1
|
Guercia E, Berti F, De Zorzi R, Navarini L, Geremia S, Medagli B, De Conto M, Cassetta A, Forzato C. On the Cholesterol Raising Effect of Coffee Diterpenes Cafestol and 16- O-Methylcafestol: Interaction with Farnesoid X Receptor. Int J Mol Sci 2024; 25:6096. [PMID: 38892285 PMCID: PMC11173301 DOI: 10.3390/ijms25116096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Revised: 05/24/2024] [Accepted: 05/27/2024] [Indexed: 06/21/2024] Open
Abstract
The diterpene cafestol represents the most potent cholesterol-elevating compound known in the human diet, being responsible for more than 80% of the effect of coffee on serum lipids, with a mechanism still not fully clarified. In the present study, the interaction of cafestol and 16-O-methylcafestol with the stabilized ligand-binding domain (LBD) of the Farnesoid X Receptor was evaluated by fluorescence and circular dichroism. Fluorescence quenching was observed with both cafestol and 16-O-methylcafestol due to an interaction occurring in the close environment of the tryptophan W454 residue of the protein, as confirmed by docking and molecular dynamics. A conformational change of the protein was also observed by circular dichroism, particularly for cafestol. These results provide evidence at the molecular level of the interactions of FXR with the coffee diterpenes, confirming that cafestol can act as an agonist of FXR, causing an enhancement of the cholesterol level in blood serum.
Collapse
Affiliation(s)
- Elena Guercia
- Aromalab, illycaffè S.p.A., Area Science Park, Località Padriciano 99, 34149 Trieste, Italy; (E.G.); (L.N.)
| | - Federico Berti
- Department of Chemical and Pharmaceutical Sciences, University of Trieste, Via Giorgieri 1, 34127 Trieste, Italy; (F.B.); (S.G.); (B.M.); (M.D.C.)
| | - Rita De Zorzi
- Department of Chemical and Pharmaceutical Sciences, University of Trieste, Via Giorgieri 1, 34127 Trieste, Italy; (F.B.); (S.G.); (B.M.); (M.D.C.)
| | - Luciano Navarini
- Aromalab, illycaffè S.p.A., Area Science Park, Località Padriciano 99, 34149 Trieste, Italy; (E.G.); (L.N.)
| | - Silvano Geremia
- Department of Chemical and Pharmaceutical Sciences, University of Trieste, Via Giorgieri 1, 34127 Trieste, Italy; (F.B.); (S.G.); (B.M.); (M.D.C.)
| | - Barbara Medagli
- Department of Chemical and Pharmaceutical Sciences, University of Trieste, Via Giorgieri 1, 34127 Trieste, Italy; (F.B.); (S.G.); (B.M.); (M.D.C.)
| | - Marco De Conto
- Department of Chemical and Pharmaceutical Sciences, University of Trieste, Via Giorgieri 1, 34127 Trieste, Italy; (F.B.); (S.G.); (B.M.); (M.D.C.)
| | - Alberto Cassetta
- CNR-Institute of Crystallography, Area Science Park, SS. 14, Km 163.5, Basovizza, 34149 Trieste, Italy;
| | - Cristina Forzato
- Department of Chemical and Pharmaceutical Sciences, University of Trieste, Via Giorgieri 1, 34127 Trieste, Italy; (F.B.); (S.G.); (B.M.); (M.D.C.)
| |
Collapse
|
2
|
Nasri A, Pohjanvirta R. Comparison of in vitro Toxicities of 8-Prenylnaringenin, Tartrazine and 17β-Estradiol, Representatives of Natural and Synthetic Estrogens, in Rat and Human Hepatoma Cell Lines. Endocr Res 2024; 49:106-116. [PMID: 38597376 DOI: 10.1080/07435800.2024.2337758] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/01/2023] [Accepted: 03/27/2024] [Indexed: 04/11/2024]
Abstract
BACKGROUND Phytoestrogens have been praised for their beneficial health effects, whereas synthetic xenoestrogens have been connected to ailments. AIMS To ascertain whether the toxicities of natural and synthetic estrogens differ, we examined the potent phytoestrogen 8-prenylnaringenin (8-PN), the common synthetic xenoestrogen tartrazine, and the physiological estrogen 17β-estradiol (E2). METHODS These three compounds were tested for cytotoxicity, cell proliferation and genotoxicity in human HepG2 and rat H4IIE hepatoma cells. RESULTS All three estrogens elicited cytotoxicity at high concentrations in both cell lines. They also inhibited cell proliferation, with E2 being the most effective. They all tended to increase micronuclei formation. CONCLUSION Natural estrogens were no less toxic than a synthetic one.
