounds. Their unusual biosynthetic pathways have fascinated scientists for decades, with recent advances in our bioinformatic and enzymatic understanding providing further insights into their construction. However, many intriguing questions remain, including exactly how the enzymatic dimerisation, which creates the diverse core structure of the maleidrides, is controlled. This review will explore the literature from the initial isolation of maleidride compounds in the 1930s, through the first full structural elucidation in the 1960s, to the most recent in vivo, in vitro, and in silico analyses.
Collapse
Affiliation(s)
- Katherine Williams
- School of Biological Sciences, Life Sciences Building, University of Bristol, 24 Tyndall Ave, Bristol BS8 1TQ, UK.
| | | | | | - Andy M. Bailey
- School of Biological Sciences, Life Sciences Building, University of Bristol24 Tyndall AveBristol BS8 1TQUK
| | - Russell J. Cox
- Institute for Organic Chemistry and BMWZ, Leibniz University of HannoverSchneiderberg 3830167HannoverGermany
| | | |
Collapse
|
22
|
Papadopoulou A, Meyer F, Buller RM. Engineering Fe(II)/α-Ketoglutarate-Dependent Halogenases and Desaturases. Biochemistry 2023; 62:229-240. [PMID: 35446547 DOI: 10.1021/acs.biochem.2c00115] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Fe(II)/α-ketoglutarate-dependent dioxygenases (α-KGDs) are widespread enzymes in aerobic biology and serve a remarkable array of biological functions, including roles in collagen biosynthesis, plant and animal development, transcriptional regulation, nucleic acid modification, and secondary metabolite biosynthesis. This functional diversity is reflected in the enzymes' catalytic flexibility as α-KGDs can catalyze an intriguing set of synthetically valuable reactions, such as hydroxylations, halogenations, and desaturations, capturing the interest of scientists across disciplines. Mechanistically, all α-KGDs are understood to follow a similar activation pathway to generate a substrate radical, yet how individual members of the enzyme family direct this key intermediate toward the different reaction outcomes remains elusive, triggering structural, computational, spectroscopic, kinetic, and enzyme engineering studies. In this Perspective, we will highlight how first enzyme and substrate engineering examples suggest that the chemical reaction pathway within α-KGDs can be intentionally tailored using rational design principles. We will delineate the structural and mechanistic investigations of the reprogrammed enzymes and how they begin to inform about the enzymes' structure-function relationships that determine chemoselectivity. Application of this knowledge in future enzyme and substrate engineering campaigns will lead to the development of powerful C-H activation catalysts for chemical synthesis.
Collapse
Affiliation(s)
- Athena Papadopoulou
- Competence Center for Biocatalysis, Zurich University of Applied Sciences, Einsiedlerstrasse 31, 8820 Wädenswil, Switzerland
| | - Fabian Meyer
- Competence Center for Biocatalysis, Zurich University of Applied Sciences, Einsiedlerstrasse 31, 8820 Wädenswil, Switzerland
| | - Rebecca M Buller
- Competence Center for Biocatalysis, Zurich University of Applied Sciences, Einsiedlerstrasse 31, 8820 Wädenswil, Switzerland
| |
Collapse
|
23
|
Tariq H, Asif S, Andleeb A, Hano C, Abbasi BH. Flavonoid Production: Current Trends in Plant Metabolic Engineering and De Novo Microbial Production. Metabolites 2023; 13:124. [PMID: 36677049 PMCID: PMC9864322 DOI: 10.3390/metabo13010124] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 12/23/2022] [Accepted: 01/10/2023] [Indexed: 01/14/2023] Open
Abstract
Flavonoids are secondary metabolites that represent a heterogeneous family of plant polyphenolic compounds. Recent research has determined that the health benefits of fruits and vegetables, as well as the therapeutic potential of medicinal plants, are based on the presence of various bioactive natural products, including a high proportion of flavonoids. With current trends in plant metabolite research, flavonoids have become the center of attention due to their significant bioactivity associated with anti-cancer, antioxidant, anti-inflammatory, and anti-microbial activities. However, the use of traditional approaches, widely associated with the production of flavonoids, including plant extraction and chemical synthesis, has not been able to establish a scalable route for large-scale production on an industrial level. The renovation of biosynthetic pathways in plants and industrially significant microbes using advanced genetic engineering tools offers substantial promise for the exploration and scalable production of flavonoids. Recently, the co-culture engineering approach has emerged to prevail over the constraints and limitations of the conventional monoculture approach by harnessing the power of two or more strains of engineered microbes to reconstruct the target biosynthetic pathway. In this review, current perspectives on the biosynthesis and metabolic engineering of flavonoids in plants have been summarized. Special emphasis is placed on the most recent developments in the microbial production of major classes of flavonoids. Finally, we describe the recent achievements in genetic engineering for the combinatorial biosynthesis of flavonoids by reconstructing synthesis pathways in microorganisms via a co-culture strategy to obtain high amounts of specific bioactive compounds.
