1
|
Fernandes DDO, Machado JR, Beltrami VA, Santos ACPMD, Queiroz-Junior CM, Vago JP, Soriani FM, Amaral FA, Teixeira MM, Felix FB, Pinho V. Disruption of survivin protein expression by treatment with YM155 accelerates the resolution of neutrophilic inflammation. Br J Pharmacol 2025; 182:1206-1222. [PMID: 39568085 DOI: 10.1111/bph.17375] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2024] [Revised: 09/03/2024] [Accepted: 09/20/2024] [Indexed: 11/22/2024] Open
Abstract
BACKGROUND AND PURPOSE Prolonged survival of neutrophils is essential for determining the progression and severity of inflammatory and immune-mediated disorders, including gouty arthritis. Survivin, an anti-apoptotic molecule, has been described as a regulator of cell survival. This study aims to examine the effects of YM155 treatment, a survivin selective suppressant, in maintaining neutrophil survival in vitro and in vivo experimental settings of neutrophilic inflammation. EXPERIMENTAL APPROACH BALB/c mice were injected with monosodium urate (MSU) crystals and treated with YM155 (intra-articularly) at the peak of inflammatory response. Leukocyte recruitment, apoptosis neutrophil and efferocytosis were determined by knee joint wash cell morphology counting and flow cytometry. Resolution interval (Ri) was quantified by neutrophil infiltration, monitoring the amplitude and duration of the inflammation. Cytokine production was measured by ELISA. Mechanical hypernociception was assessed using an electronic von Frey aesthesiometer. Efferocytosis was evaluated in zymosan-induced neutrophilic peritonitis. Survivin and cleaved caspase-3 expression was determined in human neutrophils by flow cytometry. KEY RESULTS Survivin was expressed in neutrophils during MSU-induced gout, and the treatment with YM155 reduced survivin expression and shortened Ri from ∼8 h observed in vehicle-treated mice to ∼5.5 h, effect accompanied by increased neutrophil apoptosis and efferocytosis, both crucial for the inflammation resolution. Reduced IL-1β and CXCL1 levels were also observed in periarticular tissue. YM155 reduced histopathological score and hypernociceptive response. In human neutrophils, lipopolysaccharide (LPS) increased survivin expression, whereas survivin inhibition with YM155 induced neutrophil apoptosis, with activation of caspase-3. CONCLUSIONS AND IMPLICATIONS Survivin may be a promising therapeutic target to control neutrophilic inflammation.
Collapse
Affiliation(s)
- Débora de Oliveira Fernandes
- Departamento de Morfologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Jessica Rayssa Machado
- Departamento de Morfologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Vinicius Amorim Beltrami
- Departamento de Morfologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | | | - Celso Martins Queiroz-Junior
- Departamento de Morfologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Juliana Priscila Vago
- Experimental Rheumatology, Department of Rheumatology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Frederico Marianetti Soriani
- Departamento de Genética, Ecologia e Evolução, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Flávio Almeida Amaral
- Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Mauro Martins Teixeira
- Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Franciel Batista Felix
- Departamento de Morfologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Vanessa Pinho
- Departamento de Morfologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| |
Collapse
|
2
|
Kondapuram SK, Ramachandran HK, Arya H, Coumar MS. Targeting survivin for cancer therapy: Strategies, small molecule inhibitors and vaccine based therapeutics in development. Life Sci 2023; 335:122260. [PMID: 37963509 DOI: 10.1016/j.lfs.2023.122260] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 11/07/2023] [Accepted: 11/07/2023] [Indexed: 11/16/2023]
Abstract
Survivin is a member of the family of inhibitors of apoptosis proteins (IAPs). It is involved in the normal mitotic process and acts as an anti-apoptotic molecule. While terminally differentiated normal tissues lack survivin, several human malignancies have significant protein levels. Resistance to chemotherapy and radiation in tumor cells is associated with survivin expression. Decreased tumor development, apoptosis, and increased sensitivity to chemotherapy and radiation are all effects of downregulating survivin expression or activity. As a prospective cancer treatment, small molecules targeting the transcription and translation of survivin and molecules that can directly bind with the survivin are being explored both in pre-clinical and clinics. Pre-clinical investigations have found and demonstrated the effectiveness of several small-molecule survivin inhibitors. Unfortunately, these inhibitors have also been shown to have off-target effects, which could limit their clinical utility. In addition to small molecules, several survivin peptide vaccines are currently under development. These vaccines are designed to elicit a cytotoxic T-cell response against survivin, which could lead to the destruction of tumor cells expressing survivin. Some survivin-based vaccines are advancing through Phase II clinical studies. Overall, survivin is a promising cancer drug target. However, challenges still need to be addressed before the survivin targeted therapies can be widely used in the clinics.
Collapse
Affiliation(s)
- Sree Karani Kondapuram
- Department of Bioinformatics, School of Life Sciences, Pondicherry University, Kalapet, Puducherry 605014, India
| | - Hema Kasthuri Ramachandran
- Department of Bioinformatics, School of Life Sciences, Pondicherry University, Kalapet, Puducherry 605014, India
| | - Hemant Arya
- Institute for Biochemistry and Pathobiochemistry, Department of Systems Biochemistry, Faculty of Medicine, Ruhr University Bochum, 44780 Bochum, Germany
| | - Mohane Selvaraj Coumar
- Department of Bioinformatics, School of Life Sciences, Pondicherry University, Kalapet, Puducherry 605014, India.
| |
Collapse
|
3
|
Li X, Zhou L, Wang R, Zhang Y, Li W. Dihydromyricetin suppresses tumor growth via downregulation of the EGFR/Akt/survivin signaling pathway. J Biochem Mol Toxicol 2023:e23328. [PMID: 36807944 DOI: 10.1002/jbt.23328] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Revised: 11/23/2022] [Accepted: 02/09/2023] [Indexed: 02/22/2023]
Abstract
Deregulation of epidermal growth factor receptor (EGFR) signaling is frequently observed in non-small cell lung cancer (NSCLC). The present study aimed to determine the impact of dihydromyricetin (DHM) on NSCLC, a natural compound extracted from Ampelopsis grossedentata with various pharmacological activities. Results of the present study demonstrated that DHM may act as a promising antitumor agent for NSCLC therapy, inhibiting the growth of cancer cells in vitro and in vivo. Mechanistically, results of the present study demonstrated that exposure to DHM downregulated the activity of wild-type (WT) and mutant EGFRs (mutations, exon 19 deletion, and L858R/T790M mutation). Moreover, western blot analysis indicated that DHM induced cell apoptosis via suppression of the antiapoptotic protein, survivin. Results of the present study further demonstrated that depletion or activation of EGFR/Akt signaling may regulate survivin expression though modulating ubiquitination. Collectively, these results suggested that DHM may act as a potential EGFR inhibitor, and may provide a novel choice of treatment strategy for patients with NSCLC.
Collapse
Affiliation(s)
- Xiaoying Li
- Department of Radiology, The Third Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Li Zhou
- Department of Pathology, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital of Central South University, Changsha, Hunan, China.,Cell Transplantation and Gene Therapy Institute, The Third Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Ruike Wang
- Department of Radiology, The Third Xiangya Hospital of Central South University, Changsha, Hunan, China.,Cell Transplantation and Gene Therapy Institute, The Third Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Yangnan Zhang
- Department of Radiology, The Third Xiangya Hospital of Central South University, Changsha, Hunan, China.,Cell Transplantation and Gene Therapy Institute, The Third Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Wei Li
- Department of Radiology, The Third Xiangya Hospital of Central South University, Changsha, Hunan, China.,Cell Transplantation and Gene Therapy Institute, The Third Xiangya Hospital of Central South University, Changsha, Hunan, China
| |
Collapse
|
4
|
Chang WH, Liu Y, Hammes EA, Bryant KL, Cerione RA, Antonyak MA. Oncogenic RAS promotes MYC protein stability by upregulating the expression of the inhibitor of apoptosis protein family member Survivin. J Biol Chem 2023; 299:102842. [PMID: 36581205 PMCID: PMC9860443 DOI: 10.1016/j.jbc.2022.102842] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Revised: 12/15/2022] [Accepted: 12/18/2022] [Indexed: 12/28/2022] Open
Abstract
The small GTPase KRAS is frequently mutated in pancreatic cancer and its cooperation with the transcription factor MYC is essential for malignant transformation. The key to oncogenic KRAS and MYC working together is the stabilization of MYC expression due to KRAS activating the extracellular signal-regulated kinase 1/2, which phosphorylates MYC at serine 62 (Ser 62). This prevents the proteasomal degradation of MYC while enhancing its transcriptional activity. Here, we identify how this essential signaling connection between oncogenic KRAS and MYC expression is mediated by the inhibitor of apoptosis protein family member Survivin. This discovery stemmed from our finding that Survivin expression is downregulated upon treatment of pancreatic cancer cells with the KRASG12C inhibitor Sotorasib. We went on to show that oncogenic KRAS increases Survivin expression by activating extracellular signal-regulated kinase 1/2 in pancreatic cancer cells and that treating the cells either with siRNAs targeting Survivin or with YM155, a small molecule that potently blocks Survivin expression, downregulates MYC and strongly inhibited their growth. We further determined that Survivin protects MYC from degradation by blocking autophagy, which then prevents cellular inhibitor of protein phosphatase 2A from undergoing autophagic degradation. Cellular inhibitor of protein phosphatase 2A, by inhibiting protein phosphatase 2A, helps to maintain MYC phosphorylation at Ser 62, thereby ensuring its cooperation with oncogenic KRAS in driving cancer progression. Overall, these findings highlight a novel role for Survivin in mediating the cooperative actions of KRAS and MYC during malignant transformation and raise the possibility that targeting Survivin may offer therapeutic benefits against KRAS-driven cancers.
Collapse
Affiliation(s)
- Wen-Hsuan Chang
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York, USA; Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Yinzhe Liu
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York, USA
| | - Emma A Hammes
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York, USA
| | - Kirsten L Bryant
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA; Department of Pharmacology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Richard A Cerione
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York, USA; Department of Molecular Medicine, Cornell University, Ithaca, New York 14853, USA.
| | - Marc A Antonyak
- Department of Molecular Medicine, Cornell University, Ithaca, New York 14853, USA.
| |
Collapse
|
5
|
Oktem EK, Yazar M. Drug Repositioning Identifies Six Drug Candidates for Systemic Autoimmune Diseases by Integrative Analyses of Transcriptomes from Scleroderma, Systemic Lupus Erythematosus, and Sjogren's Syndrome. OMICS : A JOURNAL OF INTEGRATIVE BIOLOGY 2022; 26:683-693. [PMID: 36378860 DOI: 10.1089/omi.2022.0138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
The mechanisms of systemic autoimmune diseases (ADs) are still not clearly understood. Understanding the etiology of systemic ADs and identifying new therapeutic targets require a systems science approach. Using publicly available transcriptome data and bioinformatic analysis, we investigated the differential gene expression profiles of patients with scleroderma, systemic lupus erythematosus, and Sjogren's syndrome. Of these common differentially expressed gene signatures, 208 were regulated in the same direction (either upregulated or downregulated in all datasets) and used for drug repositioning. Six small molecule drug candidates (KU-0063794, YM-155 [sepantronium bromide], MST-312 [telomerase inhibitor IX], PLX-4720, ZM 336372, and 528116.cdx [PIK-75]) were discovered by drug repositioning as potential therapeutics for systemic ADs. The Search Tool for Chemical Interactions was used to find the anticipated target genes of the repositioned molecules. The PI3K/AKT pathway topped the list of common enriched pathways with the most anticipated target genes of the six repositioned small molecules. We also report here the molecular docking findings on the binding affinity between the repositioned drug candidates and genes from the protein-protein interaction network modules of anticipated target genes. Taken together, this study provides new insights and opens up new possibilities on both pathogenesis and treatment of systemic ADs through drug repositioning.
Collapse
Affiliation(s)
- Elif Kubat Oktem
- Department of Molecular Biology and Genetics, Faculty of Engineering and Natural Sciences, Istanbul Medeniyet University, Istanbul, Turkey
| | - Metin Yazar
- Department of Genetics and Bioengineering, Faculty of Engineering and Natural Sciences, Istanbul Okan University, Istanbul, Turkey
- Department of Bioengineering, Faculty of Engineering, Marmara University, Istanbul, Turkey
| |
Collapse
|
6
|
Devi M, Kumar P, Singh R, Narayan L, Kumar A, Sindhu J, Lal S, Hussain K, Singh D. A comprehensive review on synthesis, biological profile and photophysical studies of heterocyclic compounds derived from 2,3-diamino-1,4-naphthoquinone. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2022.133786] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
7
|
Zhuang Y, Che J, Wu M, Guo Y, Xu Y, Dong X, Yang H. Altered pathways and targeted therapy in double hit lymphoma. J Hematol Oncol 2022; 15:26. [PMID: 35303910 PMCID: PMC8932183 DOI: 10.1186/s13045-022-01249-9] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Accepted: 03/07/2022] [Indexed: 12/20/2022] Open
Abstract
High-grade B-cell lymphoma with translocations involving MYC and BCL2 or BCL6, usually referred to as double hit lymphoma (DHL), is an aggressive hematological malignance with distinct genetic features and poor clinical prognosis. Current standard chemoimmunotherapy fails to confer satisfying outcomes and few targeted therapeutics are available for the treatment against DHL. Recently, the delineating of the genetic landscape in tumors has provided insight into both biology and targeted therapies. Therefore, it is essential to understand the altered signaling pathways of DHL to develop treatment strategies with better clinical benefits. Herein, we summarized the genetic alterations in the two DHL subtypes (DHL-BCL2 and DHL-BCL6). We further elucidate their implications on cellular processes, including anti-apoptosis, epigenetic regulations, B-cell receptor signaling, and immune escape. Ongoing and potential therapeutic strategies and targeted drugs steered by these alterations were reviewed accordingly. Based on these findings, we also discuss the therapeutic vulnerabilities that coincide with these genetic changes. We believe that the understanding of the DHL studies will provide insight into this disease and capacitate the finding of more effective treatment strategies.
