1
|
Zhang J, Fan X, Chen Y, Han Y, Yu W, Zhang S, Yang B, Zhang J, Chen Y. An unfolded protein response (UPR)-signature regulated by the NFKB-miR-29b/c axis fosters tumor aggressiveness and poor survival in bladder cancer. Front Mol Biosci 2025; 12:1542650. [PMID: 40026699 PMCID: PMC11867963 DOI: 10.3389/fmolb.2025.1542650] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2024] [Accepted: 01/20/2025] [Indexed: 03/05/2025] Open
Abstract
Background Bladder cancer continues to pose a substantial global health challenge, marked by a high mortality rate despite advances in treatment options. Therefore, in-depth understanding of molecular mechanisms related to disease onset, progression, and patient survival is of utmost importance in bladder cancer research. Here, we aimed to investigate the underlying mechanisms using a stringent differential expression and survival analyses-based pipeline. Methods Gene and miRNA expression data from TCGA and NCBI GEO databases were analyzed. Differentially expressed genes between normal vs tumor, among tumor aggressiveness groups and between early vs advanced stage were identified using Student's t-test and ANOVA. Kaplan-Meier survival analyses were conducted using R. Functional annotation, miRNA target and transcription factor prediction, network construction, random walk analysis and gene set enrichment analyses were performed using DAVID, miRDIP, TransmiR, Cytoscape, Java and GSEA respectively. Results We identified elevated endoplasmic reticulum (ER) stress response as key culprit, as an eight-gene unfolded protein response (UPR)-related gene signature (UPR-GS) drives aggressive disease and poor survival in bladder cancer patients. This elevated UPR-GS is linked to the downregulation of two miRNAs from the miR-29 family (miR-29b-2-5p and miR-29c-5p), which can limit UPR-driven tumor aggressiveness and improve patient survival. At further upstream, the inflammation-related NFKB transcription factor inhibits miR-29b/c expression, driving UPR-related tumor progression and determining poor survival in bladder cancer patients. Conclusion These findings highlight that the aberrantly activated UPR, regulated by the NFKB-miR-29b/c axis, plays a crucial role in tumor aggressiveness and disease progression in bladder cancer, highlighting potential targets for therapeutic interventions and prognostic markers in bladder cancer management.
Collapse
Affiliation(s)
- Jian Zhang
- Department of Urology, Shangyu People’s Hospital of Shaoxing, Shaoxing University, Shaoxing, Zhejiang, China
| | - Xiaosong Fan
- Department of Urology, Shangyu People’s Hospital of Shaoxing, Shaoxing University, Shaoxing, Zhejiang, China
| | - Yu Chen
- Zhejiang Hisoar Pharmaceutical Co Ltd., Hangzhou, Zhejiang, China
| | - Yichao Han
- Department of Urology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Weixing Yu
- Department of Urology, Shangyu People’s Hospital of Shaoxing, Shaoxing University, Shaoxing, Zhejiang, China
| | - Shaolin Zhang
- Department of Neurosurgery, The First Affiliated Hospital of Wannan Medical College(Yijishan Hospital of Wannan Medical College), Wuhu, Anhui, China
| | - Bicheng Yang
- Department of Urology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Junlong Zhang
- Department of Urology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Yanling Chen
- Digestive Endoscopy Center, The First Affiliated Hospital of Wannan Medical College(Yijishan Hospital of Wannan Medical College), Wuhu, Anhui, China
| |
Collapse
|
2
|
Hashem AH, Abdel-Maksoud MA, Fatima S, Almutairi SM, Ghorab MA, El-Batal AI, El-Sayyad GS. Synthesis and characterization of innovative GA@Ag-CuO nanocomposite with potent antimicrobial and anticancer properties. Sci Rep 2025; 15:689. [PMID: 39753578 PMCID: PMC11699129 DOI: 10.1038/s41598-024-76446-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Accepted: 10/14/2024] [Indexed: 01/06/2025] Open
Abstract
Cancer and microbial infections place a significant burden on the world's health systems and can increase the rate of disease and mortality. In the current study, a novel nanocomposite based on Gum Arabic, silver and copper oxide nanoparticles (GA@Ag-CuO nanocomposite) was synthesized to overcome the problem of microbial infection and in cancer treatment. Characterization using UV-Vis. spectrophotometer reveals that, the observed peak in the spectrum was formed by the observed O.D. at 0.755, and confirmed that the produced GA@Ag-CuO nanocomposite was small and discernible at 360 nm. The particles' diameters varied from 9.5 nm to 49.5 nm, with a mean diameter of 25.53 ± 1.4 nm. The created Gum Arabic filtrate was rich in active functional groups, and the provided polydisperse NPs were intended to reduce, stabilize, and the produced filtrate act as capping agents. Based on the XRD data, the synthesized GA@Ag-CuO nanocomposite was crystallized and had a face-centered (fcc) crystal structure. Biosafety of GA@Ag-CuO nanocomposite was assessed toward Wi 38 normal cell line, where it showed safety toward the tested cell line where IC50 was 154.2 µg/mL. Antimicrobial results confirmed that, GA@Ag-CuO nanocomposite has antibacterial activity with MICs 15.6, 125, 31.25 and 125 µg/mL against S. epidermis, S. aureus, L. plantrum, and S. typhimurium, respectively. Likewise, it showed antifungal activity toward C. albicans and C. neoformans with MICs 62.5 and 15.62 µg/ml, respectively. Moreover, GA@Ag-CuO nanocomposite displayed promising anticancer activity with IC50 26.11 and 59.5 µg/ml toward MCF-7 and Hep-G2, respectively. In conclusion, the novel GA@Ag-CuO nanocomposite demonstrated promising antibacterial, antifungal, and anticancer activities.
Collapse
Affiliation(s)
- Amr H Hashem
- Botany and Microbiology Department, Faculty of Science, Al-Azhar University, Nasr City, 11884, Cairo, Egypt.
| | - Mostafa A Abdel-Maksoud
- Department of Botany and Microbiology, College of Science, King Saud University, P.O. Box 2455, Riyadh, 11451, Saudi Arabia
| | - Sabiha Fatima
- Department of Clinical Laboratory Science, College of Applied Medical Sciences, King Saud University, P.O. Box 10219, Riyadh, 11433, Saudi Arabia
| | - Saeedah M Almutairi
- Department of Botany and Microbiology, College of Science, King Saud University, P.O. Box 2455, Riyadh, 11451, Saudi Arabia
| | - Mohamed A Ghorab
- Wildlife Toxicology Lab, Dept. of Animal Science, Institute for Integrative Toxicology (IIT), Michigan State University, East Lansing, MI, 48824, USA
- School of Veterinary Medicine, Department of Molecular Biosciences, University of California, Davis, CA, 95616-8741, USA
| | - Ahmed I El-Batal
- Drug Microbiology Lab, Drug Radiation Research Department, National Center for Radiation Research and Technology (NCRRT), Egyptian Atomic Energy Authority (EAEA), Cairo, Egypt
| | - Gharieb S El-Sayyad
- Department of Medical Laboratory Technology, Faculty of Applied Health Sciences Technology, Badr University in Cairo (BUC), Badr city, Cairo, Egypt.
- Department of Microbiology and Immunology, Faculty of Pharmacy, Galala University, New Galal City, Suez, Egypt.
- Drug Microbiology Lab, Drug Radiation Research Department, National Center for Radiation Research and Technology (NCRRT), Egyptian Atomic Energy Authority (EAEA), Cairo, Egypt.
| |
Collapse
|
3
|
Zhang X, Zong R, Han Y, Li X, Liu S, Cao Y, Jiang N, Chen P, Gao H. Novel benzoylurea derivative decreases TRPM7 channel function and inhibits cancer cells migration. Channels (Austin) 2024; 18:2396339. [PMID: 39212541 PMCID: PMC11370923 DOI: 10.1080/19336950.2024.2396339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 08/16/2024] [Accepted: 08/20/2024] [Indexed: 09/04/2024] Open
Abstract
The transient receptor potential melastatin 7 channel (TRPM7) is a nonselective cation channel highly expressed in some human cancer tissues. TRPM7 is involved in the proliferation, migration, invasion, and epithelial-mesenchymal transition (EMT) of cancer cells. Modulation of TRPM7 could be a promising therapeutic strategy for treating cancer; however, efficient and selective pharmacological TRPM7 modulators are lacking. In this study we investigated N- [4- (4, 6-dimethyl- 2-pyrimidinyloxy) - 3- methylphenyl] -N' - [2 -(dimethylamino)] benzoylurea (SUD), a newly synthesized benzoylurea derivative, for its effects on cancer cell migration and EMT and on functional expression of TRPM7. Our previous studies showed that SUD induces cell cycle arrest and apoptosis of MCF-7 and BGC-823 cells (human breast cancer and gastric cancer cell lines, respectively). Here, we show that SUD significantly decreased the migration of both types of cancer cells. Moreover, SUD decreased vimentin expression and increased E-cadherin expression in both cell types, indicating that EMT is also decreased by SUD. Importantly, SUD potentially reduced the TRPM7-like current in a concentration-dependent manner and decreased TRPM7 expression through the PI3K/Akt signaling pathway. Finally, molecular docking simulations were used to investigate potential SUD binding sites on TRPM7. In summary, our research demonstrated that SUD is an effective TRPM7 inhibitor and a potential agent to suppress the metastasis of breast and gastric cancer by inhibiting TRPM7 expression and function.
Collapse
Affiliation(s)
- Xiaoding Zhang
- Department of Pharmacology, Center for Innovative Drug Research and Evaluation, Institute of Medical Science and Health, The Hebei Collaboration Innovation Center for Mechanism, Diagnosis and Treatment of Neurological and Psychiatric Disease, The Key Laboratory of Neural and Vascular Biology, Ministry of Education, Hebei Medical University, Shijiazhuang, Hebei, China
| | - Rui Zong
- Department of Pharmacology, Center for Innovative Drug Research and Evaluation, Institute of Medical Science and Health, The Hebei Collaboration Innovation Center for Mechanism, Diagnosis and Treatment of Neurological and Psychiatric Disease, The Key Laboratory of Neural and Vascular Biology, Ministry of Education, Hebei Medical University, Shijiazhuang, Hebei, China
| | - Yu Han
- Department of Pharmacy, Hebei Children’s Hospital, Shijiazhuang, Hebei, China
| | - Xiaoming Li
- Department of Pharmacy, Hebei General Hospital, Shijiazhuang, Hebei, China
| | - Shuangyu Liu
- Department of Pharmacology, Center for Innovative Drug Research and Evaluation, Institute of Medical Science and Health, The Hebei Collaboration Innovation Center for Mechanism, Diagnosis and Treatment of Neurological and Psychiatric Disease, The Key Laboratory of Neural and Vascular Biology, Ministry of Education, Hebei Medical University, Shijiazhuang, Hebei, China
| | - Yixue Cao
- Department of Pharmacology, Center for Innovative Drug Research and Evaluation, Institute of Medical Science and Health, The Hebei Collaboration Innovation Center for Mechanism, Diagnosis and Treatment of Neurological and Psychiatric Disease, The Key Laboratory of Neural and Vascular Biology, Ministry of Education, Hebei Medical University, Shijiazhuang, Hebei, China
| | - Nan Jiang
- Department of Pharmacology, Center for Innovative Drug Research and Evaluation, Institute of Medical Science and Health, The Hebei Collaboration Innovation Center for Mechanism, Diagnosis and Treatment of Neurological and Psychiatric Disease, The Key Laboratory of Neural and Vascular Biology, Ministry of Education, Hebei Medical University, Shijiazhuang, Hebei, China
| | - Pingping Chen
- The Department of Pharmacology, Hebei University of Chinese Medicine, Shijiazhuang, Hebei, China
| | - Haixia Gao
- Department of Pharmacology, Center for Innovative Drug Research and Evaluation, Institute of Medical Science and Health, The Hebei Collaboration Innovation Center for Mechanism, Diagnosis and Treatment of Neurological and Psychiatric Disease, The Key Laboratory of Neural and Vascular Biology, Ministry of Education, Hebei Medical University, Shijiazhuang, Hebei, China
| |
Collapse
|
4
|
Park JY, Park KM. Recent discovery of natural substances with cathepsin L-inhibitory activity for cancer metastasis suppression. Eur J Med Chem 2024; 277:116754. [PMID: 39128327 DOI: 10.1016/j.ejmech.2024.116754] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 07/31/2024] [Accepted: 08/06/2024] [Indexed: 08/13/2024]
Abstract
Cathepsin L (CTSL), a cysteine cathepsin protease of the papain superfamily, plays a crucial role in cancer progression and metastasis. Dysregulation of CTSL is frequently observed in tumor malignancies, leading to the degradation of extracellular matrix and facilitating epithelial-mesenchymal transition (EMT), a key process in malignant cancer metastasis. This review mainly provides a comprehensive information about recent findings on natural inhibitors targeting CTSL and their anticancer effects, which have emerged as potent anticancer therapeutic agents or metastasis-suppressive adjuvants. Specifically, inhibitors are categorized into small-molecule and macromolecule inhibitors, with a particular emphasis on cathepsin propeptide-type macromolecules. Additionally, the article explores the molecular mechanisms of CTSL involvement in cancer metastasis, highlighting its regulation at transcriptional, translational, post-translational, and epigenetic levels. This work underscores the importance of understanding natural CTSL inhibitors and provides researchers with practical insights to advance the relevant fields and discover novel CTSL-targeting inhibitors from natural sources.
Collapse
Affiliation(s)
- Jun-Young Park
- Department of Agricultural Biotechnology, Seoul National University, Seoul, 08826, Republic of Korea
| | - Kyung-Min Park
- Department of Food Science and Biotechnology, Wonkwang University, Iksan, 54538, Republic of Korea.
| |
Collapse
|
5
|
Gemelli M, Albini A, Catalano G, Incarbone M, Cannone M, Balladore E, Ricotta R, Pelosi G. Navigating resistance to ALK inhibitors in the lorlatinib era: a comprehensive perspective on NSCLC. Expert Rev Anticancer Ther 2024; 24:347-361. [PMID: 38630549 DOI: 10.1080/14737140.2024.2344648] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Accepted: 04/15/2024] [Indexed: 04/19/2024]
Abstract
INTRODUCTION The emergence of anaplastic lymphoma kinase (ALK) rearrangements in non-small cell lung cancer (NSCLC) has revolutionized targeted therapy. This dynamic landscape, featuring novel ALK inhibitors and combination therapies, necessitates a profound understanding of resistance mechanisms for effective treatment strategies. Recognizing two primary categories - on-target and off-target resistance - underscores the need for comprehensive assessment. AREAS COVERED This review delves into the intricacies of resistance to ALK inhibitors, exploring complexities in identification and management. Molecular testing, pivotal for early detection and accurate diagnosis, forms the foundation for patient stratification and resistance management. The literature search methodology involved comprehensive exploration of Pubmed and Embase. The multifaceted perspective encompasses new therapeutic horizons, ongoing clinical trials, and their clinical implications post the recent approval of lorlatinib. EXPERT OPINION Our expert opinion encapsulates the critical importance of understanding resistance mechanisms in the context of ALK inhibitors for shaping successful treatment approaches. With a focus on molecular testing and comprehensive assessment, this review contributes valuable insights to the evolving landscape of NSCLC therapy.
Collapse
Affiliation(s)
- Maria Gemelli
- Medical Oncology Unit, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) MultiMedica, Milan, Italy
| | - Adriana Albini
- Departement of Scientific Directorate, European Institute of Oncology (IEO) Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Milan, Italy
| | - Gianpiero Catalano
- Radiation Oncology Center, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) MultiMedica, Milan, Italy
| | - Matteo Incarbone
- Department of Surgery, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) MultiMedica, Milan, Italy
| | - Maria Cannone
- Inter-Hospital Division of Pathology, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) MultiMedica, Milan, Italy
| | - Emanuela Balladore
- Inter-Hospital Division of Pathology, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) MultiMedica, Milan, Italy
| | - Riccardo Ricotta
- Medical Oncology Unit, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) MultiMedica, Milan, Italy
| | - Giuseppe Pelosi
- Inter-Hospital Division of Pathology, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) MultiMedica, Milan, Italy
- Department of Oncology and Hemato-Oncology, University of Milan, Milan, Italy
| |
Collapse
|
6
|
Strippoli R, Niayesh-Mehr R, Adelipour M, Khosravi A, Cordani M, Zarrabi A, Allameh A. Contribution of Autophagy to Epithelial Mesenchymal Transition Induction during Cancer Progression. Cancers (Basel) 2024; 16:807. [PMID: 38398197 PMCID: PMC10886827 DOI: 10.3390/cancers16040807] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 02/13/2024] [Accepted: 02/13/2024] [Indexed: 02/25/2024] Open
Abstract
Epithelial Mesenchymal Transition (EMT) is a dedifferentiation process implicated in many physio-pathological conditions including tumor transformation. EMT is regulated by several extracellular mediators and under certain conditions it can be reversible. Autophagy is a conserved catabolic process in which intracellular components such as protein/DNA aggregates and abnormal organelles are degraded in specific lysosomes. In cancer, autophagy plays a controversial role, acting in different conditions as both a tumor suppressor and a tumor-promoting mechanism. Experimental evidence shows that deep interrelations exist between EMT and autophagy-related pathways. Although this interplay has already been analyzed in previous studies, understanding mechanisms and the translational implications of autophagy/EMT need further study. The role of autophagy in EMT is not limited to morphological changes, but activation of autophagy could be important to DNA repair/damage system, cell adhesion molecules, and cell proliferation and differentiation processes. Based on this, both autophagy and EMT and related pathways are now considered as targets for cancer therapy. In this review article, the contribution of autophagy to EMT and progression of cancer is discussed. This article also describes the multiple connections between EMT and autophagy and their implication in cancer treatment.