Collapse
Affiliation(s)
- Atefeh Nasri
- Department of Food Hygiene and Environmental Health, Faculty of Veterinary Medicine, University of Helsinki, Helsinki, Finland
- Department of Plant, Food, and Environmental Sciences, Faculty of Agriculture, Dalhousie University, Truro, NS, Canada
| | - Raimo Pohjanvirta
- Department of Food Hygiene and Environmental Health, Faculty of Veterinary Medicine, University of Helsinki, Helsinki, Finland
| |
Collapse
|
3
|
Jamieson PE, Carbonero F, Stevens JF. Dietary (poly)phenols mitigate inflammatory bowel disease: Therapeutic targets, mechanisms of action, and clinical observations. Curr Res Food Sci 2023; 6:100521. [PMID: 37266414 PMCID: PMC10230173 DOI: 10.1016/j.crfs.2023.100521] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 05/14/2023] [Accepted: 05/16/2023] [Indexed: 06/03/2023] Open
Abstract
Inflammatory bowel diseases (IBD), which include Crohn's disease and ulcerative colitis, are a rapidly growing public health concern worldwide. These diseases are heterogeneous at the clinical, immunological, molecular, genetic, and microbial level, but characteristically involve a disrupted immune-microbiome axis. Shortcomings in conventional treatment options warrant the need for novel therapeutic strategies to mitigate these life-long and relapsing disorders of the gastrointestinal tract. Polyphenols, a diverse group of phytochemicals, have gained attention as candidate treatments due to their array of biological effects. Polyphenols exert broad anti-inflammatory and antioxidant effects through the modulation of cellular signaling pathways and transcription factors important in IBD progression. Polyphenols also bidirectionally modulate the gut microbiome, supporting commensals and inhibiting pathogens. One of the primary means by which gut microbiota interface with the host is through the production of metabolites, which are small molecules produced as intermediate or end products of metabolism. There is growing evidence to support that modulation of the gut microbiome by polyphenols restores microbially derived metabolites critical to the maintenance of intestinal homeostasis that are adversely disrupted in IBD. This review aims to define the therapeutic targets of polyphenols that may be important for mitigation of IBD symptoms, as well as to collate evidence for their clinical use from randomized clinical trials.
Collapse
Affiliation(s)
- Paige E. Jamieson
- School of Biological and Population Health Sciences, Oregon State University, Corvallis, OR, 97331, USA
- Linus Pauling Institute, Oregon State University, Corvallis, OR, 97331, USA
| | - Franck Carbonero
- Department of Nutrition and Exercise Physiology, Washington State University, Spokane, WA, 99202, USA
| | - Jan F. Stevens
- Linus Pauling Institute, Oregon State University, Corvallis, OR, 97331, USA
- Department of Pharmaceutical Sciences, Oregon State University, Corvallis, OR, 97331, USA
| |
Collapse
|
4
|
Kumari A, Mittal L, Srivastava M, Pathak DP, Asthana S. Deciphering the Structural Determinants Critical in Attaining the FXR Partial Agonism. J Phys Chem B 2023; 127:465-485. [PMID: 36609158 DOI: 10.1021/acs.jpcb.2c06325] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Elucidation of structural determinants is pivotal for structure-based drug discovery. The Farnesoid X receptor (FXR) is a proven target for NASH; however, its full agonism causes certain clinical complications. Therefore, partial agonism (PA) appears as a viable alternative for improved therapeutics. Since the agonist and PA both share the same binding site, i.e., ligand-binding pocket (LBP), which is highly dynamic and has synergy with the substrate binding site, the selective designing of PA is challenging. The identification of structural and conformational determinants is critical for PA compared with an agonist. Furthermore, the mechanism by which PA modulates the structural dynamics of FXR at the residue level, a prerequisite for PA designing, is still elusive. Here, by using ∼4.5 μs of MD simulations and residue-wise communication network analysis, we identified the structural regions which are flexible with PA but frozen with an agonist. Also, the network analysis identified the considerable changes between an agonist and PA in biologically essential zones of FXR such as helix H10/H11 and loop L:H11/H12, which lead to the modulation of synergy between LBP and the substrate binding site. Furthermore, the thermodynamic profiling suggested the methionine residues, mainly M328, M365, and M450, seem to be responsible for the recruitment of PA. The other residues I357, Y361, L465, F308, Q316, and K321 are also identified, exclusively interacting with PA. This study offers novel structural and mechanistic insights that are critical for FXR targeted drug discovery for PA designing.
Collapse
Affiliation(s)
- Anita Kumari
- Translational Health Science and Technology Institute (THSTI), Faridabad, Haryana121001, India.,Delhi Pharmaceutical Sciences and Research University (DPSRU), New Delhi110017, India
| | - Lovika Mittal
- Translational Health Science and Technology Institute (THSTI), Faridabad, Haryana121001, India
| | - Mitul Srivastava
- Translational Health Science and Technology Institute (THSTI), Faridabad, Haryana121001, India
| | - Dharam Pal Pathak
- Delhi Institute of Pharmaceutical Sciences and Research (DIPSAR), New Delhi110017, India
| | - Shailendra Asthana
- Translational Health Science and Technology Institute (THSTI), Faridabad, Haryana121001, India
| |
Collapse
|
5
|
Kundu P, Paraiso IL, Choi J, Miranda CL, Kioussi C, Maier CS, Bobe G, Stevens JF, Raber J. Xanthohumol improves cognition in farnesoid X receptor-deficient mice on a high-fat diet. Dis Model Mech 2022; 15:dmm049820. [PMID: 36353888 PMCID: PMC9713832 DOI: 10.1242/dmm.049820] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Accepted: 10/26/2022] [Indexed: 08/18/2023] Open
Abstract
Xanthohumol (XN) improves cognition of wild-type rodents on a high-fat diet (HFD). Bile acids and ceramide levels in the liver and hippocampus might be linked to these effects. XN modulates activity of the nuclear farnesoid X receptor (FXR; also known as NR1H4), the primary receptor for bile acids. To determine the role of FXR in the liver and intestine in mediating the effects of XN on cognitive performance, mice with intestine- and liver-specific FXR ablation (FXRIntestine-/- and FXRLiver-/-, respectively) on an HFD or an HFD containing XN were cognitively tested. XN improved cognitive performance in a genotype- and sex-dependent manner, with improved task learning in females (specifically wild-type), reversal learning in males (specifically wild-type and FXRIntestine-/- mutant) and spatial learning (both sexes). XN increased hippocampal diacylglycerol and sphingomyelin levels in females but decreased them in males. XN increased the ratio of shorter-chain to longer-chain ceramides and hexaceramides. Higher diacylglycerol and lower longer-chain ceramide and hexaceramide levels were linked to improved cognitive performance. Thus, the beneficial sex-dependent cognitive effects of XN are linked to changes in hippocampal diacylglycerol and ceramide levels. This article has an associated First Person interview with the first author of the paper.