Collapse
Affiliation(s)
- Yuxin Zhuang
- Department of Lymphoma, The Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou, People’s Republic of China
- Hangzhou Institute of Innovative Medicine, Institute of Drug Discovery and Design, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, People’s Republic of China
| | - Jinxin Che
- Hangzhou Institute of Innovative Medicine, Institute of Drug Discovery and Design, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, People’s Republic of China
- Innovation Institute for Artificial Intelligence in Medicine of Zhejiang University, Hangzhou, People’s Republic of China
| | - Meijuan Wu
- Department of Pathology, The Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou, People’s Republic of China
| | - Yu Guo
- Innovation Institute for Artificial Intelligence in Medicine of Zhejiang University, Hangzhou, People’s Republic of China
| | - Yongjin Xu
- Department of Lymphoma, The Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou, People’s Republic of China
| | - Xiaowu Dong
- Hangzhou Institute of Innovative Medicine, Institute of Drug Discovery and Design, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, People’s Republic of China
- Innovation Institute for Artificial Intelligence in Medicine of Zhejiang University, Hangzhou, People’s Republic of China
- Cancer Center, Zhejiang University, Hangzhou, People’s Republic of China
| | - Haiyan Yang
- Department of Lymphoma, The Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou, People’s Republic of China
| |
Collapse
|
8
|
Wander P, Arentsen-Peters STCJM, Vrenken KS, Pinhanҫos SM, Koopmans B, Dolman MEM, Jones L, Garrido Castro P, Schneider P, Kerstjens M, Molenaar JJ, Pieters R, Zwaan CM, Stam RW. High-Throughput Drug Library Screening in Primary KMT2A-Rearranged Infant ALL Cells Favors the Identification of Drug Candidates That Activate P53 Signaling. Biomedicines 2022; 10:biomedicines10030638. [PMID: 35327440 PMCID: PMC8945716 DOI: 10.3390/biomedicines10030638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Revised: 02/25/2022] [Accepted: 03/07/2022] [Indexed: 02/05/2023] Open
Abstract
KMT2A-rearranged acute lymphoblastic leukemia (ALL) in infants (<1 year of age) represents an aggressive type of childhood leukemia characterized by a poor clinical outcome with a survival chance of <50%. Implementing novel therapeutic approaches for these patients is a slow-paced and costly process. Here, we utilized a drug-repurposing strategy to identify potent drugs that could expeditiously be translated into clinical applications. We performed high-throughput screens of various drug libraries, comprising 4191 different (mostly FDA-approved) compounds in primary KMT2A-rearranged infant ALL patient samples (n = 2). The most effective drugs were then tested on non-leukemic whole bone marrow samples (n = 2) to select drugs with a favorable therapeutic index for bone marrow toxicity. The identified agents frequently belonged to several recurrent drug classes, including BCL-2, histone deacetylase, topoisomerase, microtubule, and MDM2/p53 inhibitors, as well as cardiac glycosides and corticosteroids. The in vitro efficacy of these drug classes was successfully validated in additional primary KMT2A-rearranged infant ALL samples (n = 7) and KMT2A-rearranged ALL cell line models (n = 5). Based on literature studies, most of the identified drugs remarkably appeared to lead to activation of p53 signaling. In line with this notion, subsequent experiments showed that forced expression of wild-type p53 in KMT2A-rearranged ALL cells rapidly led to apoptosis induction. We conclude that KMT2A-rearranged infant ALL cells are vulnerable to p53 activation, and that drug-induced p53 activation may represent an essential condition for successful treatment results. Moreover, the present study provides an attractive collection of approved drugs that are highly effective against KMT2A-rearranged infant ALL cells while showing far less toxicity towards non-leukemic bone marrow, urging further (pre)clinical testing.
Collapse
Affiliation(s)
- Priscilla Wander
- Princess Máxima Center for Pediatric Oncology, 3584 CS Utrecht, The Netherlands; (P.W.); (S.T.C.J.M.A.-P.); (K.S.V.); (S.M.P.); (B.K.); (M.E.M.D.); (L.J.); (P.G.C.); (P.S.); (J.J.M.); (R.P.); (C.M.Z.)
- Department of Pediatric Oncology/Hematology, Erasmus MC-Sophia Children’s Hospital, 3015 CN Rotterdam, The Netherlands;
| | - Susan T. C. J. M. Arentsen-Peters
- Princess Máxima Center for Pediatric Oncology, 3584 CS Utrecht, The Netherlands; (P.W.); (S.T.C.J.M.A.-P.); (K.S.V.); (S.M.P.); (B.K.); (M.E.M.D.); (L.J.); (P.G.C.); (P.S.); (J.J.M.); (R.P.); (C.M.Z.)
| | - Kirsten S. Vrenken
- Princess Máxima Center for Pediatric Oncology, 3584 CS Utrecht, The Netherlands; (P.W.); (S.T.C.J.M.A.-P.); (K.S.V.); (S.M.P.); (B.K.); (M.E.M.D.); (L.J.); (P.G.C.); (P.S.); (J.J.M.); (R.P.); (C.M.Z.)
| | - Sandra Mimoso Pinhanҫos
- Princess Máxima Center for Pediatric Oncology, 3584 CS Utrecht, The Netherlands; (P.W.); (S.T.C.J.M.A.-P.); (K.S.V.); (S.M.P.); (B.K.); (M.E.M.D.); (L.J.); (P.G.C.); (P.S.); (J.J.M.); (R.P.); (C.M.Z.)
- CNC-Center for Neurosciences and Cell Biology, University of Coimbra, 3004-504 Coimbra, Portugal
| | - Bianca Koopmans
- Princess Máxima Center for Pediatric Oncology, 3584 CS Utrecht, The Netherlands; (P.W.); (S.T.C.J.M.A.-P.); (K.S.V.); (S.M.P.); (B.K.); (M.E.M.D.); (L.J.); (P.G.C.); (P.S.); (J.J.M.); (R.P.); (C.M.Z.)
| | - M. Emmy M. Dolman
- Princess Máxima Center for Pediatric Oncology, 3584 CS Utrecht, The Netherlands; (P.W.); (S.T.C.J.M.A.-P.); (K.S.V.); (S.M.P.); (B.K.); (M.E.M.D.); (L.J.); (P.G.C.); (P.S.); (J.J.M.); (R.P.); (C.M.Z.)
- Children’s Cancer Institute, Lowy Cancer Centre, UNSW Sydney, Kensington, Sydney, NSW 2052, Australia
- School of Women’s and Children’s Health, Faculty of Medicine, University of New South Wales, Sydney, NSW 2031, Australia
| | - Luke Jones
- Princess Máxima Center for Pediatric Oncology, 3584 CS Utrecht, The Netherlands; (P.W.); (S.T.C.J.M.A.-P.); (K.S.V.); (S.M.P.); (B.K.); (M.E.M.D.); (L.J.); (P.G.C.); (P.S.); (J.J.M.); (R.P.); (C.M.Z.)
| | - Patricia Garrido Castro
- Princess Máxima Center for Pediatric Oncology, 3584 CS Utrecht, The Netherlands; (P.W.); (S.T.C.J.M.A.-P.); (K.S.V.); (S.M.P.); (B.K.); (M.E.M.D.); (L.J.); (P.G.C.); (P.S.); (J.J.M.); (R.P.); (C.M.Z.)
| | - Pauline Schneider
- Princess Máxima Center for Pediatric Oncology, 3584 CS Utrecht, The Netherlands; (P.W.); (S.T.C.J.M.A.-P.); (K.S.V.); (S.M.P.); (B.K.); (M.E.M.D.); (L.J.); (P.G.C.); (P.S.); (J.J.M.); (R.P.); (C.M.Z.)
| | - Mark Kerstjens
- Department of Pediatric Oncology/Hematology, Erasmus MC-Sophia Children’s Hospital, 3015 CN Rotterdam, The Netherlands;
| | - Jan J. Molenaar
- Princess Máxima Center for Pediatric Oncology, 3584 CS Utrecht, The Netherlands; (P.W.); (S.T.C.J.M.A.-P.); (K.S.V.); (S.M.P.); (B.K.); (M.E.M.D.); (L.J.); (P.G.C.); (P.S.); (J.J.M.); (R.P.); (C.M.Z.)
- Department of Pharmaceutical Sciences, Utrecht University, 3584 CS Utrecht, The Netherlands
| | - Rob Pieters
- Princess Máxima Center for Pediatric Oncology, 3584 CS Utrecht, The Netherlands; (P.W.); (S.T.C.J.M.A.-P.); (K.S.V.); (S.M.P.); (B.K.); (M.E.M.D.); (L.J.); (P.G.C.); (P.S.); (J.J.M.); (R.P.); (C.M.Z.)
| | - Christian Michel Zwaan
- Princess Máxima Center for Pediatric Oncology, 3584 CS Utrecht, The Netherlands; (P.W.); (S.T.C.J.M.A.-P.); (K.S.V.); (S.M.P.); (B.K.); (M.E.M.D.); (L.J.); (P.G.C.); (P.S.); (J.J.M.); (R.P.); (C.M.Z.)
- Department of Pediatric Oncology/Hematology, Erasmus MC-Sophia Children’s Hospital, 3015 CN Rotterdam, The Netherlands;
| | - Ronald W. Stam
- Princess Máxima Center for Pediatric Oncology, 3584 CS Utrecht, The Netherlands; (P.W.); (S.T.C.J.M.A.-P.); (K.S.V.); (S.M.P.); (B.K.); (M.E.M.D.); (L.J.); (P.G.C.); (P.S.); (J.J.M.); (R.P.); (C.M.Z.)
- Correspondence: ; Tel.: +31-(0)88-9727672
| |
Collapse
|
9
|
Maniam S, Maniam S. Small Molecules Targeting Programmed Cell Death in Breast Cancer Cells. Int J Mol Sci 2021; 22:ijms22189722. [PMID: 34575883 PMCID: PMC8465612 DOI: 10.3390/ijms22189722] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2021] [Revised: 07/10/2021] [Accepted: 07/15/2021] [Indexed: 12/26/2022] Open
Abstract
Targeted chemotherapy has become the forefront for cancer treatment in recent years. The selective and specific features allow more effective treatment with reduced side effects. Most targeted therapies, which include small molecules, act on specific molecular targets that are altered in tumour cells, mainly in cancers such as breast, lung, colorectal, lymphoma and leukaemia. With the recent exponential progress in drug development, programmed cell death, which includes apoptosis and autophagy, has become a promising therapeutic target. The research in identifying effective small molecules that target compensatory mechanisms in tumour cells alleviates the emergence of drug resistance. Due to the heterogenous nature of breast cancer, various attempts were made to overcome chemoresistance. Amongst breast cancers, triple negative breast cancer (TNBC) is of particular interest due to its heterogeneous nature in response to chemotherapy. TNBC represents approximately 15% of all breast tumours, however, and still has a poor prognosis. Unlike other breast tumours, signature targets lack for TNBCs, causing high morbidity and mortality. This review highlights several small molecules with promising preclinical data that target autophagy and apoptosis to induce cell death in TNBC cells.
Collapse
Affiliation(s)
- Subashani Maniam
- School of Science, STEM College, RMIT University, Melbourne, VIC 3001, Australia
- Correspondence: (S.M.); (S.M.); Tel.: +613-9925-5688 (S.M.); +60-397692322 (S.M.)
| | - Sandra Maniam
- Department of Human Anatomy, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang 43400, Malaysia
- Correspondence: (S.M.); (S.M.); Tel.: +613-9925-5688 (S.M.); +60-397692322 (S.M.)
| |
Collapse
|
10
|
Clinicopathological and Prognostic Significance of Inhibitor of Apoptosis Protein (IAP) Family Members in Lung Cancer: A Meta-Analysis. Cancers (Basel) 2021; 13:cancers13164098. [PMID: 34439255 PMCID: PMC8392569 DOI: 10.3390/cancers13164098] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Revised: 08/07/2021] [Accepted: 08/11/2021] [Indexed: 12/25/2022] Open
Abstract
Lung cancer is the most common cause of cancer-related death worldwide. Approximately 85% is non-small-cell and 15% is small-cell lung cancer. The inhibitor of apoptosis proteins (IAPs) represent a heterogeneous family of anti-apoptotic proteins, some members of which have been reported to correlate with clinical outcome in lung cancer. We screened PubMed, Web of Science, and Scopus for studies that investigated the prognostic value and clinicopathological features of IAPs in lung cancer. Forty-five eligible studies with 4428 patients assessed the expression of the IAPs survivin, XIAP, livin, and BRUCE. The pooled hazard ratio (HR) of 33 studies that analyzed overall survival (OS) revealed a positive correlation between survivin expression and poor prognosis. Seven studies displayed a strong association between survivin and disease recurrence. Two studies that assessed the expression of XIAP and livin, respectively, proved a significant relationship of these IAPs with poor OS. Meta-analyses of clinicopathological variables revealed a significant association between survivin and T stage, UICC stage, the presence of lymph node metastasis, and grade of differentiation. In conclusion, high expression of distinct IAPs significantly correlates with prognosis in lung cancer. Therefore, lung cancer patients might benefit from a targeted therapy against specific IAPs.
Collapse
|
11
|
Chang WH, Nguyen TTT, Hsu CH, Bryant KL, Kim HJ, Ying H, Erickson JW, Der CJ, Cerione RA, Antonyak MA. KRAS-dependent cancer cells promote survival by producing exosomes enriched in Survivin. Cancer Lett 2021; 517:66-77. [PMID: 34111513 DOI: 10.1016/j.canlet.2021.05.031] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Revised: 05/20/2021] [Accepted: 05/24/2021] [Indexed: 12/20/2022]
Abstract
Mutations in KRAS frequently occur in human cancer and are especially prevalent in pancreatic ductal adenocarcinoma (PDAC), where they have been shown to promote aggressive phenotypes. However, targeting this onco-protein has proven to be challenging, highlighting the need to further identify the various mechanisms used by KRAS to drive cancer progression. Here, we considered the role played by exosomes, a specific class of extracellular vesicles (EVs) derived from the endocytic cellular trafficking machinery, in mediating the ability of KRAS to promote cell survival. We found that exosomes isolated from the serum of PDAC patients, as well as from KRAS-transformed fibroblasts and pancreatic cancer cells, were all highly enriched in the cell survival protein Survivin. Exosomes containing Survivin, upon engaging serum-starved cells, strongly enhanced their survival. Moreover, they significantly compromised the effectiveness of the conventional chemotherapy drug paclitaxel, as well as a novel therapy that combines an ERK inhibitor with chloroquine, which is currently in clinical trials for PDAC. The survival benefits provided by oncogenic KRAS-derived exosomes were markedly reduced when depleted of Survivin using siRNA or upon treatment with the Survivin inhibitor YM155. Taken together, these findings demonstrate how KRAS mutations give rise to exosomes that provide a unique form of intercellular communication to promote cancer cell survival and therapy resistance, as well as raise interesting possibilities regarding their potential for serving as therapeutic targets and diagnostic markers for KRAS-dependent cancers.
Collapse
Affiliation(s)
- Wen-Hsuan Chang
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY, USA
| | - Thuy-Tien Thi Nguyen
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY, USA
| | - Chia-Hsin Hsu
- Department of Molecular Medicine, Cornell University, Ithaca, NY, USA
| | - Kirsten L Bryant
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA; Department of Pharmacology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Hong Jin Kim
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA; Department of Surgery, University of North Carolina, Chapel Hill, NC, USA
| | - Haoqiang Ying
- Department of Molecular and Cellular Oncology, Division of Basic Science Research, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Jon W Erickson
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY, USA
| | - Channing J Der
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA; Department of Pharmacology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA; Curriculum in Genetics and Molecular Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Richard A Cerione
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY, USA; Department of Molecular Medicine, Cornell University, Ithaca, NY, USA.
| | - Marc A Antonyak
- Department of Molecular Medicine, Cornell University, Ithaca, NY, USA
| |
Collapse
|
12
|
Miles MA, Caruso S, Baxter AA, Poon IKH, Hawkins CJ. Smac mimetics can provoke lytic cell death that is neither apoptotic nor necroptotic. Apoptosis 2021; 25:500-518. [PMID: 32440848 DOI: 10.1007/s10495-020-01610-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Smac mimetics, or IAP antagonists, are a class of drugs currently being evaluated as anti-cancer therapeutics. These agents antagonize IAP proteins, including cIAP1/2 and XIAP, to induce cell death via apoptotic or, upon caspase-8 deficiency, necroptotic cell death pathways. Many cancer cells are unresponsive to Smac mimetic treatment as a single agent but can be sensitized to killing in the presence of the cytokine TNFα, provided either exogenously or via autocrine production. We found that high concentrations of a subset of Smac mimetics could provoke death in cells that did not produce TNFα, despite sensitization at lower concentrations by TNFα. The ability of these drugs to kill did not correlate with valency. These cells remained responsive to the lethal effects of Smac mimetics at high concentrations despite genetic or pharmacological impairments in apoptotic, necroptotic, pyroptotic, autophagic and ferroptotic cell death pathways. Analysis of dying cells revealed necrotic morphology, which was accompanied by the release of lactate dehydrogenase and cell membrane rupture without prior phosphatidylserine exposure implying cell lysis, which occurred over a several hours. Our study reveals that cells incapable of autocrine TNFα production are sensitive to some Smac mimetic compounds when used at high concentrations, and this exposure elicits a lytic cell death phenotype that occurs via a mechanism not requiring apoptotic caspases or necroptotic effectors RIPK3 or MLKL. These data reveal the possibility that non-canonical cell death pathways can be triggered by these drugs when applied at high concentrations.