Collapse
Affiliation(s)
- Hasnat Tariq
- Department of Biotechnology, Quaid-i-Azam University, Islamabad 45320, Pakistan
| | - Saaim Asif
- Department of Biosciences, COMSATS University, Islamabad 45550, Pakistan
| | - Anisa Andleeb
- Department of Biotechnology, Quaid-i-Azam University, Islamabad 45320, Pakistan
| | - Christophe Hano
- Laboratoire de Biologie des Ligneux et des Grandes Cultures (LBLGC), INRAE USC1328, Eure et Loir Campus, Université d’Orléans, 28000 Chartres, France
| | - Bilal Haider Abbasi
- Department of Biotechnology, Quaid-i-Azam University, Islamabad 45320, Pakistan
| |
Collapse
|
24
|
Ushimaru R, Abe I. Unusual Dioxygen-Dependent Reactions Catalyzed by Nonheme Iron Enzymes in Natural Product Biosynthesis. ACS Catal 2022. [DOI: 10.1021/acscatal.2c05247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Richiro Ushimaru
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, Bunkyo-ku, Tokyo 113-0033, Japan
- Collaborative Research Institute for Innovative Microbiology, The University of Tokyo, Bunkyo-ku, Tokyo 113-0033, Japan
- ACT-X, Japan Science and Technology Agency (JST), Honcho, Kawaguchi, Saitama 332-0012, Japan
| | - Ikuro Abe
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, Bunkyo-ku, Tokyo 113-0033, Japan
- Collaborative Research Institute for Innovative Microbiology, The University of Tokyo, Bunkyo-ku, Tokyo 113-0033, Japan
| |
Collapse
|
25
|
Tao H, Ushimaru R, Awakawa T, Mori T, Uchiyama M, Abe I. Stereoselectivity and Substrate Specificity of the Fe(II)/α-Ketoglutarate-Dependent Oxygenase TqaL. J Am Chem Soc 2022; 144:21512-21520. [DOI: 10.1021/jacs.2c08116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Affiliation(s)
- Hui Tao
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo 113-0033, Japan
| | - Richiro Ushimaru
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo 113-0033, Japan
- Collaborative Research Institute for Innovative Microbiology, The University of Tokyo, Tokyo 113-0033, Japan
- ACT-X, Japan Science and Technology Agency (JST), Honcho, Kawaguchi, Saitama 332-0012, Japan
| | - Takayoshi Awakawa
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo 113-0033, Japan
- Collaborative Research Institute for Innovative Microbiology, The University of Tokyo, Tokyo 113-0033, Japan
- RIKEN Center for Sustainable Resource Science, Wako, Saitama 351-0198, Japan
| | - Takahiro Mori
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo 113-0033, Japan
- Collaborative Research Institute for Innovative Microbiology, The University of Tokyo, Tokyo 113-0033, Japan
- PRESTO, Japan Science and Technology Agency, Kawaguchi, Saitama 332-0012, Japan
| | - Masanobu Uchiyama
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo 113-0033, Japan
- Research Initiative for Supra-Materials (RISM), Shinshu University, Ueda 386-8567, Japan
| | - Ikuro Abe
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo 113-0033, Japan
- Collaborative Research Institute for Innovative Microbiology, The University of Tokyo, Tokyo 113-0033, Japan
| |
Collapse
|
26
|
Chen XW, Rao L, Chen JL, Zou Y. Unexpected assembly machinery for 4(3H)-quinazolinone scaffold synthesis. Nat Commun 2022; 13:6522. [PMID: 36316336 PMCID: PMC9622831 DOI: 10.1038/s41467-022-34340-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Accepted: 10/21/2022] [Indexed: 11/06/2022] Open
Abstract
4(3H)-quinazolinone is the core scaffold in more than 200 natural alkaloids and numerous drugs. Many chemosynthetic methodologies have been developed to generate it; however, investigation of its native enzymatic formation mechanism in fungi has been largely limited to fumiquinazolines, where the two nitrogen atoms come from anthranilate (N-1) and the α-NH2 of amino acids (N-3). Here, via biochemical investigation of the chrysogine pathway, unexpected assembly machinery for 4(3H)-quinazolinone is unveiled, which involves a fungal two-module nonribosomal peptide synthase ftChyA with an unusual terminal condensation domain catalysing tripeptide formation; reveals that N-3 originates from the inorganic ammonium ions or the amide of L-Gln; demonstrates an unusual α-ketoglutarate-dependent dioxygenase ftChyM catalysis of the C-N bond oxidative cleavage of a tripeptide to form a dipeptide. Our study uncovers a unique release and tailoring mechanism for nonribosomal peptides and an alternative route for the synthesis of 4(3H)-quinazolinone scaffolds.
Collapse
Affiliation(s)
- Xi-Wei Chen
- grid.263906.80000 0001 0362 4044College of Pharmaceutical Sciences, Southwest University, Chongqing, 400715 P. R. China
| | - Li Rao
- grid.263906.80000 0001 0362 4044College of Pharmaceutical Sciences, Southwest University, Chongqing, 400715 P. R. China
| | - Jia-Li Chen
- grid.263906.80000 0001 0362 4044College of Pharmaceutical Sciences, Southwest University, Chongqing, 400715 P. R. China
| | - Yi Zou
- grid.263906.80000 0001 0362 4044College of Pharmaceutical Sciences, Southwest University, Chongqing, 400715 P. R. China
| |
Collapse
|
27
|
Yan D, Matsuda Y. Biosynthetic Elucidation and Structural Revision of Brevione E: Characterization of the Key Dioxygenase for Pathway Branching from Setosusin Biosynthesis. Angew Chem Int Ed Engl 2022; 61:e202210938. [DOI: 10.1002/anie.202210938] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Indexed: 11/06/2022]
Affiliation(s)
- Dexiu Yan
- Department of Chemistry City University of Hong Kong Tat Chee Avenue Kowloon, Hong Kong SAR China
| | - Yudai Matsuda
- Department of Chemistry City University of Hong Kong Tat Chee Avenue Kowloon, Hong Kong SAR China
| |
Collapse
|
28
|
Kim W, Chen TY, Cha L, Zhou G, Xing K, Canty NK, Zhang Y, Chang WC. Elucidation of divergent desaturation pathways in the formation of vinyl isonitrile and isocyanoacrylate. Nat Commun 2022; 13:5343. [PMID: 36097268 PMCID: PMC9467999 DOI: 10.1038/s41467-022-32870-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Accepted: 08/19/2022] [Indexed: 11/10/2022] Open
Abstract
Two different types of desaturations are employed by iron- and 2-oxoglutarate-dependent (Fe/2OG) enzymes to construct vinyl isonitrile and isocyanoacrylate moieties found in isonitrile-containing natural products. A substrate-bound protein structure reveals a plausible strategy to affect desaturation and hints at substrate promiscuity of these enzymes. Analogs are synthesized and used as mechanistic probes to validate structural observations. Instead of proceeding through hydroxylated intermediate as previously proposed, a plausible carbocation species is utilized to trigger C=C bond installation. These Fe/2OG enzymes can also accommodate analogs with opposite chirality and different functional groups including isonitrile-(D)-tyrosine, N-formyl tyrosine, and phloretic acid, while maintaining the reaction selectivity.
Collapse
Affiliation(s)
- Wantae Kim
- McKetta Department of Chemical Engineering, University of Texas, Austin, TX, USA
| | - Tzu-Yu Chen
- Department of Chemistry, NC State University, Raleigh, NC, USA
| | - Lide Cha
- Department of Chemistry, NC State University, Raleigh, NC, USA
| | - Grace Zhou
- Department of Molecular Biosciences, University of Texas, Austin, TX, USA
| | - Kristi Xing
- Department of Molecular Biosciences, University of Texas, Austin, TX, USA
| | | | - Yan Zhang
- Department of Molecular Biosciences, University of Texas, Austin, TX, USA.
- Institute for Cellular and Molecular Biology, University of Texas, Austin, TX, USA.
| | - Wei-Chen Chang
- Department of Chemistry, NC State University, Raleigh, NC, USA.
| |
Collapse
|
29
|
Cheng J, Luo Z, Wang B, Yan L, Zhang S, Zhang J, Lu Y, Wang W. An artificial pathway for trans-4-hydroxy-L-pipecolic acid production from L-lysine in Escherichia coli. Biosci Biotechnol Biochem 2022; 86:1476-1481. [PMID: 35998310 DOI: 10.1093/bbb/zbac118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Accepted: 07/06/2022] [Indexed: 11/14/2022]
Abstract
Trans-4-hydroxy-L-pipecolic acid (Trans-4-HyPip) is a hydroxylated product of L-pipecolic acid, and which is widely used in pharmaceutical and chemical industry. Here, a trans-4-HyPip biosynthesis module was designed and constructed in Escherichia coli by overexpressing lysine α-oxidase, Δ1-piperideine-2-carboxylase reductase, glucose dehydrogenase, lysine permease, catalase and L-pipecolic acid trans-4-hydroxylase for expanding the lysine catabolism pathway. 4.89 g/L of trans-4-HyPip was generated in shake flasks from 8 g/L of L-pipecolic acid. By this approach, 14.86 g/L of trans-4-HyPip was produced from lysine after 48 h in a 5-L bioreactor. As far as we know, this is the first multi-enzyme cascade catalytic system for the production of trans-4-HyPip using Escherichia coli from L-lysine. Therefore, it can be considered as a potential candidate for industrial production of trans-4-HyPip in microorganisms.