Collapse
Affiliation(s)
- Raffaele Strippoli
- Department of Molecular Medicine, Sapienza University of Rome, 00161 Rome, Italy;
- National Institute for Infectious Diseases “Lazzaro Spallanzani”, I.R.C.C.S., 00149 Rome, Italy
| | - Reyhaneh Niayesh-Mehr
- Department of Clinical Biochemistry, Faculty of Medical Science, Tarbiat Modares University, Tehran P.O. Box 14115-331, Iran;
| | - Maryam Adelipour
- Department of Clinical Biochemistry, School of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz 61357-15794, Iran;
| | - Arezoo Khosravi
- Department of Genetics and Bioengineering, Faculty of Engineering and Natural Sciences, Istanbul Okan University, Istanbul 34959, Türkiye;
| | - Marco Cordani
- Department of Biochemistry and Molecular Biology, Faculty of Biological Sciences, Complutense University of Madrid, 28040 Madrid, Spain;
- Instituto de Investigaciones Sanitarias San Carlos (IdISSC), 28040 Madrid, Spain
| | - Ali Zarrabi
- Department of Biomedical Engineering, Faculty of Engineering and Natural Sciences, Istinye University, Istanbul 34396, Türkiye;
- Department of Research Analytics, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai 600077, India
| | - Abdolamir Allameh
- Department of Clinical Biochemistry, Faculty of Medical Science, Tarbiat Modares University, Tehran P.O. Box 14115-331, Iran;
| |
Collapse
|
7
|
Loeffler E, Ancel J, Dalstein V, Deslée G, Polette M, Nawrocki-Raby B. HER2 Alterations in Non-Small Cell Lung Cancer: Biologico-Clinical Consequences and Interest in Therapeutic Strategies. Life (Basel) 2023; 14:64. [PMID: 38255679 PMCID: PMC10820545 DOI: 10.3390/life14010064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 12/20/2023] [Accepted: 12/21/2023] [Indexed: 01/24/2024] Open
Abstract
Lung cancer stands as the first cause of death by cancer in the world. Despite the improvement in patients' outcomes in the past decades through the development of personalized medicine approaches, a substantial portion of patients remains ineligible for targeted therapies due to the lack of a "druggable" molecular target. HER2, a receptor tyrosine kinase member of the EGFR/ErbB family, is known to show oncogenic properties. In this review, we focus on the different HER2 dysregulation mechanisms that have been observed in non-small cell lung cancer (NSCLC): gene mutation, gene amplification, protein overexpression and protein hyper-phosphorylation, the latter suggesting that HER2 dysregulation can occur independently of any molecular aberration. These HER2 alterations inevitably have consequences on tumor biology. Here, we discuss how they are not only involved in abnormal proliferation and survival of cancer cells but also potentially in increased angiogenic properties, mesenchymal features and tumor immune escape. Finally, we review the impact of these HER2 alterations in various therapeutic approaches. While standard chemotherapy and groundbreaking immunotherapy seem rather ineffective for HER2-altered NSCLCs, the development of HER2-targeted therapies such as tyrosine kinase inhibitors, anti-HER2 antibodies and especially antibody-drug conjugates could provide new hopes for patients.
Collapse
Affiliation(s)
- Emma Loeffler
- Université de Reims Champagne Ardenne, Inserm, UMR-S 1250 P3Cell, SFR CAP Santé, 51092 Reims, France; (E.L.); (J.A.); (V.D.); (G.D.); (M.P.)
| | - Julien Ancel
- Université de Reims Champagne Ardenne, Inserm, UMR-S 1250 P3Cell, SFR CAP Santé, 51092 Reims, France; (E.L.); (J.A.); (V.D.); (G.D.); (M.P.)
- CHU de Reims, Hôpital Maison-Blanche, Service de Pneumologie, 51092 Reims, France
| | - Véronique Dalstein
- Université de Reims Champagne Ardenne, Inserm, UMR-S 1250 P3Cell, SFR CAP Santé, 51092 Reims, France; (E.L.); (J.A.); (V.D.); (G.D.); (M.P.)
- CHU de Reims, Pôle de Biologie Territoriale, Service de Pathologie, 51092 Reims, France
| | - Gaëtan Deslée
- Université de Reims Champagne Ardenne, Inserm, UMR-S 1250 P3Cell, SFR CAP Santé, 51092 Reims, France; (E.L.); (J.A.); (V.D.); (G.D.); (M.P.)
- CHU de Reims, Hôpital Maison-Blanche, Service de Pneumologie, 51092 Reims, France
| | - Myriam Polette
- Université de Reims Champagne Ardenne, Inserm, UMR-S 1250 P3Cell, SFR CAP Santé, 51092 Reims, France; (E.L.); (J.A.); (V.D.); (G.D.); (M.P.)
- CHU de Reims, Pôle de Biologie Territoriale, Service de Pathologie, 51092 Reims, France
| | - Béatrice Nawrocki-Raby
- Université de Reims Champagne Ardenne, Inserm, UMR-S 1250 P3Cell, SFR CAP Santé, 51092 Reims, France; (E.L.); (J.A.); (V.D.); (G.D.); (M.P.)
| |
Collapse
|
8
|
Salman A, Abdel Mageed SS, Fathi D, Elrebehy MA, Abulsoud AI, Elshaer SS, Khidr EG, Al-Noshokaty TM, Khaled R, Rizk NI, Elballal MS, Sayed GA, Abd-Elmawla MA, El Tabaa MM, Mohammed OA, Ashraf A, El-Husseiny AA, Midan HM, El-Dakroury WA, Abdel-Reheim MA, Doghish AS. Deciphering signaling pathway interplay via miRNAs in malignant pleural mesothelioma. Pathol Res Pract 2023; 252:154947. [PMID: 37977032 DOI: 10.1016/j.prp.2023.154947] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 10/29/2023] [Accepted: 11/10/2023] [Indexed: 11/19/2023]
Abstract
Malignant pleural mesothelioma (MPM) is a highly invasive form of lung cancer that adversely affects the pleural and other linings of the lungs. MPM is a very aggressive tumor that often has an advanced stage at diagnosis and a bad prognosis (between 7 and 12 months). When people who have been exposed to asbestos experience pleural effusion and pain that is not explained, MPM should be suspected. After being diagnosed, most MPM patients have a one- to four-year life expectancy. The life expectancy is approximately six months without treatment. Despite the plethora of current molecular investigations, a definitive universal molecular signature has yet to be discovered as the causative factor for the pathogenesis of MPM. MicroRNAs (miRNAs) are known to play a crucial role in the regulation of gene expression at the posttranscriptional level. The association between the expression of these short, non-coding RNAs and several neoplasms, including MPM, has been observed. Although the incidence of MPM is very low, there has been a significant increase in research focused on miRNAs in the past few years. In addition, miRNAs have been found to have a role in various regulatory signaling pathways associated with MPM, such as the Notch signaling network, Wnt/β-catenin, mutation of KRAS, JAK/STAT signaling circuit, protein kinase B (AKT), and Hedgehog signaling pathway. This study provides a comprehensive overview of the existing understanding of the roles of miRNAs in the underlying mechanisms of pathogenic symptoms in MPM, highlighting their potential as viable targets for therapeutic interventions.
Collapse
Affiliation(s)
- Aya Salman
- Department of Biochemistry, Faculty of Pharmacy, Egyptian Russian University, Badr City, 11829 Cairo, Egypt
| | - Sherif S Abdel Mageed
- Pharmacology and Toxicology Department, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo 11829, Egypt
| | - Doaa Fathi
- Biochemistry Department, Faculty of Pharmacy, Heliopolis University, Cairo 11785, Egypt
| | - Mahmoud A Elrebehy
- Department of Biochemistry, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo 11829, Egypt
| | - Ahmed I Abulsoud
- Biochemistry Department, Faculty of Pharmacy, Heliopolis University, Cairo 11785, Egypt; Biochemistry and Molecular Biology Department, Faculty of Pharmacy (Boys), Al-Azhar University, Nasr City, 11231 Cairo, Egypt.
| | - Shereen Saeid Elshaer
- Biochemistry Department, Faculty of Pharmacy, Heliopolis University, Cairo 11785, Egypt; Department of Biochemistry, Faculty of Pharmacy (Girls), Al-Azhar University, Nasr City, Cairo 11823, Egypt
| | - Emad Gamil Khidr
- Biochemistry and Molecular Biology Department, Faculty of Pharmacy (Boys), Al-Azhar University, Nasr City, 11231 Cairo, Egypt
| | - Tohada M Al-Noshokaty
- Biochemistry Department, Faculty of Pharmacy, Heliopolis University, Cairo 11785, Egypt
| | - Reem Khaled
- Department of Biochemistry, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo 11829, Egypt
| | - Nehal I Rizk
- Biochemistry Department, Faculty of Pharmacy, Heliopolis University, Cairo 11785, Egypt
| | - Mohammed S Elballal
- Department of Biochemistry, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo 11829, Egypt
| | - Ghadir A Sayed
- Department of Biochemistry, Faculty of Pharmacy, Egyptian Russian University, Badr City, 11829 Cairo, Egypt
| | - Mai A Abd-Elmawla
- Biochemistry, Department of Biochemistry, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| | - Manar Mohammed El Tabaa
- Pharmacology & Environmental Toxicology, Environmental Studies & Research Institute (ESRI), University of Sadat City, Sadat City, 32897 Menoufia, Egypt
| | - Osama A Mohammed
- Department of Pharmacology, College of Medicine, University of Bisha, Bisha 61922, Saudi Arabia
| | - Alaa Ashraf
- Department of Clinical Pharmacy and Pharmacy Practice, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo 11829, Egypt
| | - Ahmed A El-Husseiny
- Department of Biochemistry, Faculty of Pharmacy, Egyptian Russian University, Badr City, 11829 Cairo, Egypt; Biochemistry and Molecular Biology Department, Faculty of Pharmacy (Boys), Al-Azhar University, Nasr City, 11231 Cairo, Egypt
| | - Heba M Midan
- Department of Biochemistry, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo 11829, Egypt
| | - Walaa A El-Dakroury
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo 11829, Egypt
| | - Mustafa Ahmed Abdel-Reheim
- Department of Pharmaceutical Sciences, College of Pharmacy, Shaqra University, Shaqra 11961, Saudi Arabia; Department of Pharmacology and Toxicology, Faculty of Pharmacy, Beni-Suef University, Beni Suef 62521, Egypt.
| | - Ahmed S Doghish
- Department of Biochemistry, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo 11829, Egypt; Biochemistry and Molecular Biology Department, Faculty of Pharmacy (Boys), Al-Azhar University, Nasr City, 11231 Cairo, Egypt.
| |
Collapse
|
9
|
Géci I, Bober P, Filová E, Amler E, Sabo J. The Role of ARHGAP1 in Rho GTPase Inactivation during Metastasizing of Breast Cancer Cell Line MCF-7 after Treatment with Doxorubicin. Int J Mol Sci 2023; 24:11352. [PMID: 37511111 PMCID: PMC10379778 DOI: 10.3390/ijms241411352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2023] [Revised: 07/05/2023] [Accepted: 07/08/2023] [Indexed: 07/30/2023] Open
Abstract
Breast cancer is the most prevalent cancer type in women worldwide. It proliferates rapidly and can metastasize into farther tissues at any stage due to the gradual invasiveness and motility of the tumor cells. These crucial properties are the outcome of the weakened intercellular adhesion, regulated by small guanosine triphosphatases (GTPases), which hydrolyze to the guanosine diphosphate (GDP)-bound conformation. We investigated the inactivating effect of ARHGAP1 on Rho GTPases involved signaling pathways after treatment with a high dose of doxorubicin. Label-free quantitative proteomic analysis of the proteome isolated from the MCF-7 breast cancer cell line, treated with 1 μM of doxorubicin, identified RAC1, CDC42, and RHOA GTPases that were inactivated by the ARHGAP1 protein. Upregulation of the GTPases involved in the transforming growth factor-beta (TGF-beta) signaling pathway initiated epithelial-mesenchymal transitions. These findings demonstrate a key role of the ARHGAP1 protein in the disruption of the cell adhesion and simultaneously allow for a better understanding of the molecular mechanism of the reduced cell adhesion leading to the subsequent metastasis. The conclusions of this study corroborate the hypothesis that chemotherapy with doxorubicin may increase the risk of metastases in drug-resistant breast cancer cells.
Collapse
Affiliation(s)
- Imrich Géci
- Department of Medical and Clinical Biophysics, Faculty of Medicine, Pavol Jozef Šafárik University in Košice, Trieda SNP 1, 04011 Košice, Slovakia
| | - Peter Bober
- Department of Medical and Clinical Biophysics, Faculty of Medicine, Pavol Jozef Šafárik University in Košice, Trieda SNP 1, 04011 Košice, Slovakia
| | - Eva Filová
- Institute of Experimental Medicine, Czech Academy of Sciences, Vídeňská 1083, 142 00 Prague, Czech Republic
| | - Evžen Amler
- Institute of Experimental Medicine, Czech Academy of Sciences, Vídeňská 1083, 142 00 Prague, Czech Republic
| | - Ján Sabo
- Department of Medical and Clinical Biophysics, Faculty of Medicine, Pavol Jozef Šafárik University in Košice, Trieda SNP 1, 04011 Košice, Slovakia
| |
Collapse
|
10
|
Vashishth A, Shuaib M, Bansal T, Kumar S. Mycobacterium Tubercular Mediated Inflammation and Lung Carcinogenesis: Connecting Links. OBM GENETICS 2023; 07:1-17. [DOI: 10.21926/obm.genet.2302183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/16/2025]
Abstract
Lung cancer is a leading cause of death among all the cancer worldwide and it has the highest occurrence and mortality rates. <em>Mycobacterium</em> <em>tuberculosis</em> (MTB) induced tuberculosis has been known as one of the risk factors for lung carcinogenesis. The exact mechanism of MTB is understood to date. Several research and epidemiological studies about the link between tuberculosis and lung cancer exist. It has been proposed that tuberculosis causes chronic inflammation, which increases the risk of lung cancer by creating a favorable environment. EGFR downstream signaling promotes constitutive activation of TKIs domain due to the mutation in exon 19 and exon 21 (L858R point mutation), which leads to cell proliferation, invasion, metastasis, and angiogenesis, causing lung adenocarcinoma. Several other studies have shown that human monocyte cells infected by MTB enhance the invasion and cause induction of epithelial-mesenchymal transition (EMT) characteristics in lung cancer cell co-culture. This review article has tried to draw a relationship between chronic tuberculosis and lung carcinogenesis.
Collapse
|
11
|
Haidar Ahmad S, El Baba R, Herbein G. Polyploid giant cancer cells, cytokines and cytomegalovirus in breast cancer progression. Cancer Cell Int 2023; 23:119. [PMID: 37340387 DOI: 10.1186/s12935-023-02971-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2023] [Accepted: 06/12/2023] [Indexed: 06/22/2023] Open
Abstract
BACKGROUND Breast cancer is the most common cancer among women. Accumulated evidence over the past decades indicates a very high prevalence of human cytomegalovirus (HCMV) in breast cancer. High-risk HCMV strains possess a direct oncogenic effect displayed by cellular stress, polyploid giant cancer cells (PGCCs) generation, stemness, and epithelial-to-mesenchymal transition (EMT) leading to cancer of aggressive phenotype. Breast cancer development and progression have been regulated by several cytokines where the latter can promote cancer cell survival, help in tumor immune evasion, and initiate the EMT process, thereby resulting in invasion, angiogenesis, and breast cancer metastasis. In the present study, we screened cytokines expression in cytomegalovirus-transformed HMECs (CTH cells) cultures infected with HCMV high-risk strains namely, HCMV-DB and BL, as well as breast cancer biopsies, and analyzed the association between cytokines production, PGCCs count, and HCMV presence in vitro and in vivo. METHODS In CTH cultures and breast cancer biopsies, HCMV load was quantified by real-time qPCR. PGCCs count in CTH cultures and breast cancer biopsies was identified based on cell morphology and hematoxylin and eosin staining, respectively. CTH supernatants were evaluated for the production of TGF-β, IL-6, IL1-β, and IL-10 by ELISA assays. The above-mentioned cytokines expression was assessed in breast cancer biopsies using reverse transcription-qPCR. The correlation analyses were performed using Pearson correlation test. RESULTS The revealed PGCCs/cytokine profile in our in vitro CTH model matched that of the breast cancer biopsies, in vivo. Pronounced cytokine expression and PGCCs count were detected in particularly CTH-DB cultures and basal-like breast cancer biopsies. CONCLUSIONS The analysis of cytokine profiles in PGCCs present mostly in basal-like breast cancer biopsies and derived from CTH cells chronically infected with the high-risk HCMV strains might have the potential to provide novel therapies such as cytokine-based immunotherapy which is a promising field in cancer treatments.
Collapse
Affiliation(s)
- Sandy Haidar Ahmad
- Department Pathogens and Inflammation-EPILAB, EA4266, University of France-Comté, 16 Route de Gray, 25030, Besançon Cedex, France
| | - Ranim El Baba
- Department Pathogens and Inflammation-EPILAB, EA4266, University of France-Comté, 16 Route de Gray, 25030, Besançon Cedex, France
| | - Georges Herbein
- Department Pathogens and Inflammation-EPILAB, EA4266, University of France-Comté, 16 Route de Gray, 25030, Besançon Cedex, France.