Collapse
Affiliation(s)
- Payel Kundu
- Department of Behavioral Neuroscience, Oregon Health and Science University, Portland, OR 97239, USA
| | - Ines L. Paraiso
- Linus Pauling Institute, Oregon State University, Corvallis, OR 97331, USA
- Department of Pharmaceutical Sciences, Oregon State University, Corvallis, OR 97331, USA
| | - Jaewoo Choi
- Linus Pauling Institute, Oregon State University, Corvallis, OR 97331, USA
| | - Cristobal L. Miranda
- Linus Pauling Institute, Oregon State University, Corvallis, OR 97331, USA
- Department of Pharmaceutical Sciences, Oregon State University, Corvallis, OR 97331, USA
| | - Chrissa Kioussi
- Department of Pharmaceutical Sciences, Oregon State University, Corvallis, OR 97331, USA
| | - Claudia S. Maier
- Department of Chemistry, Oregon State University, Corvallis, OR 97331, USA
| | - Gerd Bobe
- Linus Pauling Institute, Oregon State University, Corvallis, OR 97331, USA
- Department of Animal and Rangeland Sciences, Oregon State University, Corvallis, OR 97331, USA
| | - Jan F. Stevens
- Linus Pauling Institute, Oregon State University, Corvallis, OR 97331, USA
- Department of Pharmaceutical Sciences, Oregon State University, Corvallis, OR 97331, USA
| | - Jacob Raber
- Department of Behavioral Neuroscience, Oregon Health and Science University, Portland, OR 97239, USA
- Departments of Neurology and Radiation Medicine, Division of Neuroscience, Oregon National Primate Research Center, Oregon Health and Science University, Portland, OR 97239, USA
| |
Collapse
|
6
|
The Potent Phytoestrogen 8-Prenylnaringenin: A Friend or a Foe? Int J Mol Sci 2022; 23:ijms23063168. [PMID: 35328588 PMCID: PMC8953904 DOI: 10.3390/ijms23063168] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 03/12/2022] [Accepted: 03/13/2022] [Indexed: 12/29/2022] Open
Abstract
8-prenylnaringenin (8-PN) is a prenylated flavonoid, occurring, in particular, in hop, but also in other plants. It has proven to be one of the most potent phytoestrogens in vitro known to date, and in the past 20 years, research has unveiled new effects triggered by it in biological systems. These findings have aroused the hopes, expectations, and enthusiasm of a “wonder-drug” for a host of human diseases. However, the majority of 8-PN effects require such high concentrations that they cannot be reached by normal dietary exposure, only pharmacologically; thus, adverse impacts may also emerge. Here, we provide a comprehensive and up-to-date review on this fascinating compound, with special reference to the range of beneficial and untoward health consequences that may ensue from exposure to it.
Collapse
|
7
|
Neumann HF, Frank J, Venturelli S, Egert S. Bioavailability and Cardiometabolic Effects of Xanthohumol: Evidence from Animal and Human Studies. Mol Nutr Food Res 2021; 66:e2100831. [PMID: 34967501 DOI: 10.1002/mnfr.202100831] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Revised: 11/25/2021] [Indexed: 11/11/2022]
Abstract
Xanthohumol is the main prenylflavonoid in hops and has been associated with a wide range of health benefits, due to its anti-inflammatory, anti-oxidative, and cancer-preventive properties. Increasing evidence suggests that xanthohumol positively affects biomarkers associated with metabolic syndrome and cardiovascular diseases (CVDs). This review summarizes the effects of xanthohumol supplementation on body weight, lipid and glucose metabolism, systemic inflammation, and redox status. In addition, it provides insights into the pharmacokinetics of xanthohumol intake. Animal studies show that xanthohumol exerts beneficial effects on body weight, lipid profile, glucose metabolism, and other biochemical parameters associated with metabolic syndrome and CVDs. Although in vitro studies are increasingly elucidating the responsible mechanisms, the overall in vivo results are currently inconsistent and quantitatively insufficient. Pharmacokinetic and safety studies confirm that intake of xanthohumol is safe and well tolerated in both animals and humans. However, little is known about the metabolism of xanthohumol in the human body, and even less about its effects on body weight and CVD risk factors. There is an urgent need for studies investigating whether the effects of xanthohumol on body weight and cardiometabolic parameters observed in animal studies are reproducible in humans, and what dosage, formulation, and intervention period are required. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Hannah F Neumann
- Institute of Nutritional Medicine, University of Hohenheim, Stuttgart, Germany.,Department of Nutrition and Food Sciences, University of Bonn, Germany
| | - Jan Frank
- Institute of Nutritional Sciences, University of Hohenheim, Stuttgart, Germany
| | - Sascha Venturelli
- Institute of Nutritional Sciences, University of Hohenheim, Stuttgart, Germany.,Institute of Physiology, University of Tuebingen, Tuebingen, Germany
| | - Sarah Egert
- Institute of Nutritional Medicine, University of Hohenheim, Stuttgart, Germany.,Department of Nutrition and Food Sciences, University of Bonn, Germany
| |
Collapse
|
8
|