Collapse
Affiliation(s)
- Jie Cheng
- Meat Processing Key Laboratory of Sichuan Province, College of Food and Biological Engineering, Chengdu University, Chengdu, P.R. China
| | - Zhou Luo
- Meat Processing Key Laboratory of Sichuan Province, College of Food and Biological Engineering, Chengdu University, Chengdu, P.R. China
| | - Bangxu Wang
- Meat Processing Key Laboratory of Sichuan Province, College of Food and Biological Engineering, Chengdu University, Chengdu, P.R. China.,College of Biological and Chemical Engineering, Guangxi University of Science and Technology, Liuzhou, P.R. China
| | - Lixiu Yan
- Chongqing Academy of Metrology and Quality Inspection, Chongqing, P.R. China
| | - Suyi Zhang
- Luzhou Laojiao Co., Ltd., Luzhou, Sichuan, P.R. China
| | - Jiamin Zhang
- Meat Processing Key Laboratory of Sichuan Province, College of Food and Biological Engineering, Chengdu University, Chengdu, P.R. China
| | - Yao Lu
- College of Biological and Chemical Engineering, Guangxi University of Science and Technology, Liuzhou, P.R. China
| | - Wei Wang
- Meat Processing Key Laboratory of Sichuan Province, College of Food and Biological Engineering, Chengdu University, Chengdu, P.R. China
| |
Collapse
|
30
|
Del Rio Flores A, Kastner DW, Du Y, Narayanamoorthy M, Shen Y, Cai W, Vennelakanti V, Zill NA, Dell LB, Zhai R, Kulik HJ, Zhang W. Probing the Mechanism of Isonitrile Formation by a Non-Heme Iron(II)-Dependent Oxidase/Decarboxylase. J Am Chem Soc 2022; 144:5893-5901. [PMID: 35254829 PMCID: PMC8986608 DOI: 10.1021/jacs.1c12891] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
The isonitrile moiety is an electron-rich functionality that decorates various bioactive natural products isolated from diverse kingdoms of life. Isonitrile biosynthesis was restricted for over a decade to isonitrile synthases, a family of enzymes catalyzing a condensation reaction between l-Trp/l-Tyr and ribulose-5-phosphate. The discovery of ScoE, a non-heme iron(II) and α-ketoglutarate-dependent dioxygenase, demonstrated an alternative pathway employed by nature for isonitrile installation. Biochemical, crystallographic, and computational investigations of ScoE have previously been reported, yet the isonitrile formation mechanism remains obscure. In the present work, we employed in vitro biochemistry, chemical synthesis, spectroscopy techniques, and computational simulations that enabled us to propose a plausible molecular mechanism for isonitrile formation. Our findings demonstrate that the ScoE reaction initiates with C5 hydroxylation of (R)-3-((carboxymethyl)amino)butanoic acid to generate 1, which undergoes dehydration, presumably mediated by Tyr96 to synthesize 2 in a trans configuration. (R)-3-isocyanobutanoic acid is finally generated through radical-based decarboxylation of 2, instead of the common hydroxylation pathway employed by this enzyme superfamily.
Collapse
Affiliation(s)
- Antonio Del Rio Flores
- Department of Chemical and Biomolecular Engineering, University of California, Berkeley, California, United States 94720
| | - David W. Kastner
- Department of Bioengineering, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States 02139
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States 02139
| | - Yongle Du
- Department of Chemical and Biomolecular Engineering, University of California, Berkeley, California, United States 94720
| | - Maanasa Narayanamoorthy
- Department of Chemistry, University of California, Berkeley, California, United States 94720
| | - Yuanbo Shen
- Department of Chemistry, University of California, Berkeley, California, United States 94720
| | - Wenlong Cai
- Department of Chemical and Biomolecular Engineering, University of California, Berkeley, California, United States 94720
| | - Vyshnavi Vennelakanti
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States 02139
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States 02139
| | - Nicholas A. Zill
- Department of Chemical and Biomolecular Engineering, University of California, Berkeley, California, United States 94720
| | - Luisa B. Dell
- Department of Chemical and Biomolecular Engineering, University of California, Berkeley, California, United States 94720
| | - Rui Zhai
- Department of Chemical and Biomolecular Engineering, University of California, Berkeley, California, United States 94720
| | - Heather J. Kulik
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States 02139
| | - Wenjun Zhang
- Department of Chemical and Biomolecular Engineering, University of California, Berkeley, California, United States 94720
- Chan Zuckerberg Biohub, San Francisco, California, United States 94158
| |
Collapse
|
31
|
Wojdyla Z, Borowski T. Properties of the Reactants and Their Interactions within and with the Enzyme Binding Cavity Determine Reaction Selectivities. The Case of Fe(II)/2-Oxoglutarate Dependent Enzymes. Chemistry 2022; 28:e202104106. [PMID: 34986268 DOI: 10.1002/chem.202104106] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Indexed: 12/12/2022]
Abstract
Fe(II)/2-oxoglutarate dependent dioxygenases (ODDs) share a double stranded beta helix (DSBH) fold and utilise a common reactive intermediate, ferryl species, to catalyse oxidative transformations of substrates. Despite the structural similarities, ODDs accept a variety of substrates and facilitate a wide range of reactions, that is hydroxylations, desaturations, (oxa)cyclisations and ring rearrangements. In this review we present and discuss the factors contributing to the observed (regio)selectivities of ODDs. They span from inherent properties of the reactants, that is, substrate molecule and iron cofactor, to the interactions between the substrate and the enzyme's binding cavity; the latter can counterbalance the effect of the former. Based on results of both experimental and computational studies dedicated to ODDs, we also line out the properties of the reactants which promote reaction outcomes other than the "default" hydroxylation. It turns out that the reaction selectivity depends on a delicate balance of interactions between the components of the investigated system.