- Department of Virology, CHRU Besancon, Besancon, France.
| |
Collapse
|
12
|
Yang X, Xu G, Liu X, Zhou G, Zhang B, Wang F, Wang L, Li B, Li L. Carbon nanomaterial-involved EMT and CSC in cancer. REVIEWS ON ENVIRONMENTAL HEALTH 2023; 38:1-13. [PMID: 34619029 DOI: 10.1515/reveh-2021-0082] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Accepted: 09/26/2021] [Indexed: 06/13/2023]
Abstract
Carbon nanomaterials (CNMs) are ubiquitous in our daily lives because of the outstanding physicochemical properties. CNMs play curial parts in industrial and medical fields, however, the risks of CNMs exposure to human health are still not fully understood. In view of, it is becoming extremely difficult to ignore the existence of the toxicity of CNMs. With the increasing exploitation of CNMs, it's necessary to evaluate the potential impact of these materials on human health. In recent years, more and more researches have shown that CNMs are contributed to the cancer formation and metastasis after long-term exposure through epithelial-mesenchymal transition (EMT) and cancer stem cells (CSCs) which is associated with cancer progression and invasion. This review discusses CNMs properties and applications in industrial and medical fields, adverse effects on human health, especially the induction of tumor initiation and metastasis through EMT and CSCs procedure.
Collapse
Affiliation(s)
- Xiaotong Yang
- Tianjin Medical University General Hospital, Tianjin, China
| | - Gongquan Xu
- Tianjin Medical University General Hospital, Tianjin, China
| | - Xiaolong Liu
- Tianjin Medical University General Hospital, Tianjin, China
| | - Guiming Zhou
- Tianjin Medical University General Hospital, Tianjin, China
| | - Bing Zhang
- Rushan Hospital of Traditional Chinese Medicine, Weihai, China
| | - Fan Wang
- Tianjin Medical University General Hospital, Tianjin, China
| | - Lingjuan Wang
- Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, Hubei, China
| | - Bin Li
- Tianjin Medical University General Hospital, Tianjin, China
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, China
| | - Liming Li
- Tianjin Medical University General Hospital, Tianjin, China
| |
Collapse
|
13
|
Alotaibi AG, Li JV, Gooderham NJ. Tumour Necrosis Factor-Alpha (TNF-α)-Induced Metastatic Phenotype in Colorectal Cancer Epithelial Cells: Mechanistic Support for the Role of MicroRNA-21. Cancers (Basel) 2023; 15:627. [PMID: 36765584 PMCID: PMC9913347 DOI: 10.3390/cancers15030627] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 01/13/2023] [Accepted: 01/17/2023] [Indexed: 01/20/2023] Open
Abstract
Colorectal cancer is driven by genetic and epigenetic changes in cells to confer phenotypes that promote metastatic transformation and development. Tumour necrosis factor-alpha (TNF-α), a pro-inflammatory mediator, regulates cellular communication within the tumour microenvironment and is associated with the progression of the metastatic phenotype. Oncogenic miR-21 has been shown to be overexpressed in most solid tumours, including colorectal cancer, and is known to target proteins involved in metastatic transformation. In this study, we investigated the relationship between TNF-α and miR-21 regulation in colorectal cancer epithelial cells (SW480 and HCT116). We observed that TNF-α, at concentrations reported to be present in serum and tumour tissue from colorectal cancer patients, upregulated miR-21 expression in both cell lines. TNF-α treatment also promoted cell migration, downregulation of the expression of E-cadherin, a marker of epithelial to mesenchymal transition, and anti-apoptotic BCL-2 (a validated target for miR-21). Knockdown of miR-21 had the opposite effect on each of these TNF-a induced phenotypic changes. Additionally, in the SW480 cell line, although TNF-α treatment selectively induced expression of a marker of metastatic progression VEGF-A, it failed to affect MMP2 expression or invasion activity. Our data indicate that exposing colorectal cancer epithelial cells to TNF-α, at concentrations occurring in the serum and tumour microenvironment of colorectal cancer patients, upregulated miR-21 expression and promoted the metastatic phenotype.
Collapse
Affiliation(s)
- Aminah G. Alotaibi
- Department of Metabolism, Digestion and Reproduction, Imperial College London, London W12 0NN, UK
- National Centre for Genomic Technology, King Abdulaziz City for Science and Technology, KACST, Riyadh 11442, Saudi Arabia
| | - Jia V. Li
- Department of Metabolism, Digestion and Reproduction, Imperial College London, London W12 0NN, UK
| | - Nigel J. Gooderham
- Department of Metabolism, Digestion and Reproduction, Imperial College London, London W12 0NN, UK
| |
Collapse
|
14
|
Wang L, Fu H, Song L, Wu Z, Yu J, Guo Q, Chen C, Yang X, Zhang J, Wang Q, Duan Y, Yang Y. Overcoming AZD9291 Resistance and Metastasis of NSCLC via Ferroptosis and Multitarget Interference by Nanocatalytic Sensitizer Plus AHP-DRI-12. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2204133. [PMID: 36420659 DOI: 10.1002/smll.202204133] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 11/03/2022] [Indexed: 06/16/2023]
Abstract
The acquired resistance to Osimertinib (AZD9291) greatly limits the clinical benefit of patients with non-small cell lung cancer (NSCLC), whereas AZD9291-resistant NSCLCs are prone to metastasis. It's challenging to overcome AZD9291 resistance and suppress metastasis of NSCLC simultaneously. Here, a nanocatalytic sensitizer (VF/S/A@CaP) is proposed to deliver Vitamin c (Vc)-Fe(II), si-OTUB2, ASO-MALAT1, resulting in efficient inhibition of tumor growth and metastasis of NSCLC by synergizing with AHP-DRI-12, an anti-hematogenous metastasis inhibitor by blocking the amyloid precursor protein (APP)/death receptor 6 (DR6) interaction designed by our lab. Fe2+ released from Vc-Fe(II) generates cytotoxic hydroxyl radicals (•OH) through Fenton reaction. Subsequently, glutathione peroxidase 4 (GPX4) is consumed to sensitize AZD9291-resistant NSCLCs with high mesenchymal state to ferroptosis due to the glutathione (GSH) depletion caused by Vc/dehydroascorbic acid (DHA) conversion. By screening NSCLC patients' samples, metastasis-related targets (OTUB2, LncRNA MALAT1) are confirmed. Accordingly, the dual-target knockdown plus AHP-DRI-12 significantly suppresses the metastasis of AZD9291-resistant NSCLC. Such modality leads to 91.39% tumor inhibition rate in patient-derived xenograft (PDX) models. Collectively, this study highlights the vulnerability to ferroptosis of AZD9291-resistant tumors and confirms the potential of this nanocatalytic-medicine-based modality to overcome critical AZD9291 resistance and inhibit metastasis of NSCLC simultaneously.
Collapse
Affiliation(s)
- Liting Wang
- State Key Laboratory of Oncogenes and Related Genes, Renji Hospital, School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, 200032, China
| | - Hao Fu
- State Key Laboratory of Oncogenes and Related Genes, Renji Hospital, School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, 200032, China
| | - Liwei Song
- Shanghai Pulmonary Tumor Medical Center, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai, 200080, China
| | - Zhihua Wu
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200032, China
| | - Jian Yu
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200032, China
| | - Qianqian Guo
- State Key Laboratory of Oncogenes and Related Genes, Renji Hospital, School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, 200032, China
| | - Chuanrong Chen
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200032, China
| | - Xupeng Yang
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200032, China
| | - Jiali Zhang
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200032, China
| | - Quan Wang
- State Key Laboratory of Oncogenes and Related Genes, Renji Hospital, School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, 200032, China
| | - Yourong Duan
- State Key Laboratory of Oncogenes and Related Genes, Renji Hospital, School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, 200032, China
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200032, China
| | - Yunhai Yang
- Shanghai Pulmonary Tumor Medical Center, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai, 200080, China
| |
Collapse
|
15
|
Lotfi N, Yousefi Z, Golabi M, Khalilian P, Ghezelbash B, Montazeri M, Shams MH, Baghbadorani PZ, Eskandari N. The potential anti-cancer effects of quercetin on blood, prostate and lung cancers: An update. Front Immunol 2023; 14:1077531. [PMID: 36926328 PMCID: PMC10011078 DOI: 10.3389/fimmu.2023.1077531] [Citation(s) in RCA: 32] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2022] [Accepted: 02/07/2023] [Indexed: 03/08/2023] Open
Abstract
Cancer is caused by abnormal proliferation of cells and aberrant recognition of the immune system. According to recent studies, natural products are most likely to be effective at preventing cancer without causing any noticeable complications. Among the bioactive flavonoids found in fruits and vegetables, quercetin is known for its anti-inflammatory, antioxidant, and anticancer properties. This review aims to highlight the potential therapeutic effects of quercetin on some different types of cancers including blood, lung and prostate cancers.
Collapse
Affiliation(s)
- Noushin Lotfi
- Department of Medical Immunology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Zahra Yousefi
- School of Allied Medical Sciences, Shahroud University of Medical Sciences, Shahroud, Iran
| | - Marjan Golabi
- Department of Medical Immunology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Parvin Khalilian
- Department of Medical Immunology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Behrooz Ghezelbash
- Department of Medical Immunology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Mina Montazeri
- Department of Medical Immunology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Mohammad Hossein Shams
- Department of Medical Immunology, School of Medicine, Lorestan University of Medical Sciences, Khorramabad, Iran
| | | | - Nahid Eskandari
- Department of Medical Immunology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| |
Collapse
|
16
|
Epithelial to Mesenchymal Transition as Mechanism of Progression of Pancreatic Cancer: From Mice to Men. Cancers (Basel) 2022; 14:cancers14235797. [PMID: 36497278 PMCID: PMC9735867 DOI: 10.3390/cancers14235797] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Revised: 11/15/2022] [Accepted: 11/21/2022] [Indexed: 11/26/2022] Open
Abstract
Owed to its aggressive yet subtle nature, pancreatic cancer remains unnoticed till an advanced stage so that in most cases the diagnosis is made when the cancer has already spread to other organs with deadly efficiency. The progression from primary tumor to metastasis involves an intricate cascade of events comprising the pleiotropic process of epithelial to mesenchymal transition (EMT) facilitating cancer spread. The elucidation of this pivotal phenotypic change in cancer cell morphology, initially heretic, moved from basic studies dissecting the progression of pancreatic cancer in animal models to move towards human disease, although no clinical translation of the concept emerged yet. Despite this transition, a full-blown mesenchymal phenotype may not be accomplished; rather, the plasticity of the program and its dependency on heterotopic signals implies a series of fluctuating modifications of cancer cells encompassing mesenchymal and epithelial features. Despite the evidence supporting the activation of EMT and MET during cancer progression, our understanding of the relationship between tumor microenvironment and EMT is not yet mature for a clinical application. In this review, we attempt to resume the knowledge on EMT and pancreatic cancer, aiming to include the EMT among the hallmarks of cancer that could potentially modify our clinical thinking with the purpose of filling the gap between the results pursued in basic research by animal models and those achieved in translational research by surrogate biomarkers, as well as their application for prognostic and predictive purposes.
Collapse
|
17
|
Lemieszek MK, Golec M, Zwoliński J, Dutkiewicz J, Milanowski J. Cathelicidin Treatment Silences Epithelial-Mesenchymal Transition Involved in Pulmonary Fibrosis in a Murine Model of Hypersensitivity Pneumonitis. Int J Mol Sci 2022; 23:13039. [PMID: 36361827 PMCID: PMC9659202 DOI: 10.3390/ijms232113039] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Revised: 10/25/2022] [Accepted: 10/26/2022] [Indexed: 03/06/2025] Open
Abstract
Pulmonary fibrosis is becoming an increasingly common pathology worldwide. Unfortunately, this disorder is characterized by a bad prognosis: no treatment is known, and the survival rate is dramatically low. One of the most frequent reasons for pulmonary fibrosis is hypersensitivity pneumonitis (HP). As the main mechanism of pulmonary fibrosis is a pathology of the repair of wounded pulmonary epithelium with a pivotal role in epithelial-mesenchymal transition (EMT), we assumed that EMT silencing could prevent disease development. Because of several biological features including wound healing promotion, an ideal candidate for use in the treatment of pulmonary fibrosis seems to be cathelicidin. The aim of the studies was to understand the influence of cathelicidin on the EMT process occurring during lung fibrosis development in the course of HP. Cathelicidin's impact on EMT was examined in a murine model of HP, wherein lung fibrosis was induced by chronic exposure to extract of Pantoea agglomerans (SE-PA) by real-time PCR and Western blotting. Studies revealed that mouse exposure to cathelicidin did not cause any side changes in the expression of investigated genes/proteins. Simultaneously, cathelicidin administered together or after SE-PA decreased the elevated level of myofibroblast markers (Acta2/α-smooth muscle actin, Cdh2/N-cadherin, Fn1/Fibronectin, Vim/vimentin) and increased the lowered level of epithelial markers (Cdh1/E-cadherin, Ocln/occludin). Cathelicidin provided with SE-PA or after cessation of SE-PA inhalations reduced the expression of EMT-associated factors (Ctnnd1/β-catenin, Nfkb1/NFκB, Snail1/Snail, Tgfb1/TGFβ1 Zeb1/ZEB1, Zeb2/ZEB2) elevated by P. agglomerans. Cathelicidin's beneficial impact on the expression of genes/proteins involved in EMT was observed during and after the HP development; however, cathelicidin was not able to completely neutralize the negative changes. Nevertheless, significant EMT silencing in response to cathelicidin suggested the possibility of its use in the prevention/treatment of pulmonary fibrosis.
Collapse
Affiliation(s)
| | - Marcin Golec
- Heidelberg Institute of Global Health (HIGH), Faculty of Medicine and University Hospital, Heidelberg University, 69117 Heidelberg, Germany
| | - Jacek Zwoliński
- Department of Biological Health Hazards and Parasitology, Institute of Rural Health, 20-090 Lublin, Poland
| | - Jacek Dutkiewicz
- Department of Biological Health Hazards and Parasitology, Institute of Rural Health, 20-090 Lublin, Poland
| | - Janusz Milanowski
- Department of Pneumonology, Oncology and Allergology, Medical University of Lublin, 20-059 Lublin, Poland
| |
Collapse
|
18
|
Fuller RN, Kabagwira J, Vallejos PA, Folkerts AD, Wall NR. Survivin Splice Variant 2β Enhances Pancreatic Ductal Adenocarcinoma Resistance to Gemcitabine. Onco Targets Ther 2022; 15:1147-1160. [PMID: 36238134 PMCID: PMC9553431 DOI: 10.2147/ott.s341720] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Accepted: 09/27/2022] [Indexed: 11/23/2022] Open
Abstract
Background Pancreatic ductal adenocarcinoma (PDAC) is a highly lethal disease with poor prognosis, as it is difficult to predict or circumvent, and it develops chemoresistance quickly. One cellular mechanism associated with chemoresistance is alternative splicing dysfunction, a process through which nascent mRNA is spliced into different isoforms. Survivin (Baculoviral IAP Repeat-Containing Protein 5 (BIRC5)), a member of the inhibitor of apoptosis (IAP) protein family and a cell cycle-associated oncoprotein, is overexpressed in most cancers and undergoes alternative splicing (AS) to generate six different splicing isoforms. Methods To determine if survivin splice variants (SSV) could be involved in PDAC chemoresistance, a Gemcitabine (Gem) resistant (GR) cell line, MIA PaCa-2 GR, was created and assessed for its SSV levels and their potential association with GR. Cross-resistance was assessed in MIA-PaCa-2 GR cells to FIRINOX (5-fluorouracil (5-FU), irinotecan, and oxaliplatin). Once chemoresistance was confirmed, RT-qPCR was used to assess the expression of survivin splice variants (SSVs) in PDAC cell lines. To confirm the effect of SSVs on chemoresistance, we used siRNA to knockdown all SSVs or SSV 2β. Results The MIA PaCa-2 GR cell line was 40 times more resistant to Gem and revealed increased resistance to FIRINOX (5-fluorouracil (5-FU), irinotecan, and oxaliplatin); when compared to the parental MIA-PaCa-2 cells. RT-qPCR studies revealed an 8-fold relative expression increase in SSV 2β and a 2- to 8-fold increase in the other five SSVs in the GR cells. Knockdown of all SSV or SSV 2β only, using small inhibitory RNA (siRNA), sensitized the GR cells to Gem, indicating that these SSVs play a role in PDAC chemoresistance. Conclusion These findings provide evidence for the potential role of SSV 2β and other SSVs in innate and acquired PDAC chemoresistance. We also show that the expression of SSVs is not affected by the type of chemoresistance, therefore targeting survivin splice variants in combination with chemotherapy could benefit a wide range of patients.
Collapse
Affiliation(s)
- Ryan N Fuller
- Division of Biochemistry, Department of Basic Science, Loma Linda University School of Medicine, Loma Linda, CA, 92350, USA
| | - Janviere Kabagwira
- Division of Biochemistry, Department of Basic Science, Loma Linda University School of Medicine, Loma Linda, CA, 92350, USA
| | - Paul A Vallejos
- Division of Biochemistry, Department of Basic Science, Loma Linda University School of Medicine, Loma Linda, CA, 92350, USA
| | - Andrew D Folkerts
- Division of Biochemistry, Department of Basic Science, Loma Linda University School of Medicine, Loma Linda, CA, 92350, USA
| | - Nathan R Wall
- Division of Biochemistry, Department of Basic Science, Loma Linda University School of Medicine, Loma Linda, CA, 92350, USA,Correspondence: Nathan R Wall, Center for Health Disparities & Molecular Medicine, 11085 Campus Street, Mortensen Hall 160, Loma Linda University, Loma Linda, CA, 92350, USA, Tel +909-558-4000 x81397, Email
| |
Collapse
|
19
|
Palbociclib Enhances Migration and Invasion of Cancer Cells via Senescence-Associated Secretory Phenotype-Related CCL5 in Non-Small-Cell Lung Cancer. JOURNAL OF ONCOLOGY 2022; 2022:2260625. [PMID: 37181790 PMCID: PMC10175017 DOI: 10.1155/2022/2260625] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Revised: 08/31/2022] [Accepted: 09/02/2022] [Indexed: 11/17/2022]
Abstract
Palbociclib is the first CDK4/6 inhibitor approved by FDA and has been studied in many types of cancer. However, some studies showed that it could induce epithelial-mesenchymal transition (EMT) of cancer cells. To test the effect of palbociclib on non-small-cell lung cancer (NSCLC) cells, we treated NSCLC cells with different concentrations of palbociclib and detected its effects via MTT, migration and invasion assays, and apoptosis test. Further RNA sequencing was performed in the cells treated with 2 μM palbociclib or control. And Gene Ontology, Kyoto Encyclopedia of Genes and Genomes (KEGG), Gene Set Enrichment Analysis (GSEA), and protein-protein interaction network (PPI) were analyzed to explore the mechanism of palbociclib. The results showed that palbociclib significantly inhibited the growth of NSCLC cells and promoted apoptosis of cells, however, enhanced the migration and invasion abilities of cancer cells. RNA sequencing showed that cell cycle, inflammation-/immunity-related signaling, cytokine-cytokine receptor interaction, and cell senescence pathways were involved in the process, and CCL5 was one of the significantly differential genes affected by palbociclib. Further experiments showed that blocking CCL5-related pathways could reverse the malignant phenotype induced by palbociclib. Our results revealed that palbociclib-induced invasion and migration might be due to senescence-associated secretory phenotype (SASP) rather than EMT and suggested that SASP could act as a potential target to potentiate the antitumor effects of palbociclib in cancer treatment.
