1
|
The Role of G Protein-Coupled Receptor Kinase 6 Regulation in Inflammation and Pain. Int J Mol Sci 2022; 23:ijms232415880. [PMID: 36555521 PMCID: PMC9784940 DOI: 10.3390/ijms232415880] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2022] [Revised: 12/09/2022] [Accepted: 12/10/2022] [Indexed: 12/15/2022] Open
Abstract
The G protein-coupled receptor kinase 6 is associated with inflammation and pathological pain. Impairment of GRK6 expression was described in chronic inflammatory diseases such as rheumatoid arthritis and this was shown to be accompanied by an imbalance of downstream signaling pathways. Here, we discuss novel aspects of GRK6 interaction and its impact upon hyperalgesia and inflammatory processes. In this review, we compile important findings concerning GRK6 regulation for a better pathophysiological understanding of the intracellular interaction in the context of inflammation and show clinical implications-for example, the identification of possible therapy goals in the treatment of chronic inflammatory hyperalgesia.
Collapse
|
2
|
Stegen M, Engler A, Ochsenfarth C, Manthey I, Peters J, Siffert W, Frey UH. Characterization of the G protein-coupled receptor kinase 6 promoter reveals a functional CREB binding site. PLoS One 2021; 16:e0247087. [PMID: 33600497 PMCID: PMC7891717 DOI: 10.1371/journal.pone.0247087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Accepted: 02/01/2021] [Indexed: 11/21/2022] Open
Abstract
Background G protein-coupled receptor kinase 6 (GRK6) is part of the G protein-coupled receptor kinase family, whose members act as key regulators of seven-transmembrane receptor signalling. GRK6 seems to play a role in regulation of inflammatory processes, but mechanisms of transcriptional regulation of GRK6 expression in inflammatory cell lines have not been characterized. Protein kinase C (PKC) signalling is also involved in inflammatory regulation and an impact of PKC activation on GRK6 protein expression was described previously. Thus, the aim of this study was to 1) characterize the GRK6 promoter, and 2) investigate a potential influence of PKC on GRK6 expression. Methods Five deletion constructs of the GRK6 promoter were cloned. After transient transfection into a human T cell line, promoter activity was assessed using luciferase reporter gene assays. Putative transcription factor binding sites were identified, mutated, and binding was investigated using electrophoretic mobility shift assays (EMSA). Following stimulation with a PKC activator, GRK6 expression on mRNA and protein levels was assessed by reverse transcriptase qPCR and Western blots. Results Investigation of the GRK6 promoter revealed a putative cAMP responsive element (CRE), whose mutation led to decreased promoter activity (p = 0.0006). Functionality of the CRE binding protein (CREB) binding site was verified in EMSA blots. Stimulation with a PKC activator resulted in decreased GRK6 promoter activity (p = 0.0027), mRNA (p = 0.04) and protein expression. Conclusion We characterized the human GRK6 promoter and identified promoter activity to be influenced by a CREB binding site. PKC might be one determinant contributing to altered GRK6 expression.