Paraiso IL, Tran TQ, Magana AA, Kundu P, Choi J, Maier CS, Bobe G, Raber J, Kioussi C, Stevens JF. Xanthohumol ameliorates Diet-Induced Liver Dysfunction via Farnesoid X Receptor-Dependent and Independent Signaling. Front Pharmacol 2021; 12:643857. [PMID: 33959012 PMCID: PMC8093804 DOI: 10.3389/fphar.2021.643857] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Accepted: 03/22/2021] [Indexed: 12/20/2022] Open
Abstract
The farnesoid X receptor (FXR) plays a critical role in the regulation of lipid and bile acid (BA) homeostasis. Hepatic FXR loss results in lipid and BA accumulation, and progression from hepatic steatosis to nonalcoholic steatohepatitis (NASH). This study aimed to evaluate the effects of xanthohumol (XN), a hop-derived compound mitigating metabolic syndrome, on liver damage induced by diet and FXR deficiency in mice. Wild-type (WT) and liver-specific FXR-null mice (FXRLiver−/−) were fed a high-fat diet (HFD) containing XN or the vehicle formation followed by histological characterization, lipid, BA and gene profiling. HFD supplemented with XN resulted in amelioration of hepatic steatosis and decreased BA concentrations in FXRLiver−/− mice, the effect being stronger in male mice. XN induced the constitutive androstane receptor (CAR), pregnane X receptor (PXR) and glucocorticoid receptor (GR) gene expression in the liver of FXRLiver−/− mice. These findings suggest that activation of BA detoxification pathways represents the predominant mechanism for controlling hydrophobic BA concentrations in FXRLiver−/− mice. Collectively, these data indicated sex-dependent relationship between FXR, lipids and BAs, and suggest that XN ameliorates HFD-induced liver dysfunction via FXR-dependent and independent signaling.
Collapse
Affiliation(s)
- Ines L Paraiso
- Linus Pauling Institute, Oregon State University, Corvallis, OR, United States.,Department of Pharmaceutical Sciences, Oregon State University, Corvallis, OR, United States
| | - Thai Q Tran
- Department of Pharmaceutical Sciences, Oregon State University, Corvallis, OR, United States
| | - Armando Alcazar Magana
- Linus Pauling Institute, Oregon State University, Corvallis, OR, United States.,Department of Pharmaceutical Sciences, Oregon State University, Corvallis, OR, United States.,Department of Chemistry, Oregon State University, Corvallis, OR, United States
| | - Payel Kundu
- Department of Behavioral Neuroscience, Oregon Health and Science University, Portland, OR, United States
| | - Jaewoo Choi
- Linus Pauling Institute, Oregon State University, Corvallis, OR, United States
| | - Claudia S Maier
- Department of Chemistry, Oregon State University, Corvallis, OR, United States
| | - Gerd Bobe
- Linus Pauling Institute, Oregon State University, Corvallis, OR, United States.,Department of Animal and Rangeland Sciences, Oregon State University, Corvallis, OR, United States
| | - Jacob Raber
- Department of Pharmaceutical Sciences, Oregon State University, Corvallis, OR, United States.,Department of Behavioral Neuroscience, Oregon Health and Science University, Portland, OR, United States.,Department of Neurology, Psychiatry and Radiation Medicine, Division of Neuroscience, Oregon National Primate Research Center, Oregon Health and Science University, Portland, OR, United States
| | - Chrissa Kioussi
- Department of Pharmaceutical Sciences, Oregon State University, Corvallis, OR, United States
| | - Jan F Stevens
- Linus Pauling Institute, Oregon State University, Corvallis, OR, United States.,Department of Pharmaceutical Sciences, Oregon State University, Corvallis, OR, United States
| |
Collapse
|
9
|
Safe S, Jayaraman A, Chapkin RS, Howard M, Mohankumar K, Shrestha R. Flavonoids: structure-function and mechanisms of action and opportunities for drug development. Toxicol Res 2021; 37:147-162. [PMID: 33868973 PMCID: PMC8007671 DOI: 10.1007/s43188-020-00080-z] [Citation(s) in RCA: 72] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Accepted: 12/04/2020] [Indexed: 12/14/2022] Open
Abstract
Flavonoids are polyphenolic phytochemicals produced in fruits, nuts and vegetables and dietary consumption of these structurally diverse compounds is associated with multiple health benefits including increased lifespan, decreased cardiovascular problems and low rates of metabolic diseases. Preclinical studies with individual flavonoids demonstrate that these compounds exhibit anti-inflammatory and anticancer activities and they enhance the immune system. Their effectiveness in both chemoprevention and chemotherapy is associated with their targeting of multiple genes/pathways including nuclear receptors, the aryl hydrocarbon receptor (AhR), kinases, receptor tyrosine kinases and G protein-coupled receptors. However, despite the remarkable preclinical activities of flavonoids, their clinical applications have been limited and this is due, in part, to problems in drug delivery and poor bioavailability and these problems are being addressed. Further improvements that will expand clinical applications of flavonoids include mechanism-based precision medicine approaches which will identify critical mechanisms of action of individual flavonoids with optimal activities that can be used in combination therapies.