Collapse
|
20
|
Huang Y, Hong W, Wei X. The molecular mechanisms and therapeutic strategies of EMT in tumor progression and metastasis. J Hematol Oncol 2022; 15:129. [PMID: 36076302 PMCID: PMC9461252 DOI: 10.1186/s13045-022-01347-8] [Citation(s) in RCA: 395] [Impact Index Per Article: 131.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Accepted: 08/30/2022] [Indexed: 11/10/2022] Open
Abstract
Epithelial–mesenchymal transition (EMT) is an essential process in normal embryonic development and tissue regeneration. However, aberrant reactivation of EMT is associated with malignant properties of tumor cells during cancer progression and metastasis, including promoted migration and invasiveness, increased tumor stemness, and enhanced resistance to chemotherapy and immunotherapy. EMT is tightly regulated by a complex network which is orchestrated with several intrinsic and extrinsic factors, including multiple transcription factors, post-translational control, epigenetic modifications, and noncoding RNA-mediated regulation. In this review, we described the molecular mechanisms, signaling pathways, and the stages of tumorigenesis involved in the EMT process and discussed the dynamic non-binary process of EMT and its role in tumor metastasis. Finally, we summarized the challenges of chemotherapy and immunotherapy in EMT and proposed strategies for tumor therapy targeting EMT.
Collapse
Affiliation(s)
- Yuhe Huang
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China
| | - Weiqi Hong
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China
| | - Xiawei Wei
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China.
| |
Collapse
|
21
|
Liu Z, Fan M, Xuan X, Xia C, Huang G, Ma L. Celastrol inhibits the migration and invasion and enhances the anti-cancer effects of docetaxel in human triple-negative breast cancer cells. MEDICAL ONCOLOGY (NORTHWOOD, LONDON, ENGLAND) 2022; 39:189. [PMID: 36071249 DOI: 10.1007/s12032-022-01792-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Accepted: 07/07/2022] [Indexed: 10/14/2022]
Abstract
The molecular mechanism of anti-metastatic effect of celastrol is not fully understood in breast cancer cells. Herein, we investigated the activity and molecular mechanism of celastrol in triple-negative breast cancer (TNBC) cells, which is a more aggressive subtype of breast cancer. The results of wound healing assay and trans-well assay revealed that celastrol inhibited cell migration and invasion under sub-cytotoxic concentrations in MDA-MB-231 and MDA-MB-468 TNBC cells. Molecular data showed that the effect of celastrol on TNBC cells might be mediated via up-regulation of E-cadherin, a key protein involved in epithelial-mesenchymal transition (EMT). In addition, Hakai, an E3 ligase responsible for E-cadherin complex ubiquitination and degradation, was down-regulated under celastrol treatment. Hakai partially contributed to celastrol-induced anti-invasive effect. In addition, celastrol and docetaxel could synergistically inhibit growth and metastasis of MDA-MB-231 cells. Our results showing anti-migratory/anti-invasive effects of celastrol and associated mechanisms provide new evidence for the development of celastrol as a potential anti-metastatic compound against highly aggressive breast cancer, and celastrol in combination with docetaxel might potentially be used as a novel regimen for the treatment of TNBC.
Collapse
Affiliation(s)
- Zi Liu
- Department of Chemical Biology and Pharmaceutical Engineering, School of Chemistry and Chemical Engineering, Anhui University of Technology, 59 Hudong Road, Ma'anshan, 243002, Anhui, People's Republic of China
| | - Minghui Fan
- Department of Chemical Biology and Pharmaceutical Engineering, School of Chemistry and Chemical Engineering, Anhui University of Technology, 59 Hudong Road, Ma'anshan, 243002, Anhui, People's Republic of China
| | - Xiaojing Xuan
- Department of Chemical Biology and Pharmaceutical Engineering, School of Chemistry and Chemical Engineering, Anhui University of Technology, 59 Hudong Road, Ma'anshan, 243002, Anhui, People's Republic of China
| | - Chenlu Xia
- Department of Chemical Biology and Pharmaceutical Engineering, School of Chemistry and Chemical Engineering, Anhui University of Technology, 59 Hudong Road, Ma'anshan, 243002, Anhui, People's Republic of China
| | - Guozheng Huang
- Department of Chemical Biology and Pharmaceutical Engineering, School of Chemistry and Chemical Engineering, Anhui University of Technology, 59 Hudong Road, Ma'anshan, 243002, Anhui, People's Republic of China
| | - Liang Ma
- Department of Chemical Biology and Pharmaceutical Engineering, School of Chemistry and Chemical Engineering, Anhui University of Technology, 59 Hudong Road, Ma'anshan, 243002, Anhui, People's Republic of China.
| |
Collapse
|
22
|
MOR promotes epithelial-mesenchymal transition and proliferation via PI3K/AKT signaling pathway in human colorectal cancer. Acta Biochim Biophys Sin (Shanghai) 2022; 55:72-80. [PMID: 35983971 PMCID: PMC10157524 DOI: 10.3724/abbs.2022114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
The mu-opioid receptor (MOR), a membrane-bound G protein-coupled receptor, is implicated in progression and long-term outcome of several types of tumors. However, the expression and clinical significance of MOR in colorectal cancer (CRC) remain unclear. In this study, a total of 180 paraffin-embedded samples of paired tumors and normal tissues from CRC patients are used to explore expression levels of MOR by immunohistochemistry (IHC). Results show that MOR is highly expressed in tumors compared with that in paired normal tissues (P<0.0001). MOR expression levels are associated with the degree of differentiation (P<0.001) and the regional lymph node metastasis (P<0.001). In addition, a significant difference is also found in the overall survival (OS) between MOR low- and high-expression groups (P=0.002), especially in patients with TNM stage III or IV CRC (P=0.007). Both univariate (P=0.002) and multivariate (P=0.013) analyses indicated that MOR is an independent risk factor associated with CRC prognosis. We further investigate the mechanism in MOR-positive CRC cell line HCT116. The results show that silencing of MOR significantly suppresses epithelial-mesenchymal transition (EMT), in addition to suppressing cell proliferation, migration, and invasion. In addition, the expression of downstream p-AKT is also significantly downregulated, and the above suppression effect could be rescued by PI3K/AKT signaling agonist. We conclude that MOR mediates EMT via PI3K/AKT signaling, facilitating lymph node metastasis and resulting in poor survival of CRC patients. Our findings suggest that MOR is a novel prognostic indicator and the application of opioid receptor antagonists may be a novel therapeutic strategy for CRC patients with high MOR expression.
Collapse
|
23
|
Secretory SERPINE1 Expression Is Increased by Antiplatelet Therapy, Inducing MMP1 Expression and Increasing Colon Cancer Metastasis. Int J Mol Sci 2022; 23:ijms23179596. [PMID: 36076991 PMCID: PMC9455756 DOI: 10.3390/ijms23179596] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 08/19/2022] [Accepted: 08/22/2022] [Indexed: 11/21/2022] Open
Abstract
Contrary to many reports that antiplatelet agents inhibit cancer growth and metastasis, new solid tumors have been reported in patients receiving long-term antiplatelet therapy. We investigated the effects of these agents directly on cancer cells in the absence of platelets to mimic the effects of long-term therapy. When four antiplatelet agents (aspirin, clopidogrel, prasugrel, and ticagrelor) were administered to colon cancer cells, cancer cell proliferation was inhibited similarly to a previous study. However, surprisingly, when cells were treated with a purinergic P2Y12 inhibitor (purinergic antiplatelet agent), the motility of the cancer cells was significantly increased. Therefore, gene expression profiles were identified to investigate the effect of P2Y12 inhibitors on cell mobility, and Serpin family 1 (SERPINE1) was identified as a common gene associated with cell migration and cell death in three groups. Antiplatelet treatment increased the level of SERPINE1 in cancer cells and also promoted the secretion of SERPINE1 into the medium. Increased SERPINE1 was found to induce MMP1 and, thus, increase cell motility. In addition, an increase in SERPINE1 was confirmed using the serum of patients who received these antiplatelet drugs. With these results, we propose that SERPINE1 could be used as a new target gene to prevent the onset and metastasis of cancer in patients with long-term antiplatelet therapy.
Collapse
|
24
|
Wang L, Wang X, Guo E, Mao X, Miao S. Emerging roles of platelets in cancer biology and their potential as therapeutic targets. Front Oncol 2022; 12:939089. [PMID: 35936717 PMCID: PMC9355257 DOI: 10.3389/fonc.2022.939089] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2022] [Accepted: 06/29/2022] [Indexed: 12/15/2022] Open
Abstract
The main role of platelets is to control bleeding and repair vascular damage via thrombosis. They have also been implicated to promote tumor metastasis through platelet-tumor cell interactions. Platelet-tumor cell interactions promote tumor cell survival and dissemination in blood circulation. Tumor cells are known to induce platelet activation and alter platelet RNA profiles. Liquid biopsies based on tumor-educated platelet biomarkers can detect tumors and correlate with prognosis, personalized therapy, treatment monitoring, and recurrence prediction. Platelet-based strategies for cancer prevention and tumor-targeted therapy include developing drugs that target platelet receptors, interfere with the release of platelet particles, inhibit platelet-specific enzymes, and utilize platelet-derived “nano-platelets” as a targeted drug delivery platform for tumor therapy. This review elaborates on platelet-tumor cell interactions and the molecular mechanisms and discusses future research directions for platelet-based liquid biopsy techniques and platelet-targeted anti-tumor strategies.
Collapse
Affiliation(s)
- Lei Wang
- Department of Head and Neck Surgery, Harbin Medical University Cancer Hospital, Harbin, China
| | - Xueying Wang
- Department of Otolaryngology Head and Neck Surgery, Xiangya Hospital, Central South University, Changsha, China
| | - Erliang Guo
- Department of Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Xionghui Mao
- Department of Head and Neck Surgery, Harbin Medical University Cancer Hospital, Harbin, China
- *Correspondence: Xionghui Mao, ; Susheng Miao,
| | - Susheng Miao
- Department of Head and Neck Surgery, Harbin Medical University Cancer Hospital, Harbin, China
- *Correspondence: Xionghui Mao, ; Susheng Miao,
| |
Collapse
|
25
|
Epithelial-Mesenchymal Plasticity Induced by Discontinuous Exposure to TGFβ1 Promotes Tumour Growth. BIOLOGY 2022; 11:biology11071046. [PMID: 36101425 PMCID: PMC9312510 DOI: 10.3390/biology11071046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Revised: 07/01/2022] [Accepted: 07/05/2022] [Indexed: 11/17/2022]
Abstract
Simple Summary In this manuscript, we used a non-genetically manipulated EMT/MET cell line model to demonstrate that epithelial mesenchymal plasticity occurring in normal cells generates co-existing phenotypically and functionally divergent cell subpopulations which result in fast growing tumours in vivo. Abstract Transitions between epithelial and mesenchymal cellular states (EMT/MET) contribute to cancer progression. We hypothesize that EMT followed by MET promotes cell population heterogeneity, favouring tumour growth. We developed an EMT model by on and off exposure of epithelial EpH4 cells (E-cells) to TGFβ1 that mimics phenotypic EMT (M-cells) and MET. We aimed at understanding whether phenotypic MET is accompanied by molecular and functional reversion back to epithelia by using RNA sequencing, immunofluorescence (IF), proliferation, wound healing, focus formation and mamosphere formation assays as well as cell xenografts in nude mice. Phenotypic reverted epithelial cells (RE-cells) obtained after MET induction presented epithelial morphologies and proliferation rates resembling E cells. However, the RE transcriptomic profile and IF staining of epithelial and mesenchymal markers revealed a uniquely heterogeneous mixture of cell subpopulations with a high self-renewal ability. RE cell heterogeneity was stably maintained for long periods after TGFβ1 removal both in vitro and in large tumours derived from the nude mice. Overall, we show that phenotypic reverted epithelial cells (RE cells) do not return to the molecular and functional epithelial state and present mesenchymal features related to aggressiveness and cellular heterogeneity that favour tumour growth in vivo. This work strengthens epithelial cell reprogramming and cellular heterogeneity fostered by inflammatory cues as a tumour growth-promoting factor in vivo.
Collapse
|
26
|
Bashir KMI, Lee S, Jung DH, Basu SK, Cho MG, Wierschem A. Narrow-Gap Rheometry: A Novel Method for Measuring Cell Mechanics. Cells 2022; 11:2010. [PMID: 35805094 PMCID: PMC9265971 DOI: 10.3390/cells11132010] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Revised: 06/21/2022] [Accepted: 06/21/2022] [Indexed: 12/18/2022] Open
Abstract
The viscoelastic properties of a cell cytoskeleton contain abundant information about the state of a cell. Cells show a response to a specific environment or an administered drug through changes in their viscoelastic properties. Studies of single cells have shown that chemical agents that interact with the cytoskeleton can alter mechanical cell properties and suppress mitosis. This envisions using rheological measurements as a non-specific tool for drug development, the pharmacological screening of new drug agents, and to optimize dosage. Although there exists a number of sophisticated methods for studying mechanical properties of single cells, studying concentration dependencies is difficult and cumbersome with these methods: large cell-to-cell variations demand high repetition rates to obtain statistically significant data. Furthermore, method-induced changes in the cell mechanics cannot be excluded when working in a nonlinear viscoelastic range. To address these issues, we not only compared narrow-gap rheometry with commonly used single cell techniques, such as atomic force microscopy and microfluidic-based approaches, but we also compared existing cell monolayer studies used to estimate cell mechanical properties. This review provides insight for whether and how narrow-gap rheometer could be used as an efficient drug screening tool, which could further improve our current understanding of the mechanical issues present in the treatment of human diseases.
Collapse
Affiliation(s)
- Khawaja Muhammad Imran Bashir
- German Engineering Research and Development Center, LSTME-Busan Branch, Busan 46742, Korea; (K.M.I.B.); (S.L.); (D.H.J.); (M.-G.C.)
| | - Suhyang Lee
- German Engineering Research and Development Center, LSTME-Busan Branch, Busan 46742, Korea; (K.M.I.B.); (S.L.); (D.H.J.); (M.-G.C.)
- Institute of Fluid Mechanics, Friedrich-Alexander-University Erlangen-Nürnberg (FAU), 91058 Erlangen, Germany;
| | - Dong Hee Jung
- German Engineering Research and Development Center, LSTME-Busan Branch, Busan 46742, Korea; (K.M.I.B.); (S.L.); (D.H.J.); (M.-G.C.)
- Division of Energy and Bioengineering, Dongseo University, Busan 47011, Korea
| | - Santanu Kumar Basu
- Institute of Fluid Mechanics, Friedrich-Alexander-University Erlangen-Nürnberg (FAU), 91058 Erlangen, Germany;
| | - Man-Gi Cho
- German Engineering Research and Development Center, LSTME-Busan Branch, Busan 46742, Korea; (K.M.I.B.); (S.L.); (D.H.J.); (M.-G.C.)
- Division of Energy and Bioengineering, Dongseo University, Busan 47011, Korea
| | - Andreas Wierschem
- German Engineering Research and Development Center, LSTME-Busan Branch, Busan 46742, Korea; (K.M.I.B.); (S.L.); (D.H.J.); (M.-G.C.)
- Institute of Fluid Mechanics, Friedrich-Alexander-University Erlangen-Nürnberg (FAU), 91058 Erlangen, Germany;
| |
Collapse
|
27
|
Dong C, Wu K, Gu S, Wang W, Xie S, Zhou Y. PTBP3 mediates TGF-β-induced EMT and metastasis of lung adenocarcinoma. Cell Cycle 2022; 21:1406-1421. [PMID: 35323096 PMCID: PMC9345618 DOI: 10.1080/15384101.2022.2052530] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Lung adenocarcinoma (LUAD) is associated with a poor prognosis due to early metastasis to distant organs. TGF-β potently induces epithelial-to-mesenchymal transition (EMT) and promotes invasion and metastasis of cancers. However, the mechanisms underlying this alteration are largely unknown. PTBP3 plays a critical role in RNA splicing and transcriptional regulation. Although accumulating evidence has revealed that PTBP3 exhibits a pro-oncogenic role in several cancers, whether and how PTBP3 mediates TGF-β-induced EMT and metastasis in LUAD remains unknown. The expression levels and prognostic value of PTBP3 were analyzed in human LUAD tissues and matched normal tissues. siRNAs and lentivirus-mediated vectors were used to transfect LUAD cell lines. Various in vitro experiments including western blot, qRT-PCR, a luciferase reporter assay, chromatin immunoprecipitation (ChIP), transwell migration and invasion assay and in vivo metastasis experiment were performed to determine the roles of PTBP3 in TGF-β-induced EMT and metastasis. PTBP3 expression was significantly upregulated in patients with LUAD, and high expression of PTBP3 indicated a poor prognosis. Intriguingly, we found that PTBP3 expression level in LUAD cell lines was significantly increased by exogenous TGF-β1 in a Smad-dependent manner. Mechanistically, p-Smad3 was recruited to the PTBP3 promoter and activated its transcription. In turn, PTBP3 knockdown abolished TGF-β1-mediated EMT through the inhibition of Smad2/3 expression. Furthermore, PTBP3 overexpression increased lung and liver metastasis of LUAD cells in vivo. PTBP3 is indispensable to TGF-β-induced EMT and metastasis of LUAD cells and is a novel potential therapeutic target for the treatment of LUAD.