Collapse
Affiliation(s)
- Zuzanna Wojdyla
- Jerzy Haber Institute of Catalysis and Surface Chemistry, Polish Academy of Sciences, Kraków, Niezapominajek 8, 30239 Krakow, Poland
| | - Tomasz Borowski
- Jerzy Haber Institute of Catalysis and Surface Chemistry, Polish Academy of Sciences, Kraków, Niezapominajek 8, 30239 Krakow, Poland
| |
Collapse
|
32
|
Liu X, Yuan Z, Su H, Hou X, Deng Z, Xu H, Guo B, Yin D, Sheng X, Rao Y. Molecular Basis of the Unusual Seven-Membered Methylenedioxy Bridge Formation Catalyzed by Fe(II)/α-KG-Dependent Oxygenase CTB9. ACS Catal 2022. [DOI: 10.1021/acscatal.1c04627] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Xuanzhong Liu
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, P. R. China
| | - Zhenbo Yuan
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, P. R. China
| | - Hao Su
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences and National Center of Technology Innovation for Synthetic Biology, Tianjin 300308, P. R. China
| | - Xiaodong Hou
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, P. R. China
| | - Zhiwei Deng
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, P. R. China
| | - Huibin Xu
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, P. R. China
| | - Baodang Guo
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, P. R. China
| | - Dejing Yin
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, P. R. China
| | - Xiang Sheng
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences and National Center of Technology Innovation for Synthetic Biology, Tianjin 300308, P. R. China
| | - Yijian Rao
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, P. R. China
| |
Collapse
|
33
|
Williams K, de Mattos-Shipley KMJ, Willis CL, Bailey AM. In silico analyses of maleidride biosynthetic gene clusters. Fungal Biol Biotechnol 2022; 9:2. [PMID: 35177129 PMCID: PMC8851701 DOI: 10.1186/s40694-022-00132-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Accepted: 01/23/2022] [Indexed: 01/09/2023] Open
Abstract
Maleidrides are a family of structurally related fungal natural products, many of which possess diverse, potent bioactivities. Previous identification of several maleidride biosynthetic gene clusters, and subsequent experimental work, has determined the 'core' set of genes required to construct the characteristic medium-sized alicyclic ring with maleic anhydride moieties. Through genome mining, this work has used these core genes to discover ten entirely novel putative maleidride biosynthetic gene clusters, amongst both publicly available genomes, and encoded within the genome of the previously un-sequenced epiheveadride producer Wicklowia aquatica CBS 125634. We have undertaken phylogenetic analyses and comparative bioinformatics on all known and putative maleidride biosynthetic gene clusters to gain further insights regarding these unique biosynthetic pathways.
Collapse
Affiliation(s)
- Katherine Williams
- School of Biological Sciences, Life Sciences Building, University of Bristol, 24 Tyndall Ave, Bristol, BS8 1TQ, UK.
| | - Kate M J de Mattos-Shipley
- School of Biological Sciences, Life Sciences Building, University of Bristol, 24 Tyndall Ave, Bristol, BS8 1TQ, UK
| | - Christine L Willis
- School of Chemistry, University of Bristol, Cantock's Close, Bristol, BS8 1TS, UK
| | - Andrew M Bailey
- School of Biological Sciences, Life Sciences Building, University of Bristol, 24 Tyndall Ave, Bristol, BS8 1TQ, UK
| |
Collapse
|
34
|
Schmidl D, Jonasson NSW, Menke A, Schneider S, Daumann L. Spectroscopic and in vitro investigations of Fe2+/α-Ketoglutarate-dependent enzymes involved in nucleic acid repair and modification. Chembiochem 2022; 23:e202100605. [PMID: 35040547 PMCID: PMC9401043 DOI: 10.1002/cbic.202100605] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Revised: 01/14/2022] [Indexed: 11/08/2022]
Abstract
The activation of molecular oxygen for the highly selective functionalization and repair of DNA and RNA nucleobases is achieved by α-ketoglutarate (α-KG)/iron-dependent dioxygenases. Enzymes of special interest are the human homologs AlkBH of Escherichia coli EcAlkB and ten-eleven translocation (TET) enzymes. These enzymes are involved in demethylation or dealkylation of DNA and RNA, although additional physiological functions are continuously being revealed. Given their importance, studying enzyme-substrate interactions, turnover and kinetic parameters is pivotal for the understanding of the mode of action of these enzymes. Diverse analytical methods, including X-ray crystallography, UV/Vis absorption, electron paramagnetic resonance (EPR), circular dichroism (CD) and NMR spectroscopy have been employed to study the changes in the active site and the overall enzyme structure upon substrate, cofactor and inhibitor addition. Several methods are now available to assess activity of these enzymes. By discussing limitations and possibilities of these techniques for EcAlkB, AlkBH and TET we aim to give a comprehensive synopsis from a bioinorganic point of view, addressing researchers from different disciplines working in the highly interdisciplinary and rapidly evolving field of epigenetic processes and DNA/RNA repair and modification.
Collapse
Affiliation(s)
- David Schmidl
- Ludwig-Maximilians-Universität München: Ludwig-Maximilians-Universitat Munchen, Chemistry, GERMANY
| | - Niko S W Jonasson
- Ludwig-Maximilians-Universität München: Ludwig-Maximilians-Universitat Munchen, Chemistry, GERMANY
| | - Annika Menke
- Ludwig-Maximilians-Universität München: Ludwig-Maximilians-Universitat Munchen, Chemistry, GERMANY
| | - Sabine Schneider
- Ludwig-Maximilians-Universität München: Ludwig-Maximilians-Universitat Munchen, Chemistry, GERMANY
| | - Lena Daumann
- Ludwig-Maximilians-Universität München, Department of Chemistry, Butenandtstr. 5-13, 81377, München, GERMANY
| |
Collapse
|
35
|
Tang J, Matsuda Y. Discovery of branching meroterpenoid biosynthetic pathways in Aspergillus insuetus: involvement of two terpene cyclases with distinct cyclization modes. Chem Sci 2022; 13:10361-10369. [PMID: 36277653 PMCID: PMC9473517 DOI: 10.1039/d2sc02994d] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Accepted: 08/17/2022] [Indexed: 12/14/2022] Open
Abstract
Branching meroterpenoid biosynthetic pathways were discovered in the fungus Aspergillus insuetus CBS 107.25, in which two terpene cyclases, InsA7 and InsB2, accept the same substrate but generate distinctly cyclized products.