Collapse
Affiliation(s)
- Stephen Safe
- Department of Veterinary Physiology and Pharmacology, Texas A&M University, 4466 TAMU, College Station, TX 77843-4466 USA
| | - Arul Jayaraman
- Department of Chemical Engineering, Texas A&M University, College Station, TX 77843 USA
| | - Robert S. Chapkin
- Department of Nutrition, Texas A&M University, College Station, TX 77843 USA
| | - Marcell Howard
- Department of Veterinary Physiology and Pharmacology, Texas A&M University, 4466 TAMU, College Station, TX 77843-4466 USA
| | - Kumaravel Mohankumar
- Department of Veterinary Physiology and Pharmacology, Texas A&M University, 4466 TAMU, College Station, TX 77843-4466 USA
| | - Rupesh Shrestha
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, TX 77843 USA
| |
Collapse
|
10
|
Bradley R, Langley BO, Ryan JJ, Phipps J, Hanes DA, Stack E, Jansson JK, Metz TO, Stevens JF. Xanthohumol microbiome and signature in healthy adults (the XMaS trial): a phase I triple-masked, placebo-controlled clinical trial. Trials 2020; 21:835. [PMID: 33028396 PMCID: PMC7542976 DOI: 10.1186/s13063-020-04769-2] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Accepted: 09/24/2020] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Natural products may provide a source for the discovery and development of adjunctive pharmacological interventions to modulate the inflammatory pathways contributing to chronic disease. Xanthohumol, a flavonoid from the hops plant (Humulus lupulus), has antioxidant and anti-inflammatory properties and may act as a prebiotic to the intestinal microbiota. Xanthohumol is not currently approved as a drug by the US Food and Drug Administration (FDA), but is available as a dietary supplement and ingredient in medical foods. To formally test the safety of xanthohumol, a phase I clinical trial ("XMaS") was designed and approved under an Investigational New Drug application to the US FDA. The main objective is to examine the clinical safety and subjective tolerability of xanthohumol in healthy adults compared to placebo. Additional aims are to monitor biomarkers related to inflammation, gut permeability, bile acid metabolism, routes, and in vivo products of xanthohumol metabolism, and to evaluate xanthohumol's impact on gut microbial composition. METHODS The safety and tolerability of xanthohumol in healthy adults will be evaluated in a triple-masked, randomized, placebo-controlled trial. Participants will be randomized to either 24 mg/day of xanthohumol or placebo for 8 weeks. Blood cell counts, hepatic and renal function tests, electrolytes, and self-reported health-related quality of life measures will be collected every 2 weeks. Participants will be queried for adverse events throughout the trial. Xanthohumol metabolites in blood, urine, and stool will be measured. Biomarkers to be evaluated include plasma tumor necrosis factor-alpha, various interleukins, soluble CD14, lipopolysaccharide-binding protein, fecal calprotectin, and bile acids to assess impact on inflammatory and gut permeability-related mechanisms in vivo. Stool samples will be analyzed to determine effects on the gut microbiome. DISCUSSION This phase I clinical trial of xanthohumol will assess safety and tolerability in healthy adults, collect extensive biomarker data for assessment of potential mechanism(s), and provide comparison data necessary for future phase II trials in chronic disease(s). The design and robustness of the planned safety and mechanistic evaluations planned provide a model for drug discovery pursuits from natural products. TRIAL REGISTRATION ClinicalTrials.gov NCT03735420 . Registered on November 8, 2018.
Collapse
Affiliation(s)
- Ryan Bradley
- National University of Natural Medicine, Portland, USA.
| | | | | | - John Phipps
- National University of Natural Medicine, Portland, USA
| | | | - Emily Stack
- National University of Natural Medicine, Portland, USA
| | | | - Thomas O Metz
- Pacific Northwest National Laboratory, Richland, USA
| | | |
Collapse
|
11
|
Paraiso IL, Revel JS, Choi J, Miranda CL, Lak P, Kioussi C, Bobe G, Gombart AF, Raber J, Maier CS, Stevens JF. Targeting the Liver-Brain Axis with Hop-Derived Flavonoids Improves Lipid Metabolism and Cognitive Performance in Mice. Mol Nutr Food Res 2020; 64:e2000341. [PMID: 32627931 PMCID: PMC8693899 DOI: 10.1002/mnfr.202000341] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Revised: 06/16/2020] [Indexed: 08/18/2023]
Abstract
SCOPE Sphingolipids including ceramides are implicated in the pathogenesis of obesity and insulin resistance. Correspondingly, inhibition of pro-inflammatory and neurotoxic ceramide accumulation prevents obesity-mediated insulin resistance and cognitive impairment. Increasing evidence suggests the farnesoid X receptor (FXR) is involved in ceramide metabolism, as bile acid-FXR crosstalk controls ceramide levels along the gut-liver axis. The authors previously reported that FXR agonist xanthohumol (XN), the principal prenylated flavonoid in hops (Humulus lupulus), and its hydrogenated derivatives, α,β-dihydroxanthohumol (DXN), and tetrahydroxanthohumol (TXN), ameliorated obesity-mediated insulin resistance, and cognitive impairment in mice fed a high-fat diet. METHODS AND RESULTS To better understand how the flavonoids improve both, lipid and bile acid profiles in the liver are analyzed, sphingolipid relative abundance in the hippocampus is measured, and linked them to metabolic and neurocognitive performance. XN, DXN, and TXN (30 mg kg-1 BW per day) decrease ceramide content in liver and hippocampus; the latter is linked to improvements in spatial learning and memory. In addition, XN, DXN, and TXN decrease hepatic cholesterol content by enhancing de novo synthesis of bile acids. CONCLUSION These observations suggest that XN, DXN, and TXN may alleviate obesity-induced metabolic and neurocognitive impairments by targeting the liver-brain axis.