Collapse
Affiliation(s)
- Mark A Miles
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Bundoora, VIC, 3086, Australia.
| | - Sarah Caruso
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Bundoora, VIC, 3086, Australia
| | - Amy A Baxter
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Bundoora, VIC, 3086, Australia
| | - Ivan K H Poon
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Bundoora, VIC, 3086, Australia
| | - Christine J Hawkins
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Bundoora, VIC, 3086, Australia
| |
Collapse
|
13
|
Wani TH, Chowdhury G, Chakrabarty A. Generation of reactive oxygen species is the primary mode of action and cause of survivin suppression by sepantronium bromide (YM155). RSC Med Chem 2021; 12:566-578. [PMID: 34046628 PMCID: PMC8128069 DOI: 10.1039/d0md00383b] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Accepted: 01/25/2021] [Indexed: 12/24/2022] Open
Abstract
Survivin is a lucrative broad-spectrum drug target for different cancer types, including triple negative breast cancer (TNBC). Sepantronium bromide (YM155) is the first of its class of survivin suppressants and was found to be quite effective in pre-clinical models of TNBC. However, in clinical trials when given in combination with docetaxel, YM55 failed to provide any added advantage. To understand if the clinical outcome is due to YM155 being ineffective or due to an inappropriate choice of combination, we need to elucidate its true mode of action. Hence, to explain the unexpected and unexplained observations pertaining to YM155 biology and its mode of action, we developed isogenic pairs of YM155-sensitive and -resistant TNBC cell lines and characterized them in detail by various biochemical assays. We found that YM155 generates reactive oxygen species (ROS) in the mitochondria in addition to the previously discovered redox cycling pathway. Both survivin suppression and DNA damage are secondary effects resulting from the ROS which contribute to the drug's cytotoxic effects on TNBC cells. Indeed, adaptation to both these pathways was important in conferring YM155 resistance. Finally, we uncovered a unique connection between the ROS and control of survivin expression involving a ROS/AKT/FoxO/survivin axis in TNBC cells. Together, by deciphering the true mode of action of YM155, we present a possible explanation for its poor clinical efficacy when used in combination with docetaxel. The results and conclusions presented here provide the information needed to effectively use YM155 in combination therapy.
Collapse
Affiliation(s)
- Tasaduq Hussain Wani
- Department of Life Sciences, Shiv Nadar University Greater Noida UP 201314 India
| | | | - Anindita Chakrabarty
- Department of Life Sciences, Shiv Nadar University Greater Noida UP 201314 India
| |
Collapse
|
14
|
Efficient Stable Cell Line Generation of Survivin as an In Vitro Model for Specific Functional Analysis in Apoptosis and Drug Screening. Mol Biotechnol 2021; 63:515-524. [PMID: 33765242 DOI: 10.1007/s12033-021-00313-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/03/2021] [Indexed: 12/18/2022]
Abstract
Recognizing proteins that lead to a decreased efficiency of treatment in cancer cells constitutes a main goal for biomedical and biotechnological research and applications. Establishing recombinant cells that overexpress a gene of interest stably is important for treatment studies and drug/compound screening. Survivin is an anti-apoptotic protein which can be a potential candidate for regulating cell death and survival. To investigate the association between survivin increment and apoptosis rate, survivin-reconstituted HEK (HEK-S) cell was developed as in vitro model. RT-PCR and Western blot demonstrated that survivin was constitutively overexpressed in HEK-S cells. Both morphological observation and survival assay showed that HEK-S cells were significantly resistant to apoptotic stimuli. Survivin overexpression led to a decrease in caspase 3/7 activity, whereas YM155 led to a corresponding enhance of caspase activity. ROS level was decreased but ATP content increased in HEK-S cells. Also, HEK-S showed less red- fluorescence and reduced cell proliferation compared to HEK after stimulation. Resistance to laser irradiation was clearly visible as compared with control. Moreover, scratching analysis demonstrated the ability of survivin to cause neighboring cells to increase resistance to drug, whereas YM155 enhanced apoptotic rate and declined invasion in HEK-S cells.
Collapse
|
15
|
Guzmán EA, Pitts TP, Tandberg KR, Winder PL, Wright AE. Discovery of Survivin Inhibitors Part 1: Screening the Harbor Branch Pure Compound Library. Mar Drugs 2021; 19:md19020073. [PMID: 33573152 PMCID: PMC7911841 DOI: 10.3390/md19020073] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Revised: 01/23/2021] [Accepted: 01/24/2021] [Indexed: 12/14/2022] Open
Abstract
Survivin is a 16.5 KDa protein whose functions include promoting cellular mitosis, angiogenesis, and senescence as well as inhibiting apoptosis. Higher survivin expression is found in cancer tissues than normal tissues, and this expression correlates with disease progression and aggressiveness. Survivin has been validated as a clinical target for cancer. Small molecules are important antagonists of survivin levels in cancer cells. A structurally diverse library of genetically encoded small molecules (natural products) derived from marine plants, invertebrates, and microbes was screened for their ability to reduce expression levels of survivin in the DLD-1 colon adenocarcinoma and the A549 nonsmall cell lung carcinoma cell lines. This led to the identification of this novel activity for the known compounds eryloside E, ilicicolin H, tanzawaic acid A, and p-hydroxyphenopyrrozin. Both eryloside E and ilicicolin H showed the ability to reduce survivin expression in the low micromolar range against both cell lines.
Collapse
|
16
|
Kotolloshi R, Hölzer M, Gajda M, Grimm MO, Steinbach D. SLC35F2, a Transporter Sporadically Mutated in the Untranslated Region, Promotes Growth, Migration, and Invasion of Bladder Cancer Cells. Cells 2021; 10:E80. [PMID: 33418944 PMCID: PMC7825079 DOI: 10.3390/cells10010080] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Revised: 12/29/2020] [Accepted: 12/30/2020] [Indexed: 12/22/2022] Open
Abstract
Bladder cancer is a very heterogeneous disease and the molecular mechanisms of carcinogenesis and progression are insufficiently investigated. From the DNA sequencing analysis of matched non-muscle-invasive bladder cancer (NMIBC) and muscle-invasive bladder cancer (MIBC) samples from eight patients, we identified the tumour-associated gene SLC35F2 to be mutated in the 5' and 3' untranslated region (UTR). One mutation in 3'UTR increased the luciferase activity reporter, suggesting its influence on the protein expression of SLC35F2. The mRNA level of SLC35F2 was increased in MIBC compared with NMIBC. Furthermore, in immunohistochemical staining, we observed a strong intensity of SLC35F2 in single tumour cells and in the border cells of solid tumour areas with an atypical accumulation around the nucleus, especially in the MIBC. This suggests that SLC35F2 might be highly expressed in aggressive and invasive tumour cells. Moreover, knockdown of SLC35F2 repressed the growth of bladder cancer cells in the monolayer and spheroid model and suppressed migration and invasion of bladder cancer cells. In conclusion, we suggest that SLC35F2 is involved in bladder cancer progression and might provide a new therapeutic approach, for example, by the anti-cancer drug YM155, a cargo of the SLC35F2 transporter.
Collapse
Affiliation(s)
- Roland Kotolloshi
- Department of Urology, Jena University Hospital, 07740 Jena, Germany; (R.K.); (M.-O.G.)
| | - Martin Hölzer
- RNA Bioinformatics and High-Throughput Analysis, Friedrich Schiller University Jena, 07743 Jena, Germany;
| | - Mieczyslaw Gajda
- Department of Forensic Medicine, Section of Pathology, Jena University Hospital, 07740 Jena, Germany;
| | - Marc-Oliver Grimm
- Department of Urology, Jena University Hospital, 07740 Jena, Germany; (R.K.); (M.-O.G.)
| | - Daniel Steinbach
- Department of Urology, Jena University Hospital, 07740 Jena, Germany; (R.K.); (M.-O.G.)
| |
Collapse
|
17
|
Majera D, Mistrik M. Effect of Sepatronium Bromide (YM-155) on DNA Double-Strand Breaks Repair in Cancer Cells. Int J Mol Sci 2020; 21:ijms21249431. [PMID: 33322336 PMCID: PMC7763167 DOI: 10.3390/ijms21249431] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Revised: 12/04/2020] [Accepted: 12/09/2020] [Indexed: 12/19/2022] Open
Abstract
Survivin, as an antiapoptotic protein often overexpressed in cancer cells, is a logical target for potential cancer treatment. By overexpressing survivin, cancer cells can avoid apoptotic cell death and often become resistant to treatments, representing a significant obstacle in modern oncology. A survivin suppressor, an imidazolium-based compound known as YM-155, is nowadays studied as an attractive anticancer agent. Although survivin suppression by YM-155 is evident, researchers started to report that YM-155 is also an inducer of DNA damage introducing yet another anticancer mechanism of this drug. Moreover, the concentrations of YM-155 for DNA damage induction seems to be far lower than those needed for survivin inhibition. Understanding the molecular mechanism of action of YM-155 is of vital importance for modern personalized medicine involving the selection of responsive patients and possible treatment combinations. This review focuses mainly on the documented effects of YM-155 on DNA damage signaling pathways. It summarizes up to date literature, and it outlines the molecular mechanism of YM-155 action in the context of the DNA damage field.
Collapse
|
18
|
Zhan T, Faehling V, Rauscher B, Betge J, Ebert MP, Boutros M. Multi-omics integration identifies a selective vulnerability of colorectal cancer subtypes to YM155. Int J Cancer 2020; 148:1948-1963. [PMID: 33186476 DOI: 10.1002/ijc.33393] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Revised: 10/16/2020] [Accepted: 11/02/2020] [Indexed: 12/24/2022]
Abstract
Tumor heterogeneity is a major challenge to the treatment of colorectal cancer (CRC). Recently, a transcriptome-based classification was developed, segregating CRC into four consensus molecular subtypes (CMS) with distinct biological and clinical characteristics. Here, we applied the CMS classification on CRC cell lines to identify novel subtype-specific drug vulnerabilities. We combined publicly available transcriptome data from multiple resources to assign 157 CRC cell lines to CMS. By integrating results from large-scale drug screens, we discovered that the CMS1 subtype is highly vulnerable to the BIRC5 suppressor YM155. We confirmed our results using an independent panel of CRC cell lines and demonstrated a 100-fold higher sensitivity of CMS1. This vulnerability was specific to YM155 and not observed for commonly used chemotherapeutic agents. In CMS1 CRC, low concentrations of YM155 induced apoptosis and expression signatures associated with ER stress-mediated apoptosis signaling. Using a genome-wide CRISPR/Cas9 screen, we further discovered a novel role of genes involved in LDL-receptor trafficking as modulators of YM155 sensitivity in the CRC cell line HCT116. Our work shows that combining drug response data with CMS classification in cell lines can reveal selective vulnerabilities and proposes YM155 as a novel subtype-specific drug.
Collapse
Affiliation(s)
- Tianzuo Zhan
- Division of Signaling and Functional Genomics, German Cancer Research Center (DKFZ), Department of Cell and Molecular Biology, Faculty of Medicine Mannheim, Heidelberg University, Heidelberg, Germany.,Department of Medicine II, Universitätsmedizin Mannheim, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Verena Faehling
- Division of Signaling and Functional Genomics, German Cancer Research Center (DKFZ), Department of Cell and Molecular Biology, Faculty of Medicine Mannheim, Heidelberg University, Heidelberg, Germany
| | - Benedikt Rauscher
- Division of Signaling and Functional Genomics, German Cancer Research Center (DKFZ), Department of Cell and Molecular Biology, Faculty of Medicine Mannheim, Heidelberg University, Heidelberg, Germany
| | - Johannes Betge
- Division of Signaling and Functional Genomics, German Cancer Research Center (DKFZ), Department of Cell and Molecular Biology, Faculty of Medicine Mannheim, Heidelberg University, Heidelberg, Germany.,Department of Medicine II, Universitätsmedizin Mannheim, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Matthias P Ebert
- Department of Medicine II, Universitätsmedizin Mannheim, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Michael Boutros
- Division of Signaling and Functional Genomics, German Cancer Research Center (DKFZ), Department of Cell and Molecular Biology, Faculty of Medicine Mannheim, Heidelberg University, Heidelberg, Germany.,Department of Medicine II, Universitätsmedizin Mannheim, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany.,German Cancer Consortium (DKTK), Heidelberg, Germany
| |
Collapse
|
19
|
Chandrasekaran AP, Poondla N, Ko NR, Oh SJ, Ramakrishna S. YM155 sensitizes HeLa cells to TRAIL-mediated apoptosis via cFLIP and survivin downregulation. Oncol Lett 2020; 20:72. [PMID: 32863905 PMCID: PMC7436932 DOI: 10.3892/ol.2020.11933] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Accepted: 06/16/2020] [Indexed: 12/27/2022] Open
Abstract
Tumor necrosis factor-related apoptosis inducing ligand (TRAIL)-mediated apoptosis is a safe method for the treatment of various types of cancer. However, TRAIL therapy is less effective in certain types of cancer, including cervical cancer. To address this problem, a combinatorial approach was employed to sensitize cervical cancer at low dosages. YM155, a survivin inhibitor, was used at low dosages along with TRAIL to induce apoptosis in HeLa cells. The effects of the individual treatment with TRAIL and YM155 on apoptosis were assessed by propidium iodide assay. In addition, to validate the DNA damage exhibited by the combination treatment, the phosphorylation status of γH2A histone family member X was investigated by immunofluorescence and western blot analysis. TRAIL or YM155 alone had no significant effect on DNA damage and apoptosis. However, the TRAIL/YM155 combination triggered a synergistic pro-apoptotic stimulus in HeLa cells. The mRNA and protein levels of CASP8- and FADD-like apoptosis regulator (cFLIP), death receptor 5 (DR5) and survivin were monitored using RT-PCR and western blot analysis, respectively. This combinatorial approach downregulated both mRNA and protein expression levels of cFLIP and survivin. Further experimental results suggested that the combination treatment significantly reduced cell viability, invasion and migration of HeLa cells. Overall, the present findings indicated that the low dosage of YM155 sensitized HeLa cells to TRAIL-induced apoptosis via a mechanism involving downregulation of cFLIP and survivin. The results indicated the importance of combination drug treatment and reveal an effective therapeutic alternative for TRAIL therapy in human cervical cancer.