Collapse
Affiliation(s)
- Jia Tang
- Department of Chemistry, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong SAR, China
| | - Yudai Matsuda
- Department of Chemistry, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong SAR, China
| |
Collapse
|
36
|
Li X, Awakawa T, Mori T, Ling M, Hu D, Wu B, Abe I. Heterodimeric Non-heme Iron Enzymes in Fungal Meroterpenoid Biosynthesis. J Am Chem Soc 2021; 143:21425-21432. [PMID: 34881885 DOI: 10.1021/jacs.1c11548] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Talaromyolides (1-6) are a group of unusual 6/6/6/6/6/6 hexacyclic meroterpenoids with (3R)-6-hydroxymellein and 4,5-seco-drimane substructures, isolated from the marine fungus Talaromyces purpureogenus. We have identified the biosynthetic gene cluster tlxA-J by heterologous expression in Aspergillus, in vitro enzyme assays, and CRISPR-Cas9-based gene inactivation. Remarkably, the heterodimer of non-heme iron (NHI) enzymes, TlxJ-TlxI, catalyzes three steps of oxidation including a key reaction, hydroxylation at C-5 and C-9 of 12, the intermediate with 3-ketohydroxydrimane scaffold, to facilitate a retro-aldol reaction, leading to the construction of the 4,5-secodrimane skeleton and characteristic ketal scaffold of 1-6. The products of TlxJ-TlxI, 1 and 4, were further hydroxylated at C-4'β by another NHI heterodimer, TlxA-TlxC, and acetylated by TlxB to yield the final products, 3 and 6. The X-ray structural analysis coupled with site-directed mutagenesis provided insights into the heterodimer TlxJ-TlxI formation and its catalysis. This is the first report to show that two NHI proteins form a heterodimer for catalysis and utilizes a novel methodology to create functional oxygenase structures in secondary metabolite biosynthesis.
Collapse
Affiliation(s)
- Xinyang Li
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Takayoshi Awakawa
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, Bunkyo-ku, Tokyo 113-0033, Japan.,Collaborative Research Institute for Innovative Microbiology, The University of Tokyo, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Takahiro Mori
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, Bunkyo-ku, Tokyo 113-0033, Japan.,Collaborative Research Institute for Innovative Microbiology, The University of Tokyo, Bunkyo-ku, Tokyo 113-8657, Japan.,PRESTO, Japan Science and Technology Agency, Kawaguchi, Saitama 332-0012, Japan
| | - Meiqi Ling
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Dan Hu
- Institute of Traditional Chinese Medicine and Natural Products, College of Pharmacy, Jinan University, Guangzhou 510632, China
| | - Bin Wu
- Ocean College, Zhejiang University, Hangzhou 310058, China
| | - Ikuro Abe
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, Bunkyo-ku, Tokyo 113-0033, Japan.,Collaborative Research Institute for Innovative Microbiology, The University of Tokyo, Bunkyo-ku, Tokyo 113-8657, Japan
| |
Collapse
|
37
|
Miller BW, Lim AL, Lin Z, Bailey J, Aoyagi KL, Fisher MA, Barrows LR, Manoil C, Schmidt EW, Haygood MG. Shipworm symbiosis ecology-guided discovery of an antibiotic that kills colistin-resistant Acinetobacter. Cell Chem Biol 2021; 28:1628-1637.e4. [PMID: 34146491 PMCID: PMC8605984 DOI: 10.1016/j.chembiol.2021.05.003] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Revised: 04/19/2021] [Accepted: 05/04/2021] [Indexed: 02/04/2023]
Abstract
Teredinibacter turnerae is an intracellular bacterial symbiont in the gills of wood-eating shipworms, where it is proposed to use antibiotics to defend itself and its animal host. Several biosynthetic gene clusters are conserved in T. turnerae and their host shipworms around the world, implying that they encode defensive compounds. Here, we describe turnercyclamycins, lipopeptide antibiotics encoded in the genomes of all sequenced T. turnerae strains. Turnercyclamycins are bactericidal against challenging Gram-negative pathogens, including colistin-resistant Acinetobacter baumannii. Phenotypic screening identified the outer membrane as the likely target. Turnercyclamycins and colistin operate by similar cellular, although not necessarily molecular, mechanisms, but turnercyclamycins kill colistin-resistant A. baumannii, potentially filling an urgent clinical need. Thus, by exploring environments that select for the properties we require, we harvested the fruits of evolution to discover compounds with potential to target unmet health needs. Investigating the symbionts of shipworms is a powerful example of this principle.
Collapse
Affiliation(s)
- Bailey W Miller
- Department of Medicinal Chemistry, University of Utah, Salt Lake City, UT 81112, USA
| | - Albebson L Lim
- Department of Medicinal Chemistry, University of Utah, Salt Lake City, UT 81112, USA
| | - Zhenjian Lin
- Department of Medicinal Chemistry, University of Utah, Salt Lake City, UT 81112, USA
| | - Jeannie Bailey
- Department of Genome Sciences, University of Washington, Seattle, WA 98195, USA
| | - Kari L Aoyagi
- Department of Pathology and ARUP Laboratories, University of Utah, Salt Lake City, UT 84112, USA
| | - Mark A Fisher
- Department of Pathology and ARUP Laboratories, University of Utah, Salt Lake City, UT 84112, USA
| | - Louis R Barrows
- Department of Pharmacology and Toxicology, University of Utah, Salt Lake City, UT 84112, USA
| | - Colin Manoil
- Department of Genome Sciences, University of Washington, Seattle, WA 98195, USA
| | - Eric W Schmidt
- Department of Medicinal Chemistry, University of Utah, Salt Lake City, UT 81112, USA.
| | - Margo G Haygood
- Department of Medicinal Chemistry, University of Utah, Salt Lake City, UT 81112, USA.
| |
Collapse
|
38
|
Shimo S, Ushimaru R, Engelbrecht A, Harada M, Miyamoto K, Kulik A, Uchiyama M, Kaysser L, Abe I. Stereodivergent Nitrocyclopropane Formation during Biosynthesis of Belactosins and Hormaomycins. J Am Chem Soc 2021; 143:18413-18418. [PMID: 34710328 DOI: 10.1021/jacs.1c10201] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Belactosins and hormaomycins are peptide natural products containing 3-(2-aminocyclopropyl)alanine and 3-(2-nitrocyclopropyl)alanine residues, respectively, with opposite stereoconfigurations of the cyclopropane ring. Herein we demonstrate that the heme oxygenase-like enzymes BelK and HrmI catalyze the N-oxygenation of l-lysine to generate 6-nitronorleucine. The nonheme iron enzymes BelL and HrmJ then cyclize the nitroalkane moiety to the nitrocyclopropane ring with the desired stereochemistry found in the corresponding natural products. We also show that both cyclopropanases remove the 4-proS-H of 6-nitronorleucine during the cyclization, establishing the inversion and retention of the configuration at C4 during the BelL and HrmJ reactions, respectively. This study reveals the unique strategy for stereocontrolled cyclopropane synthesis in nature.