Collapse
Affiliation(s)
- Ines L Paraiso
- Linus Pauling Institute, Oregon State University, Corvallis, OR, 97331, USA
- Department of Pharmaceutical Sciences, Oregon State University, Corvallis, OR, 97331, USA
| | - Johana S Revel
- Linus Pauling Institute, Oregon State University, Corvallis, OR, 97331, USA
- Department of Pharmaceutical Sciences, Oregon State University, Corvallis, OR, 97331, USA
- Department of Chemistry, Oregon State University, Corvallis, OR, 97331, USA
| | - Jaewoo Choi
- Linus Pauling Institute, Oregon State University, Corvallis, OR, 97331, USA
| | - Cristobal L Miranda
- Linus Pauling Institute, Oregon State University, Corvallis, OR, 97331, USA
- Department of Pharmaceutical Sciences, Oregon State University, Corvallis, OR, 97331, USA
| | - Parnian Lak
- Linus Pauling Institute, Oregon State University, Corvallis, OR, 97331, USA
- Department of Pharmaceutical Sciences, Oregon State University, Corvallis, OR, 97331, USA
- Department of Chemistry, Oregon State University, Corvallis, OR, 97331, USA
| | - Chrissa Kioussi
- Department of Pharmaceutical Sciences, Oregon State University, Corvallis, OR, 97331, USA
| | - Gerd Bobe
- Linus Pauling Institute, Oregon State University, Corvallis, OR, 97331, USA
- Department of Animal & Rangeland Sciences, Oregon State University, Corvallis, OR, 97331, USA
| | - Adrian F Gombart
- Linus Pauling Institute, Oregon State University, Corvallis, OR, 97331, USA
- Department of Biochemistry & Biophysics, Oregon State University, Corvallis, OR, 97331, USA
| | - Jacob Raber
- Department of Pharmaceutical Sciences, Oregon State University, Corvallis, OR, 97331, USA
- Department of Behavioral Neuroscience, Neurology, and Radiation Medicine, Division of Neuroscience, Oregon National Primate Research Center, Oregon Health & Science University, Portland, OR, 97239, USA
| | - Claudia S Maier
- Department of Chemistry, Oregon State University, Corvallis, OR, 97331, USA
| | - Jan F Stevens
- Linus Pauling Institute, Oregon State University, Corvallis, OR, 97331, USA
- Department of Pharmaceutical Sciences, Oregon State University, Corvallis, OR, 97331, USA
| |
Collapse
|
12
|
Protein-ligand binding with the coarse-grained Martini model. Nat Commun 2020; 11:3714. [PMID: 32709852 PMCID: PMC7382508 DOI: 10.1038/s41467-020-17437-5] [Citation(s) in RCA: 135] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2019] [Accepted: 06/29/2020] [Indexed: 02/06/2023] Open
Abstract
The detailed understanding of the binding of small molecules to proteins is the key for the development of novel drugs or to increase the acceptance of substrates by enzymes. Nowadays, computer-aided design of protein–ligand binding is an important tool to accomplish this task. Current approaches typically rely on high-throughput docking essays or computationally expensive atomistic molecular dynamics simulations. Here, we present an approach to use the recently re-parametrized coarse-grained Martini model to perform unbiased millisecond sampling of protein–ligand interactions of small drug-like molecules. Remarkably, we achieve high accuracy without the need of any a priori knowledge of binding pockets or pathways. Our approach is applied to a range of systems from the well-characterized T4 lysozyme over members of the GPCR family and nuclear receptors to a variety of enzymes. The presented results open the way to high-throughput screening of ligand libraries or protein mutations using the coarse-grained Martini model. Computer-aided design of protein-ligand binding is important for the development of novel drugs. Here authors present an approach to use the recently re-parametrized coarse-grained Martini model to perform unbiased millisecond sampling of protein-ligand binding interactions of small drug-like molecules.
Collapse
|
13
|
Zhang Y, Bobe G, Revel JS, Rodrigues R, Sharpton TJ, Fantacone ML, Raslan K, Miranda CL, Lowry MB, Blakemore PR, Morgun A, Shulzhenko N, Maier CS, Stevens JF, Gombart AF. Improvements in Metabolic Syndrome by Xanthohumol Derivatives Are Linked to Altered Gut Microbiota and Bile Acid Metabolism. Mol Nutr Food Res 2020; 64:e1900789. [PMID: 31755244 PMCID: PMC7029812 DOI: 10.1002/mnfr.201900789] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2019] [Revised: 10/21/2019] [Indexed: 12/21/2022]
Abstract
SCOPE Two hydrogenated xanthohumol (XN) derivatives, α,β-dihydro-XN (DXN) and tetrahydro-XN (TXN), improved parameters of metabolic syndrome (MetS), a critical risk factor of cardiovascular disease (CVD) and type 2 diabetes, in a diet-induced obese murine model. It is hypothesized that improvements in obesity and MetS are linked to changes in composition of the gut microbiota, bile acid metabolism, intestinal barrier function, and inflammation. METHODS AND RESULTS To test this hypothesis, 16S rRNA genes were sequenced and bile acids were measured in fecal samples from C57BL/6J mice fed a high-fat diet (HFD) or HFD containing XN, DXN or TXN. Expression of genes associated with epithelial barrier function, inflammation, and bile acid metabolism were measured in the colon, white adipose tissue (WAT), and liver, respectively. Administration of XN derivatives decreases intestinal microbiota diversity and abundance-specifically Bacteroidetes and Tenericutes-alters bile acid metabolism, and reduces inflammation. In WAT, TXN supplementation decreases pro-inflammatory gene expression by suppressing macrophage infiltration. Transkingdom network analysis connects changes in the microbiota to improvements in MetS in the host. CONCLUSION Changes in the gut microbiota and bile acid metabolism may explain, in part, the improvements in obesity and MetS associated with administration of XN and its derivatives.