Collapse
Affiliation(s)
- Maike Stegen
- Department of Anaesthesiology and Intensive Care Medicine, Essen University Hospital and University of Duisburg-Essen, Essen, Germany
- * E-mail:
| | - Andrea Engler
- Department of Anaesthesiology and Intensive Care Medicine, Essen University Hospital and University of Duisburg-Essen, Essen, Germany
| | - Crista Ochsenfarth
- Department of Anaesthesiology, Operative Intensive Care Medicine, Pain and Palliative Medicine, Marien Hospital Herne, Ruhr-University Bochum, Bochum, Germany
| | - Iris Manthey
- Institute of Pharmacogenetics, Essen University Hospital and University of Duisburg-Essen, Essen, Germany
| | - Jürgen Peters
- Department of Anaesthesiology and Intensive Care Medicine, Essen University Hospital and University of Duisburg-Essen, Essen, Germany
| | - Winfried Siffert
- Institute of Pharmacogenetics, Essen University Hospital and University of Duisburg-Essen, Essen, Germany
| | - Ulrich H. Frey
- Department of Anaesthesiology and Intensive Care Medicine, Essen University Hospital and University of Duisburg-Essen, Essen, Germany
- Department of Anaesthesiology, Operative Intensive Care Medicine, Pain and Palliative Medicine, Marien Hospital Herne, Ruhr-University Bochum, Bochum, Germany
| |
Collapse
|
3
|
Lee T, Packiriswamy N, Lee E, Lucas PC, McCabe LR, Parameswaran N. Role of G protein-coupled receptor kinase-6 in Escherichia coli lung infection model in mice. Physiol Genomics 2017; 49:682-689. [PMID: 28939643 PMCID: PMC5792138 DOI: 10.1152/physiolgenomics.00066.2017] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2017] [Revised: 08/24/2017] [Accepted: 09/19/2017] [Indexed: 12/11/2022] Open
Abstract
G protein-coupled receptor kinase-6 (GRK6) is a serine/threonine kinase that is important in inflammatory processes. In this study, we examined the role of GRK6 in Escherichia coli-induced lung infection and inflammation using GRK6 knockout (KO) and wild-type (WT) mice. Intratracheal instillation of E. coli significantly enhanced bacterial load in the bronchoalveolar lavage (BAL) of KO compared with WT mice. Reduced bacterial clearance in the KO mice was not due to an intrinsic defect in neutrophil phagocytosis or killing but as a result of reduced neutrophil numbers in the KO BAL. Interestingly, neutrophil numbers in the lung were increased in the KO compared with WT mice, suggesting a potential dysfunction in transepithelial migration of neutrophils from the lungs to the bronchoalveolar space. This effect was selective for lung tissue because peritoneal neutrophil numbers were similar between the two genotypes following peritoneal infection. Although neutrophil expression of CXCR2/CXCR3 was similar between WT and KO, IL-17A expression was higher in the KO compared with WT mice. These results suggest that enhanced neutrophil count in the KO lungs but reduced numbers in BAL are likely due to transepithelial migration defect and/or altered chemokines/cytokines. Together, our studies suggest a previously unrecognized and novel role for GRK6 in neutrophil migration specific to pulmonary tissue during bacterial infection.
Collapse
Affiliation(s)
- Taehyung Lee
- Department of Physiology, Michigan State University, East Lansing, Michigan; and
| | | | - Eunhee Lee
- Department of Physiology, Michigan State University, East Lansing, Michigan; and
| | - Peter C Lucas
- Department of Pathology, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Laura R McCabe
- Department of Physiology, Michigan State University, East Lansing, Michigan; and
| | | |
Collapse
|
4
|
Zhou Y, Li RJ, Li M, Liu X, Zhu HY, Ju Z, Miao X, Xu GY. Overexpression of GRK6 attenuates neuropathic pain via suppression of CXCR2 in rat dorsal root ganglion. Mol Pain 2016; 12:12/0/1744806916646381. [PMID: 27145805 PMCID: PMC4956389 DOI: 10.1177/1744806916646381] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2016] [Accepted: 03/29/2016] [Indexed: 12/14/2022] Open
Abstract
G protein-coupled kinase (GRK) 6 is a member of the GRK family that mediates agonist-induced desensitization and signaling of G protein-coupled receptors (GPCRs), thus involving in a wide variety of processes including inflammation and nociception. Recent studies have indicated that chemokines play an important role in chronic pain via increased expression of respective GPCRs. This study was designed to investigate the role of GRK6 and its interaction with substrate chemokine receptors in dorsal root ganglion (DRG) in a rat model of neuropathic pain induced by chronic constriction injury (CCI). Following induction of CCI, GRK6 expression was significantly downregulated in rat DRGs at L4-L6 segments. Overexpression of GRK6 using lentiviral-mediated production strategy via sciatic nerve injection markedly attenuated mechanical allodynia and thermal hyperalgesia in CCI rats. Overexpression of GRK6 also drastically reversed the hyperexcitability of DRG neurons innervating the hind paw and suppressed the enhanced expression of CXCR2 in DRGs of CCI rats. In addition, co-immunoprecipitation, immunofluorescence, and correlation analysis supported the interaction between GRK6 and CXCR2. These results suggest that GRK6 might be a key molecular involved in peripheral mechanism of neuropathic pain and that overexpression of GRK6 might be a potential strategy for treatment for neuropathic pain through inhibition of CXCR2 signal pathway.