Collapse
Affiliation(s)
- Arun Pandian Chandrasekaran
- Graduate School of Biomedical Science and Engineering, Department of Biomedical Science, Hanyang University, Seoul 04763, Republic of Korea
| | - Naresh Poondla
- Graduate School of Biomedical Science and Engineering, Department of Biomedical Science, Hanyang University, Seoul 04763, Republic of Korea
| | - Na Re Ko
- Biomedical Research Center, Asan Institute for Life Sciences, Seoul 05505, Republic of Korea.,Department of Nuclear Medicine, Asan Medical Center, University of Ulsan College of Medicine, Seoul 05505, Republic of Korea
| | - Seung Jun Oh
- Department of Nuclear Medicine, Asan Medical Center, University of Ulsan College of Medicine, Seoul 05505, Republic of Korea
| | - Suresh Ramakrishna
- Graduate School of Biomedical Science and Engineering, Department of Biomedical Science, Hanyang University, Seoul 04763, Republic of Korea.,College of Medicine, Department of Genetics, Hanyang University, Seoul 04763, Republic of Korea
| |
Collapse
|
20
|
Jin LY, Zhao K, Xu LJ, Zhao RX, Werle KD, Wang Y, Liu XL, Chen Q, Wu ZJ, Zhang K, Zhao Y, Jiang GQ, Cui FM, Xu ZX. LKB1 inactivation leads to centromere defects and genome instability via p53-dependent upregulation of survivin. Aging (Albany NY) 2020; 12:14341-14354. [PMID: 32668413 PMCID: PMC7425461 DOI: 10.18632/aging.103473] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Accepted: 04/17/2020] [Indexed: 01/25/2023]
Abstract
Inactivating mutations in the liver kinase B1 (LKB1) tumor suppressor gene underlie Peutz-Jeghers syndrome (PJS) and occur frequently in various human cancers. We previously showed that LKB1 regulates centrosome duplication via PLK1. Here, we report that LKB1 further helps to maintain genomic stability through negative regulation of survivin, a member of the chromosomal passenger complex (CPC) that mediates CPC targeting to the centromere. We found that loss of LKB1 led to accumulation of misaligned and lagging chromosomes at metaphase and anaphase and increased the appearance of multi- and micro-nucleated cells. Ectopic LKB1 expression reduced these features and improved mitotic fidelity in LKB1-deficient cells. Through pharmacological and genetic manipulations, we showed that LKB1-mediated repression of survivin is independent of AMPK, but requires p53. Consistent with the key influence of LKB1 on survivin expression, immunohistochemical analysis indicated that survivin is highly expressed in intestinal polyps from a PJS patient. Lastly, we reaffirm a potential therapeutic avenue to treat LKB1-mutated tumors by demonstrating the increased sensitivity to survivin inhibitors of LKB1-deficient cells.
Collapse
Affiliation(s)
- Li-Yan Jin
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, Soochow University, Suzhou 215123, China.,Department of General Surgery, The Second Affiliated Hospital, Soochow University, Suzhou 215004, China
| | - Kui Zhao
- Department of General Surgery, The Second Affiliated Hospital, Soochow University, Suzhou 215004, China
| | - Long-Jiang Xu
- Department of Pathology, The Second Affiliated Hospital, Soochow University, Suzhou 215004, China
| | - Rui-Xun Zhao
- Department of Medicine, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Kaitlin D Werle
- Department of Medicine, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Yong Wang
- Department of Medicine, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Xiao-Long Liu
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, Soochow University, Suzhou 215123, China.,Department of Urology, The Second Affiliated Hospital, Soochow University, Suzhou 215004, China
| | - Qiu Chen
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, Soochow University, Suzhou 215123, China
| | - Zhuo-Jun Wu
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, Soochow University, Suzhou 215123, China
| | - Ke Zhang
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, Soochow University, Suzhou 215123, China
| | - Ying Zhao
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, Soochow University, Suzhou 215123, China
| | - Guo-Qin Jiang
- Department of General Surgery, The Second Affiliated Hospital, Soochow University, Suzhou 215004, China
| | - Feng-Mei Cui
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, Soochow University, Suzhou 215123, China.,Department of Medicine, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Zhi-Xiang Xu
- School of Life Sciences, Henan University, Kaifeng, Henan Province 475004, China.,Department of Medicine, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| |
Collapse
|
21
|
Wang X, Zhang X, Qiu C, Yang N. STAT3 Contributes to Radioresistance in Cancer. Front Oncol 2020; 10:1120. [PMID: 32733808 PMCID: PMC7358404 DOI: 10.3389/fonc.2020.01120] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2020] [Accepted: 06/04/2020] [Indexed: 12/14/2022] Open
Abstract
Radiotherapy has been used in the clinic for more than one century and it is recognized as one of the main methods in the treatment of malignant tumors. Signal Transducers and Activators of Transcription 3 (STAT3) is reported to be upregulated in many tumor types, and it is believed to be involved in the tumorigenesis, development and malignant behaviors of tumors. Previous studies also found that STAT3 contributes to chemo-resistance of various tumor types. Recently, many studies reported that STAT3 is involved in the response of tumor cells to radiotherapy. But until now, the role of the STAT3 in radioresistance has not been systematically demonstrated. In this study, we will review the radioresistance induced by STAT3 and relative solutions will be discussed.
Collapse
Affiliation(s)
- Xuehai Wang
- Department of Otolaryngology, Weihai Municipal Hospital, Shandong University, Weihai, China
| | - Xin Zhang
- Department of Neurosurgery, Qilu Hospital of Shandong University and Institute of Brain and Brain-Inspired Science, Shandong University, Jinan, China.,Shandong Key Laboratory of Brain Function Remodeling, Jinan, China
| | - Chen Qiu
- Department of Radiation Oncology, Qilu Hospital of Shandong University, Jinan, China
| | - Ning Yang
- Department of Neurosurgery, Qilu Hospital of Shandong University and Institute of Brain and Brain-Inspired Science, Shandong University, Jinan, China.,Shandong Key Laboratory of Brain Function Remodeling, Jinan, China
| |
Collapse
|
22
|
YM155-Adapted Cancer Cell Lines Reveal Drug-Induced Heterogeneity and Enable the Identification of Biomarker Candidates for the Acquired Resistance Setting. Cancers (Basel) 2020; 12:cancers12051080. [PMID: 32357518 PMCID: PMC7281096 DOI: 10.3390/cancers12051080] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Revised: 04/05/2020] [Accepted: 04/23/2020] [Indexed: 12/16/2022] Open
Abstract
Survivin is a drug target and its suppressant YM155 a drug candidate mainly investigated for high-risk neuroblastoma. Findings from one YM155-adapted subline of the neuroblastoma cell line UKF-NB-3 had suggested that increased ABCB1 (mediates YM155 efflux) levels, decreased SLC35F2 (mediates YM155 uptake) levels, decreased survivin levels, and TP53 mutations indicate YM155 resistance. Here, the investigation of 10 additional YM155-adapted UKF-NB-3 sublines only confirmed the roles of ABCB1 and SLC35F2. However, cellular ABCB1 and SLC35F2 levels did not indicate YM155 sensitivity in YM155-naïve cells, as indicated by drug response data derived from the Cancer Therapeutics Response Portal (CTRP) and the Genomics of Drug Sensitivity in Cancer (GDSC) databases. Moreover, the resistant sublines were characterized by a remarkable heterogeneity. Only seven sublines developed on-target resistance as indicated by resistance to RNAi-mediated survivin depletion. The sublines also varied in their response to other anti-cancer drugs. In conclusion, cancer cell populations of limited intrinsic heterogeneity can develop various resistance phenotypes in response to treatment. Therefore, individualized therapies will require monitoring of cancer cell evolution in response to treatment. Moreover, biomarkers can indicate resistance formation in the acquired resistance setting, even when they are not predictive in the intrinsic resistance setting.
Collapse
|
23
|
Michaelis M, Voges Y, Rothweiler F, Weipert F, Zia-Ahmad A, Cinatl J, von Deimling A, Westermann F, Rödel F, Wass MN, Cinatl J. Testing of the Survivin Suppressant YM155 in a Large Panel of Drug-Resistant Neuroblastoma Cell Lines. Cancers (Basel) 2020; 12:cancers12030577. [PMID: 32131402 PMCID: PMC7139505 DOI: 10.3390/cancers12030577] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2020] [Revised: 02/27/2020] [Accepted: 02/28/2020] [Indexed: 12/11/2022] Open
Abstract
The survivin suppressant YM155 is a drug candidate for neuroblastoma. Here, we tested YM155 in 101 neuroblastoma cell lines (19 parental cell lines, 82 drug-adapted sublines). Seventy seven (77) cell lines displayed YM155 IC50s in the range of clinical YM155 concentrations. ABCB1 was an important determinant of YM155 resistance. The activity of the ABCB1 inhibitor zosuquidar ranged from being similar to that of the structurally different ABCB1 inhibitor verapamil to being 65-fold higher. ABCB1 sequence variations may be responsible for this, suggesting that the design of variant-specific ABCB1 inhibitors may be possible. Further, we showed that ABCC1 confers YM155 resistance. Previously, p53 depletion had resulted in decreased YM155 sensitivity. However, TP53-mutant cells were not generally less sensitive to YM155 than TP53 wild-type cells in this study. Finally, YM155 cross-resistance profiles differed between cells adapted to drugs as similar as cisplatin and carboplatin. In conclusion, the large cell line panel was necessary to reveal an unanticipated complexity of the YM155 response in neuroblastoma cell lines with acquired drug resistance. Novel findings include that ABCC1 mediates YM155 resistance and that YM155 cross-resistance profiles differ between cell lines adapted to drugs as similar as cisplatin and carboplatin.
Collapse
Affiliation(s)
- Martin Michaelis
- Industrial Biotechnology Centre and School of Biosciences, University of Kent, Canterbury CT2 7NJ, UK; (M.M.); (M.N.W.)
| | - Yvonne Voges
- Institut für Medizinische Virologie, Goethe-Universität, 60596 Frankfurt am Main, Germany; (Y.V.); (F.R.); (A.Z.-A.); (J.C.)
| | - Florian Rothweiler
- Institut für Medizinische Virologie, Goethe-Universität, 60596 Frankfurt am Main, Germany; (Y.V.); (F.R.); (A.Z.-A.); (J.C.)
| | - Fabian Weipert
- Department of Radiotherapy and Oncology, Goethe-Universität, 60590 Frankfurt am Main, Germany; (F.W.); (F.R.)
| | - Amara Zia-Ahmad
- Institut für Medizinische Virologie, Goethe-Universität, 60596 Frankfurt am Main, Germany; (Y.V.); (F.R.); (A.Z.-A.); (J.C.)
| | - Jaroslav Cinatl
- Institut für Medizinische Virologie, Goethe-Universität, 60596 Frankfurt am Main, Germany; (Y.V.); (F.R.); (A.Z.-A.); (J.C.)
| | - Andreas von Deimling
- Department of Neuropathology, Ruprecht-Karls-University Heidelberg and Deutsches Krebsforschungszentrum, 69120 Heidelberg, Germany;
| | - Frank Westermann
- Division Neuroblastoma Genomics, B087, German Cancer Research Center and Hopp Children’s Cancer Center at the NCT (KiTZ), 69120 Heidelberg, Germany;
| | - Franz Rödel
- Department of Radiotherapy and Oncology, Goethe-Universität, 60590 Frankfurt am Main, Germany; (F.W.); (F.R.)
| | - Mark N. Wass
- Industrial Biotechnology Centre and School of Biosciences, University of Kent, Canterbury CT2 7NJ, UK; (M.M.); (M.N.W.)
| | - Jindrich Cinatl
- Institut für Medizinische Virologie, Goethe-Universität, 60596 Frankfurt am Main, Germany; (Y.V.); (F.R.); (A.Z.-A.); (J.C.)
- Correspondence: ; Tel.: +49-69-6301-6409
| |
Collapse
|
24
|
Turner TH, Alzubi MA, Harrell JC. Identification of synergistic drug combinations using breast cancer patient-derived xenografts. Sci Rep 2020; 10:1493. [PMID: 32001757 PMCID: PMC6992640 DOI: 10.1038/s41598-020-58438-0] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2019] [Accepted: 01/15/2020] [Indexed: 12/21/2022] Open
Abstract
Compared with other breast cancer subtypes, triple-negative breast cancer (TNBC) is associated with relatively poor outcomes due to its metastatic propensity, frequent failure to respond to chemotherapy, and lack of alternative, targeted treatment options, despite decades of major research efforts. Our studies sought to identify promising targeted therapeutic candidates for TNBC through in vitro screening of 1,363 drugs in patient-derived xenograft (PDX) models. Using this approach, we generated a dataset that can be used to assess and compare responses of various breast cancer PDXs to many different drugs. Through a series of further drug screening assays and two-drug combination testing, we identified that the combination of afatinib (epidermal growth factor receptor (EGFR) inhibitor) and YM155 (inhibitor of baculoviral inhibitor of apoptosis repeat-containing 5 (BIRC5; survivin) expression) is synergistically cytotoxic across multiple models of basal-like TNBC and reduces PDX mammary tumor growth in vivo. We found that YM155 reduces EGFR expression in TNBC cells, shedding light on its potential mechanism of synergism with afatinib. Both EGFR and BIRC5 are highly expressed in basal-like PDXs, cell lines, and patients, and high expression of both genes reduces metastasis-free survival, suggesting that co-targeting of these proteins holds promise for potential clinical success in TNBC.