Collapse
Affiliation(s)
- Chenglai Dong
- Department of Thoracic Surgery, Shanghai Tongji Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Kaiqin Wu
- Department of Thoracic Surgery, Shanghai Tongji Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Shaorui Gu
- Department of Thoracic Surgery, Shanghai Tongji Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Wenli Wang
- Department of Thoracic Surgery, Shanghai Tongji Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Shiliang Xie
- Department of Thoracic Surgery, Shanghai Tongji Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Yongxin Zhou
- Department of Thoracic Surgery, Shanghai Tongji Hospital, School of Medicine, Tongji University, Shanghai, China
| |
Collapse
|
28
|
The Important Role of Ion Transport System in Cervical Cancer. Int J Mol Sci 2021; 23:ijms23010333. [PMID: 35008759 PMCID: PMC8745646 DOI: 10.3390/ijms23010333] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2021] [Revised: 12/26/2021] [Accepted: 12/27/2021] [Indexed: 12/15/2022] Open
Abstract
Cervical cancer is a significant gynecological cancer and causes cancer-related deaths worldwide. Human papillomavirus (HPV) is implicated in the etiology of cervical malignancy. However, much evidence indicates that HPV infection is a necessary but not sufficient cause in cervical carcinogenesis. Therefore, the cellular pathophysiology of cervical cancer is worthy of study. This review summarizes the recent findings concerning the ion transport processes involved in cell volume regulation and intracellular Ca2+ homeostasis of epithelial cells and how these transport systems are themselves regulated by the tumor microenvironment. For cell volume regulation, we focused on the volume-sensitive Cl− channels and K+-Cl− cotransporter (KCC) family, important regulators for ionic and osmotic homeostasis of epithelial cells. Regarding intracellular Ca2+ homeostasis, the Ca2+ store sensor STIM molecules and plasma membrane Ca2+ channel Orai proteins, the predominant Ca2+ entry mechanism in epithelial cells, are discussed. Furthermore, we evaluate the potential of these membrane ion transport systems as diagnostic biomarkers and pharmacological interventions and highlight the challenges.
Collapse
|
29
|
Crosstalk between non-coding RNAs expression profile, drug resistance and immune response in breast cancer. Pharmacol Res 2021; 176:106041. [PMID: 34952200 DOI: 10.1016/j.phrs.2021.106041] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Revised: 12/15/2021] [Accepted: 12/19/2021] [Indexed: 12/18/2022]
Abstract
Drug resistance is one of the most critical challenges facing researchers in treating breast cancer. Despite numerous treatments for breast cancer, including conventional chemical drugs, monoclonal antibodies, and immunotherapeutic drugs known as immune checkpoint inhibitors (ICI), many patients resist various approaches. In recent years, the relationship between gene expression profiles and drug resistance phenotypes has attracted much attention. Non-coding RNAs (ncRNAs) are regulatory molecules that have been shown to regulate gene expression and cell transcriptome. Two categories, microRNAs and long non-coding RNAs have been more considered and studied among these ncRNAs. Studying the role of different ncRNAs in chemical drug resistance and ICI resistance together can be beneficial in selecting more effective treatments for breast cancer. Changing the expression and action mechanism of these regulatory molecules on drug resistance phenotypes is the main topic of this review article.
Collapse
|
30
|
Modi SJ, Tiwari A, Kulkarni VM. Reversal of TGF-β-induced epithelial-mesenchymal transition in hepatocellular carcinoma by sorafenib, a VEGFR-2 and Raf kinase inhibitor. CURRENT RESEARCH IN PHARMACOLOGY AND DRUG DISCOVERY 2021; 2:100014. [PMID: 34909649 PMCID: PMC8663974 DOI: 10.1016/j.crphar.2021.100014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Revised: 01/09/2021] [Accepted: 01/13/2021] [Indexed: 11/19/2022] Open
Abstract
The epithelial–mesenchymal transition (EMT) is considered an essential process for cancer development and metastasis. Sorafenib, a RAF kinase and VEGFR-2 inhibitor, exhibits efficacy against advanced hepatocellular carcinoma (HCC), renal carcinoma, and thyroid cancer. It is well established that transforming growth factor-β (TGF-β) activated EMT is involved in the invasion and metastasis of Hep G2 cells in HCC. In this study, we investigated the effects of sorafenib on various biomarkers associated with EMT using flow cytometry. We found that sorafenib upregulated the epithelial marker E-cadherin and downregulated the mesenchymal marker vimentin. Furthermore, sorafenib downregulated the level of the EMT-inducing transcription factor SNAIL. Our findings provide insights into the mechanisms associated with the anti-EMT effects of VEGFR-2/RAF kinase inhibitors. Sorafenib (Nexavar) is potent Raf and VEGFR-2 inhibitor (IC50 = 90 nM), able to suppress aberrant angiogenesis associated with cancer. Sorafenib upregulates epithelial biomarker and downregulates mesenchymal biomarker in Hep G2 cells. It was able to downregulate EMT inducing transcription factor (EMT-TFs), i.e., SNAIL. Sorafenib could be an effective therapeutic option for patients with metastatic cancer.
Collapse
|
31
|
Ma S, Wei H, Wang C, Han J, Chen X, Li Y. MiR-26b-5p inhibits cell proliferation and EMT by targeting MYCBP in triple-negative breast cancer. Cell Mol Biol Lett 2021; 26:52. [PMID: 34895159 PMCID: PMC8903572 DOI: 10.1186/s11658-021-00288-3] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Accepted: 10/15/2021] [Indexed: 01/01/2023] Open
Abstract
Background The study was designed to elucidate the association and functional roles of miR-26b-5p and c-MYC binding protein (MYCBP) in triple-negative breast cancer (TNBC). Method Luciferase reporter assay was used to confirm the relationship between miR-26b-5p and MYCBP in TNBC cells. The expression levels of miR-26b-5p and MYCBP in tissue specimens and cell lines were determined using reverse transcription-quantitative PCR. Cell proliferation, migration and invasion were assessed using CCK-8 assay, colony formation and transwell assay. Results We first observed that miR-26b-5p directly targets the 3′-UTR of MYCBP to inhibit MYCBP expression in MDA-MB-468 and BT-549 cells. The expression of miR-26b-5p was inversely correlated with MYCBP expression in TNBC tissues. We further demonstrated that MYCBP knockdown suppressed the proliferation, migration and invasion of TNBC cells. Furthermore, MYCBP overexpression counteracted the suppressive effect of miR-26b-5p on TNBC cell behaviors. Western blot analysis demonstrated that the E-cadherin protein level was increased, while protein levels of N-cadherin and vimentin were decreased in cells transfected with miR-26b-5p, which were all reversed by ectopic expression of MYCBP. Conclusions In summary, our findings revealed the tumor suppressive role of miR-26b-5p in regulating TNBC cell proliferation and mobility, possibly by targeting MYCBP.
Collapse
Affiliation(s)
- Sugang Ma
- Department of Breast Surgery, Jinan Sixth People's Hospital, Jinan, 250200, Shandong, China
| | - Hui Wei
- Department of Breast Surgery, Jinan Sixth People's Hospital, Jinan, 250200, Shandong, China
| | - Chunyan Wang
- Department of Obstetrics, Jinan Sixth People's Hospital, Jinan, 250200, Shandong, China
| | - Jixia Han
- Department of Breast Surgery, Jinan Sixth People's Hospital, Jinan, 250200, Shandong, China
| | - Xiumin Chen
- Department of Breast Surgery, Jinan Sixth People's Hospital, Jinan, 250200, Shandong, China
| | - Yang Li
- Department of Laboratory Medicine, Jinan Sixth People's Hospital, No. 1920 Huiquan Road, Zhangqiu District, Jinan, 250200, Shandong, China.
| |
Collapse
|
32
|
Yehya AHS, Asif M, Abdul Majid AMS, Oon CE. Complementary effects of Orthosiphon stamineus standardized ethanolic extract and rosmarinic acid in combination with gemcitabine on pancreatic cancer. Biomed J 2021; 44:694-708. [PMID: 35166208 PMCID: PMC8847836 DOI: 10.1016/j.bj.2020.05.015] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2019] [Revised: 05/09/2020] [Accepted: 05/11/2020] [Indexed: 01/07/2023] Open
Abstract
BACKGROUND Pancreatic cancer is one of the most notorious cancers and is known for its highly invasive characteristics, drug resistance, and metastatic progression. Unfortunately, many patients with advanced pancreatic cancer become insensitive towards gemcitabine treatment. Orthosiphon stamineus (O.s) is used widely as a traditional medicine for the treatment of multiple ailments, including cancer in South East Asia. The present in vitro study was designed to investigate the complementary effects of an ethanolic extract of O.s (Et. O.s) or rosmarinic acid in combination with gemcitabine on Panc-1 pancreatic cancer cells. METHOD Cell viability and colony formation assays were used to determine the 50% inhibitory concentration (IC50) of Et. O.s, rosmarinic acid, and gemcitabine. Different doses of gemcitabine in combination with Et. O.s or rosmarinic acid were tested against Panc-1 to select the best concentrations which possessed synergistic effects. Elucidation of molecular mechanisms responsible for mediating chemo-sensitivity in Panc-1 was performed using Quantitative Real-time PCR (QPCR), flow cytometry and immunohistochemistry. RESULTS Et. O.s was found to significantly sensitise Panc-1 towards gemcitabine by reducing the gene expression of multidrug-resistant protein family (MDR) (MDR-1, MRP-4, and MRP-5) and molecules related to epithelial-mesenchymal transition (ZEB-1 and Snail-1). An induction of the human equilibrate nucleoside transporter-1 (hENT-1) gene was also found in cells treated with Et. O.s-gemcitabine. The Et. O.s-gemcitabine combination induced cellular senescence, cell death and cell cycle arrest in Panc-1. In addition, the inhibition of Notch signalling was demonstrated through the downregulation of Notch 1 intracellular domain in this treatment group. In contrast, rosmarinic acid-gemcitabine combination showed no additional effects on cellular senescence, apoptosis, epithelial mesenchymal transition (EMT) markers, the MRP-4 and MRP-5 multi-drug resistance protein family, hENT-1, and the Notch pathway through Notch 1 intracellular domain. CONCLUSION This study provides valuable insights on the use of Et. O.s to complement gemcitabine in targeting pancreatic cancer in vitro, suggesting its potential use as a novel complementary treatment in pancreatic cancer patients.
Collapse
Affiliation(s)
- Ashwaq H S Yehya
- Institute for Research in Molecular Medicine (INFORMM), Universiti Sains Malaysia, Penang, Malaysia.
| | - Muhammad Asif
- Department of Pharmacy, Faculty of Pharmacy and Alternative Medicine, The Islamia University of Bahawalpur, Pakistan.
| | - Amin M S Abdul Majid
- EMAN Testing and Research Laboratories, Department of Pharmacology, School of Pharmaceutical Sciences, Universiti Sains Malaysia, Penang, Malaysia; ACRF Department of Cancer Biology and Therapeutics, The John Curtin School of Medical Research, Australian National University, Australia.
| | - Chern E Oon
- Institute for Research in Molecular Medicine (INFORMM), Universiti Sains Malaysia, Penang, Malaysia.
| |
Collapse
|
33
|
Ye Z, He Q, Wang Q, Lin Y, Cen K, Chen X. LINC00922 promotes the proliferation, migration, invasion and EMT process of liver cancer cells by regulating miR-424-5p/ARK5. Mol Cell Biochem 2021; 476:3757-3769. [PMID: 34097192 DOI: 10.1007/s11010-021-04196-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Accepted: 05/27/2021] [Indexed: 12/24/2022]
Abstract
AMPK-related protein kinase 5 (ARK5) promotes the deterioration of hepatocellular carcinoma (HCC). From the perspective of lncRNA-miRNA-mRNA, this study explored in-depth the intervention mechanism of ARK5. The binding relationship between miR-424-5p and two genes (LINC00922 and ARK5) were analyzed by Bioinformatics and dual-luciferase experiments. After clinical sample collection, the expressions of miR-424-5p, LINC00922 and ARK5 in HCC tissues were analyzed by quantitative real-time polymerase chain reaction (qRT-PCR). The correlation between LINC00922, miR-424-5p, and ARK5 in HCC tissues was analyzed by Pearson correlation. The influences of miR-424-5p, LINC00922 and ARK5 on the basic functions (viability, migration and invasion) of cancer cells were detected by cell counting kit-8, wound healing, and Transwell experiments, and their regulatory effects on related genes, as well as their relationship, were tested by qRT-PCR and Western blot. MiR-424-5p was low expressed, whereas LINC00922 and ARK5 were high expressed in HCC tissues. MiR-424-5p was negatively associated with LINC00922 and ARK5 that was positively associated with LINC00922. Interestingly, LINC00922 partially shared an identical binding site of miR-424-5p with ARK5. LINC00922 its overexpression partially offset the inhibitory effect of miR-424-5p on cancer cell functions. ARK5 silencing repressed the malignant phenotype of cancer cells and inhibited the expressions of epithelial-to-mesenchymal transition (EMT)-related molecules (Vimentin, Snail and N-Cadherin). However, these effects were partially neutralized by miR-424-5p inhibitors. LINC00922 increases the cell viability, migration, invasion and EMT process of HCC cells by regulating the miR-424-5p/ARK5 axis, and thus may serve as a potential target for targeted therapy.
Collapse
Affiliation(s)
- Zhiyu Ye
- Department of Hepatobiliary Surgery for Hernia, Ningbo First Hospital, No. 59 Liuting Street, Haishu District, Ningbo, 315000, Zhejiang Province, China.
| | - Qikuan He
- Department of Hepatobiliary Surgery for Hernia, Ningbo First Hospital, No. 59 Liuting Street, Haishu District, Ningbo, 315000, Zhejiang Province, China
| | - Qiaona Wang
- Department of Thyroid and Breast Surgery, Ningbo First Hospital, Haishu District, Ningbo, 315000, Zhejiang Province, China
| | - Yunshou Lin
- Department of Hepatobiliary Surgery for Hernia, Ningbo First Hospital, No. 59 Liuting Street, Haishu District, Ningbo, 315000, Zhejiang Province, China
| | - Kenan Cen
- Department of Hepatobiliary Surgery for Hernia, Ningbo First Hospital, No. 59 Liuting Street, Haishu District, Ningbo, 315000, Zhejiang Province, China
| | - Xiaogang Chen
- Department of Hepatobiliary Surgery for Hernia, Ningbo First Hospital, No. 59 Liuting Street, Haishu District, Ningbo, 315000, Zhejiang Province, China
| |
Collapse
|
34
|
Functional Analysis of Non-Genetic Resistance to Platinum in Epithelial Ovarian Cancer Reveals a Role for the MBD3-NuRD Complex in Resistance Development. Cancers (Basel) 2021; 13:cancers13153801. [PMID: 34359703 PMCID: PMC8345099 DOI: 10.3390/cancers13153801] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Revised: 07/15/2021] [Accepted: 07/23/2021] [Indexed: 01/04/2023] Open
Abstract
Simple Summary Most epithelial ovarian cancer (EOC) patients, although initially responsive to standard treatment with platinum-based chemotherapy, develop platinum resistance over the clinical course and succumb due to drug-resistant metastases. It has long been hypothesized that resistance to platinum develops as a result of epigenetic changes within tumor cells evolving over time. In this study, we investigated epigenomic changes in EOC patient samples, as well as in cell lines, and showed that profound changes at enhancers result in a platinum-resistant phenotype. Through correlation of the epigenomic alterations with changes in the transcriptome, we could identify potential novel prognostic biomarkers for early patient stratification. Furthermore, we applied a combinatorial RNAi screening approach to identify suitable targets that prevent the enhancer remodeling process. Our results advance the molecular understanding of epigenetic mechanisms in EOC and therapy resistance, which will be essential for the further exploration of epigenetic drug targets and combinatorial treatment regimes. Abstract Epithelial ovarian cancer (EOC) is the most lethal disease of the female reproductive tract, and although most patients respond to the initial treatment with platinum (cPt)-based compounds, relapse is very common. We investigated the role of epigenetic changes in cPt-sensitive and -resistant EOC cell lines and found distinct differences in their enhancer landscape. Clinical data revealed that two genes (JAK1 and FGF10), which gained large enhancer clusters in resistant EOC cell lines, could provide novel biomarkers for early patient stratification with statistical independence for JAK1. To modulate the enhancer remodeling process and prevent the acquisition of cPt resistance in EOC cells, we performed a chromatin-focused RNAi screen in the presence of cPt. We identified subunits of the Nucleosome Remodeling and Deacetylase (NuRD) complex as critical factors sensitizing the EOC cell line A2780 to platinum treatment. Suppression of the Methyl-CpG Binding Domain Protein 3 (MBD3) sensitized cells and prevented the establishment of resistance under prolonged cPt exposure through alterations of H3K27ac at enhancer regions, which are differentially regulated in cPt-resistant cells, leading to a less aggressive phenotype. Our work establishes JAK1 as an independent prognostic marker and the NuRD complex as a potential target for combinational therapy.