Collapse
Affiliation(s)
- Yuan Zhou
- Jiangsu Key Laboratory of Translational Research and Therapy for Neuro-Psycho-Diseases, Institute of Neuroscience, Soochow University, Suzhou, P.R. China Department of Anesthesiology, Affiliated Hospital of Nantong University, Nantong, P.R. China
| | - Rong-Ji Li
- Jiangsu Key Laboratory of Translational Research and Therapy for Neuro-Psycho-Diseases, Institute of Neuroscience, Soochow University, Suzhou, P.R. China
| | - Meng Li
- Jiangsu Key Laboratory of Translational Research and Therapy for Neuro-Psycho-Diseases, Institute of Neuroscience, Soochow University, Suzhou, P.R. China
| | - Xuelian Liu
- Jiangsu Key Laboratory of Translational Research and Therapy for Neuro-Psycho-Diseases, Institute of Neuroscience, Soochow University, Suzhou, P.R. China
| | - Hong-Yan Zhu
- Center for Translational Medicine, Affiliated Zhangjiagang Hospital of Soochow University, Zhangjiagang, P.R. China
| | - Zhong Ju
- Jiangsu Key Laboratory of Translational Research and Therapy for Neuro-Psycho-Diseases, Institute of Neuroscience, Soochow University, Suzhou, P.R. China
| | - Xiuhua Miao
- Center for Translational Medicine, Affiliated Zhangjiagang Hospital of Soochow University, Zhangjiagang, P.R. China
| | - Guang-Yin Xu
- Jiangsu Key Laboratory of Translational Research and Therapy for Neuro-Psycho-Diseases, Institute of Neuroscience, Soochow University, Suzhou, P.R. China Center for Translational Medicine, Affiliated Zhangjiagang Hospital of Soochow University, Zhangjiagang, P.R. China
| |
Collapse
|
5
|
Altered Ion Channel/Receptor Expression and Function in Extrinsic Sensory Neurons: The Cause of and Solution to Chronic Visceral Pain? ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2016; 891:75-90. [PMID: 27379637 DOI: 10.1007/978-3-319-27592-5_9] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
The gastrointestinal tract is unique in that it is innervated by several distinct populations of neurons, whose cell bodies are either intrinsic (enteric, viscerofugal) or extrinsic (sympathetic, sensory afferents) to the wall of the gut. We are usually completely unaware of the continuous, complicated orchestra of functions that these neurons conduct. However, for patients with Inflammatory Bowel Disease (IBD) or functional gastrointestinal disorders, such as Functional Dyspepsia (FD) and Irritable Bowel Syndrome (IBS) altered gastrointestinal motility, discomfort and pain are common, debilitating symptoms. Whilst bouts of inflammation underlie the symptoms associated with IBD, over the past few years there is increased pre-clinical and clinical evidence that infection and inflammation are key risk factors for the development of several functional gastrointestinal disorders, in particular IBS. There is a strong correlation between prior exposure to gut infection and symptom occurrence; with the duration and severity of the initial illness the strongest associated risk factors. This review discusses the current body of evidence for neuroplasticity during inflammation and how in many cases fails to reset back to normal, long after healing of the damaged tissues. Recent evidence suggests that the altered expression and function of key ion channels and receptors within extrinsic sensory neurons play fundamental roles in the aberrant pain sensation associated with these gastrointestinal diseases and disorders.
Collapse
|
6
|
Greenwood-Van Meerveld B, Prusator DK, Johnson AC. Animal models of gastrointestinal and liver diseases. Animal models of visceral pain: pathophysiology, translational relevance, and challenges. Am J Physiol Gastrointest Liver Physiol 2015; 308:G885-903. [PMID: 25767262 DOI: 10.1152/ajpgi.00463.2014] [Citation(s) in RCA: 65] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/23/2014] [Accepted: 03/11/2015] [Indexed: 02/08/2023]
Abstract
Visceral pain describes pain emanating from the thoracic, pelvic, or abdominal organs. In contrast to somatic pain, visceral pain is generally vague, poorly localized, and characterized by hypersensitivity to a stimulus such as organ distension. Animal models have played a pivotal role in our understanding of the mechanisms underlying the pathophysiology of visceral pain. This review focuses on animal models of visceral pain and their translational relevance. In addition, the challenges of using animal models to develop novel therapeutic approaches to treat visceral pain will be discussed.