Collapse
Affiliation(s)
- Tia H Turner
- Department of Pathology, Virginia Commonwealth University, Richmond, VA, USA.,Wright Center for Clinical and Translational Research, Virginia Commonwealth University, Richmond, VA, USA
| | - Mohammad A Alzubi
- Department of Pathology, Virginia Commonwealth University, Richmond, VA, USA.,Integrative Life Sciences Doctoral Program, Virginia Commonwealth University, Richmond, VA, USA
| | - J Chuck Harrell
- Department of Pathology, Virginia Commonwealth University, Richmond, VA, USA. .,Wright Center for Clinical and Translational Research, Virginia Commonwealth University, Richmond, VA, USA. .,Integrative Life Sciences Doctoral Program, Virginia Commonwealth University, Richmond, VA, USA. .,Massey Cancer Center, Virginia Commonwealth University, Richmond, VA, USA.
| |
Collapse
|
25
|
Brown M, Zhang W, Yan D, Kenath R, Le L, Wang H, Delitto D, Ostrov D, Robertson K, Liu C, Pham K. The role of survivin in the progression of pancreatic ductal adenocarcinoma (PDAC) and a novel survivin-targeted therapeutic for PDAC. PLoS One 2020; 15:e0226917. [PMID: 31929540 PMCID: PMC6957139 DOI: 10.1371/journal.pone.0226917] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2019] [Accepted: 12/07/2019] [Indexed: 12/11/2022] Open
Abstract
Treating pancreatic ductal adenocarcinoma (PDAC) remains a major hurdle in the field of oncology. Less than half of patients respond to frontline chemotherapy and the pancreatic tumor microenvironment limits the efficacy of immunotherapeutic approaches. Targeted therapies could serve as effective treatments to enhance the clinical response rate. One potential therapeutic target is survivin, a protein that is normally expressed during embryonic and fetal development and has a critical impact on cell cycle control and apoptosis. In adulthood, survivin is not present in most normal adult cells, but is significantly re-expressed in tumor tissues. In PDAC, elevated survivin expression is correlated with treatment resistance and lower patient survival, although the underlying mechanisms of survivin's action in this type of cancer is poorly understood. Using patient derived xenografts of PDAC and their corresponding primary pancreatic cancer lines (PPCL-46 and PPCL-LM1) possessing increased expression of survivin, we aimed to evaluate the therapeutic response of a novel survivin inhibitor, UFSHR, with respect to survivin expression and the tumorigenic characteristics of PDAC. Cell viability and apoptosis analyses revealed that repressing survivin expression by UFSHR or YM155, a well-known inhibitor of survivin, in PPCLs effectively reduces cell proliferation by inducing apoptosis. Tumor cell migration was also hindered following treatment with YM155 and UFSHR. In addition, both survivin inhibitors, particularly UFSHR, effectively reduced progression of PPCL-46 and PPCL-LM1 tumors, when compared to the untreated cohort. Overall, this study provides solid evidence to support the critical role of survivin in PDAC progression and proposes a novel survivin inhibitor UFSHR that can become an alternative strategy for this type of cancer.
Collapse
Affiliation(s)
- Matthew Brown
- Department of Cell Biology and Neuroscience, School of Arts and Sciences, Rutgers University, Piscataway, New Jersey, United States of America
| | - Wanbin Zhang
- School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai, P.R. China
| | - Deyue Yan
- School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai, P.R. China
| | - Rajath Kenath
- Department of Pathology and Laboratory Medicine, New Jersey Medical School, Rutgers University, Newark, New Jersey, United States of America
| | - Le Le
- Department of Pathology and Laboratory Medicine, New Jersey Medical School, Rutgers University, Newark, New Jersey, United States of America
| | - He Wang
- Department of Pathology and Laboratory Medicine, Robert Wood Johnson Medical School, Rutgers University, New Brunswick, New Jersey, United States of America
- Department of Pathology and Laboratory Medicine, New Jersey Medical School, Rutgers University, Newark, New Jersey, United States of America
| | - Daniel Delitto
- Department of Surgery, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
| | - David Ostrov
- Department of Pathology, Immunology, and Laboratory Medicine, University of Florida, Gainesville, Florida, United States of America
| | - Keith Robertson
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Rochester, Minnesota, United States of America
- Center for Individualized Medicine, Mayo Clinic, Rochester, Minnesota, United States of America
| | - Chen Liu
- Department of Pathology and Laboratory Medicine, Robert Wood Johnson Medical School, Rutgers University, New Brunswick, New Jersey, United States of America
- Department of Pathology and Laboratory Medicine, New Jersey Medical School, Rutgers University, Newark, New Jersey, United States of America
- * E-mail: (KP); (CL)
| | - Kien Pham
- Department of Pathology and Laboratory Medicine, Robert Wood Johnson Medical School, Rutgers University, New Brunswick, New Jersey, United States of America
- Department of Pathology and Laboratory Medicine, New Jersey Medical School, Rutgers University, Newark, New Jersey, United States of America
- * E-mail: (KP); (CL)
| |
Collapse
|
26
|
Shi J, Tan SY, Lee AZE, Zhang S, Sasidharan SL, Wong B, Tan MH, Lim CM. Restoring apoptosis dysregulation using survivin inhibitor in nasopharyngeal cancer. Head Neck 2020; 42:913-923. [PMID: 31925995 DOI: 10.1002/hed.26068] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2019] [Revised: 10/14/2019] [Accepted: 12/17/2019] [Indexed: 01/16/2023] Open
Abstract
BACKGROUND Restoring apoptosis dysregulation via survivin inhibition has been investigated in several cancers. In Epstein-Barr Virus (EBV)-driven nasopharyngeal cancer (NPC), virally induced oncogenes can upregulate survivin. Therefore, we seek to investigate the therapeutic efficacy of YM-155 (a survivin inhibitor) in NPC, both in vitro and in vivo models. METHODS Cytotoxicity, apoptosis, and active-caspase 3 expression assays were performed. RESULTS Both NPC tissue and cells expressed high levels of survivin which were inhibited by YM-155 in a dose-dependent manner. In addition, YM-155 induced apoptosis of NPC cells with an IC50 of 100 nM and inhibited tumor growth in vivo (P < 0.05). YM-155 in combination with cisplatin or radiation significantly increased overall cytotoxicity as compared to YM-155 monotherapy. In the xenograft model, YM-155 plus radiation additively achieved significantly higher percentage of active-caspase 3-positive tumor cells than radiation alone (P < 0.05). CONCLUSIONS YM-155 is a potential therapeutic agent for NPC through inhibiting survivin and restoring apoptosis dysregulation.
Collapse
Affiliation(s)
- Junli Shi
- Institute of Bioengineering and Nanotechnology, Singapore
| | - Soo Yee Tan
- Department of Otolaryngology-Head and Neck Surgery, National University Health System Singapore, Singapore
| | | | - Siting Zhang
- Institute of Bioengineering and Nanotechnology, Singapore
| | | | - Benjamin Wong
- Department of Pathology, National University Health System Singapore, Singapore
| | - Min Han Tan
- Institute of Bioengineering and Nanotechnology, Singapore
- Lucence Diagnostics Pte. Ltd., Singapore
| | - Chwee Ming Lim
- Institute of Bioengineering and Nanotechnology, Singapore
- Department of Otolaryngology-Head and Neck Surgery, National University Health System Singapore, Singapore
- Department of Otolaryngology, Singapore General Hospital, Singapore
| |
Collapse
|
27
|
Yoon Lee J, Chung J, Hwa Kim K, Hyun An S, Yi JE, Ae Kwon K, Kwon K. Extracorporeal shock waves protect cardiomyocytes from doxorubicin-induced cardiomyopathy by upregulating survivin via the integrin-ILK-Akt-Sp1/p53 axis. Sci Rep 2019; 9:12149. [PMID: 31434946 PMCID: PMC6704172 DOI: 10.1038/s41598-019-48470-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2018] [Accepted: 08/02/2019] [Indexed: 12/12/2022] Open
Abstract
Doxorubicin (DOX) is a widely used anti-cancer drug; however, it has limited application due to cardiotoxicity. Extracorporeal shock waves (ESW) have been suggested to treat inflammatory and ischemic diseases, but the concrete effect of ESW in DOX-induced cardiomyopathy remain obscure. After H9c2 cells were subjected to ESW (0.04 mJ/cm2), they were treated with 1 μM DOX. As a result, ESW protected cardiomyocytes from DOX-induced cell death. H9c2 cells treated with DOX downregulated p-Akt and survivin expression, whereas the ESW treatment recovered both, suggesting its anti-apoptotic effect. ESW activated integrin αvβ3 and αvβ5, cardiomyocyte mechanosensors, followed by upregulation of ILK, p-Akt and survivin levels. Further, Sp1 and p53 were determined as key transcriptional factors mediating survivin expression via Akt phosphorylation by ESW. In in vivo acute DOX-induced cardiomyopathy model, the echocardiographic results showed that group subjected to ESW recovered from acute DOX-induced cardiomyopathy; left ventricular function was improved. The immunohistochemical staining results showed increased survivin and Bcl2 expression in ESW + DOX group compared to those in the DOX-injected group. In conclusion, non-invasive shockwaves protect cardiomyocytes from DOX-induced cardiomyopathy by upregulating survivin via integrin-ILK-Akt-Sp1/p53 pathway. In vivo study proposed ESW as a new kind of specific and safe therapy against acute DOX-induced cardiomyopathy.
Collapse
Affiliation(s)
- Ji Yoon Lee
- Medical Research Institute, School of Medicine, Ewha Womans University, Seoul, 158-710, Korea
| | - Jihwa Chung
- Medical Research Institute, School of Medicine, Ewha Womans University, Seoul, 158-710, Korea
| | - Kyoung Hwa Kim
- Medical Research Institute, School of Medicine, Ewha Womans University, Seoul, 158-710, Korea
| | - Shung Hyun An
- Medical Research Institute, School of Medicine, Ewha Womans University, Seoul, 158-710, Korea
| | - Jeong-Eun Yi
- Department of Internal Medicine, Cardiology Division, School of medicine, Ewha Womans University, Seoul, 158-710, Korea
| | - Kyoung Ae Kwon
- Graduate School of Industrial Pharmaceutical Sciences, Ewha Womans University, Seoul, Korea
| | - Kihwan Kwon
- Medical Research Institute, School of Medicine, Ewha Womans University, Seoul, 158-710, Korea. .,Department of Internal Medicine, Cardiology Division, School of medicine, Ewha Womans University, Seoul, 158-710, Korea.
| |
Collapse
|
28
|
Quispe PA, Lavecchia MJ, León IE. On the discovery of a potential survivin inhibitor combining computational tools and cytotoxicity studies. Heliyon 2019; 5:e02238. [PMID: 31440594 PMCID: PMC6699424 DOI: 10.1016/j.heliyon.2019.e02238] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2019] [Revised: 06/26/2019] [Accepted: 08/02/2019] [Indexed: 01/04/2023] Open
Abstract
Survivin protein is a metalloprotein member of the inhibitors of apoptosis proteins family, involved in the regulation of programmed cell death. Due to the recent development of antitumor therapies having survivin as molecular target, several strategies to interfere with the expression or function of survivin have emerged. This work describes the discovery of a new potential inhibitor of survivin function using a computer-aided drug design approach. Structure-based virtual screening and molecular dynamic simulations were carried out to select two compounds as possible inhibitors. According to the binding energy, possible ligand localization is in a cavity, close to dimerization interface. Next, cell-based assays were performed on three cell lines: two with tumor phenotype and over-expression of survivin, and another with normal phenotype and low expression of survivin. One of the selected compounds shows a selectively antitumor effect on panel cell lines suggesting that the compound effect could be correlated with the survivin expression.
Collapse
Affiliation(s)
- Patricia A Quispe
- CEQUINOR (Centro de Química Inorgánica, CONICET-UNLP) Facultad de Ciencias Exactas, Universidad Nacional de La Plata, 1900, La Plata, Argentina
| | - Martin J Lavecchia
- CEQUINOR (Centro de Química Inorgánica, CONICET-UNLP) Facultad de Ciencias Exactas, Universidad Nacional de La Plata, 1900, La Plata, Argentina
| | - Ignacio E León
- CEQUINOR (Centro de Química Inorgánica, CONICET-UNLP) Facultad de Ciencias Exactas, Universidad Nacional de La Plata, 1900, La Plata, Argentina
| |
Collapse
|
29
|
Hagenbuchner J, Oberacher H, Arnhard K, Kiechl-Kohlendorfer U, Ausserlechner MJ. Modulation of Respiration and Mitochondrial Dynamics by SMAC-Mimetics for Combination Therapy in Chemoresistant Cancer. Am J Cancer Res 2019; 9:4909-4922. [PMID: 31410190 PMCID: PMC6691393 DOI: 10.7150/thno.33758] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2019] [Accepted: 06/06/2019] [Indexed: 12/22/2022] Open
Abstract
Inhibitor of apoptosis proteins (IAP) are cell death regulators that bind caspases and interfere with apoptotic signalling via death receptors or intrinsic cell death pathways. BIRC4/XIAP is the most potent anti-apoptotic IAP-member and it physically interacts with caspases via its BIR2 and its BIR3 domain. These domains are also critical for the interaction with mitochondria-derived SMAC/Diablo and with the IAP protein survivin. Survivin is frequently overexpressed in neuroblastoma due to a gain of 17q and we have demonstrated that survivin confers resistance to chemotherapeutic agents and reprograms metabolism of neuroblastoma cells towards glycolysis. As regulator of mitochondrial fission and autophagy survivin acts at the crossroads of mitochondrial architecture, autophagy and cellular energy metabolism. Methods: We tested the effect of SMAC-mimetics on the XIAP/survivin axis as modulator of cellular metabolism analysing mitochondrial morphology, metabolic intermediates and cellular survival. Finally, the impact of the combined treatment was evaluated in a xenograft neuroblastoma mouse model assessing the therapy effect on tumour size and volume. Results: Here we demonstrated that XIAP sequesters significant amounts of survivin within the cell that can be mobilized by so called SMAC-mimetics. SMAC-mimetics are drugs that are designed to bind with high affinity to XIAP-BIR2 / BIR3 domains to release caspases and re-sensitize XIAP-overexpressing tumors for chemotherapy. However, SMAC-mimetic treatment releases also survivin from XIAP and thereby induces mitochondrial fragmentation, prevents ROS accumulation and leads to the Warburg effect, an unwanted side effect of this therapy. Importantly, cells that drift into a highly glycolytic state due to SMAC-mimetic treatment become also highly sensitive to non-genotoxic treatment with glycolysis inhibitors such as 2-Deoxy-D-glucose (2DG) in vitro and in vivo. Conclusion: A combinational therapy of non-genotoxic SMAC-mimetics and glycolysis-inhibitors overcomes IAP-mediated cell survival in cancer and provides therefore an attractive usage of SMAC-mimetics.
Collapse
|
30
|
Tanshinone IIA protects hypoxia-induced injury by preventing microRNA-28 up-regulation in PC-12 cells. Eur J Pharmacol 2019; 854:265-271. [DOI: 10.1016/j.ejphar.2019.04.030] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2018] [Revised: 04/03/2019] [Accepted: 04/15/2019] [Indexed: 02/06/2023]
|
31
|
Pahlavan Y, Kahroba H, Samadi N, Karimi A, Ansarin K, Khabbazi A. Survivin modulatory role in autoimmune and autoinflammatory diseases. J Cell Physiol 2019; 234:19440-19450. [PMID: 31020660 DOI: 10.1002/jcp.28725] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2019] [Revised: 04/06/2019] [Accepted: 04/11/2019] [Indexed: 12/27/2022]
Abstract
Baculoviral IAP repeat containing 5 (BIRC5) gene encodes the important protein as survivin, a multifunctional protein, which is involved in cellular and molecular networks, progression of cell cycle, homeostasis, developmental morphogenesis, and apoptosis. The proximal BIRC5 promoter possesses specific binding sites for key transcription factors such as nuclear factor κB and signal transducer and activator of transcription 3. Upregulation of survivin exacerbates the autoimmune diseases (AIDs) including multiple sclerosis and myasthenia gravis by reducing the activity threshold of survivin-specific cytotoxic T cells. DNA damage along with upregulation or downregulation of survivin have been demonstrated in initiation and pathogenesis of cancers and AIDs. However, detailed mechanism of survivin function in pathogenesis of AIDs is not well understood. This review focuses on the structure, specificity, regulation, and function of survivin in physiologic conditions and pathogenesis of AIDs.