Collapse
Affiliation(s)
- Yang Zhang
- Linus Pauling Institute, Oregon State University, Corvallis, Oregon, 97331, USA
- School of Biological and Population Health Sciences, Oregon State University, Corvallis, Oregon, 97331, USA
| | - Gerd Bobe
- Linus Pauling Institute, Oregon State University, Corvallis, Oregon, 97331, USA
- Department of Animal Sciences, Oregon State University, Corvallis, Oregon, 97331, USA
| | - Johana S. Revel
- Linus Pauling Institute, Oregon State University, Corvallis, Oregon, 97331, USA
- Department of Chemistry, Oregon State University, Corvallis, Oregon, 97331, USA
| | - Richard Rodrigues
- Department of Pharmaceutical Sciences, Oregon State University, Corvallis, Oregon, 97331, USA
| | - Thomas J. Sharpton
- Department of Microbiology, Oregon State University, Corvallis, Oregon, 97331, USA
- Department of Statistics, Oregon State University, Corvallis, Oregon, 97331, USA
| | - Mary L. Fantacone
- Linus Pauling Institute, Oregon State University, Corvallis, Oregon, 97331, USA
- Department of Biochemistry and Biophysics, Oregon State University, Corvallis, Oregon, 97331, USA
| | - Kareem Raslan
- Department of Microbiology, Oregon State University, Corvallis, Oregon, 97331, USA
| | - Cristobal L. Miranda
- Linus Pauling Institute, Oregon State University, Corvallis, Oregon, 97331, USA
- Department of Pharmaceutical Sciences, Oregon State University, Corvallis, Oregon, 97331, USA
| | - Malcolm B. Lowry
- Linus Pauling Institute, Oregon State University, Corvallis, Oregon, 97331, USA
- Department of Microbiology, Oregon State University, Corvallis, Oregon, 97331, USA
| | - Paul R. Blakemore
- Department of Chemistry, Oregon State University, Corvallis, Oregon, 97331, USA
| | - Andrey Morgun
- Department of Pharmaceutical Sciences, Oregon State University, Corvallis, Oregon, 97331, USA
| | - Natalia Shulzhenko
- College of Veterinary Medicine; Oregon State University, Corvallis, Oregon, 97331, USA
| | - Claudia S. Maier
- Linus Pauling Institute, Oregon State University, Corvallis, Oregon, 97331, USA
- Department of Chemistry, Oregon State University, Corvallis, Oregon, 97331, USA
| | - Jan F. Stevens
- Linus Pauling Institute, Oregon State University, Corvallis, Oregon, 97331, USA
- Department of Pharmaceutical Sciences, Oregon State University, Corvallis, Oregon, 97331, USA
| | - Adrian F. Gombart
- Linus Pauling Institute, Oregon State University, Corvallis, Oregon, 97331, USA
- School of Biological and Population Health Sciences, Oregon State University, Corvallis, Oregon, 97331, USA
- Department of Biochemistry and Biophysics, Oregon State University, Corvallis, Oregon, 97331, USA
| |
Collapse
|
14
|
De Marino S, Festa C, Sepe V, Zampella A. Chemistry and Pharmacology of GPBAR1 and FXR Selective Agonists, Dual Agonists, and Antagonists. Handb Exp Pharmacol 2019; 256:137-165. [PMID: 31201554 DOI: 10.1007/164_2019_237] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
In the recent years, bile acid receptors FXR and GPBAR1 have attracted the interest of scientific community and companies, as they proved promising targets for the treatment of several diseases, ranging from liver cholestatic disorders to metabolic syndrome, inflammatory states, nonalcoholic steatohepatitis (NASH), and diabetes.Consequently, the development of dual FXR/GPBAR1 agonists, as well as selective targeting of one of these receptors, is considered a hopeful possibility in the treatment of these disorders. Because endogenous bile acids and steroidal ligands, which cover the same chemical space of bile acids, often target both receptor families, speculation on nonsteroidal ligands represents a promising and innovative strategy to selectively target GPBAR1 or FXR.In this review, we summarize the most recent acquisition on natural, semisynthetic, and synthetic steroidal and nonsteroidal ligands, able to interact with FXR and GPBAR1.
Collapse
Affiliation(s)
- Simona De Marino
- Department of Pharmacy, University of Naples "Federico II", Naples, Italy
| | - Carmen Festa
- Department of Pharmacy, University of Naples "Federico II", Naples, Italy
| | - Valentina Sepe
- Department of Pharmacy, University of Naples "Federico II", Naples, Italy
| | - Angela Zampella
- Department of Pharmacy, University of Naples "Federico II", Naples, Italy.
| |
Collapse
|
15
|
Massafra V, Pellicciari R, Gioiello A, van Mil SW. Progress and challenges of selective Farnesoid X Receptor modulation. Pharmacol Ther 2018; 191:162-177. [DOI: 10.1016/j.pharmthera.2018.06.009] [Citation(s) in RCA: 62] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
16
|
Nian SY, Wang GP, Jiang ZL, Xiao Y, Huang MH, Zhou YH, Tan XD. Synthesis and biological evaluation of novel SIPI-7623 derivatives as farnesoid X receptor (FXR) antagonists. Mol Divers 2018; 23:19-33. [PMID: 29974364 DOI: 10.1007/s11030-018-9843-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2017] [Accepted: 06/13/2018] [Indexed: 12/13/2022]
Abstract
Most of reported steroidal FXR antagonists are restricted due to low potency. We described the design and synthesis of novel nonsteroidal scaffold SIPI-7623 derivatives as FXR antagonists. The most potent compound A-11 (IC50 = 7.8 ± 1.1 μM) showed better activity compared to SIPI-7623 (IC50 = 40.8 ± 1.7 μM) and guggulsterone (IC50 = 45.9 ± 1.1 μM). Docking of A-11 in FXR's ligand-binding domain was also studied.