Collapse
Affiliation(s)
- Beverley Greenwood-Van Meerveld
- Veterans Affairs Medical Center, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma; Department of Physiology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma; and Oklahoma Center for Neuroscience, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma
| | - Dawn K Prusator
- Oklahoma Center for Neuroscience, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma
| | - Anthony C Johnson
- Oklahoma Center for Neuroscience, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma
| |
Collapse
|
7
|
Zhao P, Lieu T, Barlow N, Sostegni S, Haerteis S, Korbmacher C, Liedtke W, Jimenez-Vargas NN, Vanner SJ, Bunnett NW. Neutrophil Elastase Activates Protease-activated Receptor-2 (PAR2) and Transient Receptor Potential Vanilloid 4 (TRPV4) to Cause Inflammation and Pain. J Biol Chem 2015; 290:13875-87. [PMID: 25878251 DOI: 10.1074/jbc.m115.642736] [Citation(s) in RCA: 133] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2015] [Indexed: 12/25/2022] Open
Abstract
Proteases that cleave protease-activated receptor-2 (PAR(2)) at Arg(36)↓Ser(37) reveal a tethered ligand that binds to the cleaved receptor. PAR(2) activates transient receptor potential (TRP) channels of nociceptive neurons to induce neurogenic inflammation and pain. Although proteases that cleave PAR(2) at non-canonical sites can trigger distinct signaling cascades, the functional importance of the PAR(2)-biased agonism is uncertain. We investigated whether neutrophil elastase, a biased agonist of PAR(2), causes inflammation and pain by activating PAR2 and TRP vanilloid 4 (TRPV4). Elastase cleaved human PAR(2) at Ala(66)↓Ser(67) and Ser(67)↓Val(68). Elastase stimulated PAR(2)-dependent cAMP accumulation and ERK1/2 activation, but not Ca(2+) mobilization, in KNRK cells. Elastase induced PAR(2) coupling to Gαs but not Gαq in HEK293 cells. Although elastase did not promote recruitment of G protein-coupled receptor kinase-2 (GRK(2)) or β-arrestin to PAR(2), consistent with its inability to promote receptor endocytosis, elastase did stimulate GRK6 recruitment. Elastase caused PAR(2)-dependent sensitization of TRPV4 currents in Xenopus laevis oocytes by adenylyl cyclase- and protein kinase A (PKA)-dependent mechanisms. Elastase stimulated PAR(2)-dependent cAMP formation and ERK1/2 phosphorylation, and a PAR(2)- and TRPV4-mediated influx of extracellular Ca(2+) in mouse nociceptors. Adenylyl cyclase and PKA-mediated elastase-induced activation of TRPV4 and hyperexcitability of nociceptors. Intraplantar injection of elastase to mice caused edema and mechanical hyperalgesia by PAR(2)- and TRPV4-mediated mechanisms. Thus, the elastase-biased agonism of PAR(2) causes Gαs-dependent activation of adenylyl cyclase and PKA, which activates TRPV4 and sensitizes nociceptors to cause inflammation and pain. Our results identify a novel mechanism of elastase-induced activation of TRPV4 and expand the role of PAR(2) as a mediator of protease-driven inflammation and pain.