Collapse
Affiliation(s)
- Yasamin Pahlavan
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.,Department of Molecular Medicine, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran.,Molecular Medicine Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.,Students Research Committee, University of Tabriz Medical Sciences, Tabriz, Iran
| | - Houman Kahroba
- Department of Molecular Medicine, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran.,Molecular Medicine Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.,Students Research Committee, University of Tabriz Medical Sciences, Tabriz, Iran
| | - Nasser Samadi
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.,Department of Molecular Medicine, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran.,Molecular Medicine Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.,Department of Biochemistry, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Abbas Karimi
- Department of Molecular Medicine, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Khalil Ansarin
- Department of Molecular Medicine, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran.,Tuberculosis and Lung Disease Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Alireza Khabbazi
- Department of Molecular Medicine, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran.,Connective Tissue Diseases Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
32
|
Abstract
Survivin (also known as BIRC5) is an evolutionarily conserved eukaryotic protein that is essential for cell division and can inhibit cell death. Normally it is only expressed in actively proliferating cells, but is upregulated in most, if not all cancers; consequently, it has received significant attention as a potential oncotherapeutic target. In this Cell Science at a Glance article and accompanying poster, we summarise our knowledge of survivin 21 years on from its initial discovery. We describe the structure, expression and function of survivin, highlight its interactome and conclude by describing anti-survivin strategies being trialled.
Collapse
Affiliation(s)
- Sally P Wheatley
- Department of Biochemistry, School of Life Sciences, University of Nottingham, Nottingham NG7 2UH, UK
| | - Dario C Altieri
- The Wistar Institute Cancer Center, Philadelphia, PA 19104, USA
| |
Collapse
|
33
|
Xiao M, Xue Y, Wu Z, Lei ZN, Wang J, Chen ZS, Li W. Design, synthesis and biological evaluation of selective survivin inhibitors. J Biomed Res 2019; 33:82-100. [PMID: 30174320 PMCID: PMC6477172 DOI: 10.7555/jbr.31.20160173] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
The differential distribution between cancer cells and normal adult tissues makes survivin a very attractive cancer drug target. We have previously reported a series of novel selective survivin inhibitors with the most potent compound MX106 reaching nanomolar activity in several cancer cell lines. Further optimization of the MX106 scaffold leads to the discovery of more potent and more selective survivin inhibitors. Various structural modifications were synthesized and their anticancer activities were evaluated to determine the structure activity relationships for this MX106 scaffold. In vitro anti-proliferative assays using two human melanoma cell lines showed that several new analogs have improved potency compared to MX106. Very interestingly, these new analogs generally showed significantly higher potency against P-glycoprotein overexpressed cells compared with the corresponding parental cells, suggesting that these compounds may strongly sensitize tumors that have high expressions of the P-glycoprotein drug efflux pumps. Western blotting analysis confirmed that the new MX106 analogs maintained their mechanism of actions by selectively suppressing survivin expression level among major inhibitors of apoptotic proteins and induced strong apoptosis in melanoma tumor cells.
Collapse
Affiliation(s)
- Min Xiao
- Department of Pharmaceutical Sciences, University of Tennessee Health Science Center, Memphis, TN, 38163, USA
| | - Yi Xue
- Department of Pharmaceutical Sciences, University of Tennessee Health Science Center, Memphis, TN, 38163, USA
| | - Zhongzhi Wu
- Department of Pharmaceutical Sciences, University of Tennessee Health Science Center, Memphis, TN, 38163, USA
| | - Zi-Ning Lei
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, Queens, NY 11439, USA
| | - Jin Wang
- Department of Pharmaceutical Sciences, University of Tennessee Health Science Center, Memphis, TN, 38163, USA
| | - Zhe-Sheng Chen
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, Queens, NY 11439, USA
| | - Wei Li
- Department of Pharmaceutical Sciences, University of Tennessee Health Science Center, Memphis, TN, 38163, USA
| |
Collapse
|
34
|
Mika A, Luelling SE, Pavek A, Nartker C, Heyneman AL, Jones KB, Barrott JJ. Epigenetic Changes at the Birc5 Promoter Induced by YM155 in Synovial Sarcoma. J Clin Med 2019; 8:jcm8030408. [PMID: 30909651 PMCID: PMC6463023 DOI: 10.3390/jcm8030408] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2019] [Revised: 03/20/2019] [Accepted: 03/21/2019] [Indexed: 12/21/2022] Open
Abstract
YM155 is an anti-cancer therapy that has advanced into 11 different human clinical trials to treat various cancers. This apoptosis-inducing therapy indirectly affects the protein levels of survivin (gene: Birc5), but the molecular underpinnings of the mechanism remain largely unknown. Synovial sarcoma is a rare soft-tissue malignancy with high protein expression of survivin. We investigated whether YM155 would be a viable therapeutic option to treat synovial sarcoma. YM155 therapy was applied to human synovial sarcoma cell lines and to a genetically engineered mouse model of synovial sarcoma. We discovered that YM155 exhibited nanomolar potency against human synovial sarcoma cell lines and the treated mice with synovial sarcoma demonstrated a 50% reduction in tumor volume compared to control treated mice. We further investigated the mechanism of action of YM155 by looking at the change of lysine modifications of the histone tails that were within 250 base pairs of the Birc5 promoter. Using chromatin immunoprecipitation (ChIP)-qPCR, we discovered that the histone epigenetic marks of H3K27 for the Birc5 promoter changed upon YM155 treatment. H3K27me3 and H3K27ac increased, but the net result was decreased Birc5/survivin expression. Furthermore, the combination of molecular events resulted in caspase 3/7/8 upregulation and death of the sarcoma cells.
Collapse
Affiliation(s)
- Aleksander Mika
- Departments of Orthopedics and Oncological Sciences, Huntsman Cancer Institute, University of Utah School of Medicine, Salt Lake City, UT 84112, USA.
| | - Sarah E Luelling
- Department of Biomedical and Pharmaceutical Sciences, Idaho State University, Pocatello, ID 83209, USA.
| | - Adriene Pavek
- Department of Biomedical and Pharmaceutical Sciences, Idaho State University, Pocatello, ID 83209, USA.
| | - Christopher Nartker
- Department of Biomedical and Pharmaceutical Sciences, Idaho State University, Pocatello, ID 83209, USA.
| | - Alexandra L Heyneman
- Department of Biomedical and Pharmaceutical Sciences, Idaho State University, Pocatello, ID 83209, USA.
| | - Kevin B Jones
- Departments of Orthopedics and Oncological Sciences, Huntsman Cancer Institute, University of Utah School of Medicine, Salt Lake City, UT 84112, USA.
| | - Jared J Barrott
- Departments of Orthopedics and Oncological Sciences, Huntsman Cancer Institute, University of Utah School of Medicine, Salt Lake City, UT 84112, USA.
- Department of Biomedical and Pharmaceutical Sciences, Idaho State University, Pocatello, ID 83209, USA.
| |
Collapse
|
35
|
Wani TH, Surendran S, Mishra VS, Chaturvedi J, Chowdhury G, Chakrabarty A. Adaptation to chronic exposure to sepantronium bromide (YM155), a prototypical survivin suppressant is due to persistent DNA damage-response in breast cancer cells. Oncotarget 2018; 9:33589-33600. [PMID: 30323901 PMCID: PMC6173358 DOI: 10.18632/oncotarget.26096] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2018] [Accepted: 08/23/2018] [Indexed: 12/12/2022] Open
Abstract
Sepantronium bromide (YM155), originally developed against the anti-apoptotic protein survivin, performed exceptionally well in pre-clinical and phase I clinical trials. However, in phase II trials of several cancer types including breast cancer it performed poorly. Additionally, no definitive correlation between survivin level and response to therapy was found. In an attempt to understand the true reason of the late-stage failure of this promising drug, we developed YM155-resistant MCF-7 breast cancer cell line and characterized side-by-side with the drug-naïve parental cell line. Chronic YM155 treatment resulted in downregulation of survivin expression yet triggered cellular responses typical of adaptation to persistent DNA damage. Lowering endogenous antioxidant glutathione level and activity of cell cycle check-point kinase restored YM155 activity. Thus, contrary to its development as a survivin suppressant, YM155 primarily acts as a chemotherapeutic drug causing oxidative stress-mediated DNA damage. Adaptation to long-term exposure to YM155 can be prevented and/or overcome by interfering with detoxification and DNA damage-response pathways. Finally, proteins associated with DNA damage-response pathway will be more appropriate as predictive biomarkers of YM155 in breast tumor cells.
Collapse
Affiliation(s)
- Tasaduq H Wani
- Department of Life Sciences, Shiv Nadar University, Greater Noida, UP 201314, India
| | - Sreeraj Surendran
- Department of Life Sciences, Shiv Nadar University, Greater Noida, UP 201314, India
| | - Vishnu S Mishra
- Department of Life Sciences, Shiv Nadar University, Greater Noida, UP 201314, India
| | - Jaya Chaturvedi
- Department of Life Sciences, Shiv Nadar University, Greater Noida, UP 201314, India
| | - Goutam Chowdhury
- Department of Chemistry, Shiv Nadar University, Greater Noida, UP 201314, India
| | - Anindita Chakrabarty
- Department of Life Sciences, Shiv Nadar University, Greater Noida, UP 201314, India
| |
Collapse
|
36
|
Anti-survivin effect of the small molecule inhibitor YM155 in RCC cells is mediated by time-dependent inhibition of the NF-κB pathway. Sci Rep 2018; 8:10289. [PMID: 29980758 PMCID: PMC6035265 DOI: 10.1038/s41598-018-28213-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2017] [Accepted: 06/19/2018] [Indexed: 01/24/2023] Open
Abstract
Constitutive activation of the NF-κB signaling cascade is associated with tumourigenesis and poor prognosis in many human cancers including RCC. YM155, a small molecule inhibitor of survivin, was previously shown to potently inhibit the viability of immortalized and patient derived renal cell carcinoma (RCC) cell lines. Here we investigated the role of NF-κB signaling to the anti-cancer properties of YM155 in RCC786.0 cells. YM155 diminished nuclear levels of p65 and phosphorylated p65 and attenuated the transcriptional competencies of the p65/p50 heterodimers. Accordingly, we found that YM155 diminished the transcription of NF-κB target gene survivin. Events that led to the interception of the nuclear translocation of p65/p50 were the activation of the deubiquinating enzyme CYLD by YM155, which led to the inhibition of IKKβ, stabilization of IκBα and retention of NF-κB heterodimers in the cytosol. Importantly, the suppressive effects of YM155 were time-dependent and observed at the 24 h time point, and not earlier. TNF-α, a stimulator of NF-κB signaling did not affect its inhibitory properties. The ability of YM155 to intercept a major transcriptional pathway like NF-κB, would have important ramifications on the pharmacodynamics effects elicited by this unusual molecule.
Collapse
|
37
|
Rauch A, Carlstedt A, Emmerich C, Mustafa AHM, Göder A, Knauer SK, Linnebacher M, Heinzel T, Krämer OH. Survivin antagonizes chemotherapy-induced cell death of colorectal cancer cells. Oncotarget 2018; 9:27835-27850. [PMID: 29963241 PMCID: PMC6021236 DOI: 10.18632/oncotarget.25600] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2018] [Accepted: 05/08/2018] [Indexed: 02/06/2023] Open
Abstract
Irinotecan (CPT-11) and oxaliplatin (L-OHP) are among the most frequently used drugs against colorectal tumors. Therefore, it is important to define the molecular mechanisms that these agents modulate in colon cancer cells. Here we demonstrate that CPT-11 stalls such cells in the G2/M phase of the cell cycle, induces an accumulation of the tumor suppressor p53, the replicative stress/DNA damage marker γH2AX, phosphorylation of the checkpoint kinases ATM and ATR, and an ATR-dependent accumulation of the pro-survival molecule survivin. L-OHP reduces the number of cells in S-phase, stalls cell cycle progression, transiently triggers an accumulation of low levels of γH2AX and phosphorylated checkpoint kinases, and L-OHP suppresses survivin expression at the mRNA and protein levels. Compared to CPT-11, L-OHP is a stronger inducer of caspases and p53-dependent apoptosis. Overexpression and RNAi against survivin reveal that this factor critically antagonizes caspase-dependent apoptosis in cells treated with CPT-11 and L-OHP. We additionally show that L-OHP suppresses survivin through p53 and its downstream target p21, which stalls cell cycle progression as a cyclin-dependent kinase inhibitor (CDKi). These data shed new light on the regulation of survivin by two clinically significant drugs and its biological and predictive relevance in drug-exposed cancer cells.
Collapse
Affiliation(s)
- Anke Rauch
- Center for Molecular Biomedicine, Institute of Biochemistry and Biophysics, Department of Biochemistry, Friedrich Schiller University Jena, 07745 Jena, Germany
| | - Annemarie Carlstedt
- Center for Molecular Biomedicine, Institute of Biochemistry and Biophysics, Department of Biochemistry, Friedrich Schiller University Jena, 07745 Jena, Germany.,Leibniz Institute on Aging, Fritz Lipmann Institute, 07745 Jena, Germany
| | - Claudia Emmerich
- Center for Molecular Biomedicine, Institute of Biochemistry and Biophysics, Department of Biochemistry, Friedrich Schiller University Jena, 07745 Jena, Germany
| | - Al-Hassan M Mustafa
- Department of Toxicology, University Medical Center of the Johannes Gutenberg University Mainz, 55131 Mainz, Germany
| | - Anja Göder
- Department of Toxicology, University Medical Center of the Johannes Gutenberg University Mainz, 55131 Mainz, Germany
| | - Shirley K Knauer
- Department of Molecular Biology, Centre for Medical Biotechnology (ZMB), University of Duisburg-Essen, 45141 Essen, Germany
| | - Michael Linnebacher
- Department of General Surgery, Molecular Oncology and Immunotherapy, University of Rostock, 18057 Rostock, Germany
| | - Thorsten Heinzel
- Center for Molecular Biomedicine, Institute of Biochemistry and Biophysics, Department of Biochemistry, Friedrich Schiller University Jena, 07745 Jena, Germany
| | - Oliver H Krämer
- Department of Toxicology, University Medical Center of the Johannes Gutenberg University Mainz, 55131 Mainz, Germany
| |
Collapse
|
38
|
Harashima N, Takenaga K, Akimoto M, Harada M. HIF-2α dictates the susceptibility of pancreatic cancer cells to TRAIL by regulating survivin expression. Oncotarget 2018; 8:42887-42900. [PMID: 28476028 PMCID: PMC5522113 DOI: 10.18632/oncotarget.17157] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2016] [Accepted: 03/20/2017] [Indexed: 11/25/2022] Open
Abstract
Cancer cells develop resistance to therapy by adapting to hypoxic microenvironments, and hypoxia-inducible factors (HIFs) play crucial roles in this process. We investigated the roles of HIF-1α and HIF-2α in cancer cell death induced by tumor necrosis factor (TNF)-related apoptosis-inducing ligand (TRAIL) using human pancreatic cancer cell lines. siRNA-mediated knockdown of HIF-2α, but not HIF-1α, increased susceptibility of two pancreatic cancer cell lines, Panc-1 and AsPC-1, to TRAIL in vitro under normoxic and hypoxic conditions. The enhanced sensitivity to TRAIL was also observed in vivo. This in vitro increased TRAIL sensitivity was observed in other three pancreatic cancer cell lines. An array assay of apoptosis-related proteins showed that knockdown of HIF-2α decreased survivin expression. Additionally, survivin promoter activity was decreased in HIF-2α knockdown Panc-1 cells and HIF-2α bound to the hypoxia-responsive element in the survivin promoter region. Conversely, forced expression of the survivin gene in HIF-2α shRNA-expressing Panc-1 cells increased resistance to TRAIL. In a xenograft mouse model, the survivin suppressant YM155 sensitized Panc-1 cells to TRAIL. Collectively, our results indicate that HIF-2α dictates the susceptibility of human pancreatic cancer cell lines, Panc-1 and AsPC-1, to TRAIL by regulating survivin expression transcriptionally, and that survivin could be a promising target to augment the therapeutic efficacy of death receptor-targeting anti-cancer therapy.