Collapse
|
35
|
Liu J, Wang G, Zhao J, Liu X, Zhang K, Gong G, Pan H, Jiang Z. LncRNA H19 Promoted the Epithelial to Mesenchymal Transition and Metastasis in Gastric Cancer via Activating Wnt/β-Catenin Signaling. Dig Dis 2021; 40:436-447. [PMID: 34348271 DOI: 10.1159/000518627] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Accepted: 07/15/2021] [Indexed: 02/02/2023]
Abstract
BACKGROUND Due to a combination of high morbidity and lack of effective treatments, gastric cancer (GC) remains a major cause of cancer-related death all over the world. H19, as a paternally imprinted long noncoding RNA (lncRNA), has been found dysregulated in GC. AIM The aim of this study is to elucidate the specific mechanism of H19 in GC. METHODS Bioinformatic analysis and quantitative real-time PCR analysis were utilized to test the expression pattern of H19 in GC tissues and cell lines. Wound healing, transwell, immunofluorescence assay, and Western blot assays were conducted to test cell malignant phenotypes. Meanwhile, TOP/FOP flash assay was to analyze the relationship of H19 and Wnt/β-catenin signaling. Also, mice xenograft models were to evaluate the influence of H19 on tumor growth. RESULTS H19 was overexpressed in GC tissues and cell lines and related to poor prognosis for GC patients. In vitro and in vivo assays verified the promotion of H19 on GC cell epithelial to mesenchymal transition (EMT) and metastasis. Mechanistically, H19 could induce β-catenin to transfer into nucleus and activate Wnt/β-catenin signaling, thus promoting EMT and metastasis of GC cells. CONCLUSION Our findings proved the mechanism of H19-mediated metastasis via activating Wnt/β-catenin signaling, which provides a promising target for developing new therapeutic strategies in GC.
Collapse
Affiliation(s)
- Jiang Liu
- Department of General Surgery, Jiangsu Province Hospital of Chinese Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
| | - Gang Wang
- Department of General Surgery, Jiangsu Province Hospital of Chinese Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
| | - Jian Zhao
- Department of General Surgery, Jiangsu Province Hospital of Chinese Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
| | - Xinxin Liu
- Department of General Surgery, Jiangsu Province Hospital of Chinese Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
| | - Kai Zhang
- Department of Respiratory Medicine, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Guanwen Gong
- Department of General Surgery, Jiangsu Province Hospital of Chinese Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
| | - Huafeng Pan
- Department of General Surgery, Jiangsu Province Hospital of Chinese Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
| | - Zhiwei Jiang
- Department of General Surgery, Jiangsu Province Hospital of Chinese Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
| |
Collapse
|
36
|
Su KM, Gao HW, Chang CM, Lu KH, Yu MH, Lin YH, Liu LC, Chang CC, Li YF, Chang CC. Synergistic AHR Binding Pathway with EMT Effects on Serous Ovarian Tumors Recognized by Multidisciplinary Integrated Analysis. Biomedicines 2021; 9:866. [PMID: 34440070 PMCID: PMC8389648 DOI: 10.3390/biomedicines9080866] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2021] [Revised: 07/12/2021] [Accepted: 07/20/2021] [Indexed: 12/11/2022] Open
Abstract
Epithelial ovarian cancers (EOCs) are fatal and obstinate among gynecological malignancies in advanced stage or relapsed status, with serous carcinomas accounting for the vast majority. Unlike EOCs, borderline ovarian tumors (BOTs), including serous BOTs, maintain a semimalignant appearance. Using gene ontology (GO)-based integrative analysis, we analyzed gene set databases of serous BOTs and serous ovarian carcinomas for dysregulated GO terms and pathways and identified multiple differentially expressed genes (DEGs) in various aspects. The SRC (SRC proto-oncogene, non-receptor tyrosine kinase) gene and dysfunctional aryl hydrocarbon receptor (AHR) binding pathway consistently influenced progression-free survival and overall survival, and immunohistochemical staining revealed elevated expression of related biomarkers (SRC, ARNT, and TBP) in serous BOT and ovarian carcinoma samples. Epithelial-mesenchymal transition (EMT) is important during tumorigenesis, and we confirmed the SNAI2 (Snail family transcriptional repressor 2, SLUG) gene showing significantly high performance by immunohistochemistry. During serous ovarian tumor formation, activated AHR in the cytoplasm could cooperate with SRC, enter cell nuclei, bind to AHR nuclear translocator (ARNT) together with TATA-Box Binding Protein (TBP), and act on DNA to initiate AHR-responsive genes to cause tumor or cancer initiation. Additionally, SNAI2 in the tumor microenvironment can facilitate EMT accompanied by tumorigenesis. Although it has not been possible to classify serous BOTs and serous ovarian carcinomas as the same EOC subtype, the key determinants of relevant DEGs (SRC, ARNT, TBP, and SNAI2) found here had a crucial role in the pathogenetic mechanism of both tumor types, implying gradual evolutionary tendencies from serous BOTs to ovarian carcinomas. In the future, targeted therapy could focus on these revealed targets together with precise detection to improve therapeutic effects and patient survival rates.
Collapse
Affiliation(s)
- Kuo-Min Su
- Graduate Institute of Medical Sciences, National Defense Medical Center, Taipei 114, Taiwan; (K.-M.S.); (M.-H.Y.)
- Department of Obstetrics and Gynecology, Tri-Service General Hospital, National Defense Medical Center, Taipei 114, Taiwan; (Y.-H.L.); (L.-C.L.); (C.-C.C.)
| | - Hong-Wei Gao
- Department of Pathology, Tri-Service General Hospital, National Defense Medical Center, Taipei 114, Taiwan;
| | - Chia-Ming Chang
- School of Medicine, National Yang Ming Chiao Tung University, Taipei 112, Taiwan;
- Department of Obstetrics and Gynecology, Taipei Veterans General Hospital, Taipei 112, Taiwan
| | - Kai-Hsi Lu
- Department of Medical Research and Education, Cheng-Hsin General Hospital, Taipei 112, Taiwan;
| | - Mu-Hsien Yu
- Graduate Institute of Medical Sciences, National Defense Medical Center, Taipei 114, Taiwan; (K.-M.S.); (M.-H.Y.)
- Department of Obstetrics and Gynecology, Tri-Service General Hospital, National Defense Medical Center, Taipei 114, Taiwan; (Y.-H.L.); (L.-C.L.); (C.-C.C.)
| | - Yi-Hsin Lin
- Department of Obstetrics and Gynecology, Tri-Service General Hospital, National Defense Medical Center, Taipei 114, Taiwan; (Y.-H.L.); (L.-C.L.); (C.-C.C.)
| | - Li-Chun Liu
- Department of Obstetrics and Gynecology, Tri-Service General Hospital, National Defense Medical Center, Taipei 114, Taiwan; (Y.-H.L.); (L.-C.L.); (C.-C.C.)
- Division of Obstetrics and Gynecology, Tri-Service General Hospital Songshan Branch, National Defense Medical Center, Taipei 105, Taiwan
| | - Chia-Ching Chang
- Department of Obstetrics and Gynecology, Tri-Service General Hospital, National Defense Medical Center, Taipei 114, Taiwan; (Y.-H.L.); (L.-C.L.); (C.-C.C.)
| | - Yao-Feng Li
- Department of Pathology, Tri-Service General Hospital, National Defense Medical Center, Taipei 114, Taiwan;
| | - Cheng-Chang Chang
- Graduate Institute of Medical Sciences, National Defense Medical Center, Taipei 114, Taiwan; (K.-M.S.); (M.-H.Y.)
- Department of Obstetrics and Gynecology, Tri-Service General Hospital, National Defense Medical Center, Taipei 114, Taiwan; (Y.-H.L.); (L.-C.L.); (C.-C.C.)
| |
Collapse
|
37
|
Shi L, Hou J, Wang L, Fu H, Zhang Y, Song Y, Wang X. Regulatory roles of osteopontin in human lung cancer cell epithelial-to-mesenchymal transitions and responses. Clin Transl Med 2021; 11:e486. [PMID: 34323425 PMCID: PMC8265167 DOI: 10.1002/ctm2.486] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2020] [Revised: 06/14/2021] [Accepted: 06/16/2021] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Lung cancer is still the main cause of death in patients with cancer, due to poor understanding of intracellular regulations. Of those, osteopontin (OPN) may induce the epithelial-to-mesenchymal transition (EMT) to promote tumor cell metastasis. The present study aims to evaluate the regulatory mechanism of internal and external OPN in the development of lung cancer. METHODS We evaluated genetic variations and different bioinformatics of genes in chromosome 4 among subtypes of lung cancer using global databases. We validated the expression of OPN and EMT-related proteins (e.g., E-cadherin, vimentin) in 208 non-small-cell lung cancer (NSCLC) tumors and the adjacent nontumorous tissues, further to explore the function of OPN in the progression of lung cancer, with a focus on a potential communication between OPN and EMT in the lung cancer. RESULTS We found that OPN might act as a target molecule in lung cancer, which is associated with lymph node metastasis, postresection recurrence/metastasis, and prognosis of patients with lung cancer. Biological behaviors and pathological responses of OPN varied among diseases, challenges, and severities. Overexpression of OPN was correlated with the existence of EMT in lung cancer tissues. Internal and external OPN plays the decisive roles in lung cancer cell movement, proliferation, and EMT formation, through the upregulation of OPN-PI3K and OPN-MEK pathways. PI3K and MEK inhibitors downregulated the process of EMT and biological behaviors of lung cancer cells, probably through altering vimentin-associated cytoskeletons. CONCLUSION OPN can be a metastasis-associated or specific biomarker for lung cancer and a potential target for antimetastatic treatment.
Collapse
Affiliation(s)
- Lin Shi
- Department of Pulmonary and Critical Care MedicineZhongshan HospitalShanghaiChina
- Shanghai Engineering Research for AI Technology for Cardiopulmonary DiseasesShanghaiChina
- Fudan University Shanghai Medical CollegeShanghaiChina
| | - Jiayun Hou
- Institute for Clinical ScienceShanghaiChina
- Shanghai Institute of Clinical BioinformaticsShanghaiChina
- Shanghai Engineering Research for AI Technology for Cardiopulmonary DiseasesShanghaiChina
- Jinshan Hospital Centre for Tumor Diagnosis and TherapyShanghaiChina
- Fudan University Shanghai Medical CollegeShanghaiChina
| | - Lin Wang
- Department of Pulmonary and Critical Care MedicineZhongshan HospitalShanghaiChina
- Shanghai Engineering Research for AI Technology for Cardiopulmonary DiseasesShanghaiChina
- Fudan University Shanghai Medical CollegeShanghaiChina
| | - Huirong Fu
- Institute for Clinical ScienceShanghaiChina
- Shanghai Institute of Clinical BioinformaticsShanghaiChina
- Jinshan Hospital Centre for Tumor Diagnosis and TherapyShanghaiChina
- Fudan University Shanghai Medical CollegeShanghaiChina
| | - Yiwen Zhang
- Institute for Clinical ScienceShanghaiChina
- Shanghai Institute of Clinical BioinformaticsShanghaiChina
- Shanghai Engineering Research for AI Technology for Cardiopulmonary DiseasesShanghaiChina
- Jinshan Hospital Centre for Tumor Diagnosis and TherapyShanghaiChina
- Fudan University Shanghai Medical CollegeShanghaiChina
| | - Yuanlin Song
- Department of Pulmonary and Critical Care MedicineZhongshan HospitalShanghaiChina
- Shanghai Engineering Research for AI Technology for Cardiopulmonary DiseasesShanghaiChina
- Fudan University Shanghai Medical CollegeShanghaiChina
| | - Xiangdong Wang
- Department of Pulmonary and Critical Care MedicineZhongshan HospitalShanghaiChina
- Institute for Clinical ScienceShanghaiChina
- Shanghai Institute of Clinical BioinformaticsShanghaiChina
- Shanghai Engineering Research for AI Technology for Cardiopulmonary DiseasesShanghaiChina
- Jinshan Hospital Centre for Tumor Diagnosis and TherapyShanghaiChina
- Fudan University Shanghai Medical CollegeShanghaiChina
| |
Collapse
|
38
|
Zheng C, Yan S, Lu L, Yao H, He G, Chen S, Li Y, Peng X, Cheng Z, Wu M, Zhang Q, Li G, Fu S, Deng X. Lovastatin Inhibits EMT and Metastasis of Triple-Negative Breast Cancer Stem Cells Through Dysregulation of Cytoskeleton-Associated Proteins. Front Oncol 2021; 11:656687. [PMID: 34150623 PMCID: PMC8212055 DOI: 10.3389/fonc.2021.656687] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Accepted: 05/13/2021] [Indexed: 12/11/2022] Open
Abstract
Triple-negative breast cancer (TNBC) is more aggressive and has poorer prognosis compared to other subtypes of breast cancer. Epithelial-to-mesenchymal transition (EMT) is a process in which epithelial cells transform into mesenchymal-like cells capable of migration, invasion, and metastasis. Recently, we have demonstrated that lovastatin, a 3-hydroxy-3-methylglutaryl-coenzyme A reductase inhibitor and a lipid-lowering drug, could inhibit stemness properties of cancer stem cells (CSCs) derived from TNBC cell in vitro and in vivo. This study is aimed at investigating whether lovastatin inhibits TNBC CSCs by inhibiting EMT and suppressing metastasis and the mechanism involved. In the present study, we found that lovastatin dysregulated lysine succinylation of cytoskeleton-associated proteins in CSCs derived from TNBC MDA-MB-231 cell. Lovastatin inhibited EMT as demonstrated by down-regulation of the protein levels of Vimentin and Twist in MDA-MB-231 CSCs in vitro and vivo and by reversal of TGF-β1-induced morphological change in MCF10A cells. Lovastatin also inhibited the migration of MDA-MB-231 CSCs. The disruption of cytoskeleton in TNBC CSCs by lovastatin was demonstrated by the reduction of the number of pseudopodia and the relocation of F-actin cytoskeleton. Combination of lovastatin with doxorubicin synergistically inhibited liver metastasis of MDA-MB-231 CSCs. Bioinformatics analysis revealed that higher expression levels of cytoskeleton-associated genes were characteristic of TNBC and predicted survival outcomes in breast cancer patients. These data suggested that lovastatin could inhibit the EMT and metastasis of TNBC CSCs in vitro and in vivo through dysregulation of cytoskeleton-associated proteins.
Collapse
Affiliation(s)
- Chanjuan Zheng
- Key Laboratory of Model Animals and Stem Cell Biology in Hunan Province, Departments of Pathology and Pathophysiology, Hunan Normal University School of Medicine, Changsha, China.,Key Laboratory of Translational Cancer Stem Cell Research, Hunan Normal University, Changsha, China.,Department of Preventive Medicine, Hunan Normal University School of Medicine, Changsha, China
| | - Shichao Yan
- Key Laboratory of Model Animals and Stem Cell Biology in Hunan Province, Departments of Pathology and Pathophysiology, Hunan Normal University School of Medicine, Changsha, China.,Key Laboratory of Translational Cancer Stem Cell Research, Hunan Normal University, Changsha, China
| | - Lu Lu
- Key Laboratory of Model Animals and Stem Cell Biology in Hunan Province, Departments of Pathology and Pathophysiology, Hunan Normal University School of Medicine, Changsha, China.,Key Laboratory of Translational Cancer Stem Cell Research, Hunan Normal University, Changsha, China
| | - Hui Yao
- Key Laboratory of Model Animals and Stem Cell Biology in Hunan Province, Departments of Pathology and Pathophysiology, Hunan Normal University School of Medicine, Changsha, China.,Key Laboratory of Translational Cancer Stem Cell Research, Hunan Normal University, Changsha, China
| | - Guangchun He
- Key Laboratory of Model Animals and Stem Cell Biology in Hunan Province, Departments of Pathology and Pathophysiology, Hunan Normal University School of Medicine, Changsha, China.,Key Laboratory of Translational Cancer Stem Cell Research, Hunan Normal University, Changsha, China
| | - Sisi Chen
- Key Laboratory of Model Animals and Stem Cell Biology in Hunan Province, Departments of Pathology and Pathophysiology, Hunan Normal University School of Medicine, Changsha, China.,Key Laboratory of Translational Cancer Stem Cell Research, Hunan Normal University, Changsha, China
| | - Ying Li
- Key Laboratory of Model Animals and Stem Cell Biology in Hunan Province, Departments of Pathology and Pathophysiology, Hunan Normal University School of Medicine, Changsha, China.,Key Laboratory of Translational Cancer Stem Cell Research, Hunan Normal University, Changsha, China
| | | | | | - Mi Wu
- Key Laboratory of Model Animals and Stem Cell Biology in Hunan Province, Departments of Pathology and Pathophysiology, Hunan Normal University School of Medicine, Changsha, China.,Key Laboratory of Translational Cancer Stem Cell Research, Hunan Normal University, Changsha, China
| | - Qiuting Zhang
- Key Laboratory of Model Animals and Stem Cell Biology in Hunan Province, Departments of Pathology and Pathophysiology, Hunan Normal University School of Medicine, Changsha, China.,Key Laboratory of Translational Cancer Stem Cell Research, Hunan Normal University, Changsha, China
| | - Guifei Li
- Key Laboratory of Model Animals and Stem Cell Biology in Hunan Province, Departments of Pathology and Pathophysiology, Hunan Normal University School of Medicine, Changsha, China.,Key Laboratory of Translational Cancer Stem Cell Research, Hunan Normal University, Changsha, China
| | - Shujun Fu
- Key Laboratory of Model Animals and Stem Cell Biology in Hunan Province, Departments of Pathology and Pathophysiology, Hunan Normal University School of Medicine, Changsha, China.,Key Laboratory of Translational Cancer Stem Cell Research, Hunan Normal University, Changsha, China
| | - Xiyun Deng
- Key Laboratory of Model Animals and Stem Cell Biology in Hunan Province, Departments of Pathology and Pathophysiology, Hunan Normal University School of Medicine, Changsha, China.,Key Laboratory of Translational Cancer Stem Cell Research, Hunan Normal University, Changsha, China
| |
Collapse
|
39
|
Reisenauer KN, Tao Y, Das P, Song S, Svatek H, Patel SD, Mikhail S, Ingros A, Sheesley P, Masi M, Boari A, Evidente A, Kornienko A, Romo D, Taube J. Epithelial-mesenchymal transition sensitizes breast cancer cells to cell death via the fungus-derived sesterterpenoid ophiobolin A. Sci Rep 2021; 11:10652. [PMID: 34017048 PMCID: PMC8137940 DOI: 10.1038/s41598-021-89923-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2020] [Accepted: 04/21/2021] [Indexed: 12/30/2022] Open
Abstract
The epithelial-mesenchymal transition (EMT) imparts properties of cancer stem-like cells, including resistance to frequently used chemotherapies, necessitating the identification of molecules that induce cell death specifically in stem-like cells with EMT properties. Herein, we demonstrate that breast cancer cells enriched for EMT features are more sensitive to cytotoxicity induced by ophiobolin A (OpA), a sesterterpenoid natural product. Using a model of experimentally induced EMT in human mammary epithelial (HMLE) cells, we show that EMT is both necessary and sufficient for OpA sensitivity. Moreover prolonged, sub-cytotoxic exposure to OpA is sufficient to suppress EMT-imparted CSC features including sphere formation and resistance to doxorubicin. In vivo growth of CSC-rich mammary cell tumors, is suppressed by OpA treatment. These data identify a driver of EMT-driven cytotoxicity with significant potential for use either in combination with standard chemotherapy or for tumors enriched for EMT features.