Collapse
Affiliation(s)
- Peishen Zhao
- From the Monash Institute of Pharmaceutical Sciences and
| | - TinaMarie Lieu
- From the Monash Institute of Pharmaceutical Sciences and
| | | | - Silvia Sostegni
- the Institut für Zelluläre und Molekulare Physiologie, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen 91054, Germany
| | - Silke Haerteis
- the Institut für Zelluläre und Molekulare Physiologie, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen 91054, Germany
| | - Christoph Korbmacher
- the Institut für Zelluläre und Molekulare Physiologie, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen 91054, Germany
| | - Wolfgang Liedtke
- the Department of Neurology, School of Medicine, Duke University, Durham, North Carolina 27710
| | - Nestor N Jimenez-Vargas
- the Gastrointestinal Diseases Research Unit, Division of Gastroenterology, Queen's University, Kingston, Ontario N7L 3N6, Canada, and
| | - Stephen J Vanner
- the Gastrointestinal Diseases Research Unit, Division of Gastroenterology, Queen's University, Kingston, Ontario N7L 3N6, Canada, and
| | - Nigel W Bunnett
- From the Monash Institute of Pharmaceutical Sciences and the ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, Monash University, Parkville 3052, Australia, the Department of Pharmacology, University of Melbourne, Melbourne 3010, Australia
| |
Collapse
|
8
|
Farrell KE, Callister RJ, Keely S. Understanding and targeting centrally mediated visceral pain in inflammatory bowel disease. Front Pharmacol 2014; 5:27. [PMID: 24634658 PMCID: PMC3942649 DOI: 10.3389/fphar.2014.00027] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Key Words] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2014] [Accepted: 02/13/2014] [Indexed: 11/17/2022] Open
Affiliation(s)
- Kristen E Farrell
- School of Biomedical Sciences and Pharmacy, The University of Newcastle Callaghan, NSW, Australia
| | - Robert J Callister
- School of Biomedical Sciences and Pharmacy, The University of Newcastle Callaghan, NSW, Australia
| | - Simon Keely
- School of Biomedical Sciences and Pharmacy, The University of Newcastle Callaghan, NSW, Australia ; Gastrointestinal Research Group, Viruses, Infection/Immunity, Vaccines and Asthma Program, Hunter Medical Research Institute New Lambton Heights, NSW, Australia
| |
Collapse
|
9
|
A systematic review of the evidence for central nervous system plasticity in animal models of inflammatory-mediated gastrointestinal pain. Inflamm Bowel Dis 2014; 20:176-95. [PMID: 24284415 DOI: 10.1097/01.mib.0000437499.52922.b1] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
BACKGROUND Abdominal pain frequently accompanies inflammatory disorders of the gastrointestinal tract (GIT), and animal models of GIT inflammation have been developed to explore the role of the central nervous system (CNS) in this process. Here, we summarize the evidence from animal studies for CNS plasticity following GIT inflammation. METHODS A systematic review was conducted to identify studies that: (1) used inflammation of GIT organs, (2) assessed pain or visceral hypersensitivity, and (3) presented evidence of CNS involvement. Two hundred and eight articles were identified, and 79 were eligible for analysis. RESULTS Rats were most widely used (76%). Most studies used adult animals (42%) with a bias toward males (74%). Colitis was the most frequently used model (78%) and 2,4,6-trinitrobenzenesulfonic acid the preferred inflammatory agent (33%). Behavioral (58%), anatomical/molecular (44%), and physiological (24%) approaches were used alone or in combination to assess CNS involvement during or after GIT inflammation. Measurement times varied widely (<1 h-> 2 wk after inflammation). Blinded outcomes were used in 42% studies, randomization in 10%, and evidence of visceral inflammation in 54%. Only 3 studies fulfilled our criteria for high methodological quality, and no study reported sample size calculations. CONCLUSIONS The included studies provide strong evidence for CNS plasticity following GIT inflammation, specifically in the spinal cord dorsal horn. This evidence includes altered visceromotor responses and indices of referred pain, elevated neural activation and peptide content, and increased neuronal excitability. This evidence supports continued use of this approach for preclinical studies; however, there is substantial scope to improve study design.
Collapse
|
10
|
Decreased expression and role of GRK6 in spinal cord of rats after chronic constriction injury. Neurochem Res 2013; 38:2168-79. [PMID: 23979726 DOI: 10.1007/s11064-013-1125-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2012] [Revised: 07/17/2013] [Accepted: 07/31/2013] [Indexed: 10/26/2022]
Abstract
Nerve injury and inflammation can both induce neuropathic pain via the production of pro-inflammatory cytokines. In the process, G protein-coupled receptors (GPCRs) were involved in pain signal transduction. GPCR kinase (GRK) 6 is a member of the GRK family that regulates agonist-induced desensitization and signaling of GPCRs. However, its expression and function in neuropathic pain have not been reported. In this study, we performed a chronic constriction injury (CCI) model in adult male rats and investigated the dynamic change of GRK6 expression in spinal cord. GRK6 was predominantly expressed in the superficial layers of the lumbar spinal cord dorsal horn neurons and its expression was decreased bilaterally following induction of CCI. The changes of GRK6 were mainly in IB4 and P substrate positive areas in spinal cord dorsal horn. And over-expression of GRK6 in spinal cord by lentivirus intrathecal injection attenuated the pain response induced by CCI. In addition, the level of TNF-α underwent the negative pattern of GRK6 in spinal cord. And neutralized TNF-α by antibody intrathecal injection up-regulated GRK6 expression and attenuated the mechanical allodynia and heat hyperalgesia in CCI model. All the data indicated that down-regulation of neuronal GRK6 expression induced by cytokine may be a potential mechanism that contributes to increasing neuronal signaling in neuropathic pain.