Collapse
Affiliation(s)
- Nanae Harashima
- Department of Immunology, Shimane University Faculty of Medicine, Shimane, Japan
| | - Keizo Takenaga
- Department of Life Science, Shimane University Faculty of Medicine, Shimane, Japan
| | - Miho Akimoto
- Department of Life Science, Shimane University Faculty of Medicine, Shimane, Japan
| | - Mamoru Harada
- Department of Immunology, Shimane University Faculty of Medicine, Shimane, Japan
| |
Collapse
|
39
|
Li D, Hu C, Li H. Survivin as a novel target protein for reducing the proliferation of cancer cells. Biomed Rep 2018; 8:399-406. [PMID: 29725522 DOI: 10.3892/br.2018.1077] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2018] [Accepted: 02/28/2018] [Indexed: 12/12/2022] Open
Abstract
Survivin, also known as baculoviral inhibitor of apoptosis repeat-containing 5, is a novel member of the inhibitor of apoptosis protein family. Survivin is highly expressed in tumors and embryonic tissues and is associated with tumor cell differentiation, proliferation, invasion and metastasis; however, survivin is expressed at low levels in normal terminally differentiated adult tissues. Meanwhile, the expression level of survivin is also a negative prognostic factor for patients with cancer. These unique characteristics of survivin make it an exciting potential therapeutic target for cancer treatment. This review will discuss the biological characteristics of survivin and its potential use as a treatment target to reduce cancer cell proliferation.
Collapse
Affiliation(s)
- Dongyu Li
- Department of Genetics, College of Agricultural and Life Science, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Chenghao Hu
- School of Clinical Medicine, Weifang Medical University, Weifang, Shandong 261000, P.R. China
| | - Huibin Li
- Department of Burns and Plastic Surgery, People's Hospital of Linyi, Linyi, Shandong 276000, P.R. China
| |
Collapse
|
40
|
Gholizadeh S, Dolman EM, Wieriks R, Sparidans RW, Hennink WE, Kok RJ. Anti-GD2 Immunoliposomes for Targeted Delivery of the Survivin Inhibitor Sepantronium Bromide (YM155) to Neuroblastoma Tumor Cells. Pharm Res 2018. [PMID: 29516187 PMCID: PMC5842274 DOI: 10.1007/s11095-018-2373-x] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Purpose Sepantronium bromide (YM155) is a hydrophilic quaternary compound that cannot be administered orally due to its low oral bioavailability; it is furthermore rapidly eliminated via the kidneys. The current study aims at improving the pharmacokinetic profile of YM155 by its formulation in immunoliposomes that can achieve its enhanced delivery into tumor tissue and facilitate uptake in neuroblastoma cancer cells. Methods PEGylated YM155 loaded liposomes composed of DPPC, cholesterol and DSPE-PEG2000 were prepared via passive film-hydration and extrusion method. Targeted (i.e. immuno-)liposomes were prepared by surface functionalization with SATA modified monoclonal anti-disialoganglioside (GD2) antibodies. Liposomes were characterized based on their size, charge, antibody coupling and YM155 encapsulation efficiency, and stability. Flow cytometry analysis and confocal microscopy were performed on IMR32 and KCNR neuroblastoma cell lines. The efficacy of developed formulations were assessed by in-vitro toxicity assays. A pilot pharmacokinetic analysis was performed to assess plasma circulation and tumor accumulation profiles of the developed liposomal formulations. Results YM155 loaded immunoliposomes had a size of 170 nm and zeta potential of −10 mV, with an antibody coupling efficiency of 60% andYM155 encapsulation efficiency of14%. Targeted and control liposomal formulations were found to have similar YM155 release rates in a release medium containing 50% serum. An in-vitro toxicity study on KCNR cells showed less toxicity for immunoliposomes as compared to free YM155. In-vivo pharmacokinetic evaluation of YM155 liposomes showed prolonged blood circulation and significantly increased half-lives of liposomal YM155 in tumor tissue, as compared to a bolus injection of free YM155. Conclusions YM155 loaded immunoliposomes were successfully formulated and characterized, and initial in-vivo results show their potential for improving the circulation time and tumor accumulation of YM155. Electronic supplementary material The online version of this article (10.1007/s11095-018-2373-x) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Shima Gholizadeh
- Department of Pharmaceutics, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, the Netherlands
| | - Emmy M Dolman
- Department of Oncogenomics, Academic Medical Center, University of Amsterdam, Amsterdam, the Netherlands.,Princess Maxima Center for Pediatric Oncology, Utrecht, the Netherlands
| | - Rebecca Wieriks
- Department of Pharmaceutics, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, the Netherlands
| | - Rolf W Sparidans
- Department of Chemical Biology and Drug Discovery, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, the Netherlands
| | - Wim E Hennink
- Department of Pharmaceutics, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, the Netherlands
| | - Robbert J Kok
- Department of Pharmaceutics, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, the Netherlands.
| |
Collapse
|
41
|
Liu M, Inoue K, Leng T, Zhou A, Guo S, Xiong ZG. ASIC1 promotes differentiation of neuroblastoma by negatively regulating Notch signaling pathway. Oncotarget 2018; 8:8283-8293. [PMID: 28030818 PMCID: PMC5352400 DOI: 10.18632/oncotarget.14164] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2016] [Accepted: 11/23/2016] [Indexed: 12/25/2022] Open
Abstract
In neurons, up-regulation of Notch activity either inhibits neurite extension or causes retraction of neurites. Conversely, inhibition of Notch1 facilitates neurite extension. Acid-sensing ion channels (ASICs) are a family of proton-gated cation channels, which play critical roles in synaptic plasticity, learning and memory and spine morphogenesis. Our pilot proteomics data from ASIC1a knock out mice implicated that ASIC1a may play a role in regulating Notch signaling, therefore, we explored whether or not ASIC1a regulates neurite growth during neuronal development through Notch signaling. In this study, we determined the effects of ASIC1a on neurite growth in a mouse neuroblastoma cell line, NS20Y cells, by modulating ASIC1a expression. We also determined the relationship between ASIC1a and Notch signaling on neuronal differentiation. Our results showed that down-regulation of ASIC1a in NS20Y cells inhibits CPT-cAMP induced neurite growth, while over expression of ASIC1a promotes its growth. In addition, down-regulation of ASIC1a increased the expression of Notch1 and its target gene Survivin while inhibitor of Notch significantly prevented the neurite extension induced by ASIC1a in NS20Y cells. These data indicate that Notch1 signaling may be required for ASIC1a-mediated neurite growth and neuronal differentiation.
Collapse
Affiliation(s)
- Mingli Liu
- Department of Microbiology, Biochemistry & Immunology, Atlanta, GA 30310, USA
| | - Koichi Inoue
- Neuroscience Institute, Morehouse School of Medicine, Atlanta, GA 30310, USA
| | - Tiandong Leng
- Neuroscience Institute, Morehouse School of Medicine, Atlanta, GA 30310, USA
| | - An Zhou
- Neuroscience Institute, Morehouse School of Medicine, Atlanta, GA 30310, USA
| | - Shanchun Guo
- Department of Chemistry, RCMI Cancer Research Center, Xavier University of Louisiana, New Orleans, LA 70125, USA
| | - Zhi-Gang Xiong
- Neuroscience Institute, Morehouse School of Medicine, Atlanta, GA 30310, USA
| |
Collapse
|
42
|
Synthesis and biological evaluation of indole-based UC-112 analogs as potent and selective survivin inhibitors. Eur J Med Chem 2018; 149:211-224. [PMID: 29501942 DOI: 10.1016/j.ejmech.2018.02.045] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2017] [Revised: 02/12/2018] [Accepted: 02/13/2018] [Indexed: 02/07/2023]
Abstract
The anti-apoptotic protein survivin is highly expressed in cancer cells but has a very low expression in fully differentiated adult cells. Overexpression of survivin is positively correlated with cancer cell resistance to chemotherapy and radiotherapy, cancer cell metastasis, and poor patient prognosis. Therefore, selective targeting survivin represents an attractive strategy for the development of anticancer therapeutics. Herein, we reported the extensive structural modification of our recently discovered selective survivin inhibitor UC-112 and the synthesis of thirty-three new analogs. The structure-activity relationship (SAR) study indicated that replacement of the benzyloxy moeity in UC-112 with an indole moiety was preferred to other moieties. Among these UC-112 analogs, 10f, 10h, 10k, 10n showed the most potent antiproliferative activities. Interestingly, they were more potent against the P-glycoprotein overexpressing cancer cell lines compared with the parental cancer cell lines. Mechanistic studies confirmed that new analogs maintained their unique selectivity against survivin among the IAP family members. In vivo study using 10f in a human A375 melanoma xenograft model revealed that it effectively inhibited melanoma tumor growth without observable acute toxicity. Collectively, this study strongly supports the further preclinical development of selective survivin inhibitors based on the UC-112 scaffold.
Collapse
|
43
|
Lyu H, Wang S, Huang J, Wang B, He Z, Liu B. Survivin-targeting miR-542-3p overcomes HER3 signaling-induced chemoresistance and enhances the antitumor activity of paclitaxel against HER2-overexpressing breast cancer. Cancer Lett 2018; 420:97-108. [PMID: 29409974 PMCID: PMC6089084 DOI: 10.1016/j.canlet.2018.01.065] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2017] [Revised: 01/19/2018] [Accepted: 01/22/2018] [Indexed: 02/05/2023]
Abstract
Elevated expression of HER3, which interacts with HER2 in breast cancer cells, confers chemoresistance via phosphoinositide 3-kinase (PI-3K)/Akt-dependent upregulation of Survivin. However, the underlying mechanism is not clear. Ectopic expression or specific knockdown of HER3 in HER2-overexpressing breast cancer cells did not alter Survivin mRNA levels and Survivin protein stability, supporting the notion that HER3 signaling may regulate specific miRNAs that target Survivin to alter its protein translation. Here we showed that overexpression and specific knockdown of HER3 reduced and enhanced expression of two Survivin-targeting miRNAs, miR-203 and miR-542-3p, in breast cancer cells, respectively. While the specific inhibitor of either miR-203 or miR-542-3p attenuated an anti-HER3 antibody-induced downregulation of Survivin, inhibition of miR-542-3p exhibited a better efficacy than miR-203 inhibition did. Consistently, miR-542-3p mimic was much more effective than miR-203 mimic not only in inhibition of Survivin, but also in enhancement of paclitaxel-induced apoptosis in HER2-overexpressing breast cancer cells. Moreover, the combination of miR-542-3p mimic and paclitaxel, as compared with either agent alone, significantly inhibited in vivo tumor growth of HER2-overexpressing breast cancer cells. Collectively, our data indicated that the HER3/PI-3K/Akt signaling upregulates Survivin via suppression of miR-203 and miR-542-3p. Because miR-542-3p has three binding sites on the 3'-UTR of Survivin mRNA, its mimic was able to effectively downregulate Survivin in vitro and in vivo. Thus, miR-542-3p-replacement therapy is an excellent approach to overcome HER3-mediated paclitaxel resistance and significantly enhances the antitumor activity of paclitaxel against HER2-overexpressing breast cancer.
Collapse
Affiliation(s)
- Hui Lyu
- Department of Pathology, School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, USA; Cancer Research Institute and Affiliated Cancer Hospital, Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Shuiliang Wang
- Fujian Key Laboratory of Transplant Biology, Fuzhou General Hospital, Fuzhou, Fujian, China
| | - Jingcao Huang
- Department of Hematology, Hematologic Research Laboratory, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Bolun Wang
- Department of Pathology, School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, USA; The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Zhimin He
- Cancer Research Institute and Affiliated Cancer Hospital, Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Bolin Liu
- Department of Pathology, School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, USA; Cancer Research Institute and Affiliated Cancer Hospital, Guangzhou Medical University, Guangzhou, Guangdong, China.
| |
Collapse
|
44
|
Wang S, Zhu L, Zuo W, Zeng Z, Huang L, Lin F, Lin R, Wang J, Lu J, Wang Q, Lin L, Dong H, Wu W, Zheng K, Cai J, Yang S, Ma Y, Ye S, Liu W, Yu Y, Tan J, Liu B. MicroRNA-mediated epigenetic targeting of Survivin significantly enhances the antitumor activity of paclitaxel against non-small cell lung cancer. Oncotarget 2018; 7:37693-37713. [PMID: 27177222 PMCID: PMC5122342 DOI: 10.18632/oncotarget.9264] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2016] [Accepted: 04/26/2016] [Indexed: 12/25/2022] Open
Abstract
Elevated expression of Survivin correlates with poor prognosis, tumor recurrence, and drug resistance in various human cancers, including non-small cell lung cancer (NSCLC). The underlying mechanism of Survivin upregulation in cancer cells remains elusive. To date, no Survivin-targeted therapy has been approved for cancer treatment. Here, we explored the molecular basis resulting in Survivin overexpression in NSCLC and investigated the antitumor activity of the class I HDAC inhibitor entinostat in combination with paclitaxel. Our data showed that entinostat significantly enhanced paclitaxel-mediated anti-proliferative/anti-survival effects on NSCLC cells in vitro and in vivo. Mechanistically, entinostat selectively decreased expression of Survivin via induction of miR-203 (in vitro and in vivo) and miR-542-3p (in vitro). Moreover, analysis of NSCLC patient samples revealed that the expression levels of miR-203 were downregulated due to promoter hypermethylation in 45% of NSCLC tumors. In contrast, increased expression of both DNA methytransferase I (DNMT1) and Survivin was observed and significantly correlated with the reduced miR-203 in NSCLC. Collectively, these data shed new lights on the molecular mechanism of Survivin upregulation in NSCLC. Our findings also support that the combinatorial treatments of entinostat and paclitaxel will likely exhibit survival benefit in the NSCLC patients with overexpression of DNMT1 and/or Survivin. The DNMT1-miR-203-Survivin signaling axis may provide a new avenue for the development of novel epigenetic approaches to enhance the chemotherapeutic efficacy against NSCLC.