Collapse
Affiliation(s)
| | - Yongfeng Tao
- Department of Chemistry and Biochemistry, Baylor University, Waco, TX, USA
| | - Provas Das
- Department of Biology, Baylor University, Waco, TX, USA
| | - Shuxuan Song
- Department of Biology, Baylor University, Waco, TX, USA
| | | | | | | | - Alec Ingros
- Department of Biology, Baylor University, Waco, TX, USA
| | | | - Marco Masi
- Department of Chemical Sciences, University of Naples Federico II, Complesso Universitario Monte Sant'Angelo, Naples, Italy
| | - Angela Boari
- Institute of Sciences and Food Production, CNR, Bari, Italy
| | - Antonio Evidente
- Department of Chemical Sciences, University of Naples Federico II, Complesso Universitario Monte Sant'Angelo, Naples, Italy
| | - Alexander Kornienko
- Department of Chemistry and Biochemistry, Texas State University, San Marcos, TX, USA
| | - Daniel Romo
- Department of Chemistry and Biochemistry, Baylor University, Waco, TX, USA
| | - Joseph Taube
- Department of Biology, Baylor University, Waco, TX, USA.
| |
Collapse
|
40
|
Pavlič A, Urh K, Štajer K, Boštjančič E, Zidar N. Epithelial-Mesenchymal Transition in Colorectal Carcinoma: Comparison Between Primary Tumor, Lymph Node and Liver Metastases. Front Oncol 2021; 11:662806. [PMID: 34046357 PMCID: PMC8144630 DOI: 10.3389/fonc.2021.662806] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Accepted: 04/12/2021] [Indexed: 01/06/2023] Open
Abstract
There is emerging evidence suggesting that epithelial-mesenchymal transition (EMT) and mesenchymal-epithelial transition (MET) play an important role in colorectal carcinoma (CRC), but their exact role remains controversial. Our aim was to analyze the miR-200 family as EMT markers and their target genes expression at invasive tumor front and in nodal and liver metastases. Sixty-three formalin-fixed paraffin-embedded tissue samples from 19 patients with CRC were included. Using a micropuncture technique, tissue was obtained from central part and invasive front of the primary tumor, and nodal and liver metastases. Expression of the miR-200 family and their target genes CDKN1B, ONECUT2, PTPN13, RND3, SOX2, TGFB2 and ZEB2 was analyzed using real-time PCR. We found miR-200 family down-regulation at invasive front compared to central part, and up-regulation of miRNA-200a/b/c and miR-429 in metastases compared to invasive front. At invasive front, TGFB2 was the only gene with inverse expression to the miR-200 family, whereas in metastases inverse expression was found for ONECUT2 and SOX2. CDKN1B, PTPN13 and ZEB2 were down-regulated at invasive front and up-regulated in metastases. Our results suggest the involvement of partial EMT at invasive tumor front, and partial MET in metastases in CRC, based on miR-200 family and its target genes expression.
Collapse
Affiliation(s)
- Ana Pavlič
- Institute of Pathology, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| | - Kristian Urh
- Institute of Pathology, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| | - Katarina Štajer
- Institute of Pathology, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| | - Emanuela Boštjančič
- Institute of Pathology, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| | - Nina Zidar
- Institute of Pathology, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| |
Collapse
|
41
|
Patil S, Baeshen HA. Aqueous extract of tobacco induces mitochondrial potential dependent cell death and epithelial-mesenchymal transition in gingival epithelial cells. Saudi J Biol Sci 2021; 28:4613-4618. [PMID: 34354447 PMCID: PMC8324949 DOI: 10.1016/j.sjbs.2021.04.068] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Revised: 04/08/2021] [Accepted: 04/21/2021] [Indexed: 11/29/2022] Open
Abstract
Smokeless tobacco habits are detrimental to oral health. A correlation between tobacco use and local epithelial tissue damage exists. Yet, the underlying cellular mechanism is not precisely characterized. This study assessed the dose-dependent action of Smokeless tobacco extract on gingival epithelial cells. Gingival tissue was taken from 5 healthy donors. Gingival epithelial cells were isolated by an enzymatic method and cultured up to passage 2. The cultured cells were treated with smokeless tobacco extract at 10%, 25%, 50%, and 75% volume concentration. After 48 h of incubation, MTT assay, Annexin V/PI assay, and DiIC1(5) assay were used to evaluate viability, apoptosis, and mitochondrial potential of the cells. RT-qPCR was used to determine the expression of BAX, BCL2, ECAD, NCAD, and TWIST. The Smokeless tobacco extract reduced cell viability by disrupting the mitochondrial potential and inducing apoptosis. Further, the Smokeless tobacco extract induced a dose-dependent epithelial-mesenchymal-transition in gingival epithelial cells. Apoptotic cellular death caused by tobacco extract on the gingival epithelial system was dependant on the mitochondrial potential of the cell. The results demonstrate that smokeless tobacco causes detrimental metabolic alterations of the periodontium. Featured application This study elucidates the mechanism by which Smokeless tobacco products cause cellular damage to the gingival epithelium. The use of Smokeless tobacco products can lead to major cellular and surface changes in the gingiva and its appearance. The consequences of these changes are not limited to oral cancer but also increases a person's risk for dental and periodontal disease.
Collapse
Affiliation(s)
- Shankargouda Patil
- Department of Maxillofacial Surgery and Diagnostic Sciences, Division of Oral Pathology, College of Dentistry, Jazan University, Jazan, Saudi Arabia
| | - Hosam Ali Baeshen
- Department of Orthodontics, College of dentistry, King Abdulaziz University, Saudi Arabia
| |
Collapse
|
42
|
Platelet-derived growth factor-B signalling might promote epithelial-mesenchymal transition in gastric carcinoma cells through activation of the MAPK/ERK pathway. Contemp Oncol (Pozn) 2021; 25:1-6. [PMID: 33911974 PMCID: PMC8063901 DOI: 10.5114/wo.2021.103938] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Accepted: 11/30/2020] [Indexed: 11/17/2022] Open
Abstract
Introduction Epithelial-mesenchymal transition (EMT) is important in the metastasis of tumours and is triggered by several key growth factors, including platelet-derived growth factor-B (PDGF-B). But, whether PDGF-B signalling promotes EMT in gastric carcinoma cells is still unknown. Material and methods We established 2 gastric carcinoma cell lines (MKN28 and MKN45) to stably overexpress PDGF-B by lentiviral vectors, and expression of E-cadherin, N-cadherin, and ERK-1 were detected by western blot assay. Then, PDGF-B overexpression and normal MKN28 and MKN45 cells were cocultured with PDGFR-b positive fibroblast (hs738) and MAPK inhibitors were added; also, the expressions of ERK-1, E-cadherin, and N-cadherin were detected by western blot assay. Results After being cocultured with hs738 cells, expressions of ERK-1 and N-cadherin protein in PDGF-B overexpression MKN28 and MKN45 cells were much higher than normal MKN28 and MKN45 cells (p < 0.05), and those could be decreased by MAPK inhibitor. Also, expressions of E-cadherin protein in PDGF-B overexpression MKN28 and MKN45 cells were much lower than normal MKN28 and MKN45 cells (p < 0.05), and they could be increased by MAPK inhibitor. Conclusions Our data indicate that PDGF-B signalling can induce EMT in gastric carcinoma cells. Thr tumour microenvironment is imperative in the process of PDGF-B signalling inducing EMT in gastric carcinoma cells. Also, activation of MAPK/ERK pathway, which is a downstream pathway of PDGF-B signalling, might participate in this process.
Collapse
|
43
|
Chimento A, De Luca A, Nocito MC, Sculco S, Avena P, La Padula D, Zavaglia L, Sirianni R, Casaburi I, Pezzi V. SIRT1 is involved in adrenocortical cancer growth and motility. J Cell Mol Med 2021; 25:3856-3869. [PMID: 33650791 PMCID: PMC8051751 DOI: 10.1111/jcmm.16317] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Revised: 01/08/2021] [Accepted: 01/11/2021] [Indexed: 12/26/2022] Open
Abstract
Adrenocortical cancer (ACC) is a rare tumour with unfavourable prognosis, lacking an effective treatment. This tumour is characterized by IGF‐II (insulin‐like growth factor II) overproduction, aromatase and ERα (oestrogen receptor alpha) up‐regulation. Previous reports suggest that ERα expression can be regulated by sirt1 (sirtuin 1), a nicotinamide adenine dinucleotide (NAD+)‐dependent class III histone deacetylases that modulates activity of several substrates involved in cellular stress, metabolism, proliferation, senescence, protein degradation and apoptosis. Nevertheless, sirt1 can act as a tumour suppressor or oncogenic protein. In this study, we found that in H295R and SW13 cell lines, sirt1 expression is inhibited by sirtinol, a potent inhibitor of sirt1 activity. In addition, sirtinol is able to decrease ACC cell proliferation, colony and spheroids formation and to activate the intrinsic apoptotic mechanism. Particularly, we observed that sirtinol interferes with E2/ERα and IGF1R (insulin growth factor 1 receptor) pathways by decreasing receptors expression. Sirt1 involvement was confirmed by using a specific sirt1 siRNA. More importantly, we observed that sirtinol can synergize with mitotane, a selective adrenolitic drug, in inhibiting adrenocortical cancer cell growth. Collectively, our data reveal an oncogenic role for sirt1 in ACC and its targeting could implement treatment options for this type of cancer.
Collapse
Affiliation(s)
- Adele Chimento
- Department of Pharmacy and Health and Nutritional Sciences, University of Calabria, Arcavacata di Rende, Cosenza, Italy
| | - Arianna De Luca
- Department of Pharmacy and Health and Nutritional Sciences, University of Calabria, Arcavacata di Rende, Cosenza, Italy
| | - Marta Claudia Nocito
- Department of Pharmacy and Health and Nutritional Sciences, University of Calabria, Arcavacata di Rende, Cosenza, Italy
| | - Sara Sculco
- Department of Pharmacy and Health and Nutritional Sciences, University of Calabria, Arcavacata di Rende, Cosenza, Italy
| | - Paola Avena
- Department of Pharmacy and Health and Nutritional Sciences, University of Calabria, Arcavacata di Rende, Cosenza, Italy
| | - Davide La Padula
- Department of Pharmacy and Health and Nutritional Sciences, University of Calabria, Arcavacata di Rende, Cosenza, Italy
| | - Lucia Zavaglia
- Department of Pharmacy and Health and Nutritional Sciences, University of Calabria, Arcavacata di Rende, Cosenza, Italy
| | - Rosa Sirianni
- Department of Pharmacy and Health and Nutritional Sciences, University of Calabria, Arcavacata di Rende, Cosenza, Italy
| | - Ivan Casaburi
- Department of Pharmacy and Health and Nutritional Sciences, University of Calabria, Arcavacata di Rende, Cosenza, Italy
| | - Vincenzo Pezzi
- Department of Pharmacy and Health and Nutritional Sciences, University of Calabria, Arcavacata di Rende, Cosenza, Italy
| |
Collapse
|
44
|
Motono N, Ueda Y, Shimasaki M, Iwai S, Iijima Y, Usuda K, Uramoto H. Prognostic Impact of Sphingosine Kinase 1 in Nonsmall Cell Lung Cancer. CLINICAL PATHOLOGY 2021; 14:2632010X20988531. [PMID: 33623898 PMCID: PMC7879003 DOI: 10.1177/2632010x20988531] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/31/2020] [Accepted: 12/25/2020] [Indexed: 12/02/2022]
Abstract
Bioactive sphingolipid is clearly relevant to lung physiology. The relationship of the bioactive sphingolipid pathway to pulmonary disease has been studied in cellular, tissue, and animal model, including lung cancer models. The samples of 53 patients diagnosed with nonsmall cell lung carcinoma (NSCLC) between June 2009 and May 2014 at our hospital were analyzed. Immunohistochemical (IHC) analysis was performed. The degree of immunostaining was reviewed and scored. Using this method of assessment, we evaluated the IHC score of sphingosine kinase 1 (SPHK1), vimentin, E-cadherin, and Ki-67. Both invasive adenocarcinoma cell and squamous cell carcinoma cell were well stained by SPHK1, and fibroblasts were also well stained by SPHK1. Although the IHC score of SPHK1 was not significantly differed between invasive adenocarcinoma and squamous cell carcinoma, the IHC scores of fibroblast, vimentin, and Ki-67 were higher in squamous cell carcinoma than invasive adenocarcinoma. Correlation among IHC scores in each of invasive adenocarcinoma and squamous cell carcinoma was performed. SPHK1 had positive correlation with both fibroblast and Ki-67, and fibroblast and Ki-67 had also positive correlation in invasive adenocarcinoma. On the contrary, SPHK1 had no significant correlation with fibroblast, and had negative correlation with Ki-67 in squamous cell carcinoma. Although there was not significant prognostic difference in SPHK1 score (P = .09), IHC score high group tended to be worse on relapse-free survival. SPHK1 might be prognostic factor in lung-invasive adenocarcinoma and novel target for drug against lung-invasive adenocarcinoma.
Collapse
Affiliation(s)
- Nozomu Motono
- Department of Thoracic Surgery, Kanazawa Medical University, Uchinada, Japan
| | - Yoshimichi Ueda
- Department of Pathology II, Kanazawa Medical University, Uchinada, Japan
| | - Miyako Shimasaki
- Department of Pathology II, Kanazawa Medical University, Uchinada, Japan
| | - Shun Iwai
- Department of Thoracic Surgery, Kanazawa Medical University, Uchinada, Japan
| | - Yoshihito Iijima
- Department of Thoracic Surgery, Kanazawa Medical University, Uchinada, Japan
| | - Katsuo Usuda
- Department of Thoracic Surgery, Kanazawa Medical University, Uchinada, Japan
| | - Hidetaka Uramoto
- Department of Thoracic Surgery, Kanazawa Medical University, Uchinada, Japan
| |
Collapse
|
45
|
Sanookpan K, Nonpanya N, Sritularak B, Chanvorachote P. Ovalitenone Inhibits the Migration of Lung Cancer Cells via the Suppression of AKT/mTOR and Epithelial-to-Mesenchymal Transition. Molecules 2021; 26:molecules26030638. [PMID: 33530617 PMCID: PMC7866203 DOI: 10.3390/molecules26030638] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2020] [Revised: 01/22/2021] [Accepted: 01/24/2021] [Indexed: 12/09/2022] Open
Abstract
Cancer metastasis is the major cause of about 90% of cancer deaths. As epithelial-to-mesenchymal transition (EMT) is known for potentiating metastasis, this study aimed to elucidate the effect of ovalitenone on the suppression of EMT and metastasis-related behaviors, including cell movement and growth under detached conditions, and cancer stem cells (CSCs), of lung cancer cells. Methods: Cell viability and cell proliferation were determined by 3-[4,5-dimethylthiazol-2-yl]-2,5 diphenyl tetrazo-liumbromide (MTT) and colony formation assays. Cell migration and invasion were analyzed using a wound-healing assay and Boyden chamber assay, respectively. Anchorage-independent cell growth was determined. Cell protrusions (filopodia) were detected by phalloidin-rhodamine staining. Cancer stem cell phenotypes were assessed by spheroid formation. The proteins involved in cell migration and EMT were evaluated by Western blot analysis and immunofluorescence staining. Results: Ovalitenone was used at concentrations of 0–200 μM. While it caused no cytotoxic effects on lung cancer H460 and A549 cells, ovalitenone significantly suppressed anchorage-independent growth, CSC-like phenotypes, colony formation, and the ability of the cancer to migrate and invade cells. The anti-migration activity was confirmed by the reduction of filopodia in the cells treated with ovalitenone. Interestingly, we found that ovalitenone could significantly decrease the levels of N-cadherin, snail, and slug, while it increased E-cadherin, indicating EMT suppression. Additionally, the regulatory signaling of focal adhesion kinase (FAK), ATP-dependent tyrosine kinase (AKT), the mammalian target of rapamycin (mTOR), and cell division cycle 42 (Cdc42) was suppressed by ovalitenone. Conclusions: The results suggest that ovalitenone suppresses EMT via suppression of the AKT/mTOR signaling pathway. In addition, ovalitenone exhibited potential for the suppression of CSC phenotypes. These data reveal the anti-metastasis potential of the compound and support the development of ovalitenone treatment for lung cancer therapy.