Collapse
|
11
|
Expression of G-protein-coupled receptor kinase 6 (GRK6) after acute spinal cord injury in adult rat. J Mol Histol 2013; 44:259-70. [PMID: 23359120 DOI: 10.1007/s10735-013-9486-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2012] [Accepted: 01/21/2013] [Indexed: 12/20/2022]
Abstract
Spinal cord injury frequently results in permanent loss of neurological function. It includes many complex molecular and biochemical mechanisms. G-protein-coupled receptor kinase 6 (GRK6) is an intracellular kinase that regulates the sensitivity of certain G-protein-coupled receptors. Some studies reported GRK2 and GRK5 modulate the NFκB pathway in macrophages. Additionally, GRK2 is referred to as regulating activation of spinal cord microglia and GRK6 expression is significantly elevated in most brain regions in the MPTP-lesioned parkinsonian monkeys. However, the expression and function of GRK6 in nervous system lesion and repair are not well understood. In this study, we performed an acute spinal cord injury (SCI) model in adult rats. Western blot analysis showed the expression of GRK6 was upregulated significantly at protein level in spinal cord after SCI. Immunohistochemistry and immunofluorescence revealed wide expression of GRK6 in the normal spinal cord. After injury, GRK6 expression was increased predominantly in microglia, which expressed F4/80 (marker of macrophages and activated microglia) strongly. To understand whether GRK6 played a role in microglia activation, we applied lipopolysaccharide (LPS) to induce microglia activation in vitro. Western blot analysis demonstrated up-regulation in GRK6 protein expression after LPS stimulation was time- and dose-dependent and that up-regulation in F4/80 expression was concomitant with GRK6. These data suggested that GRK6 might be involved in the pathophysiology of SCI.
Collapse
|
12
|
Pitcher MH, Nieto FR, Cervero F. Stimulation of Cutaneous Low Threshold Mechanoreceptors in Mice After Intracolonic Capsaicin Increases Spinal c-Fos Labeling in an NKCC1-Dependent Fashion. THE JOURNAL OF PAIN 2013. [DOI: 10.1016/j.jpain.2012.10.003] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
13
|
Moussa L, Bézirard V, Salvador-Cartier C, Bacquié V, Lencina C, Lévêque M, Braniste V, Ménard S, Théodorou V, Houdeau E. A low dose of fermented soy germ alleviates gut barrier injury, hyperalgesia and faecal protease activity in a rat model of inflammatory bowel disease. PLoS One 2012; 7:e49547. [PMID: 23166707 PMCID: PMC3498131 DOI: 10.1371/journal.pone.0049547] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2012] [Accepted: 10/10/2012] [Indexed: 12/19/2022] Open
Abstract
Pro-inflammatory cytokines like macrophage migration inhibitory factor (MIF), IL-1β and TNF-α predominate in inflammatory bowel diseases (IBD) and TNBS colitis. Increased levels of serine proteases activating protease-activated receptor 2 (PAR-2) are found in the lumen and colonic tissue of IBD patients. PAR-2 activity and pro-inflammatory cytokines impair epithelial barrier, facilitating the uptake of luminal aggressors that perpetuate inflammation and visceral pain. Soy extracts contain phytoestrogens (isoflavones) and serine protease inhibitors namely Bowman-Birk Inhibitors (BBI). Since estrogens exhibit anti-inflammatory and epithelial barrier enhancing properties, and that a BBI concentrate improves ulcerative colitis, we aimed to evaluate if a fermented soy germ extract (FSG) with standardized isoflavone profile and stable BBI content exert cumulative or synergistic protection based on protease inhibition and estrogen receptor (ER)-ligand activity in colitic rats. Female rats received orally for 15 d either vehicle or FSG with or without an ER antagonist ICI 182.780 before TNBS intracolonic instillation. Macroscopic and microscopic damages, myeloperoxidase activity, cytokine levels, intestinal paracellular permeability, visceral sensitivity, faecal proteolytic activity and PAR-2 expression were assessed 24 h, 3 d and 5 d post-TNBS. FSG treatment improved the severity of colitis, by decreasing the TNBS-induced rise in gut permeability, visceral sensitivity, faecal proteolytic activity and PAR-2 expression at all post-TNBS points. All FSG effects were reversed by the ICI 182.780 except the decrease in faecal proteolytic activity and PAR-2 expression. In conclusion, the anti-inflammatory properties of FSG treatment result from two distinct but synergic pathways i.e an ER-ligand and a PAR-2 mediated pathway, providing rationale for potential use as adjuvant therapy in IBD.