Collapse
Affiliation(s)
- Shuiliang Wang
- Fujian Key Laboratory of Transplant Biology, Fuzhou General Hospital, Xiamen University, Fuzhou, Fujian, China
| | - Ling Zhu
- Fujian Key Laboratory of Transplant Biology, Fuzhou General Hospital, Xiamen University, Fuzhou, Fujian, China
| | - Weimin Zuo
- Fujian Key Laboratory of Transplant Biology, Fuzhou General Hospital, Xiamen University, Fuzhou, Fujian, China
| | - Zhiyong Zeng
- Department of Thoracic Surgery, Fuzhou General Hospital, Xiamen University, Fuzhou, Fujian, China
| | - Lianghu Huang
- Fujian Key Laboratory of Transplant Biology, Fuzhou General Hospital, Xiamen University, Fuzhou, Fujian, China
| | - Fengjin Lin
- Fujian Key Laboratory of Transplant Biology, Fuzhou General Hospital, Xiamen University, Fuzhou, Fujian, China
| | - Rong Lin
- Fujian Key Laboratory of Transplant Biology, Fuzhou General Hospital, Xiamen University, Fuzhou, Fujian, China
| | - Jin Wang
- Fujian Key Laboratory of Transplant Biology, Fuzhou General Hospital, Xiamen University, Fuzhou, Fujian, China
| | - Jun Lu
- Fujian Key Laboratory of Transplant Biology, Fuzhou General Hospital, Xiamen University, Fuzhou, Fujian, China
| | - Qinghua Wang
- Fujian Key Laboratory of Transplant Biology, Fuzhou General Hospital, Xiamen University, Fuzhou, Fujian, China
| | - Lingjing Lin
- Fujian Key Laboratory of Transplant Biology, Fuzhou General Hospital, Xiamen University, Fuzhou, Fujian, China
| | - Huiyue Dong
- Fujian Key Laboratory of Transplant Biology, Fuzhou General Hospital, Xiamen University, Fuzhou, Fujian, China
| | - Weizhen Wu
- Fujian Key Laboratory of Transplant Biology, Fuzhou General Hospital, Xiamen University, Fuzhou, Fujian, China
| | - Kai Zheng
- Fujian Key Laboratory of Transplant Biology, Fuzhou General Hospital, Xiamen University, Fuzhou, Fujian, China
| | - Jinquan Cai
- Fujian Key Laboratory of Transplant Biology, Fuzhou General Hospital, Xiamen University, Fuzhou, Fujian, China
| | - Shunliang Yang
- Fujian Key Laboratory of Transplant Biology, Fuzhou General Hospital, Xiamen University, Fuzhou, Fujian, China
| | - Yujie Ma
- Fujian Key Laboratory of Transplant Biology, Fuzhou General Hospital, Xiamen University, Fuzhou, Fujian, China
| | - Shixin Ye
- Department of Thoracic Surgery, Fuzhou General Hospital, Xiamen University, Fuzhou, Fujian, China
| | - Wei Liu
- Department of Pathology, Fuzhou General Hospital, Xiamen University, Fuzhou, Fujian, China
| | - Yinghao Yu
- Department of Pathology, Fuzhou General Hospital, Xiamen University, Fuzhou, Fujian, China
| | - Jianming Tan
- Fujian Key Laboratory of Transplant Biology, Fuzhou General Hospital, Xiamen University, Fuzhou, Fujian, China
| | - Bolin Liu
- Department of Pathology, School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| |
Collapse
|
45
|
Capra J, Eskelinen S. Correlation between E-cadherin interactions, survivin expression, and apoptosis in MDCK and ts-Src MDCK cell culture models. J Transl Med 2017; 97:1453-1470. [PMID: 28892098 DOI: 10.1038/labinvest.2017.89] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2016] [Revised: 06/15/2017] [Accepted: 06/27/2017] [Indexed: 12/12/2022] Open
Abstract
Survivin, a member of inhibitor of apoptosis (IAP) protein family, is a multifunctional protein expressed in most cancers. In addition to inhibition of apoptosis, it regulates proliferation and promotes migration. Its presence and function in cells is strongly regulated via transcription factors, intracellular localization, and degradation. We analyzed the presence of survivin at protein level in various culture environments and under activation of Src tyrosine kinase in epithelial canine kidney MDCK cells in order to elucidate factors controlling survivin 'lifespan'. We used untransformed and temperature sensitive ts-Src MDCK cells as a model and forced them to grow in suspension (1D), in 2D on hard and soft surfaces and in soft 3D Matrigel environment with or without EGTA. In addition, we tested the effect of stressful conditions by cultivating the cells in the presence of an anti-cancer drug and a generator of reactive oxygen species (ROS), piperlongumine (PL) with or without an antioxidant, N-acetylcysteine (NAC). We could confirm that inhibition of apoptosis and simultaneous downregulation of survivin in MDCK cells required both intact cell-cell junctions, trans-interactions of E-cadherin and soft 3D matrix environment. In ts-Src-transformed MDCK cells, survivin was upregulated as soon as the cell-cell junctions were disintegrated. ROS generation with PL-induced cell death of ts-Src MDCK cells concomitantly with survivin downregulation. NAC rescued the ts-Src MDCK cells from ROS-induced apoptosis without upregulation of survivin resulting in a situation resembling untransformed MDCK cells in 3D environment and E-cadherin delineating the lateral cell walls.
Collapse
Affiliation(s)
- Janne Capra
- Biocenter Oulu and the Institute of Diagnostics, University of Oulu, Oulu, Finland
| | - Sinikka Eskelinen
- Biocenter Oulu and the Institute of Diagnostics, University of Oulu, Oulu, Finland
| |
Collapse
|
46
|
Dioxonaphthoimidazoliums AB1 and YM155 disrupt phosphorylation of p50 in the NF-κB pathway. Oncotarget 2017; 7:11625-36. [PMID: 26872379 PMCID: PMC4905498 DOI: 10.18632/oncotarget.7299] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2015] [Accepted: 01/27/2016] [Indexed: 12/11/2022] Open
Abstract
The NF-κB pathway is overexpressed in non-small cell lung cancers (NSCLC) and contributes to the poor prognosis and high mortality characterizing this malignancy. Silencing the p50 and p65 NF-κB subunits in the NSCLC H1299 cell line led to profound loss in cell viability and downregulated anti-apoptotic proteins survivin and Mcl1. We also showed that a survivin suppressant, the dioxonaphthoimidazolium YM155, and its structural analog AB1 arrested the growth of H1299 cells at nanomolar concentrations. Both compounds were apoptogenic and suppressed survivin and other anti-apoptotic proteins (Mcl1, Bcl-2, Bcl-xl) in a dose- and/or time-dependent manner. YM155 and AB1 did not affect the expression of key proteins (IκBα, p65, p50) involved in NF-κB signaling. Stable IκBα levels suggest that the NF-κB/IκB complex and proteins upstream of IκBα, were not targeted. Neither did the compounds intercept the nuclear translocation of the p50 and p65 subunits. On the other hand, YM155 and AB1 suppressed the phosphorylation of the p50 subunit at Ser337 which is critical in promoting the binding of NF-κB dimers to DNA. Both compounds duly impeded the binding of NF-κB dimers to DNA and attenuated transcriptional activity of luciferase-transfected HEK293 cells controlled by NF-κB response elements. We propose that the “silencing” the NF-κB pathway effected by these compounds contributed to their potent apoptogenic effects on H1299. Notwithstanding, the mechanism(s) involved in their ability to abolish phosphorylation of p50 remains to be elucidated. Taken together, these results disclose a novel facet of functionalized dioxonaphthoimidazoliums that could account for their potent cell killing property.
Collapse
|
47
|
Abstract
YM155 (sepantronium bromide) has been evaluated in clinical trials as a survivin suppressant, but despite positive signals from early work, later studies were negative. Clarification of the mechanism of action of YM155 is important for its further development. YM155 affects cells in a cell cycle-specific manner. When cells are in G1, YM155 prevented their progression through the S phase, leaving the cells at G1/S when exposed to YM155. Passage through mitosis from G2 is also defective following YM155 exposure. In this study, YM155 did not behave like a typical DNA intercalator in viscosity, circular dichroism, and absorption spectroscopy studies. In addition, molecular modeling experiments ruled out YM155 DNA interaction to produce DNA intercalation. We show that YM155 inhibited topoisomerase 2α decatenation and topoisomerase 1-mediated cleavage of DNA, suggesting that YM155 inhibits the enzyme function. Consistent with these findings, DNA double-strand break repair was also inhibited by YM155.
Collapse
|
48
|
Wang S, Wang A, Shao M, Lin L, Li P, Wang Y. Schisandrin B reverses doxorubicin resistance through inhibiting P-glycoprotein and promoting proteasome-mediated degradation of survivin. Sci Rep 2017; 7:8419. [PMID: 28827665 PMCID: PMC5567212 DOI: 10.1038/s41598-017-08817-x] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2016] [Accepted: 04/03/2017] [Indexed: 01/13/2023] Open
Abstract
Acquired drug resistance poses a great challenge in cancer therapy. Drug efflux and anti-apoptotic processes are the most two common mechanisms that confer cancer drug resistance. In this study, we found that Schisandrin B (Sch B), one of the major dibenzocyclooctadiene derivatives extracted from Chinese herbal medicine Schisandrae Chinensis Fructus, could significantly enhance the sensitivity of doxorubicin (DOX)-resistant breast cancer and ovarian cancer cells to DOX. Our results showed that Sch B increased the intracellular accumulation of DOX through inhibiting expression and activity of P-glycoprotein (P-gp). Meanwhile, Sch B could markedly downregulate the expression of anti-apoptotic protein survivin. Overexpression of survivin attenuated the sensitizing effects of Sch B, while silencing of survivin enhanced Sch B-mediated sensitizing effects. Furthermore, Sch B preferentially promoted chymotryptic activity of the proteasome in a concentration-dependent manner, and the proteasome inhibitor MG-132 prevented Sch B-induced survivin downregulation. Taken together, our findings suggest that Sch B could be a potential candidate for combating drug resistant cancer via modulating two key factors that responsible for cancer resistance.
Collapse
Affiliation(s)
- Shengpeng Wang
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao, 999078, China
| | - Anqi Wang
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao, 999078, China
| | - Min Shao
- Department of Bioengineering, Zunyi Medical University Zhuhai Campus, Zhuhai, Guangdong, 519041, China
| | - Ligen Lin
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao, 999078, China
| | - Peng Li
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao, 999078, China.
| | - Yitao Wang
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao, 999078, China.
| |
Collapse
|
49
|
Taglieri L, De Iuliis F, Giuffrida A, Giantulli S, Silvestri I, Scarpa S. Resistance to the mTOR inhibitor everolimus is reversed by the downregulation of survivin in breast cancer cells. Oncol Lett 2017; 14:3832-3838. [PMID: 28927154 PMCID: PMC5587981 DOI: 10.3892/ol.2017.6597] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2017] [Accepted: 04/07/2017] [Indexed: 12/17/2022] Open
Abstract
Everolimus (RAD001) is an inhibitor of mammalian target of rapamycin used in combination with exemestane to treat hormone receptor-positive advanced breast cancer. However, not all patients are equally sensitive to RAD001 and certain patients develop resistance. Therefore, the present study analyzed the mechanisms involved in the resistance of breast cancer cells to RAD001 in order to identify a potential tool to overcome it. The effects of RAD001 on the inhibition of cell viability, on the induction of apoptosis and autophagy and on the regulation of survivin, an anti-apoptotic protein, were evaluated in two breast cancer cell lines: BT474 (luminal B) and MCF7 (luminal A). RAD001 was demonstrated to induce autophagy in the two cell lines at following a short period of treatment (4 h) and to induce apoptosis exclusively in BT474 cells following longer periods of treatment (48 h). RAD001 induced the downregulation of survivin in BT474 cells and its upregulation in MCF7 cells. Consequently, inhibiting survivin with YM155 resulted in the acquired resistance of MCF7 cells to RAD001 being reverted, restoring RAD001-induced apoptosis. These data demonstrated that RAD001 exerted anti-proliferative and pro-apoptotic effects on breast cancer cells, but that these effects were repressed by the simultaneous up-regulation of survivin. Finally, the results demonstrated that inhibiting the expression of survivin resulted in the restoration of the anti-neoplastic activity of RAD001.
Collapse
Affiliation(s)
- Ludovica Taglieri
- Department of Experimental Medicine, Sapienza University, I-00161 Rome, Italy
| | - Francesca De Iuliis
- Department of Experimental Medicine, Sapienza University, I-00161 Rome, Italy
| | - Anna Giuffrida
- Department of Experimental Medicine, Sapienza University, I-00161 Rome, Italy
| | - Sabrina Giantulli
- Department of Molecular Medicine, Sapienza University, I-00161 Rome, Italy
| | - Ida Silvestri
- Department of Molecular Medicine, Sapienza University, I-00161 Rome, Italy
| | - Susanna Scarpa
- Department of Experimental Medicine, Sapienza University, I-00161 Rome, Italy
| |
Collapse
|
50
|
Sim MY, Huynh H, Go ML, Yuen JSP. Action of YM155 on clear cell renal cell carcinoma does not depend on survivin expression levels. PLoS One 2017; 12:e0178168. [PMID: 28582447 PMCID: PMC5459331 DOI: 10.1371/journal.pone.0178168] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2016] [Accepted: 05/08/2017] [Indexed: 12/12/2022] Open
Abstract
The dioxonapthoimidazolium YM155 is a survivin suppressant which has been investigated as an anticancer agent in clinical trials. Here, we investigated its growth inhibitory properties on a panel of immortalized and patient derived renal cell carcinoma (RCC) cell lines which were either deficient in the tumour suppressor von Hippel-Lindau (VHL) protein or possessed a functional copy. Neither the VHL status nor the survivin expression levels of these cell lines influenced their susceptibility to growth inhibition by YM155. Of the various RCC lines, the papillary subtype was more resistant to YM155, suggesting that the therapeutic efficacy of YM155 may be restricted to clear cell subtypes. YM155 was equally potent in cells (RCC786.0) in which survivin expression had been stably silenced or overexpressed, implicating a limited reliance on survivin in the mode of action of YM155. A follow-up in-vitro high throughput RNA microarray identified possible targets of YM155 apart from survivin. Selected genes (ID1, FOXO1, CYLD) that were differentially expressed in YM155-sensitive RCC cells and relevant to RCC pathology were validated with real-time PCR and western immunoblotting analyses. Thus, there is corroboratory evidence that the growth inhibitory activity of YM155 in RCC cell lines is not exclusively mediated by its suppression of survivin. In view of the growing importance of combination therapy in oncology, we showed that a combination of YM155 and sorafenib at ½ x IC50 concentrations was synergistic on RCC786.0 cells. However, when tested intraperitoneally on a murine xenograft model derived from a nephrectomised patient with clear cell RCC, a combination of suboptimal doses of both drugs failed to arrest tumour progression. The absence of synergy in vivo highlighted the need to further optimize the dosing schedules of YM155 and sorafenib, as well as their routes of administration. It also implied that the expression of other oncogenic proteins which YM155 may target is either low or absent in this clear cell RCC.
Collapse
Affiliation(s)
- Mei Yi Sim
- Department of Urology, Singapore General Hospital, Republic of Singapore
- * E-mail:
| | - Hung Huynh
- Laboratory of Molecular Endocrinology, Division of Molecular and Cellular Research, National Cancer Centre, Republic of Singapore
| | - Mei Lin Go
- Department of Pharmacy, National University of Singapore, Republic of Singapore
| | | |
Collapse
|