Collapse
Affiliation(s)
- Shotaro Shimo
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Richiro Ushimaru
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, Bunkyo-ku, Tokyo 113-0033, Japan.,Collaborative Research Institute for Innovative Microbiology, The University of Tokyo, Bunkyo-ku, Tokyo 113-0033, Japan.,ACT-X, Japan Science and Technology Agency (JST), Honcho, Kawaguchi, Saitama 332-0012, Japan
| | - Alicia Engelbrecht
- Pharmaceutical Institute, Department of Pharmaceutical Biology, University of Tübingen, Auf der Morgenstelle 8, 72076 Tübingen, Germany
| | - Mei Harada
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Kazunori Miyamoto
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Andreas Kulik
- Interfaculty Institute of Microbiology and Infection Medicine (IMIT), University of Tübingen, 72076 Tübingen, Germany
| | - Masanobu Uchiyama
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, Bunkyo-ku, Tokyo 113-0033, Japan.,Research Initiative for Supra-Materials (RISM), Shinshu University, Ueda, 386-8567, Japan
| | - Leonard Kaysser
- Institute for Drug Discovery, Department of Pharmaceutical Biology, University of Leipzig, Eilenburger Str. 14, 04317 Leipzig, Germany
| | - Ikuro Abe
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, Bunkyo-ku, Tokyo 113-0033, Japan.,Collaborative Research Institute for Innovative Microbiology, The University of Tokyo, Bunkyo-ku, Tokyo 113-0033, Japan
| |
Collapse
|
39
|
Berger MB, Walker AR, Vázquez-Montelongo EA, Cisneros GA. Computational investigations of selected enzymes from two iron and α-ketoglutarate-dependent families. Phys Chem Chem Phys 2021; 23:22227-22240. [PMID: 34586107 PMCID: PMC8516722 DOI: 10.1039/d1cp03800a] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
DNA alkylation is used as the key epigenetic mark in eukaryotes, however, most alkylation in DNA can result in deleterious effects. Therefore, this process needs to be tightly regulated. The enzymes of the AlkB and Ten-Eleven Translocation (TET) families are members of the Fe and alpha-ketoglutarate-dependent superfamily of enzymes that are tasked with dealkylating DNA and RNA in cells. Members of these families span all species and are an integral part of transcriptional regulation. While both families catalyze oxidative dealkylation of various bases, each has specific preference for alkylated base type as well as distinct catalytic mechanisms. This perspective aims to provide an overview of computational work carried out to investigate several members of these enzyme families including AlkB, ALKB Homolog 2, ALKB Homolog 3 and Ten-Eleven Translocate 2. Insights into structural details, mutagenesis studies, reaction path analysis, electronic structure features in the active site, and substrate preferences are presented and discussed.
Collapse
Affiliation(s)
- Madison B Berger
- Department of Chemistry, University of North Texas, Denton, Texas, 76201, USA.
| | - Alice R Walker
- Department of Chemistry, Wayne State University, Detroit, Michigan, 48202, USA
| | | | - G Andrés Cisneros
- Department of Chemistry, University of North Texas, Denton, Texas, 76201, USA.
| |
Collapse
|
40
|
Affiliation(s)
- Judith Münch
- Leibniz Institute of Plant Biochemistry, Weinberg 3, 06120, Halle, Saale, Germany
| | - Pascal Püllmann
- Leibniz Institute of Plant Biochemistry, Weinberg 3, 06120, Halle, Saale, Germany
| | - Wuyuan Zhang
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, 32 West seventh Avenue, Tianjin 300308, China
- National Technology Innovation Center of Synthetic Biology, 32 West seventh Avenue, Tianjin 300308, China
| | - Martin J. Weissenborn
- Leibniz Institute of Plant Biochemistry, Weinberg 3, 06120, Halle, Saale, Germany
- Institute of Chemistry, MartinLuther-University Halle-Wittenberg, Kurt-Mothes-Strasse 2, 06120, Halle, Saale, Germany
| |
Collapse
|
41
|
Ye Y, Fu H, Hyster TK. Activation modes in biocatalytic radical cyclization reactions. J Ind Microbiol Biotechnol 2021; 48:kuab021. [PMID: 33674826 PMCID: PMC8210684 DOI: 10.1093/jimb/kuab021] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Accepted: 02/26/2021] [Indexed: 12/17/2022]
Abstract
Radical cyclizations are essential reactions in the biosynthesis of secondary metabolites and the chemical synthesis of societally valuable molecules. In this review, we highlight the general mechanisms utilized in biocatalytic radical cyclizations. We specifically highlight cytochrome P450 monooxygenases (P450s) involved in the biosynthesis of mycocyclosin and vancomycin, nonheme iron- and α-ketoglutarate-dependent dioxygenases (Fe/αKGDs) used in the biosynthesis of kainic acid, scopolamine, and isopenicillin N, and radical S-adenosylmethionine (SAM) enzymes that facilitate the biosynthesis of oxetanocin A, menaquinone, and F420. Beyond natural mechanisms, we also examine repurposed flavin-dependent "ene"-reductases (ERED) for non-natural radical cyclization. Overall, these general mechanisms underscore the opportunity for enzymes to augment and enhance the synthesis of complex molecules using radical mechanisms.
Collapse
Affiliation(s)
- Yuxuan Ye
- Department of Chemistry, Princeton University, Princeton, NJ 08544, USA
| | - Haigen Fu
- Department of Chemistry, Princeton University, Princeton, NJ 08544, USA
| | - Todd K Hyster
- Department of Chemistry, Princeton University, Princeton, NJ 08544, USA
| |
Collapse
|
42
|
Stout CN, Renata H. Reinvigorating the Chiral Pool: Chemoenzymatic Approaches to Complex Peptides and Terpenoids. Acc Chem Res 2021; 54:1143-1156. [PMID: 33543931 DOI: 10.1021/acs.accounts.0c00823] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Biocatalytic transformations that leverage the selectivity and efficiency of enzymes represent powerful tools for the construction of complex natural products. Enabled by innovations in genome mining, bioinformatics, and enzyme engineering, synthetic chemists are now more than ever able to develop and employ enzymes to solve outstanding chemical problems, one of which is the reliable and facile generation of stereochemistry within natural product scaffolds. In recognition of this unmet need, our group has sought to advance novel chemoenzymatic strategies to both expand and reinvigorate the chiral pool. Broadly defined, the chiral pool comprises cheap, enantiopure feedstock chemicals that serve as popular foundations for asymmetric total synthesis. Among these building blocks, amino acids and enantiopure terpenes, whose core structures can be mapped onto several classes of structurally and pharmaceutically intriguing natural products, are of particular interest to the synthetic community.In this Account, we summarize recent efforts from our group in leveraging biocatalytic transformations to expand the chiral pool, as well as efforts toward the efficient application of these transformations in natural products total synthesis, the ultimate testing ground for any novel methodology. First, we describe several examples of enzymatic generation of noncanonical amino acids as means to simplify the synthesis of peptide natural products. By extracting amino acid hydroxylases from native biosynthetic pathways, we obtain efficient access to hydroxylated variants of proline, lysine, arginine, and their derivatives. The newly installed hydroxyl moiety then becomes a chemical handle that can facilitate additional complexity generation, thereby expanding the pool of amino acid-derived building blocks available for peptide synthesis. Next, we present our efforts in enzymatic C-H oxidations of diverse terpene scaffolds, in which traditional chemistry can be combined with strategic applications of biocatalysis to selectively and efficiently derivatize several commercial terpenoid skeletons. The synergistic logic of this approach enables a small handful of synthetic intermediates to provide access to a plethora of terpenoid natural product families. Taken together, these findings demonstrate the advantages of applying enzymes in total synthesis in conjunction with established methodologies, as well as toward the expansion of the chiral pool to enable facile incorporation of stereochemistry during synthetic campaigns.