Collapse
Affiliation(s)
- Lara Moussa
- Neuro-Gastroenterology and Nutrition, Institut National de la Recherche Agronomique, UMR1331 Toxalim, INRA/INPT/UPS, Toulouse, France
- GENIBIO, Lorp-Sentaraille, France
| | - Valérie Bézirard
- Neuro-Gastroenterology and Nutrition, Institut National de la Recherche Agronomique, UMR1331 Toxalim, INRA/INPT/UPS, Toulouse, France
| | - Christel Salvador-Cartier
- Neuro-Gastroenterology and Nutrition, Institut National de la Recherche Agronomique, UMR1331 Toxalim, INRA/INPT/UPS, Toulouse, France
| | - Valérie Bacquié
- Neuro-Gastroenterology and Nutrition, Institut National de la Recherche Agronomique, UMR1331 Toxalim, INRA/INPT/UPS, Toulouse, France
| | - Corinne Lencina
- Neuro-Gastroenterology and Nutrition, Institut National de la Recherche Agronomique, UMR1331 Toxalim, INRA/INPT/UPS, Toulouse, France
| | - Mathilde Lévêque
- Neuro-Gastroenterology and Nutrition, Institut National de la Recherche Agronomique, UMR1331 Toxalim, INRA/INPT/UPS, Toulouse, France
| | - Viorica Braniste
- Neuro-Gastroenterology and Nutrition, Institut National de la Recherche Agronomique, UMR1331 Toxalim, INRA/INPT/UPS, Toulouse, France
| | - Sandrine Ménard
- Neuro-Gastroenterology and Nutrition, Institut National de la Recherche Agronomique, UMR1331 Toxalim, INRA/INPT/UPS, Toulouse, France
| | - Vassilia Théodorou
- Neuro-Gastroenterology and Nutrition, Institut National de la Recherche Agronomique, UMR1331 Toxalim, INRA/INPT/UPS, Toulouse, France
| | - Eric Houdeau
- Neuro-Gastroenterology and Nutrition, Institut National de la Recherche Agronomique, UMR1331 Toxalim, INRA/INPT/UPS, Toulouse, France
| |
Collapse
|
14
|
Eijkelkamp N, Heijnen CJ, Carbajal AG, Willemen HLDM, Wang H, Minett MS, Wood JN, Schedlowski M, Dantzer R, Kelley KW, Kavelaars A. G protein-coupled receptor kinase 6 acts as a critical regulator of cytokine-induced hyperalgesia by promoting phosphatidylinositol 3-kinase and inhibiting p38 signaling. Mol Med 2012; 18:556-64. [PMID: 22331028 DOI: 10.2119/molmed.2011.00398] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2011] [Accepted: 02/03/2012] [Indexed: 12/26/2022] Open
Abstract
The molecular mechanisms determining magnitude and duration of inflammatory pain are still unclear. We assessed the contribution of G protein-coupled receptor kinase (GRK)-6 to inflammatory hyperalgesia in mice. We showed that GRK6 is a critical regulator of severity and duration of cytokine-induced hyperalgesia. In GRK6⁻/⁻ mice, a significantly lower dose (100 times lower) of intraplantar interleukin (IL)-1β was sufficient to induce hyperalgesia compared with wild-type (WT) mice. In addition, IL-1β hyperalgesia lasted much longer in GRK6⁻/⁻ mice than in WT mice (8 d in GRK6⁻/⁻ versus 6 h in WT mice). Tumor necrosis factor (TNF)-α-induced hyperalgesia was also enhanced and prolonged in GRK6⁻/⁻ mice. In vitro, IL-1β-induced p38 phosphorylation in GRK6⁻/⁻ dorsal root ganglion (DRG) neurons was increased compared with WT neurons. In contrast, IL-1β only induced activation of the phosphatidylinositol (PI) 3-kinase/Akt pathway in WT neurons, but not in GRK6⁻/⁻ neurons. In vivo, p38 inhibition attenuated IL-1β- and TNF-α-induced hyperalgesia in both genotypes. Notably, however, whereas PI 3-kinase inhibition enhanced and prolonged hyperalgesia in WT mice, it did not have any effect in GRK6-deficient mice. The capacity of GRK6 to regulate pain responses was also apparent in carrageenan-induced hyperalgesia, since thermal and mechanical hypersensitivity was significantly prolonged in GRK6⁻/⁻ mice. Finally, GRK6 expression was reduced in DRGs of mice with chronic neuropathic or inflammatory pain. Collectively, these findings underline the potential role of GRK6 in pathological pain. We propose the novel concept that GRK6 acts as a kinase that constrains neuronal responsiveness to IL-1β and TNF-α and cytokine-induced hyperalgesia via biased cytokine-induced p38 and PI 3-kinase/Akt activation.