Collapse
Affiliation(s)
- Kittipong Sanookpan
- Cell-Based Drug and Health Product Development Research Unit, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok 10330, Thailand; (K.S.); (N.N.)
- Department of Pharmacology and Physiology, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok 10330, Thailand
| | - Nongyao Nonpanya
- Cell-Based Drug and Health Product Development Research Unit, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok 10330, Thailand; (K.S.); (N.N.)
- Department of Pharmacology and Physiology, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok 10330, Thailand
| | - Boonchoo Sritularak
- Department of Pharmacognosy and Pharmaceutical Botany, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok 10330, Thailand;
| | - Pithi Chanvorachote
- Cell-Based Drug and Health Product Development Research Unit, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok 10330, Thailand; (K.S.); (N.N.)
- Department of Pharmacology and Physiology, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok 10330, Thailand
- Correspondence: ; Tel.: +662-218-8344
| |
Collapse
|
46
|
Tiny miRNAs Play a Big Role in the Treatment of Breast Cancer Metastasis. Cancers (Basel) 2021; 13:cancers13020337. [PMID: 33477629 PMCID: PMC7831489 DOI: 10.3390/cancers13020337] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Revised: 01/14/2021] [Accepted: 01/14/2021] [Indexed: 12/24/2022] Open
Abstract
Simple Summary MicroRNAs (miRNAs) have emerged as important regulators of tumour progression and metastasis in breast cancer. Through a review of multiple studies, this paper has identified the key regulatory roles of oncogenic miRNAs in breast cancer metastasis including the potentiation of angiogenesis, epithelial-mesenchymal transition, the Warburg effect, and the tumour microenvironment. Several approaches have been studied for selective targeting of breast tumours by miRNAs, ranging from delivery systems such as extracellular vesicles and liposomes to the use of prodrugs and functionally modified vehicle-free miRNAs. While promising, these miRNA-based therapies face challenges including toxicity and immunogenicity, and greater research on their safety profiles must be performed before progressing to clinical trials. Abstract Distant organ metastases accounts for the majority of breast cancer deaths. Given the prevalence of breast cancer in women, it is imperative to understand the underlying mechanisms of its metastatic progression and identify potential targets for therapy. Since their discovery in 1993, microRNAs (miRNAs) have emerged as important regulators of tumour progression and metastasis in various cancers, playing either oncogenic or tumour suppressor roles. In the following review, we discuss the roles of miRNAs that potentiate four key areas of breast cancer metastasis—angiogenesis, epithelial-mesenchymal transition, the Warburg effect and the tumour microenvironment. We then evaluate the recent developments in miRNA-based therapies in breast cancer, which have shown substantial promise in controlling tumour progression and metastasis. Yet, certain challenges must be overcome before these strategies can be implemented in clinical trials.
Collapse
|
47
|
Chen B, Zhang Y, Li C, Xu P, Gao Y, Xu Y. CNTN-1 promotes docetaxel resistance and epithelial-to-mesenchymal transition via the PI3K/Akt signaling pathway in prostate cancer. Arch Med Sci 2021; 17:152-165. [PMID: 33488868 PMCID: PMC7811318 DOI: 10.5114/aoms.2020.92939] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/23/2018] [Accepted: 03/05/2019] [Indexed: 01/06/2023] Open
Abstract
INTRODUCTION Therapy options for prostate cancer (PCa) typically are centered on docetaxel-based chemotherapy but are limited by the effects of multi-drug resistance. Recent advances have illustrated a role of contactin-1 (CNTN-1) in tumor chemoresistance, while the function and mechanism of CNTN-1 in the resistance of docetaxel in prostate cancer have not yet been elucidated. MATERIAL AND METHODS Docetaxel (Dox)-resistant PCa cell lines of PC3 (PC3-DR) and DU145 (DU145-DR) were established, and short hairpin RNA (shRNA) constructs targeting CNTN-1 were generated to analyze the effect of knockdown of CNTN-1 on PCa progression. Cell Counting Kit-8 (CCK-8), flow cytometry, wound-healing, transwell and western blotting analysis were used to analyze cell proliferation, apoptosis, migration, invasion and related protein expression levels, respectively. RESULTS Knockdown of CNTN-1 in PC3-DR and DU145-DR cells attenuated cell proliferation, migration, invasion, EMT phenotype, and drug resistance, and increased cell apoptosis further reduced the tumorigenic phenotype. Knockdown of CNTN-1 resulted in an anti-tumor effect in the xenograft tumor model, and decreased activity of the phosphoinositide 3-kinase (PI3K)/Akt signaling pathway both in vitro and in vivo. CONCLUSIONS The results of the present study suggest that downregulation of CNTN-1 may be an important mechanism to reverse chemoresistance in Dox-resistant PCa progression, thus shedding light on the development of novel anti-tumor therapeutics for the treatment of PCa.
Collapse
Affiliation(s)
- Binshen Chen
- Department of Urology, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Yiming Zhang
- Department of Urology, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Chaoming Li
- Department of Urology, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Peng Xu
- Department of Urology, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Yubo Gao
- Department of Urology, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Yawen Xu
- Department of Urology, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| |
Collapse
|
48
|
Jongsomchai K, Leardkamolkarn V, Mahatheeranont S. A rice bran phytochemical, cyanidin 3-glucoside, inhibits the progression of PC3 prostate cancer cell. Anat Cell Biol 2020; 53:481-492. [PMID: 32839357 PMCID: PMC7769112 DOI: 10.5115/acb.20.085] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2020] [Revised: 06/08/2020] [Accepted: 07/13/2020] [Indexed: 12/13/2022] Open
Abstract
Prostate cancer is one of the high incidences and the most invasive cancer that is also highly resistant to chemotherapy. Currently, several natural products have been considering using as the supplements for anti-cancer therapy. This study aims to identify the potential active anti-cancer ingredients in the bran extracts of the native Thai rice (Luempua cultivar). Rice bran fraction enriched in anthocyanins was successively isolated and processed until the major purified compound obtained. The sub-fractions and the purified, rice bran, cyanidin 3-glucoside (RBC3G), were studied for biological effects (cell viability, migration, and invasion assays) on human prostatic cancer (PC3) cells using immunohistochemical-staining and immuno-blotting approaches. The sub-fractions and the purified RBC3G inhibited epithelial mesenchymal transition (EMT) characteristics of PC3 cells by blocking the expression of several cytoskeletal associate proteins in a concentration dependent manner, leading to decreasing of the cancer cell motility. RBC3G reduced the expression of Smad/Snail signaling molecules but enhanced the expression of cell surface protein, E-cadherin, leading to a delay tumor transformation. The RBC3G also inhibited matrix metalloproteinase-9 and nuclear factor-kappa B expression levels and the enzymes activity in PC3 cells, leading to a slow cell migration/invasion process. The results suggested that RBC3G blunt and/or delay the progressive cancer cell behaviors by inhibit EMT through Smad signaling pathway(s) mediating Snail/E-cadherin expression.
Collapse
Affiliation(s)
- Kamonwan Jongsomchai
- Department of Anatomy, Faculty of Science, Mahidol University, Bangkok, Thailand
| | | | - Sugunya Mahatheeranont
- Department of Chemistry, Faculty of Science, Chiang Mai University, Chiang Mai, Thailand
| |
Collapse
|
49
|
Mukherjee S, Adhikary S, Gadad SS, Mondal P, Sen S, Choudhari R, Singh V, Adhikari S, Mandal P, Chaudhuri S, Sengupta A, Lakshmanaswamy R, Chakrabarti P, Roy S, Das C. Suppression of poised oncogenes by ZMYND8 promotes chemo-sensitization. Cell Death Dis 2020; 11:1073. [PMID: 33323928 PMCID: PMC7738522 DOI: 10.1038/s41419-020-03129-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2019] [Revised: 09/17/2020] [Accepted: 09/18/2020] [Indexed: 02/06/2023]
Abstract
The major challenge in chemotherapy lies in the gain of therapeutic resistance properties of cancer cells. The relatively small fraction of chemo-resistant cancer cells outgrows and are responsible for tumor relapse, with acquired invasiveness and stemness. We demonstrate that zinc-finger MYND type-8 (ZMYND8), a putative chromatin reader, suppresses stemness, drug resistance, and tumor-promoting genes, which are hallmarks of cancer. Reinstating ZMYND8 suppresses chemotherapeutic drug doxorubicin-induced tumorigenic potential (at a sublethal dose) and drug resistance, thereby resetting the transcriptional program of cells to the epithelial state. The ability of ZMYND8 to chemo-sensitize doxorubicin-treated metastatic breast cancer cells by downregulating tumor-associated genes was further confirmed by transcriptome analysis. Interestingly, we observed that ZMYND8 overexpression in doxorubicin-treated cells stimulated those involved in a good prognosis in breast cancer. Consistently, sensitizing the cancer cells with ZMYND8 followed by doxorubicin treatment led to tumor regression in vivo and revert back the phenotypes associated with drug resistance and stemness. Intriguingly, ZMYND8 modulates the bivalent or poised oncogenes through its association with KDM5C and EZH2, thereby chemo-sensitizing the cells to chemotherapy for better disease-free survival. Collectively, our findings indicate that poised chromatin is instrumental for the acquisition of chemo-resistance by cancer cells and propose ZMYND8 as a suitable epigenetic tool that can re-sensitize the chemo-refractory breast carcinoma.
Collapse
MESH Headings
- Animals
- Antineoplastic Agents/pharmacology
- Breast Neoplasms/drug therapy
- Breast Neoplasms/genetics
- Breast Neoplasms/pathology
- Carcinogenesis/drug effects
- Carcinogenesis/genetics
- Carcinogenesis/pathology
- Cell Line, Tumor
- Cell Movement/drug effects
- Cell Movement/genetics
- Down-Regulation/drug effects
- Down-Regulation/genetics
- Doxorubicin/pharmacology
- Doxorubicin/therapeutic use
- Drug Resistance, Neoplasm/drug effects
- Drug Resistance, Neoplasm/genetics
- Enhancer of Zeste Homolog 2 Protein/metabolism
- Epigenesis, Genetic/drug effects
- Epithelial-Mesenchymal Transition/drug effects
- Epithelial-Mesenchymal Transition/genetics
- Female
- Gene Expression Profiling
- Gene Expression Regulation, Neoplastic/drug effects
- Genome, Human
- Histone Demethylases/metabolism
- Humans
- Mice, Inbred BALB C
- Mice, Nude
- Neoplastic Stem Cells/metabolism
- Neoplastic Stem Cells/pathology
- Oncogenes
- Phenotype
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- Treatment Outcome
- Triple Negative Breast Neoplasms/drug therapy
- Triple Negative Breast Neoplasms/genetics
- Triple Negative Breast Neoplasms/pathology
- Tumor Suppressor Proteins/metabolism
Collapse
Affiliation(s)
- Shravanti Mukherjee
- Biophysics and Structural Genomics Division, Saha Institute of Nuclear Physics, 1/AF Bidhannagar, Kolkata, 700064, India
| | - Santanu Adhikary
- Biophysics and Structural Genomics Division, Saha Institute of Nuclear Physics, 1/AF Bidhannagar, Kolkata, 700064, India
- Structural Biology and Bioinformatics Division, CSIR-Indian Institute of Chemical Biology, 4 Raja S.C. Mullick Road, Kolkata, 700032, India
| | - Shrikanth S Gadad
- Center of Emphasis in Cancer, Department of Molecular and Translational Medicine, Texas Tech University Health Sciences Center El Paso, El Paso, TX, 79905, USA
- Graduate School of Biomedical Sciences, Texas Tech University Health Sciences Center El Paso, El Paso, TX, 79905, USA
- Cecil H. and Ida Green Center for Reproductive Biology Sciences, Department of Obstetrics and Gynaecology, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Payel Mondal
- Biophysics and Structural Genomics Division, Saha Institute of Nuclear Physics, 1/AF Bidhannagar, Kolkata, 700064, India
- Homi Bhaba National Institute, Mumbai, India
| | - Sabyasachi Sen
- Biophysics and Structural Genomics Division, Saha Institute of Nuclear Physics, 1/AF Bidhannagar, Kolkata, 700064, India
| | - Ramesh Choudhari
- Center of Emphasis in Cancer, Department of Molecular and Translational Medicine, Texas Tech University Health Sciences Center El Paso, El Paso, TX, 79905, USA
- Shri B. M. Patil Medical College, Hospital and Research Centre, BLDE (Deemed to be University), Vijayapura, Karnataka, 586103, India
| | - Vipin Singh
- Biophysics and Structural Genomics Division, Saha Institute of Nuclear Physics, 1/AF Bidhannagar, Kolkata, 700064, India
- Homi Bhaba National Institute, Mumbai, India
| | - Swagata Adhikari
- Biophysics and Structural Genomics Division, Saha Institute of Nuclear Physics, 1/AF Bidhannagar, Kolkata, 700064, India
- Homi Bhaba National Institute, Mumbai, India
| | - Pratiti Mandal
- Cell Biology and Physiology Division, CSIR-Indian Institute of Chemical Biology, 4 Raja S.C. Mullick Road, Kolkata, 700032, India
| | - Soumi Chaudhuri
- Biophysics and Structural Genomics Division, Saha Institute of Nuclear Physics, 1/AF Bidhannagar, Kolkata, 700064, India
| | - Amrita Sengupta
- Biophysics and Structural Genomics Division, Saha Institute of Nuclear Physics, 1/AF Bidhannagar, Kolkata, 700064, India
| | - Rajkumar Lakshmanaswamy
- Center of Emphasis in Cancer, Department of Molecular and Translational Medicine, Texas Tech University Health Sciences Center El Paso, El Paso, TX, 79905, USA
- Graduate School of Biomedical Sciences, Texas Tech University Health Sciences Center El Paso, El Paso, TX, 79905, USA
| | - Partha Chakrabarti
- Cell Biology and Physiology Division, CSIR-Indian Institute of Chemical Biology, 4 Raja S.C. Mullick Road, Kolkata, 700032, India
| | - Siddhartha Roy
- Structural Biology and Bioinformatics Division, CSIR-Indian Institute of Chemical Biology, 4 Raja S.C. Mullick Road, Kolkata, 700032, India
| | - Chandrima Das
- Biophysics and Structural Genomics Division, Saha Institute of Nuclear Physics, 1/AF Bidhannagar, Kolkata, 700064, India.
- Homi Bhaba National Institute, Mumbai, India.
| |
Collapse
|
50
|
Soyama H, Miyamoto M, Ishibashi H, Iwahashi H, Matsuura H, Kakimoto S, Suzuki R, Sakamoto T, Hada T, Takano M. Placenta previa may acquire invasive nature by factors associated with epithelial-mesenchymal transition and matrix metalloproteinases. J Obstet Gynaecol Res 2020; 46:2526-2533. [PMID: 32924271 DOI: 10.1111/jog.14485] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Revised: 07/31/2020] [Accepted: 08/30/2020] [Indexed: 11/27/2022]
Abstract
AIM To investigate the differences in epithelial-mesenchymal transition (EMT)- and matrix metalloproteinases (MMP)-related factors among placenta previa with and without placenta accreta spectrum (PAS) (n = 69), and normal placenta (n = 51). METHODS The women diagnosed with placenta previa with or without PAS, and normal placentas, who delivered at our institution between 2006 and 2016, were enrolled. The difference of EMT-related factors' expression by immunochemical analysis in chorionic villi and decidual cells between the normal placenta and placenta previa with or without PAS were evaluated. RESULTS In chorionic villi of placenta previa with and without PAS, E-cadherin expression decreased, while that of ZEB1, SNAIL2 and MMP-9 increased than that in normal placenta. In decidual cells of placenta previa with and without PAS, expression of vimentin, ZEB1 and MMP-9 increased than that in normal placenta. In placenta previa with and without PAS, there was strong co-expression of ZEB1 and vimentin in chorionic villi, of ZEB1 and MMP-2 or MMP-9 in decidual cells, and of SNAIL2 and vimentin or MMP-9 in both chorionic villi and decidual cell. Vimentin expression in both chorionic villi and decidual cells was higher in placenta previa with PAS (n = 18) than in placenta previa without PAS (n = 51). MMP-2 expression in decidual cells was higher in placenta previa with PAS than in placenta previa without PAS. CONCLUSION This study revealed that EMT- and MMP-associated factors may be related to placenta previa with and without PAS. Furthermore, placenta previa without PAS may acquire invasive nature.
Collapse
Affiliation(s)
- Hiroaki Soyama
- Department of Obstetrics and Gynecology, National Defense Medical College Hospital, Saitama, Japan
| | - Morikazu Miyamoto
- Department of Obstetrics and Gynecology, National Defense Medical College Hospital, Saitama, Japan
| | - Hiroki Ishibashi
- Department of Obstetrics and Gynecology, National Defense Medical College Hospital, Saitama, Japan
| | - Hideki Iwahashi
- Department of Obstetrics and Gynecology, National Defense Medical College Hospital, Saitama, Japan
| | - Hiroko Matsuura
- Department of Obstetrics and Gynecology, National Defense Medical College Hospital, Saitama, Japan
| | - Soichiro Kakimoto
- Department of Obstetrics and Gynecology, National Defense Medical College Hospital, Saitama, Japan
| | - Rie Suzuki
- Department of Obstetrics and Gynecology, National Defense Medical College Hospital, Saitama, Japan
| | - Takahiro Sakamoto
- Department of Obstetrics and Gynecology, National Defense Medical College Hospital, Saitama, Japan
| | - Taira Hada
- Department of Obstetrics and Gynecology, National Defense Medical College Hospital, Saitama, Japan
| | - Masashi Takano
- Department of Obstetrics and Gynecology, National Defense Medical College Hospital, Saitama, Japan
| |
Collapse
|