Collapse
Affiliation(s)
- Carter N. Stout
- Department of Chemistry, Scripps Research, 110 Scripps Way, Jupiter, Florida 33458, United States
| | - Hans Renata
- Department of Chemistry, Scripps Research, 110 Scripps Way, Jupiter, Florida 33458, United States
| |
Collapse
|
43
|
Wei Q, Zeng HC, Zou Y. Divergent Biosynthesis of Fungal Dioxafenestrane Sesquiterpenes by the Cooperation of Distinctive Baeyer–Villiger Monooxygenases and α-Ketoglutarate-Dependent Dioxygenases. ACS Catal 2021. [DOI: 10.1021/acscatal.0c05319] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Affiliation(s)
- Qian Wei
- College of Pharmaceutical Sciences, Medical Research Institute, Southwest University, Chongqing 400715, People’s Republic of China
| | - Hai-Chun Zeng
- College of Chemical and Engineering, Chongqing University of Science & Technology, Chongqing 401331, People’s Republic of China
| | - Yi Zou
- College of Pharmaceutical Sciences, Medical Research Institute, Southwest University, Chongqing 400715, People’s Republic of China
| |
Collapse
|
44
|
Renata H. Exploration of Iron- and a-Ketoglutarate-Dependent Dioxygenases as Practical Biocatalysts in Natural Product Synthesis. Synlett 2021; 32:775-784. [PMID: 34413574 PMCID: PMC8372184 DOI: 10.1055/s-0040-1707320] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Catalytic C─H oxidation is a powerful transformation with enormous promise to streamline access to complex molecules. In recent years, biocatalytic C─H oxidation strategies have received tremendous attention due to their potential to address unmet regio- and stereoselectivity challenges that are often encountered with the use of small-molecule-based catalysts. This Account provides an overview of recent contributions from our laboratory in this area, specifically in the use of iron- and α-ketoglutarate-dependent dioxygenases in the chemoenzymatic synthesis of complex natural products.
Collapse
Affiliation(s)
- Hans Renata
- Department of Chemistry, The Scripps Research Institute, 130 Scripps Way, Jupiter, FL, 33458, USA
| |
Collapse
|
45
|
Ali HS, Henchman RH, de Visser SP. What Determines the Selectivity of Arginine Dihydroxylation by the Nonheme Iron Enzyme OrfP? Chemistry 2020; 27:1795-1809. [PMID: 32965733 DOI: 10.1002/chem.202004019] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Revised: 09/22/2020] [Indexed: 12/13/2022]
Abstract
The nonheme iron enzyme OrfP reacts with l-Arg selectively to form the 3R,4R-dihydroxyarginine product, which in mammals can inhibit the nitric oxide synthase enzymes involved in blood pressure control. To understand the mechanisms of dioxygen activation of l-Arg by OrfP and how it enables two sequential oxidation cycles on the same substrate, we performed a density functional theory study on a large active site cluster model. We show that substrate binding and positioning in the active site guides a highly selective reaction through C3 -H hydrogen atom abstraction. This happens despite the fact that the C3 -H and C4 -H bond strengths of l-Arg are very similar. Electronic differences in the two hydrogen atom abstraction pathways drive the reaction with an initial C3 -H activation to a low-energy 5 σ-pathway, while substrate positioning destabilizes the C4 -H abstraction and sends it over the higher-lying 5 π-pathway. We show that substrate and monohydroxylated products are strongly bound in the substrate binding pocket and hence product release is difficult and consequently its lifetime will be long enough to trigger a second oxygenation cycle.
Collapse
Affiliation(s)
- Hafiz Saqib Ali
- Manchester Institute of Biotechnology, The University of Manchester, 131 Princess Street, Manchester, M1 7DN, UK.,Department of Chemistry, The University of Manchester, Oxford Road, Manchester, M13 9PL, UK
| | - Richard H Henchman
- Manchester Institute of Biotechnology, The University of Manchester, 131 Princess Street, Manchester, M1 7DN, UK.,Department of Chemistry, The University of Manchester, Oxford Road, Manchester, M13 9PL, UK
| | - Sam P de Visser
- Manchester Institute of Biotechnology, The University of Manchester, 131 Princess Street, Manchester, M1 7DN, UK.,Department of Chemical Engineering and Analytical Science, The University of Manchester, Oxford Road, Manchester, M13 9PL, UK
| |
Collapse
|
46
|
Zwick CR, Renata H. Harnessing the biocatalytic potential of iron- and α-ketoglutarate-dependent dioxygenases in natural product total synthesis. Nat Prod Rep 2020; 37:1065-1079. [PMID: 32055818 PMCID: PMC7426249 DOI: 10.1039/c9np00075e] [Citation(s) in RCA: 56] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Covering: up to the end of 2019Iron- and α-ketoglutarate-dependent dioxygenases (Fe/αKGs) represent a versatile and intriguing enzyme family by virtue of their ability to directly functionalize unactivated C-H bonds at the cost of αKG and O2. Fe/αKGs play an important role in the biosynthesis of natural products, valuable biologically active secondary metabolites frequently pursued as drug leads. The field of natural product total synthesis seeks to contruct these molecules as effeciently as possible, although natural products continue to challenge chemists due to their intricate structural complexity. Chemoenzymatic approaches seek to remedy the shortcomings of traditional synthetic methodology by combining Nature's biosynthetic machinery with traditional chemical methods to efficiently construct natural products. Although other oxygenase families have been widely employed for this purpose, Fe/αKGs remain underutilized. The following review will cover recent chemoenzymatic total syntheses involving Fe/αKG enzymes. Additionally, related information involving natural product biosynthesis, methods development, and non-chemoenzymatic total syntheses will be discussed to inform retrosynthetic logic and synthetic design.