Collapse
Affiliation(s)
- Niels Eijkelkamp
- Laboratory of Neuroimmunology and Developmental Origins of Disease-NIDOD, University Medical Center Utrecht, Utrecht, the Netherlands
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Systematic review of animal models of post-infectious/post-inflammatory irritable bowel syndrome. J Gastroenterol 2011; 46:164-74. [PMID: 20848144 DOI: 10.1007/s00535-010-0321-6] [Citation(s) in RCA: 80] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/29/2010] [Accepted: 08/19/2010] [Indexed: 02/07/2023]
Abstract
AIMS Post-infectious irritable bowel syndrome (PI-IBS) is a subset of IBS which occurs after an episode of acute gastrointestinal infections. The mechanisms of PI-IBS are not fully understood. Currently, numerous animal models have been used in the study of PI-IBS. This article reviews the strengths and weaknesses of these models. METHODS All relevant articles were identified by searching in Ovid SP from 1962, the year the term PI-IBS was coined, up to December 31, 2009. The types of model were categorized as either post-infectious or post-inflammatory, and the characteristics of each kind of model were listed. RESULTS Based on our literature search, 268 articles were identified. Of those articles, 50 were included in this review. The existing PI-IBS models include infection with bacteria (e.g., Campylobacter jejuni, Salmonella enterica, and Campylobacter rodentium), and infection with parasites (e.g., Trichinella spiralis, Nippostrongylus brasiliensis, and Cryptosporidium parvum). The post-inflammatory IBS models are commonly induced with chemical agents, such as acetic acid, deoxycholic acid, dextran sulfate sodium, mustard oil, zymosan, and trinitrobenzene sulfonic acid (TNBS). TNBS is the most commonly used agent for post-inflammatory IBS models, but the experimental protocol varies. These models have one or more aspects similar to IBS patients. CONCLUSIONS Different methods have been used for the development of post-infectious or post-inflammatory IBS models. Each model has its weaknesses and strengths. More studies are needed to establish post-infection IBS models using more common pathogens. A standard protocol in developing TNBS-induced post-inflammatory IBS model is needed.
Collapse
|
16
|
Lötsch J, Geisslinger G, Tegeder I. Genetic modulation of the pharmacological treatment of pain. Pharmacol Ther 2009; 124:168-84. [DOI: 10.1016/j.pharmthera.2009.06.010] [Citation(s) in RCA: 77] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2009] [Accepted: 06/22/2009] [Indexed: 12/15/2022]
|
17
|
Murga C, Mayor F. GRK6, a gatekeeper of visceral hyperalgesia. Brain Behav Immun 2009; 23:16-7. [PMID: 18977289 DOI: 10.1016/j.bbi.2008.10.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/08/2008] [Accepted: 10/08/2008] [Indexed: 10/21/2022] Open
Affiliation(s)
- Cristina Murga
- Departamento de Biología Molecular and Centro de Biología Molecular Severo Ochoa (Consejo Superior de Investigaciones Científicas niversidad Autónoma de Madrid), Universidad Autónoma de Madrid, 28049 Madrid, Spain
| | | |
Collapse
|