Collapse
Affiliation(s)
- Si-Yun Nian
- Department of Clinical Pharmacy, Taizhou Hospital of Zhejiang Province, Xi Men Street No. 150, Linhai, 317000, Zhejiang Province, China.,Shanghai Institute of Pharmaceutical Industry, China State Institute of Pharmaceutical Industry, Shanghai, 201203, China.,Aurisco Pharmaceutical (Yangzhou) Co., Ltd., Yangzhou, 225100, China
| | - Guo-Ping Wang
- Shanghai Institute of Pharmaceutical Industry, China State Institute of Pharmaceutical Industry, Shanghai, 201203, China.,Aurisco Pharmaceutical (Yangzhou) Co., Ltd., Yangzhou, 225100, China
| | - Zheng-Li Jiang
- Department of Clinical Pharmacy, Taizhou Hospital of Zhejiang Province, Xi Men Street No. 150, Linhai, 317000, Zhejiang Province, China
| | - Ying Xiao
- Shanghai Institute of Pharmaceutical Industry, China State Institute of Pharmaceutical Industry, Shanghai, 201203, China
| | - Mo-Han Huang
- College of Pharmacy, Guilin Medical University, Guilin, 541004, China
| | - Yi-Huan Zhou
- College of Pharmacy, Guilin Medical University, Guilin, 541004, China
| | - Xiang-Duan Tan
- College of Pharmacy, Guilin Medical University, Guilin, 541004, China.
| |
Collapse
|
17
|
Buchman CD, Chai SC, Chen T. A current structural perspective on PXR and CAR in drug metabolism. Expert Opin Drug Metab Toxicol 2018; 14:635-647. [PMID: 29757018 DOI: 10.1080/17425255.2018.1476488] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
INTRODUCTION Pregnane X receptor (PXR) and the constitutive androstane receptor (CAR) are two members of the nuclear receptor superfamily that play major roles in the expression of various drug metabolism enzymes and are known for their ligand promiscuity. As with other nuclear receptors, PXR and CAR are each composed of a ligand-binding domain (LBD) and a DNA-binding domain (DBD) connected by a hinge region. Areas covered: This review focuses on the information obtained over the last 15+ years from X-ray crystallography studies of the structure of PXR and CAR. Areas of focus include the mobility of each structure, based on temperature factors (B factors); multimeric interactions; the binding of coregulators and ligands; and how the crystal structures were obtained. The first use of hydrogen-deuterium exchange coupled with mass spectroscopy (HDX-MS) to study compound-protein interactions in the PXR-LBD is also addressed. Expert opinion: X-ray crystallography studies have provided us with an excellent understanding of how the LBDs of each receptor function; however, many questions remain concerning the structure of these receptors. Future research should focus on determining the co-crystal structure of an antagonist bound to PXR and on studying the structural aspects of the full-length CAR and PXR proteins.
Collapse
Affiliation(s)
- Cameron D Buchman
- a Department of Chemical Biology and Therapeutics , St. Jude Children's Research Hospital , Memphis , TN , USA
| | - Sergio C Chai
- a Department of Chemical Biology and Therapeutics , St. Jude Children's Research Hospital , Memphis , TN , USA
| | - Taosheng Chen
- a Department of Chemical Biology and Therapeutics , St. Jude Children's Research Hospital , Memphis , TN , USA
| |
Collapse
|
18
|
Non-estrogenic Xanthohumol Derivatives Mitigate Insulin Resistance and Cognitive Impairment in High-Fat Diet-induced Obese Mice. Sci Rep 2018; 8:613. [PMID: 29330372 PMCID: PMC5766630 DOI: 10.1038/s41598-017-18992-6] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2017] [Accepted: 12/20/2017] [Indexed: 01/21/2023] Open
Abstract
Xanthohumol (XN), a prenylated flavonoid from hops, improves dysfunctional glucose and lipid metabolism in animal models of metabolic syndrome (MetS). However, its metabolic transformation into the estrogenic metabolite, 8-prenylnaringenin (8-PN), poses a potential health concern for its use in humans. To address this concern, we evaluated two hydrogenated derivatives, α,β-dihydro-XN (DXN) and tetrahydro-XN (TXN), which showed negligible affinity for estrogen receptors α and β, and which cannot be metabolically converted into 8-PN. We compared their effects to those of XN by feeding C57BL/6J mice a high-fat diet (HFD) containing XN, DXN, or TXN for 13 weeks. DXN and TXN were present at higher concentrations than XN in plasma, liver and muscle. Mice administered XN, DXN or TXN showed improvements of impaired glucose tolerance compared to the controls. DXN and TXN treatment resulted in a decrease of HOMA-IR and plasma leptin. C2C12 embryonic muscle cells treated with DXN or TXN exhibited higher rates of uncoupled mitochondrial respiration compared to XN and the control. Finally, XN, DXN, or TXN treatment ameliorated HFD-induced deficits in spatial learning and memory. Taken together, DXN and TXN could ameliorate the neurocognitive-metabolic impairments associated with HFD-induced obesity without risk of liver injury and adverse estrogenic effects.
Collapse
|