Collapse
Affiliation(s)
- Christian R Zwick
- The Scripps Research Institute, 130 Scripps Way, Jupiter, FL 33458, USA.
| | | |
Collapse
|
47
|
Bai T, Matsuda Y, Tao H, Mori T, Zhang Y, Abe I. Structural Diversification of Andiconin-Derived Natural Products by α-Ketoglutarate-Dependent Dioxygenases. Org Lett 2020; 22:4311-4315. [DOI: 10.1021/acs.orglett.0c01358] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Tongxuan Bai
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Yudai Matsuda
- Department of Chemistry, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong SAR, China
| | - Hui Tao
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Takahiro Mori
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
- Collaborative Research Institute for Innovative Microbiology, The University of Tokyo, Yayoi 1-1-1, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Yonghui Zhang
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Ikuro Abe
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
- Collaborative Research Institute for Innovative Microbiology, The University of Tokyo, Yayoi 1-1-1, Bunkyo-ku, Tokyo 113-8657, Japan
| |
Collapse
|
48
|
Pidot SJ, Rizzacasa MA. The Nargenicin Family of Oxa-Bridged Macrolide Antibiotics. Chemistry 2020; 26:2780-2792. [PMID: 31667915 DOI: 10.1002/chem.201904053] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2019] [Indexed: 11/06/2022]
Abstract
The nargenicin family of antibiotic macrolides comprise a group of bacterial natural products with a rare ether bridged cis-decalin moiety and a narrow spectrum of activity. Most family members were identified almost four decades ago and were placed on the shelf due to the numbers of broad-spectrum compounds available at the time. However, in light of rising rates of antimicrobial resistance, there has been a renewed interest in the use of narrow-spectrum antimicrobials. Here, we review the history of this family of compounds, including synthetic approaches, and highlight the recently uncovered genetic basis for nargenicin production. Given the renewed pharmaceutical interest in these compounds, we also investigate structure-activity relationships among these molecules, with a view to the future development of members of this unusual antibiotic family.
Collapse
Affiliation(s)
- Sacha J Pidot
- Department of Microbiology and Immunology at the Doherty Institute, University of Melbourne, 3000, Melbourne, VIC, Australia
| | - Mark A Rizzacasa
- School of Chemistry, The Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, 3000, Melbourne, VIC, Australia
| |
Collapse
|
49
|
Shiina T, Ozaki T, Matsu Y, Nagamine S, Liu C, Hashimoto M, Minami A, Oikawa H. Oxidative Ring Contraction by a Multifunctional Dioxygenase Generates the Core Cycloocatadiene in the Biosynthesis of Fungal Dimeric Anhydride Zopfiellin. Org Lett 2020; 22:1997-2001. [DOI: 10.1021/acs.orglett.0c00340] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Affiliation(s)
- Tetsuya Shiina
- Department of Chemistry, Faculty of Science, Hokkaido University, Sapporo 060-0810, Japan
| | - Taro Ozaki
- Department of Chemistry, Faculty of Science, Hokkaido University, Sapporo 060-0810, Japan
| | - Yusuke Matsu
- Department of Chemistry, Faculty of Science, Hokkaido University, Sapporo 060-0810, Japan
| | - Shota Nagamine
- Department of Chemistry, Faculty of Science, Hokkaido University, Sapporo 060-0810, Japan
| | - Chengwei Liu
- Department of Chemistry, Faculty of Science, Hokkaido University, Sapporo 060-0810, Japan
| | - Masaru Hashimoto
- Faculty of Agriculture and Life Science, Hirosaki University, Hirosaki 036-8561, Japan
| | - Atsushi Minami
- Department of Chemistry, Faculty of Science, Hokkaido University, Sapporo 060-0810, Japan
| | - Hideaki Oikawa
- Department of Chemistry, Faculty of Science, Hokkaido University, Sapporo 060-0810, Japan
| |
Collapse
|
50
|
Sun D, Liu X, Zhu M, Chen Y, Li C, Cheng X, Zhu Z, Lu F, Qin HM. Efficient Biosynthesis of High-Value Succinic Acid and 5-Hydroxyleucine Using a Multienzyme Cascade and Whole-Cell Catalysis. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2019; 67:12502-12510. [PMID: 31623431 DOI: 10.1021/acs.jafc.9b05529] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Succinic acid (SA) is applied in the food, chemical, and pharmaceutical industries. 5-Hydroxyleucine (5-HLeu) is a promising precursor for the biosynthesis of antituberculosis drugs. Here, we designed a promising synthetic route for the simultaneous production of SA and 5-HLeu by combining l-leucine dioxygenase (NpLDO), l-glutamate oxidase (LGOX), and catalase (CAT). Two bioconversion systems: "a multienzyme cascade catalysis in vitro" (MECCS) and "whole-cell catalysis system" (WCCS) were constructed. A high-activity NpLDO mutant was screened by error-prone polymerase chain reaction (PCR) and showed 6.1-fold improvement of catalytic activity. After optimization of reaction conditions, MECSS yielded 3.15 g/L SA and 3.92 g/L 5-HLeu, while the production of SA and 5-HLeu by the most effective WCSS reached 15.12 and 18.83 g/L, respectively. This is the first attempt to use ferrous iron/α-ketoglutarate-dependent dioxygenases for the simultaneous production of SA and hydroxy-amino-acid. This research provides a tool for industrial production of food of high-value products from low-cost raw materials.
Collapse
Affiliation(s)
- Dengyue Sun
- Key Laboratory of Industrial Fermentation Microbiology , Ministry of Education , Tianjin 300457 , People's Republic of China
- College of Biotechnology , Tianjin University of Science and Technology , Tianjin 300457 , People's Republic of China
- Tianjin Key Laboratory of Industrial Microbiology , Tianjin 300457 , People's Republic of China
| | - Xin Liu
- College of Biotechnology , Tianjin University of Science and Technology , Tianjin 300457 , People's Republic of China
| | - Menglu Zhu
- College of Biotechnology , Tianjin University of Science and Technology , Tianjin 300457 , People's Republic of China
| | - Ying Chen
- College of Biotechnology , Tianjin University of Science and Technology , Tianjin 300457 , People's Republic of China
| | - Chao Li
- College of Biotechnology , Tianjin University of Science and Technology , Tianjin 300457 , People's Republic of China
| | - Xiaotao Cheng
- College of Biotechnology , Tianjin University of Science and Technology , Tianjin 300457 , People's Republic of China
| | - Zhangliang Zhu
- Key Laboratory of Industrial Fermentation Microbiology , Ministry of Education , Tianjin 300457 , People's Republic of China
- College of Biotechnology , Tianjin University of Science and Technology , Tianjin 300457 , People's Republic of China
- Tianjin Key Laboratory of Industrial Microbiology , Tianjin 300457 , People's Republic of China
| | - Fuping Lu
- Key Laboratory of Industrial Fermentation Microbiology , Ministry of Education , Tianjin 300457 , People's Republic of China
- College of Biotechnology , Tianjin University of Science and Technology , Tianjin 300457 , People's Republic of China
- Tianjin Key Laboratory of Industrial Microbiology , Tianjin 300457 , People's Republic of China
- National Engineering Laboratory for Industrial Enzymes , Tianjin 300457 , People's Republic of China
| | - Hui-Min Qin
- Key Laboratory of Industrial Fermentation Microbiology , Ministry of Education , Tianjin 300457 , People's Republic of China
- College of Biotechnology , Tianjin University of Science and Technology , Tianjin 300457 , People's Republic of China
- Tianjin Key Laboratory of Industrial Microbiology , Tianjin 300457 , People's Republic of China
- National Engineering Laboratory for Industrial Enzymes , Tianjin 300457 , People's Republic of China
| |
Collapse
|